Journal Title

XX(X):1-24

©The Author(s) 2024

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Yon Vanommeslaeghe'-?, Claudio Gomes?, Bert Van Acker'-2, Joachim Denil'2, Paul De
Meulenaere'?

Adapting Parallel DEVS Semantics to
FMI 3.0 Co-Simulation Using
Synchronous Clocks

Abstract

Simulating cyber-physical systems (CPS) often requires integrating continuous dynamics, typically described by
differential equations, with discrete-event dynamics that represent the behavior of embedded controllers. Version 3.0 of
the Functional Mock-up Interface (FMI) standard introduces synchronous clocks and a discrete-event mode, creating
new opportunities for the co-simulation of hybrid systems. So far, it has not been demonstrated that these features can
faithfully capture the semantics of discrete-event formalisms such as the Discrete EVent System specification (DEVS)
and its extension, Parallel DEVS (PDEVS). This leaves open the question of whether FMI 3.0 can effectively support
complex hybrid dynamics.

This paper addresses this gap by showing how PDEVS models can be exported and coupled as FMI 3.0 Functional
Mock-up Units (FMUs) while preserving PDEVS semantics. We first derive requirements that any simulator must satisfy
to correctly preserve PDEVS semantics. Based on these requirements, we present a systematic mapping of PDEVS
abstract simulator functions to the FMI 3.0 interface with synchronous clocks and present an orchestration algorithm
to co-simulate multiple PDEVS FMUs accordingly. The approach is validated using an adaptive cruise control case
study, where our FMI-based co-simulation reproduces the results of an established PDEVS simulator. To support
reproducibility and further research, we provide an open-source prototype together with the complete validation setup.

Keywords
discrete event system specification, functional mock-up interface, co-simulation, cyber-physical systems

Introduction formalisms not only provide expressive modeling constructs,
but also specify precise operational semantics. Moreover,
many other modeling formalisms can be transformed into
DEVS,** positioning it as a unifying framework to integrate
different formalisms. This makes DEVS a natural candidate
for modeling the cyber components of CPS and for capturing

their interactions with the continuous physical dynamics.

The Functional Mock-up Interface (FMI) standard has

In general, the simulation of Cyber-Physical Systems (CPS)
requires simulating both continuous dynamics, which evolve
smoothly over time, and discrete-event dynamics, where
changes occur instantaneously at specific points in time.
The physical part of a CPS is typically described using
Ordinary Differential Equations (ODEs) to capture the
underlying continuous dynamics. The cyber part, in contrast,

is inherently discrete, with controllers, communication
protocols, and embedded systems, which operate on clocks
and both react to and produce events. The challenge in
faithfully simulating CPS lies in coordinating these two
fundamentally different domains in a coherent co-simulation
framework. Over the years, various formalisms have been
proposed. Broadly, these approaches can be classified as
discrete-event first, where all subsystems are converted
to a discrete-event formalism, and continuous-time first,
where all subsystems are expressed in continuous time and
discretization merely happens to enable stepwise simulation.

The Discrete EVent System specification (DEVS)!
provides a well-defined methodology to model and simulate
systems where state changes are driven by events occurring
at discrete points in time. It is particularly effective
in scenarios where the interactions between subsystems
are naturally described as sequences of events, such as
embedded systems and communication protocols. DEVS
and its extension, Parallel DEVS? (PDEVS), are widely
used for modeling large-scale discrete-event systems. These

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

become the de facto mechanism for enabling co-simulation
across tools. Earlier versions of FMI, however, were
designed around a continuous-time first perspective, lacking
explicit mechanisms for accurate event detection and local-
ization, which limited interoperability with discrete-event
formalisms such as PDEVS. Version 3.0 of FMI introduces
new features that open opportunities to address this gap.
More specifically, it introduces the concept of synchronous
clocks, which allow subsystems to synchronize on common

Cosys-Lab (FTI), University of Antwerp, Belgium
2AnSyMo/Cosys, Flanders Make, Belgium
8Aarhus University, Denmark

Corresponding author:
Yon Vanommeslaeghe

Email: yon.vanommeslaeghe@uantwerpen.be

Journal Title XX(X)

times, and the discrete-event mode, facilitating the propaga-
tion of discrete events interleaved with continuous dynam-
ics. These extensions open the door to faithfully capturing
discrete-event behavior within FMI-based co-simulation.

However, while the semantics of synchronous clocks have
been defined,>® and an orchestration algorithm has been
proposed by Hansen et al.,” there has been no work to date
demonstrating the ability of FMI 3.0 FMUs to faithfully
capture the semantics of discrete-event formalisms, such as
PDEVS. This leaves open the question of whether FMI 3.0
can effectively simulate complex hybrid dynamics where
discrete-event and continuous subsystems interact.

