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Abstract. The performance and reliability of Cyber-Physical Systems
are increasingly aided through the use of digital twins, which mirror
the static and dynamic behaviour of a Cyber-Physical System (CPS)
in software. Digital twins enable the development of self-adaptive CPSs
which reconfigure their behaviour in response to novel environments. It
is crucial that these self-adaptations are formally verified at runtime, to
avoid expensive re-certification of the reconfigured CPS. In this paper,
we demonstrate formally verified self-adaptation in a digital twinning
system, by constructing a non-deterministic model which captures the
uncertainties in the system behaviour after a self-adaptation. We use
Signal Temporal Logic to specify the safety requirements the system must
satisfy after reconfiguration and employ formal methods based on verified
monitoring over Flow* flowpipes to check these properties at runtime.
This gives us a framework to predictively detect and mitigate unsafe
self-adaptations before they can lead to unsafe states in the physical
system.

Keywords: Digital twin · Self-adaptation · Reachability analysis ·
Signal temporal logic · Optimization · Cyber-physical system

1 Introduction

A Cyber-Physical System (CPS) consists of a digital component controlling
a physical asset within some operating environment. Cyber-Physical Systems
design poses significant engineering challenges, whilst scalably verifying that
CPSs meet their requirements has long been a central problem in formal meth-
ods research [2,5,29,51]. Moreover, a CPS must cope with significant uncertainty
and change during its operations. This motivates the need for self-adaptive cyber-
physical systems which dynamically reconfigure their behaviour in response to
anomalous situations. However, the dynamic nature of these reconfigurations
induces significant additional design and verification challenges, demanding new
methods for engineering safe self-adaptive CPSs.

One approach to the challenges of CPS engineering comes through the use of
digital twins. A digital twin is a computational replica of a CPS, which we refer to
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as the physical twin. The digital twin is constructed from heterogeneous models
of the physical system, including its hardware components, control software, and
physical environment. The digital twin synchronises with the physical twin by
monitoring its behaviour in order to update the state of these models.

Whilst a digital twin for a simple CPS can be implemented directly based
on sensory data, it is difficult to get a comprehensive view of the state of a more
complex CPS. This requires a combination of state estimators, data-fusion algo-
rithms, and numerical simulation, which may still leave discrepancies between
the digital and physical twins. Such discrepancies can also arise due to unex-
pected shifts in the CPS’s operating environment, causing the model parameters
of the digital twin to become out of date. Hence, we must continually monitor
the conformance of the physical twin behaviour to the models in the digital twin
to detect these anomalies and recalibrate the digital twin parameters based on
the data from the physical twin. The digital twin may also be used to alter the
behaviour of the CPS when conformance is violated (see Kritzinger et al. [33]
and Tao et al. [54]).

Because the digital twin changes the behaviour of the physical twin, it is
crucial that these changes are formally verified to be safe. This challenge has
been well discussed in [57] and [28] where the application of formal methods is
surveyed in the context of self-adaptive systems. This is relevant since a digital
twin enables self-adaptation of its physical twin. However, digital twins place
a higher emphasis on physical systems, which means that traditional formal
methods must be adapted. Indeed, in practical systems, self-adaptation cannot
be deployed, since each system reconfiguration requires re-certification of the
equipment, leading to long potential downtimes. Nevertheless, it is our vision
that re-certification can be sped up with the application of formal methods.

We will explore many of these challenges through a model incubator sys-
tem [25] in which a digital controller regulates the temperature inside an incu-
bator box by controlling a heat-bed inside the box. A digital twin of the incu-
bator can measure the temperature within the box through digital temperature
sensors placed at different locations within the box; these temperature readings
can be used to calibrate the parameters of the digital twin models. If effectively
calibrated, these models can be used to predict the future values of the box
temperature or to synthesise optimal control policies for the heat-bed. How-
ever, we must handle discrepancies in these predictions arising from a number
of uncertainties inherent in the calibration process: (i) temperature sensors at
different locations in the box may give inconsistent readings; (ii) the sensor data
represents delayed discrete samples of the system; (iii) sensors have noisy read-
ings and actuators are inaccurate; (iv) the digital twin models only approximate
the physical twin; (v) there are processing delays in the digital twin; (vi) the
incubator’s operating environment is uncertain and changeable.