In this paper, we take a first step toward this goal by
focusing on the discrete-event side. Our central question
is whether FMI 3.0 can be used to faithfully co-simulate
PDEVS models when exported as FMUs. This is nontrivial,
as PDEVS not only defines a modeling formalism but
also precise operational semantics for how coupled models
should interact: how internal and external transitions are
scheduled, how simultaneous events are handled, and how
outputs are routed between components. When PDEVS
models are exported as FMUs, these semantics must be
preserved, otherwise, the coupled FMUs would no longer
reproduce the behavior defined by the PDEVS formalism.

Contribution & Prior Work. Our previous work® did not
extend to coupling multiple DEVS FMUs through the FMI
interface. It demonstrated how FMI 3.0 can be used to co-
simulate a single DEVS model, encapsulated as an FMU to
evaluate the performance of embedded applications, but did
not couple multiple DEVS models through FMI. That work
leveraged the discrete-event mode and synchronous clocks
to signal the occurrence of events, but events could not carry
other data, as required in large scale DEVS simulations.

The present work addresses these limitations by demon-
strating how PDEVS models can be faithfully exported and
coupled as FMI 3.0 FMUs without violating the semantics
of PDEVS. Note that in this paper, we adopt Parallel DEVS
instead of “classic” DEVS. PDEVS resolves key limitations
of DEVS, most importantly the handling of simultaneous
events, which is essential in the context of FMI-based co-
simulation. The rationale for this choice is discussed in detail
in Section Challenges in Coupling Classic DEVS Models.

The contributions of this paper are fourfold:

1. We derive a set of requirements that must be satisfied
to preserve PDEVS semantics when models are
encapsulated as FMUs and coupled through FMI.

2. We present an implementation outline that defines
the systematic mapping between PDEVS abstract
simulator functions and the FMI 3.0 interface with
synchronous clocks in a manner that satisfies the
requirements.

3. We present an example orchestration algorithm to co-
simulate multiple PDEVS FMUs using synchronous
clocks and discrete-event mode to enable correct event
scheduling, communication, and time advancement,
further satisfying the requirements.

4. We validate the approach using an example case study,
comparing our approach to an established PDEVS
simulator. Simulation results confirm that PDEVS
semantics are preserved in practice.

Prepared using sagej.cls

To foster reproducibility and further research, we also release
an open-source prototype implementation together with the
complete validation setup.

Structure. The remainder of this paper is organized as
follows. Section Background first describes the adaptive
cruise control case study that we use as a running example,
and then introduces the necessary background on FMI 3.0
with synchronous clocks as well as the DEVS and PDEVS
formalisms. Section Related Work positions our work in
relation to prior research on integrating DEVS with other
formalisms, such as FMI. Section Contribution presents
our main contribution: the requirements for preserving
PDEVS semantics, the mapping to FMI 3.0 functions, and
an orchestration algorithm for PDEVS FMUs. In Section
Results and Discussion, we evaluate the correctness of
our approach against a PythonPDEVS reference simulation,
interpret the results and highlight broader implications.
Section Limitations discusses the main limitations of our
approach and outlines potential ways to address them.
Finally, Section Conclusions and Future Work summarizes
the findings and outlines directions for future work.

Background
Running Example

To demonstrate the use of FMI synchronous clocks and
PDEVS, we consider an example of an Adaptive Cruise
Control (ACC) system, adapted from an example provided
by the MathWorks.’ An ACC system is designed to enhance
vehicle safety and comfort by automatically adjusting
the vehicle’s speed. Unlike conventional cruise control,
which maintains a constant speed set by the driver, an
ACC dynamically adapts the ego vehicle’s speed based on
traffic conditions by tracking a car in the front (i.e., the
lead vehicle). The overall system architecture is shown in
Figure 1. To simplify the illustration of our contribution, we
consider three variants of the system, shown in the figure:
the open loop scenario is used to illustrate how the event
communication is implemented; the closed loop scenario is
used to motivate the use of Parallel DEVS and how it is
mapped to FMI, and helps illustrate our design choices for
the orchestration of events; finally, the full scenario validates
the semantic equivalence between PDEVS and the FMI-
based co-simulation.

The ACC system operates in two primary modes: speed
control and distance control. In speed control mode, it
maintains a fixed target speed, typically active at higher
speeds on highways. In distance control mode, it maintains a
safe distance from the lead vehicle, and is typically active in
congested traffic. A supervisor manages the mode transitions
based on the current speed and relative distance to the
lead vehicle. The supervisor updates the controller’s speed
setpoint, setting it either to the maximum allowed speed or
a reduced speed to maintain a safe following distance. The
controller then adjusts the acceleration of the ego vehicle
accordingly. Further implementation details are provided in
Section PDEVS Models of the Running Example.