Contribution. In this paper, we demonstrate formally verified self-adaptation in
the context of an incubator digital twin system. To this end, we construct a second
non-deterministic model that predicts the behaviour of the physical twin after a
self-adaptation whilst we perform uncertainty calibration to measure and account
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for the uncertainties introduced during the self-adaptation process. This enables
us to apply exact formal verification, leveraging Flow* verified integration [13]
to perform verified monitoring [59] of the non-deterministic model against high-
level safety requirements specified in the Signal Temporal Logic (STL) [39]. Ver-
ification is performed inside the self-adaptive loop to predict future violations
after each self-adaptation. This is in contrast with most (offline or online) STL
monitoring approaches that use data from the physical system to detect viola-
tions which have already occurred. Thus we may perform online monitoring of
self-adaptations, which predictively identifies unsafe self-adaptations, or active
enforcement, enabling the system to take evasive action to avert unsafety.

Related Work. Woodcock et al. [58] demonstrated how safety violations of CPSs
in uncertain environments may be detected based on statistical analysis of digital
twin cosimulations. Formally verified self-adaptation can be seen as an alterna-
tive approach to handling environmental uncertainty, with the non-deterministic
model assuring that safety is maintained.

A variety of works have considered formal verification of self-adaptive soft-
ware systems. Of these, our approach is particularly related to [8,9,21] which
develop predictive monitoring of non-functional requirements expressed in the
QCTL [4] temporal logic. It should also be compared to SimCA* [52] which is
able to give formal guarantees for control-theoretic requirements under environ-
mental uncertainties. On the other hand, most of the work on self-adaptive CPSs
has focused on self-adaptation at the architectural or software levels [41]. These
also include applications of concurrency-theoretic formalisms [7,55] to verify self-
adaptations which reconfigure the network topology of a CPS. However, none of
this work has considered formal verification of the controlled continuous dynam-
ics of the system, which is the main focus of this paper. These challenges are
related to Fault Detection, Isolation, and Reconfiguration (FDIR) problems [30],
which have been considered in the control theory community, although the focus
of these works is quite different than our temporal-logic based approach.

Another distinctive feature of our approach is the application of predictive STL
model checking at runtime. Outside of the context of self-adaptive systems, this is
related to the Clairvoyant monitoring approach of Qin and Deshmukh [44] which
fits statistical models to traces in order to predict the probability that a STL prop-
erty will be satisfied by future extension of the trace and to the approach of Ma
et al. [37] which makes predictions based on Bayesian Recurrent Neural Networks
with calibrated uncertainty estimation. In contrast, our approach expands a sys-
tem’s digital twin into an uncertain dynamical system model, which is used to
predict its future behaviour. This is worth comparing to the model-bounded mon-
itoring approaches of Waga, André, and Hasuo [56] and of Ghosh and André [27]
which both use uncertain linear dynamical systems to interpolate between sparsely
sampled time series data. Also relevant is the closely related problem of model pre-
dictive synthesis of controllers satisfying STL specifications [20,22,43,45,46,48–
50] including the recent reachability-based methods [11,16,53].

A number of works [1,15,17,35,60] have also applied reachability analy-
sis to predict future safety violations at runtime. Zhang et al. [62] have also
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demonstrated online repair based on control synthesis. However, the only one of
these methods which moves beyond reach-avoidance properties to a full range
of STL properties is that of Yu et al. [61], which targets discrete rather than
continuous time dynamical systems.

2 Background

In this section we introduce some background material on the incubator system
and on our verified monitoring approach for STL specifications.

2.1 Notation

Firstly, we introduce some mathematical notation which we will use throughout
the paper. We will frequently work with the real numbers R, including the space
of non-negative real numbers R≥0 = [0,∞) and the space of n-dimensional real
vectors R

n. We use boldface to distinguish the names of vectors x from scalars
x, and write a specific n-dimensional vector with real entries x1, . . . , xn ∈ R as
x = (x1, . . . , xn) ∈ R

n. We rely upon interval arithmetic [40], which represents
uncertain quantities as closed real intervals I = [a, b] ∈ IR and defines over-
approximate arithmetic operations based on the endpoints of intervals so that,
for example, [a, b] + [c, d] = [a + c, b + d]. We also work with interval vectors
I = (I1, . . . , In) ∈ IR

n which consist of interval entries I1, . . . , In ∈ IR and
support all of the standard vector operations. We define the interval vector
[x,y] = ([x1, y1] , . . . , [xn, yn]) ranging between two real vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn) (assuming xi ≤ yi for all i). Finally, we define the width
of an interval [a, b], width([a, b]) = b − a, and the distance of a point x from an
interval [a, b],

dist(x, [a, b]) �

⎧
⎪⎨

⎪⎩

x − b if x > b

a − x if x < a

0 otherwise
.

2.2 Incubator

The incubator system, detailed in [25], consists of a styrofoam box and a digital
controller. An overview of the incubator and its control logic is shown in Fig. 1.
It consists of a heat-bed (that radiates heat when turned on) and a fan (that
ensures uniform temperature distribution inside the box). The temperature can
be sensed and sent to the controller from two different spots inside the box, and
a spot outside the box. The duty cycle of the controller regulates the steady
state temperature inside the box. In this paper we will consider an open-loop
controller (shown in Fig. 1b) which operates independently of the temperature
measurements, but is periodically reconfigured based on the temperature mea-
surements and a digital twin of the incubator system.
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Fig. 1. Overview of the incubator system.

As shown in [25, Section 3], we can model the incubator using the following
system of equations which describe the evolution of the temperature of the air
inside the box TA and of the heat-bed TH , in degrees Celsius:

dTH

dt
=

1
CH

(
V I − GH

(
TH − TA

))

dTA

dt
=

1
CA

(
GH

(
TH − TA

) − GB

(
TA − TR

))
(1)

where:

– V and I denote voltage and current, respectively, and the product V I repre-
sents power (rate of energy produced at the heat-bed);

– GH represents the rate of energy transfer between the surface of the heat-bed
and the surrounding air;

– CH encapsulates both the heat capacity of the heat-bed as well as its mass;
– CA encapsulates the heat capacity and mass of the air inside the box;
– GB represents the rate of energy transfer between the air inside the box and

the air outside the box (e.g. the lid being opened is equivalent to increasing
this value by an order of magnitude).
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Equation (1) represents the plant without any control action. We also need
to include the control signal which turns the heat-bed on and off. Therefore the
controlled equations have the form

dTH

dt
=

1
CH

(
c(t)V I − GH

(
TH − TA

))

dTA

dt
=

1
CA

(
GH

(
TH − TA

) − GB

(
TA − TR

))
(2)

where the input signal c : R≥0 → {0, 1} determines the control state of the heater
at a given instant in time. In particular, in the incubator system this control
signal takes the form of a piecewise constant periodic signal c = ck,l which (after
an initialisation period) alternates between heating for k duty cycles (ck,l(t) = 1)
and cooling for l duty cycles (ck,l(t) = 0) in line with Fig. 1b.

2.3 Flow* Verified Integration

The majority of simulation and analysis of mathematical models such as digital
twins is carried out using numerical methods. Whilst the flexibility and per-
formance of these methods makes them invaluable, a major limitation is their
approximate nature, which means they are unable to definitively prove prop-
erties of the system as their results can be unreliable for sensitive or chaotic
systems [10]. An even larger practical limitation is their inability to represent
and account for uncertainties in the system, preventing us from providing veri-
fication results which are robust to noise or mismatches between a digital twin
and a physical system.

Verified integration applies exact formal methods in order to move beyond
the approximate simulation results produced by classical numerical methods, to
computing a verified enclosure of all possible trajectories of a system over time.
One leading such method is the Flow* verified integrator [14] which applies a
variety of Taylor model-based [6] methods to tightly enclose the dynamics of con-
tinuous and hybrid dynamical systems featuring complex non-linear dynamics
and large uncertainties in initial conditions and model parameters.

In particular, Flow* verified integration is able to handle uncertain paramet-
ric continuous systems of form,

dx
dt

= f(x,p, c(t), t) (3)

whose dynamics are specified by a Lipschitz continuous function f : Rn × R
m ×

R
q × R≥0 → R

n (i.e. a vector of n coupled non-linear ODEs) subject to a
vector p of system parameters and a predetermined open-loop control policy
c : R≥0 → R

m which we assume to be a piecewise constant. We are able to
introduce uncertainties in this class of models both through an interval ini-
tial value constraint x(0) ∈ I which states that the system must start inside
the n-dimensional box I ∈ IR

n of initial conditions and the interval param-
eter constraint p ∈ U which constrains the parameters of the system to the
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m-dimensional box U ∈ IR
m. These uncertain parameters are assumed to

be time-invariant (so that they have fixed real values; we just do not know
what they are); whilst such uncertain parameters have been tackled explicitly
by verified-integration methods such that of Lin and Stadtherr [36], we handle
them by implicitly re-encoding them as uncertain initial conditions for additional
derivative-zero variables of the model1. We denote an uncertain parametric sys-
tem of the above form as M(I,U, c) where I and U record the interval initial
condition and parameter constraints of the system and c records the control
policy.