Test Scenario. To make the running example more concrete,
we define a test scenario. In this scenario, the ego and
lead vehicles begin with predefined initial conditions and

Vanommeslaeghe et al.

Adaptive Cruise Control System

o
3.
<
[}
9
|

Lead Vehicle [

Closed Loop Variant

a
Controller >

IR R e S Sa— 7 S B 1
/ T T X,v,a
<<Clock>>
Time-triggered s =
clock L | |

Event-triggered
clock

Supervisor

A A

xl,vl,al
Figure 1. Running example of an adaptive cruise controller

using synchronous clocks. The different clock types are defined
in Section FMI 3.0 - Synchronous Clocks (SC).

Distance Between Vehicles

g /\
g% b \ \
c
s —
o
040 —— Actual Safe
0 10 20 30 40 50 60 70 80
Time (s)
Vehicle Speeds
30 4 -

Speed (m/s)
N
w

—— Lead Ego Actual —-= Ego Wanted
20 0 10 20 30 40 50 60 70 80
Time (s)
Vehicle Accelerations
2 —i —— Lead Ego Actual —-- Ego Wanted

Acceleration
(m/(s"2))

O | o s s

10 20 30 40 50 60 70 80
Time (s)

Figure 2. Traces obtained using PythonPDEVS ' for the
described test scenario.

interact with each other through the ACC system. In the test
scenario, the ego vehicle starts out at position 10 m, velocity
20ms~ Y, and acceleration 0 ms~2, while the lead vehicle
starts at position 50 m, velocity 25 ms™', and acceleration
Oms 2. The driver causes the lead vehicle to accelerate
and decelerate following a sine wave with amplitude
0.6ms~2 andw 0.2rad s~ 1. The ACC system is tasked with
maintaining a safe distance of 1.4s % ego_vehicle_speed +
10 m between the two vehicles, with a maximum allowed
speed for the ego vehicle of 30ms~!.

Figure 2 presents simulation traces for this scenario. As
can be seen, the system maintains the ego vehicle’s speed at
30ms~! whenever the actual distance between the ego and
lead vehicles exceeds the safe distance, such as during the
interval from 13 s to 25 s. However, as the ego vehicle closes
in on the lead vehicle, its speed is reduced to maintain a safe
distance, as seen between 25 s and 45 s.

Prepared using sagej.cls

FMI 3.0 - Synchronous Clocks (SC)

Co-simulation involves integrating multiple simulation tools
or models to analyze complex systems collaboratively.*
To facilitate interoperability between different simulation
environments, the Functional Mock-up Interface (FMI)
standard defines a standardized wrapper for models (with
their solvers), referred to as the Functional Mock-up Unit
(FMU).'! These FMUs expose a standardized interface,
allowing external tools, known as importers, to integrate and
interact with them in a tool-agnostic manner.

Earlier FMI versions primarily supported co-simulation of
continuous dynamic systems. However, FMI 3.0 introduces
significant enhancements, particularly in the domain of
discrete event simulation. A key addition is the concept of
synchronous clocks, '” which enable precise synchronization
of events across different FMUs. Here we introduce clocks
informally and refer the reader to>'® for more formal
treatments. These features are particularly relevant for
integrating DEVS models within FMI-based co-simulations.

Motivation for Synchronous Clocks in Co-Simulation. To
illustrate the need for SCs, consider the Adaptive Cruise
Control (ACC) system in Figure 1. The ACC system can
be modeled as a co-simulation of multiple FMUs, each
representing a system component such as the controller,
supervisor, driver, ego vehicle, or lead vehicle.

This system includes both continuous and discrete
dynamics operating at different rates. The ego and lead
vehicles exhibit continuous behavior, whereas the supervisor,
controller, and driver operate in a discrete manner. The
controller and supervisor execute periodic routines (e.g.,
every 10ms), though the supervisor may or may not change
the controller’s setpoint at each step. Meanwhile, the driver
FMU can change its output at arbitrary times. Clocks are
used to synchronize the execution of these routines within
the different FMUs, e.g., ensuring that the controller and
supervisor are always in sync.

To co-simulate the above scenario using FMI without
synchronous clocks, where each FMU provides the get, set,
and doStep, operations, the orchestration algorithm would
follow the simulation loop: '

1. Advance simulated time.

2. Determine the next simulated synchronization time. In
the above scenario, it could be current simulated time
+ 10ms, or the time when the driver FMU is expected
to change its output.

3. Synchronize all FMUs to this simulated time by
calling their doStep function with the same simulated
time step (e.g., 10ms).

4. Exchange data between FMUs by calling their get and
set functions.

5. Repeat steps 1-5 until the target simulated time has
been reached.

This orchestration poses challenges in synchronizing
routines:

* Predicting driver output changes: The orchestrator
must be able to predict when the driver will change
its output, which is not always straightforward.
Broman et al. > identified this as a key challenge in
co-simulation.

Journal Title XX(X)

e Timing drift due to floating-point arithmetic: The
periodic execution of the controller and supervisor
FMUs may drift over time due to numerical
inaccuracies in floating-point representation. This
issue can only be avoided by using integer-based
timing, fixed-point arithmetic, or designating a single
FMU as the timekeeper for the simulation.

Synchronous Clocks and Event Mode in FMI 3.0. FMI 3.0
introduces SCs to address these synchronization issues.
Another key addition in this version is the introduction
of event mode, alongside the traditional step mode. Event
mode allows FMUs to explicitly handle discrete events, such
as input events, time events, and state changes, without
advancing simulation time. This ensures that all discrete
changes are resolved before proceeding with time stepping,
improving synchronization accuracy. Additionally, FMUs
can now signal early return from a doStep call, indicating
that an event has occurred and must be handled before
continuing. These enhancements provide greater flexibility
in co-simulation by allowing fine-grained event handling in
systems with mixed continuous and discrete behaviors.

Co-simulations with SC follow a structured execution
sequence, incorporating step execution in continuous time
mode (similar to traditional co-simulation), event detection,
and event handling phases. Before we describe the
orchestration algorithm, we first introduce the different types
of clocks defined in FMI 3.0:

Time-based clocks trigger events at specific intervals
during a simulation and can be categorized based on their
behavior. For instance, periodic clocks trigger at constant
intervals, while aperiodic clocks activate based on specific
conditions rather than a fixed schedule. For other time-based
clock types, we refer the reader to Gomes et al.>

Triggered clocks, in contrast with time-based clocks, are
activated by state changes or external conditions, without a
predefined interval. These include: Input Triggered Clocks,
activated by the orchestrator to signal state or input changes;
and Output Triggered Clocks, activated internally by an FMU
based on its internal logic, signaling events to other FMUs or
the orchestrator.

In the ACC example (Figure 1), the controller and
supervisor both have input time-based clocks R that are set
by the importer, while other clocks are event-triggered. For
instance, the controller FMU has an input triggered clock S
that is connected to the supervisor’s output event clock with
the same name.

Orchestration Algorithm for FMI 3.0 Synchronous Clocks.
Ravi et al.'® address the challenge of orchestrating
simulations for FMI SC and provided the basis for the
orchestration algorithm presented in this paper. The proposed
orchestration algorithm divides the simulation process into a
repetition of co-simulation steps that incrementally advanced
the simulated time until it meets the stopping criteria. Each
co-simulation step has three phases: step execution (step
mode), event detection, and event handling (event mode),
detailed next:

1. Step execution (step mode): the same as in traditional
co-simulation. Step and synchronize FMU states by
invoking the doStep function for all FMUs and
exchanging data, and obtain the new simulation time.

Prepared using sagej.cls

FMUs can return earlier from the doStep function if
they have detected an event. FMUs are set to step
mode.

2. Event detection: Compute the set of ticking clocks
from time-based clocks, and detect events triggered by
state-based conditions or active event clocks (triggered
clocks).

3. Event handling (event mode): For all FMUs with
active clocks:

(a) Transition the FMUs to Event mode.
(b) Resolve events by:

i. Iterating on discrete equations and clocked
variables while respecting their dependen-
cies.

ii. Propagating clock activation values between
connected clocks across FMUs.

iii. Exchange relevant data between FMUs in
event mode.
(c) Execute the discrete event step function for all
FMUs in event mode.
(d) Repeat event handling if necessary.
(e) Return FMUs to Step mode and repeat.

Thanks to the use of synchronous clocks, the event
detection and handling is carried out in a controlled manner
and the FMU co-routines (which are run when their
outputs are queried) are run synchronously, and numerical
inaccuracies are circumvented by having a single source of
clock ticking authority at all times.

In the following subsection, we first introduce the DEVS
formalism as a foundation for modeling discrete-event
systems, and then present its extension, Parallel DEVS.