In order to enclose all possible behaviours of the system under uncertainty,
Flow* moves from approximating a single trajectory x : R≥0 → R

n of the
system, to computing a flowpipe enclosing all possible trajectories of the sys-
tem. Whilst internally Flow* uses a complex symbolic flowpipe representation
based on preconditioned Taylor models [38] to give the tightest possible bounds
on system dynamics, we can view these flowpipes as interval vector functions
g : IR → IR

n which map interval regions T ∈ IR of the time domain to n-
dimensional regions g(T ) ∈ IR

n of the system state space. These flowpipes are
then guaranteed to form an interval extension of every possible trajectory of
the underlying system in the sense that, for every trajectory x : R≥0 → R

n,
every time point t ∈ R≥0, and every time interval T ∈ IR such that t ∈ T we
are guaranteed that x(t) ∈ g(T ). This means a Flow* flowpipe computed for
a given uncertain model, which we henceforth denote flowpipe(M(I,U, c)), is
guaranteed to soundly enclose all possible behaviours of a system regardless of
any uncertainties in the initial conditions I or parameters U of the system.

Example 1. We can view the incubator model Eq. (1) as an uncertain model of
form Eq. (3) if we assume uncertain knowledge of the initial state of the system,
given by the interval initial value constraints,

TA(0) ∈ IA =
[
25.0, 25.1

]
, TH(0) ∈ IH =

[
20.59, 21.60

]
,

uncertain knowledge of the system parameters CA, GB given by the interval
constraints,

CA ∈ UA =
[
68.20, 68.71

]
, CH ∈ UH =

[
0.73, 0.79

]
,

and the following fixed values of the remaining system parameters,

V = 12.00, I = 10.45, TR = 21.25, GH = 0.87095429.

Following the notation of the previous section, we denote the overall uncertain
incubator model as M(

(IA, IH), (UA, UH), c
)
.

If we apply a constant control policy coff(t) ≡ 0 in which the heater is always
off, then applying Flow* gives the flowpipes shown in Fig. 2a. This demonstrates
1 Flow* also has native support for time-varying interval uncertain parameters [12,

Section 3.5], which may vary throughout the simulation leading to much greater
uncertainty in the overall behaviour of the system over time.
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Fig. 2. Verified integration and monitoring results for the incubator under uncertainty.

that the system absorbs the uncertainties introduced by the uncertain initial
conditions and hence the long-term behaviour of the system is robust under
these variations, as demonstrated in [26].

We can also apply a periodic open-loop control policy c3,7(t) in which the
heater alternates between switching on for periods of 3 duty cycles and cooling
down for periods of 7 duty cycles. This results in the flowpipes shown in Fig. 2,
which demonstrates that this control policy results in an initial rise of the box
and heater temperature before eventual stabilisation.

2.4 Verified Monitoring

Whilst models and simulation techniques provide a powerful way to analyse the
behaviour of systems, their application typically depends on human insight to
interpret the results and determine whether it is consistent with the expected
safe behaviour of the system. Since self-adaptive systems are designed to operate
without human intervention, we propose the use of specification languages such
as temporal logics to capture the safety requirements of the system, and offline
or online monitoring techniques to check whether a given system behaviour is
consistent with these requirements.

Signal Temporal Logic (STL) [39] has emerged as a popular specification
language for the behaviour of Cyber-Physical Systems [5]. STL formulae are
defined according to the following grammar,

φ, ψ ::= ρ | φ ∧ ψ | φ ∨ ψ | ¬φ | F[a,b] φ | G[a,b] φ | φ U[a,b] ψ ,

and incorporate as atomic propositions inequalities ρ � f(x) ≥ 0 featuring
functions f(x) of the system variables alongside complex propositions with the
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logical operators not ¬φ, and φ ∧ ψ, and or φ ∨ ψ, as well as the temporal
operators F[a,b] φ or eventually φ (which states that the STL property φ should
hold at some time point between a and b time units in the future), G[a,b] φ or
globally φ (which states that the STL property φ should hold at all time points
between a and b time units in the future); as well as the until operator φ U[a,b] ψ
(which states that there is some time point t between a and b time units in the
future such that ψ is true at t and that φ is true at every time point t′ between
now and then).