Discrete Event System Specification (DEVS)

This subsection provides a brief overview of the relevant
aspects of the discrete event system specification using a
didactic example of a traffic light system. A more extensive
discussion regarding the DEVS concepts can be found in the
work by Vangheluwe. !

The Discrete EVent System specification (DEVS),
introduced by Zeigler,' is a framework used to model and
simulate systems where events occur at specific moments in
time. It organizes system behavior into two levels: atomic
models and coupled models.

Atomic DEVS Models. Atomic DEVS models are the basic
building blocks that describe how a system behaves over
time. They describe the behavior of a discrete-event system
as a sequence of deterministic transitions between sequential
states, including how it reacts to external input (events)
and how it generates output (events).'” Figure 3 shows an
illustration of two such atomic DEVS models, one of a police
officer (“Police”), and one of a traffic light (“TrafficLight”).
Formally, an atomic DEVS model can be defined as:

atomicDEVS = (S, ta, dint, X, Ocxt, Yy A)

With:
¢ S the set of admissible sequential states
e ta:S—]R(T, +oo the time advance function, which
models the time the system remains in a certain state,
before transitioning to the next sequential state
Notes: (1) instantaneous transitions can be modeled

Vanommeslaeghe et al.

TrafficSystem (coupled)

Police (atomic) TrafficLight (atomicz
output port YoGreen.
Ve Tt

orking inp utpf)ft green yellow red
T o] N0 iovaiiol 1% ioRed 0%
S N : P——7—>b
é; ;% 2toManual 71OMaNual oopan)
s’ c) internal) external

idle coupling PtoAuto coupling

200s

Figure 3. lllustration of a traffic system model, modeled using DEVS.®

using ta(s) = 0, and (2) if the system should remain
in a state, this can be modeled using ta(s) = +oo.

* §int : S — S the internal transition function, which
models the transition from one state to the next
sequential state

o X = x, X, the set of admissible inputs, formalizing
multiple (m) input ports, each identified by a unique
index ¢ (possibly derived from a port name)

* Szt : @ X X — S the external transition function
describing how the system responds to external
events, with Q@ = {(s,e) | s € 5,0 < e < ta(s)} the
total state set, where e is the elapsed time since
transitioning to the current state s
Note: the time left o = ta(s) — e is often used.

» Y = x!_,Y; the set of admissible outputs, formalizing
multiple (1) output ports, each identified by a unique
index % (possibly derived from a port name)

e A: S =Y U{¢} the outpur function, which deter-
mines which output events are generated at the time
of an internal transition.

Note: (1) the state before the transition is used as
input to A, and (2) output events are only generated
on internal transitions and not on external ones.

As an example, the atomic DEVS representation of the
“TrafficLight” model shown in Figure 3 is given below:

TrafficLight = (S, ta, 8int, X, deut, Y, A)
S = {green, yellow, red, manual }

green — 50,
yellow — 10s,

ta =
red — 60 s,
manual — +00
green — yellow,
Oint = { yellow — red,

red — green
X = X1 = {toManual, toAuto}

(green,e), toManual — manual,

5ext =

)
(yellow, e), toManual — manual,
(red, e), toManual — manual,
l

(manual, e), toAuto — red

Y =Y1 = {toGreen, toYellow, toRed }

Prepared using sagej.cls

green — toYellow,

A = < yellow — toRed,

red — toGreen

The atomic DEVS representation of the ‘Police’ model is
omitted here for brevity.

Coupled DEVS Models. These models build on atomic
models to represent larger systems made up of intercon-
nected components. They describe a system as a network
of coupled components (models), with connections between
components denoting how they influence each other. More
specifically, through a connection, output events of one
component can become input events for another (internal
coupling). These components can be atomic DEVS models,
but also other coupled DEVS models. As such, DEVS
allows for a hierarchical modeling approach.'” Additionally,
components can be connected to input/output ports of an
encompassing coupled DEVS model (external coupling).
A coupled DEVS model can be defined as follows:

coupledDEVS =
(Xsetf, Yser, D, AM; },{I;},{Z; ;}, select)

With:

¢ sel f denoting the coupled model itself

* Xeir the (possibly structured) set of allowed external
inputs to the coupled model

* Y17 the (possibly structured) set of allowed (external)
outputs of the coupled model

* D a set of unique component references, not including
self

o {M;} the set of components, where each component is
an atomic DEVS model referenced by D

o {I;} the set of influencees, determining the compo-
nents influenced by a component i € D U {self}, i.e.,
the components whose input ports are connected to
output ports of component ¢
Note: a component (1) can not influence components
outside the coupled model, and (2) can not influence
itself directly