STL monitoring has traditionally been applied to a single numerical sig-
nal x : K → R

n (with either bounded real-time domain K = [0, T ] or dis-
crete time domain K = {t1, . . . , tN} ⊆ [0, T ] based on time-sampling points
t1 < t2 < . . . < tN ) either from a running system or a numerical simulation of
its behaviour using bottom-up monitoring algorithms [39] that recursively com-
pute Boolean signals s : [0, T ] → {True,False} which record the truth of a STL
given property at each time point t ∈ [0, T ]. In contrast, verified methods such
as Flow* have traditionally focused on reachability analysis to enclose all pos-
sible behaviours of the system without supporting the rich timed specifications
which STL allows. However, recently a number of methods [11,31,34,47,59] have
emerged applying verified reachability analysis as a basis for verified monitoring
of STL properties. In particular we apply the method of Wright and Stark [59]
which implements verified monitoring of STL properties over Flow* flowpipes by
computing three-valued signals s : R≥0 → {True,Unknown,False} which uses a
third truth value, Unknown, to record when the uncertainty in the flowpipe is too
great to either verify or refute a property at a given time point t ∈ R≥0. Thus,
the signal produced by verified monitoring of a STL property over a flowpipe
M(I,U, c) for a given uncertain model gives formal guarantees, with True and
False values guaranteeing the truth or falsehood of the property for all possible
initial conditions x ∈ I and parameters p ∈ U of the model. We are there-
fore able to apply verified STL monitoring in order to capture many interesting
properties of the incubator system.

Example 2. As a simple example, we can monitor properties of system state
variables such as TA ≥ 22.6 which asserts that the air temperature within the
incubator is at least 22.6 ◦C. A three-valued signal for this property when the
heater is off is shown in Fig. 2c illustrating that the property is true at both ends
of the time period of truth at the peak of the temperature graph and periods
of uncertainty in between. Similarly, a three-valued signal for the same property
with a periodic heater control policy c3,7 is shown in Fig. 2d.

We are also able to apply the full monitoring algorithm to verify properties
of the overall timed behaviour of the incubator. For example, under the periodic
control policy c3,7 we are able to verify the STL property

F[0,2000] G[0,100](TA ≥ 33 ∧ TA ≤ 36)
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which states that the air temperature eventually (within 2000 seconds) reaches
and (for at least 100 seconds) remains within the interval range [33, 36]. This cor-
responds to the control-theoretic requirement that the air temperature stabilises
close to 34.5 ◦C, however, the use of STL allows us to strengthen this to require
that the temperature stabilises within a timely manner (within 2000 s).

3 Formally Verified Self-Adaptation

This section lays out our approach for introducing formally verified self-
adaptation into an incubator digital twin system, through the use of a self-
adaptation loop, and formal verification of a non-deterministic model capturing
the behaviour of the incubator after each self-adaptation.

3.1 Incubator Self-Adaptation Loop

The digital twin of the incubator, originally introduced in [24], has been extended
with a self-adaptation loop in [23], that reconfigures the duty cycle of the open
loop controller whenever an external disturbance undermines the predictive
power of the model in Eq. (1). The most common example disturbance is when
the lid of the incubator is opened.

A disturbance is detected by comparing the output from a Kalman filter
(that uses Eq. (1)) with the actual temperature measurements. After some time,
the disturbance is confirmed, and the following steps, based on the MAPE-K
loop [32], are taken:

Gather Data —The system is left to operate normally for some more time
steps, in order to gather sufficient data for the next step.

Recalibrate Model —The data gathered since the time the anomaly was
detected is used to re-estimate a real-valued vector p∗ = (C∗

A, G∗
H) of parame-

ters for the incubator model in Eq. (1) by repeatedly running simulations and
comparing them to the data, while adjusting the parameters to make the simu-
lation match the data (we use a non-linear optimisation package which is part
of SciPy2).

Recompute Control Policy —Use the newly found parameters to inform an
optimisation problem where the new controller parameters are derived to
determine an updated control policy c∗. Repeated simulations of the con-
trolled incubator equations (Eq. (2)) are performed with different control
duty cycles, to find the optimal one.

Update Control Parameter Finally, the new parameters are uploaded to the
controller.

For more details on this self-adaptation loop, we refer the reader to [23].