» {Z; ;} the set of translation functions, used to translate
an output event of one component ¢ € D U {self} to
a corresponding input event in an influencee j € I; of
that component (if necessary)
Note: if not defined, these are typically implicitly
assumed to be the identity function. '®

Journal Title XX(X)

¢ select the tie-breaking function used to resolve colli-
sions between components, i.e., multiple components
set to transition at the same time, by selecting exactly
one of those components to execute its transition

Figure 3 shows an illustration of such a coupled DEVS
model (“TrafficSystem”), consisting of two atomic DEVS
models of a police officer and a traffic light. In autonomous
mode, the traffic light automatically transitions between the
states “green”, “yellow”, and “red”. When the police officer
starts working (transitions to the “working” state), an output
event “toManual” is generated, which causes an external
transition in the “TrafficLight” model (“?toManual”),
transitioning it to a manual mode (“manual”). Similarly,
when the police officer stops working, the traffic light
is switched back to autonomous mode, starting in the
“red” state. The coupled DEVS representation of this
“TrafficSystem” model is given below:

TrafficSystem =
(Xserfs Yserf, DAM; Y, {1}, {Z; ; }, select)

Xself = ¢
Yserf = {toGreen, toYellow, toRed }

D = {light, officer}

My;one = TrafficLight,
{Mi}Z{MlghtPl].% g }
officer = Police

_ light — {self },
i = {oﬂcicer — {light}}

toGreen — toGreen,
toYellow — toYellow,
toRed — toRed

{ toAuto — toAuto, }

Ziight, self =
{Zi} =

Z bt =
officerlight toManual — toManual

{light, officer} — officer,

select = {light} — light,
{officer} — officer,
Parallel DEVS (PDEVS)

Parallel DEVS was presented by Chow et al.” as a revision of
the “classic” DEVS formalism to better support parallelism.
Instead of relying on a select function to resolve collisions
at the coupled model level, it allows the modeler to
explicitly define the collision behavior at the atomic model
level using a new confluent transition function (Jconf).
Often, the confluent transition function is defined as first
invoking the internal transition function, followed by the
external transition function. '° Additionally, the external and
confluent transition functions now operate on bags instead of

Prepared using sagej.cls

single inputs. Similarly, the output function produces a bag
instead of a single event.

Therefore, an atomic Parallel DEVS model can be defined
as follows:

atomicPDEVS = <S, t(l, 5i71t7 X7 5emt7 5conf7 Y7)‘>

Note the addition of the confluent transition function (6 cons)
compared to “classic” DEVS.

And a coupled Parallel DEVS model can be defined as
follows:

coupledPDEVS = (Xseif, Yeers, D, {M;}, {1;},{Zi;})

Note the removal of the select function compared to “classic”
DEVS.

PDEVS Abstract Simulator. An abstract simulator defines
the operational semantics of the formalism. Chow et al.?’
provide the original description of the abstract simulator for
Parallel DEVS. A possible implementation of this abstract
simulator is given in Algorithms 1 to 3. For a more extensive
description, the reader is referred to the original work.

While Chow et al. describe the algorithms in terms of
messages being passed between them, highlighting their
parallelizability, we instead describe them in terms of
(blocking) function calls to more easily relate them to the
FMI functions in subsequent discussions.

First, Algorithm 1 presents the simulator for atomic
models, while Algorithm 2 presents the orchestrator for
coupled models. Note how the functions implemented in
the atomic simulator and coupled orchestrator have similar
signatures. This allows the simulation to be constructed
hierarchically, i.e., components of the coupled model can
again be coupled models with their own orchestrators.
Algorithm 3 presents the root-level orchestrator to run the
simulation by interacting with the topmost coupled model’s
orchestrator.

The presented algorithms use the following variables:

* t: simulation time

e tn: simulation time at which the next internal
transition will occur

e tr: simulation time at which the last transition
occurred

e s: state of the (atomic) model

* e: simulation time elapsed since the last transition

e x:input event(s)

* y: output event(s)

* Y. €xternal output event(s)

¢ sel f: reference to the model itself

e IMM: set of model references for models with
imminent transitions

* INF: set of model references for influenced models,
i.e., models with input events

Comparison between FMI SC and (P)DEVS

Previous works®!? have highlighted the similarities and
differences between the two formalisms. Both FMI SC
and (P)DEVS are designed to handle discrete events in
simulation, emphasizing event-based synchronization to
ensure consistent interactions across components. While
FMI SC standardizes co-simulation interfaces to integrate
diverse models, (P)DEVS focuses on system representation

Vanommeslaeghe et al.

and structured state transitions. Event handling in FMI SC
relies on input and output clocks activated at predefined
intervals or by external triggers, whereas (P)DEVS uses
internal and external event transitions to manage system
state changes. (P)DEVS inherently supports hierarchical
modeling through coupled models, whereas FMI SC enables
modular co-simulation by integrating multiple FMUs,
though composing FMUs into coupled FMUs requires
additional orchestration which has not been done for FMI
SC. FMI SC is also optimized for real-time and co-
simulation scenarios, coordinating events across FMUs
through synchronous clocks. While (P)DEVS is grounded
in a strict mathematical formalism, FMI SC lacks formal
semantics and instead relies on external orchestration
mechanisms.

Algorithm 1: Parallel DEVS atomic model simula-
tor.
Function getOutput(t):
if t = t then
Y < As)
return y
else
| raise error
end

end

Function setInput(x):
bag < bag U {z}
end

Function doTransition(t):
ift; <t <ty andbag # () then
// External transition
e<—t—1tg
$ < Oext(8, €,bag)
bag < 0
tr, <t
ty « tr +ta(s)
else if t == t and bag == () then
// Internal transition
$ 4+ Oint(s)
tr, <t
ty « tr +ta(s)
else if t == t and bag # () then
// Confluent transition
$ 4= Ocon(s,bag)
bag +
tr, +t
ty < tr +ta(s)
elseif t > ¢ty ort < ¢, then
‘ raise error
end
return ¢

end

Prepared using sagej.cls

Algorithm 2: Parallel DEVS coupled model orches-
trator.

Function gerOutput(t):

end

if t == t then

tr, «+t

Yerr < 0

// For each component with an
imminent internal
transition

foreach i € D with M;.tny ==t do

y M;.getOutput(t)

IMM + IMM U {i}

// Communicate events

foreach j € I, do

if j = self then

// Internal coupling

T zii(y)

M;.setInput(x)

INF «+ INF U {j}

else

// External coupling

Yext < Yext U Zi,sel f (y)

end

end
end
return y,,;

else
raise error
end

Function setInput(x):

end

bag < bag U {z}

Function doTransition(t):

end

ift; <t <ty then
// Forward external inputs
foreach j € I, and x € bag do
T 4 Zself,j(2)
M;.setInput(x)
INF < INFU {j}
end
bag «+ 0
// Do component transitions
foreach i € IMM U INF do
| M;.doTransition(t)
end
// Update times
tr, «+t
tny <— minimum of components’ ¢y
IMM <+ ()
INF < ()
return ¢y

else
raise error
end

Journal Title XX(X)

Algorithm 3: Parallel DEVS root orchestrator.

// Advance time to first event

t < tnof topmost_coordinator

while not stoppingcondition() do

// Get and exchange output events
y « topmost_coordinator.getOutput (t)

// Do transitions

ty < topmost_coordinator.doTransition(t)
// Advance time to next event
t<—tn

end

PDEVS Models of the Running Example

In the running example of Figure 1, the whole adaptive cruise
control scenario can be modeled as a coupled PDEVS model,
with the controller, supervisor, drivers, and both vehicles as
component models. The vehicles periodically change their
state (discretizing their continuous dynamics), generating
output events with their updated position (), speed (v), and
acceleration (a). Both vehicles also receive external events
with a wanted acceleration, provided by either the controller
(for the ego vehicle) or by a driver model (for the lead
vehicle). The rest of the system can be similarly modeled,
using periodically generated output events to trigger external
transitions in components, e.g., to update a speed setpoint,
wanted acceleration, etc.

An overview of the PDEVS implementation of the ACC
example is given below. To keep the main text concise,
the formal description of the atomic and coupled PDEVS
models is provided in Appendix A: Formal Specification of
the ACC Models, Definitions 1 to 8. The PythonPDEVS
implementation of these models is also available on
GitHub: https://github.com/Cosys-Lab/2025-
SIMULATION-DEVS—-FMI3.0

The ACC system can be modeled in PDEVS as a coupled
model (Definition 8) composed of the following components:

* Ego Vehicle (Coupled) - Definition 6
Coupled PDEVS model representing the ego vehicle
— Vehicle (Atomic) - Definition 1
Implements a simple kinematic vehicle model
— Generator (Atomic) - Definition 2
Used to periodically trigger the kinematic
vehicle model to update its state
* Lead Vehicle (Coupled) - Definition 7
Coupled PDEVS model representing the lead vehicle
— Vehicle (Atomic) - Definition 1
Implements a simple kinematic vehicle model
— Generator (Atomic) - Definition 2
Used to periodically trigger the vehicle model to
update its state
— Sine (Atomic) - Definition 3
Signal generator (sine wave), represents the
driver by periodically updating the wanted
acceleration for the vehicle model
¢ Controller (Atomic) - Definition 4
Atomic PDEVS model implementing a basic speed
controller (cruise control), periodically updates the
(wanted) acceleration of the ego car