2 https://docs.scipy.org/doc/scipy/index.html.

https://docs.scipy.org/doc/scipy/index.html
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Figure 3a shows an example of self adaptation of the incubator. Initially the
duty cycle of the controller has been optimised to keep the temperature at 41 ◦C.
After the lid is opened, an anomaly is detected (shown by the discrepancy between
the orange signal and the blue line, at time 500 s). Shortly after, the duty cycle is
changed to maximum power, to try to compensate for the loss of energy in the
system. The same process happens in reverse when the lid is closed.

3.2 Verified Monitoring Architecture for Safe Self-Adaptation

Whilst self-adaptation through the use of a numerical digital twin such as that
described in the previous section provides an effective way of detecting and
responding to anomalies, one can question whether the resulting adaptive control
policies lead to long-term safe behaviour for the overall system. Indeed, the deploy-
ment of such a self-adaptive loop in a safety-critical setting typically requires both
offline verification that a safe configuration exists and that the self-adaptive proce-
dure is able to identify it. This is often not possible in practice given the uncertain
and unpredicatable system contexts which self-adaptation seeks to address.

We propose an alternative approach in which verified monitoring is deployed
online in order to verify the safety of the system after self-adaptation. To this
end, we propose to modify the self-adaptation loop architecture introduced in
the previous section so that after each anomaly we construct a non-deterministic
model of the system denoted as M(I∗,U, c∗) which aims to over-approximate
all possible behaviours of the physical twin after the anomaly, based on the
data collected during the Gather Data phase. We can then apply verified STL
monitoring to M(I∗,U, c∗) in order to verify a set S of STL properties repre-
senting the safety requirements of the system. Thus, whilst we cannot guarentee
that self-adaptation will always succeed, we can use the verified STL monitoring
results to guarentee that any unsafe self-adaptations can be detected, enabling
the safety of the deployed system to be ensured by other means (such as human
intervention or an automated safe-shutdown procedure).

3.3 Uncertainty Calibration

A key stage of the verified monitoring procedure proposed in the previous section
is constructing M(I∗,U, c∗) which attempts to over-approximate the behaviour
of the physical incubator system after the anomaly based on the data gathered
during the Gather Data stage.

To accomplish this we propose to perform an uncertainty calibration process
in which we start off with a model M(x∗,p∗, c) = M((T ∗

A, T ∗
H), (C∗

A, G∗
H), c)

based on the digital twin state x∗ = (T ∗
A, T ∗

H) at the start of the calibration
period, the vector p∗ = (C∗

A, G∗
H) of real-valued parameters determined in the

Recalibrate Model stage, and the old control policy c. We then expand these
real parameters into interval parameters achieving a minimal enclosure of the
plant data signal y : {t1, . . . , tN} → R

n over the calibration period. To this end
we first define the inflated model

Mε
δ

(
x∗,p∗, c

)
� M

(
x∗ + [−ε, ε] ,p∗ + [−δ, δ] , c

)
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of the model M(x∗,p∗, c) by the inflation parameter vectors ε = (εA, εH) and
δ = (δA, δH). This inflated model encloses each initial condition x∗

i or parameter
p∗
i of the calibrated digital twin in a radius εi or δi interval of uncertainty

respectively. In order to fit these intervals of uncertainty to the plant data, we
define the non-conformity3 of a plant signal y to a flowpipe g as

non-conformity(y,g) =
N∑

i=1

√
√
√
√

m∑

j=1

dist(y(ti)j ,g(ti)j)2

and the uncertainty of a n-dimensional interval vector I ∈ IR
n as

uncertainty(I) =

√
√
√
√

n∑

i=1

width(Ii)2.

Then suitable inflation parameters ε∗ = (ε∗
A, ε∗

H) and δ = (δ∗
A, δ∗

H) are found
by applying an optimisation process to minimize,

K non-conformity (y,flowpipe(Mε
δ (x∗,p∗, c)))

+ uncertainty (flowpipe(Mε
δ (x∗,p∗, c))(tN ))

thus jointly minimising the non-conformity of the plant signal to the flowpipe
and the uncertainty of the flowpipe at the end of the calibration period (since this
gives a measure of how strongly the overall uncertainty in the parameters feeds
into the long term behaviour of the system). Here we use the weight parameter
K � 1 to prioritise enclosure of the plant data over minimising the uncertainty
in the parameters.

Provided we can find a solution with zero non-conformity, this then pro-
vides a non-deterministic model M(I,U, c) = Mε

δ (x∗,p∗, c) for the system over
the calibration period. To predict the plant behaviour after the anomaly and
calibration period have passed, we use a flowpipe from the non-deterministic
model to predict the possible system state I∗ = flowpipe

(Mε∗
δ∗(x∗,p∗, c)

)
(tN )

at the end of the calibration period. We can then obtain and utilize the non-
deterministic model M(I∗,U, c∗) where c∗ is the new control policy produced
by self-adaptation, as detailed next.

3.4 Self-adaptation Monitoring and Enforcement

We propose that the verified self-adaptation loop may use the non-deterministic
model in two ways. Firstly, it may be used in a monitoring mode in which we
apply verified STL monitoring to the uncertainty-calibrated non-deterministic
model after each self-adaptation in order to validate the self-adaptation process
itself against the safety requirements S of the system. Thus, the monitoring mode

3 This notion is worth comparing this to notions of conformance between continuous
and hybrid systems traces such as [19] and [3].
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will report the durations of each self-adaptation period, alongside the calibrated
intervals of uncertain model parameters for the non-deterministic model after the
anomaly, and a record of whether each safety requirement is satisfied or violated
after the anomaly. Secondly, it may be used in an enforcing mode in which
the violation of a safety property blocked the application of the new control
policy (deemed unsafe) and instead triggers a safe shutdown of the system,
preventing potential harm when self-adaptation is insufficient to ensure safety.
Whilst enforcement is necessary to ensure overall safety, in cases where it is
not practical, we argue that monitoring provides an invaluable tool to identify
design flaws in self-adaptation loops and alert human supervisors to potential
issues when safe self-adaptation is not possible.

4 Incubator Self-adaptation Verification Results

In this section we examine some example executions of our formally verified
self-adaptation loop for the incubator system in order to explore how the use of
verified monitoring allows us to identify unsafe self-adaptations and to correct
design flaws in the self-adaptation loop.

4.1 System Setup

We consider an instantiation of the incubator self-adaptation loop which simu-
lates the full digital twinning setup in silico based on experimental data and the
use another numerical model of the incubator in place of the physical twin. We
configure the plant with an initial open-loop control policy c = c10,30 whilst
the physical and digital twins are both initially configured with parameters
CA ≈ 177.63, GB ≈ 0.77, CH ≈ 239.61, and GH ≈ 2.32, and the self-adaptation
process is configured to optimize the control policy based on a desired incubator
temperature of 41 ◦ C, a data gathering period of 12 seconds, and a minimum
period of 20 seconds between anomalies.

In order to simulate a situation requiring self-adaptation, we introduce dis-
continuous jumps which change the parameter GB to 10 times its original value
after 500s and then again after 1500s. This simulates the box lid being opened
at time 500 and closed again at time 1500. We have validated this procedure
with the real system, to certify that our simulation results are representative of
the real opening of the lid [23].

4.2 Safety Properties

We capture the desired safety properties for controller in the set S = {φ1, φ2}
consisting of the two STL properties:

– φ1 � F[0,1000] G[0,100](TA ≥ 36 ∧ TA ≤ 46): the incubator air temperature
should stabilise between 36 ◦C and 46 ◦C within 1000 seconds;

– φ2 � G[0,1000](TA ≤ 60): the incubator air temperature should never
exceed 60 ◦C.
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Of these we note that φ2 is the most critical, given the potential for excessive
air temperatures inside the box to rapidly harm its contents.

4.3 Self-adaptation Results

Figure 3a demonstrates the behaviour of the incubator self-adaptation loop as
it adapts to the opening and closing of the box lid. The self-adaptation loop
detects and responds to two anomalies: and anomaly a1 when the incubator box
lid is opened and an anomaly a2 once the box lid is closed again.

We were able to apply our verified monitoring procedure to check the prop-
erties φ1 and φ2 after each self-adaptation. Uncertainty calibration produced
non-deterministic models which tightly over-approximated the plant behaviour
after reconfiguration; for example, the non-deterministic model flowpipe after a2

is shown in Fig. 4. This allowed us to generate the monitoring results for each
property, producing the results shown in Fig. 3d. From these we can see that φ1

is true after a1 showing that the system finds a control policy which achieves
the desired temperature once the lid is opened. On the other hand, we get a
monitoring result of False for φ1 after a2: whilst the control policy is eventually
returning the air temperature to the desired range, it is not able to do so within
the time limit stipulated in φ1 (see Fig. 4). More seriously, the crucial property
φ2 fails after a2. We can see that in trying to keep the box close to the desired
temperature when the lid is open, the heat-bed temperature has risen to over
70 ◦C, placing the system in a state where overheating is unavoidable once the
lid is closed again and the accumulated energy in the heat-bed dissipates to the
air in the box.

4.4 Repairing the Loop

We can also use verified monitoring as a means to understand and mitigate the
potential for unsafe self-adaptations. The failure of φ2 after the box lid was closed
again demonstrates the danger of allowing unrestricted heater temperatures,
motivating us to introduce an additional safety requirement

φ3 � G[0,1000](TH ≤ 70)

which requires the heater temperature to be kept below 70 ◦C for at least 1000
seconds after every self-adaptation. From Fig. 3d this property was violated after
each of the two anomalies a1, a2 demonstrating the ability of the verified monitor
to predict future failures after a self-adaptation. This could allow us to notify
a human supervisor or to use the verified monitor in enforcing mode, initiating
a safe-shutdown by turning off the heater before an unsafe self-adaptation can
lead to directly detectable damage (as shown in Fig. 3b).

We are also able to use our new understanding of this potential hazard to
improve the design of the underlying self-adaptation loop. For example, we can
limit the overall heater temperature by modifying the Recompute Control
Policy stage to select control policies which prevent the heater temperature from
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Fig. 3. Self-adaptation experiment results.

Fig. 4. A demonstration of enclosure of the physical plant signals for TA and TH (in
yellow and cyan resp.) by the non-deterministic model flowpipes after anomaly a2. The
uncertainty calibration data points for TA and TH are highlighted in red and purple
respectively. (Color figure online)
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exceeding some thresholds (e.g. 60 ◦C). Repeating the self-adaptation experi-
ment with this modified self-adaptation loop results in the improved behaviour
shown in Fig. 3c. We can see in Fig. 3d that all of our safety properties are
satisfied after each of the two anomalies b1, b2 of the modified system, with one
exception: the property φ1 cannot be maintained when the incubator lid is open.
This is, however, an understandable trade-off since in an uncontrolled environ-
ment there are cases in which self-adaptation is genuinely not possible (given
the limitations of the system’s physical components) and so we must prioritise
between the different design requirements to minimize harm.

5 Conclusion

In this paper we have shown how verified STL monitoring over Flow* flowpipes
may be applied to achieve formally-verified self-adaptation in a digital twinning
system. We demonstrated the power of this approach to predictively identify
unsafe self-adaptations before they lead to a safety violation and to apply active
enforcement to prevent violations. Whilst for this paper we have focused on a
relatively simple incubator case study, we hope to develop our methods further
through a representative range of different of applications of digital twins. Our
methods are also not restricted the open-loop control policies considered in this
paper, but apply equally to more complex closed-loop control policies.

Limitations and Future work Our initial implementation of our monitoring app-
roach has a number of limitations which we hope to address in future work.
Firstly, the accuracy of our predictions is ultimately determined by the rep-
resentitativeness of the digital twin and the sampled physical twin data from
which the non-deterministic model is constructed. This is a limitation we share
with most model-based formal methods, however, we can increase the conser-
vativeness of our results by performing uncertainty calibration over sensor data
streams which encapsulate the range of possible uncertainty in measurements
(by, for example, taking temperature readings from multiple sensors at differ-
ent locations within the box). We also need to contend with timing differences
between the physical and digital twins which may arise from variable process-
ing times and the computation delays between components; these may lead to
excessive false positives. We propose to account for such time distortions of sig-
nals through the use of more sophisticated notions of conformance such as the
Skorokhod metric [19] or Dynamic Time Warping [42].

A final limitation lies in the time required to perform Flow* verified inte-
gration to verify a self-adaptation. For the simple case of the incubator, this
time was not an issue, but as the example becomes more complex, the verifica-
tion stage will become a bottleneck in the self-adaptation process. We should
be able to substantively overcome this limitation by precomputing the flowpipes
offline, extending the approach of Chou, Yoon, and Sankaranarayanan [18], leav-
ing only the moderate [59] cost of our verified monitoring algorithm at runtime.
We can also explore combining our verified monitoring approach with other effi-
cient online flowpipe computation methods [15]. Additionally, whilst our focus
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thus far has been on control over relatively short timespans, it would also be
worth exploring the applicability of our verified monitoring approach to differ-
ent application domains for digital twins such as infrastructure, civil engineering,
and biomedical engineering which feature control over much longer timespans.
Whilst we expect our core approach should be equally applicable to models in
these domains, the longer timespans of control offer scope for more extensive
applications of formal verification inside of the control cycle.
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