Prepared using sagej.cls

¢ Supervisor (Atomic) - Definition 5

Atomic PDEVS model implementing the “adaptive”
aspect of the cruise control model by periodically
updating the speed setpoint for the speed controller to
either (1) maintain a safe distance to the lead vehicle,
or (2) to obey the speed limit

Controller Generator (Atomic) - Definition 2
Periodically triggers the controller to update its output
(cfr. time-triggered clock in Figure 1)

Supervisor Generator (Atomic) - Definition 2
Periodically triggers the supervisor to update its
output (cfr. time-triggered clock in Figure 1)

Note that the ACC system model is constructed hierarchi-
cally, i.e., it contains both atomic PDEVS models and other
coupled PDEVS models. It’s also these components (Ego
Vehicle, Lead Vehicle, Controller, Supervisor, Controller
Generator, Supervisor Generator) that are exported as FMUs.
As such, this allows us to validate our approach for both
types of PDEVS models.

Related Work

There has been much work on integrating DEVS with other
formalisms, such as FMI, to enable coupling these two
formalisms. At the foundational level, we highlight the work
of Vangheluwe et al.?! where the multiple ways to integrate
formalisms are presented, including transformation to a
single formalism, semantic adaptation, and co-simulation.
Examples of formalism transformation are given in the cited
paper, and an example semantic adaptation is given by
Mustafiz et al.?”> and with a focus on FMI by Gomes et al.?*
We focus on the co-simulation approach, where the two
formalisms are kept separate, and the co-simulation is
orchestrated by an external tool. We classify related works
into three categories: (1) integrating FMI into DEVS
(wrapping FMUs as DEVS), (2) integrating DEVS into FMI
(wrapping DEVS as FMUs), and (3) applications leveraging
DEVS—FMI integration.

In terms of wrapping FMU as DEVS models, we
highlight the work of Camus et al.”* where they present a
hybrid co-simulation approach where FMUs are wrapped to
integrate them with DEVS in the MECSYCO middleware.
A case study on a barrel-filling system demonstrates the
framework’s capability to manage event synchronization
and numerical resolution, ensuring accurate and scalable
co-simulation. The work of Quraishi et al.”> explores
co-simulation of hardware described at the Register-
Transfer Level (RTL) and software using the FMI standard.
A DEVS-FMI interface integrates DEVS-Suite for RTL
models and MATLAB for software models, enabling
modular co-simulation of hardware-software interactions.
The approach is validated using a Network-on-Chip (NoC)
system, demonstrating its ability to simulate hybrid systems
efficiently and handle disparate simulation environments.
Lin?® introduces a DEVS-FMI adapter for integrating
DEVS-Suite and FMUs, enabling co-simulation of discrete
and continuous models. Using a four-variable model
framework, the paper evaluates a case study of an electric
scooter, demonstrating the adapter’s ability to synchronize
cyber and physical systems. The work highlights challenges,
such as step size effects, and proposes a hybrid co-simulation

https://github.com/Cosys-Lab/2025-SIMULATION-DEVS-FMI3.0
https://github.com/Cosys-Lab/2025-SIMULATION-DEVS-FMI3.0

Vanommeslaeghe et al.

strategy for CPS design and validation. In addition, the paper
by Joshi et al.?” introduces a method to integrate Functional
Mock-up Units (FMUs) into the DEVS-based Cadmium
simulator by wrapping FMUs as DEVS atomic models. The
integration leverages a Quantized State System (QSS) solver
to simulate continuous-time behavior efficiently, replacing
traditional time discretization with state quantization.

With a focus on integrating DEVS models within FMI,
we previously introduced a co-simulation framework for
evaluating multicore embedded platforms in cyber-physical
systems.>® This previous approach integrates DEVS models
of multicore platforms with plant and application models
using the FMI standard to enable early design-stage
evaluations of temporal and functional behavior. However,
this previous approach made use of version 2.0 of FMI,
which lacked support for discrete event simulation. To work
around these limitations, the previous approach required the
DEVS models to be included as part of the FMI orchestration
algorithm itself, rather than as FMUSs. Therefore, the
orchestration algorithm was not generic. More recently, we
presented an approach using FMI 3.0. This approach makes
use of, among others, the event mode and synchronous
clocks introduced in FMI 3.0 to wrap DEVS models in
FMUs and to co-simulate them with plant and application
models. However, this previous work did not explicitly
support the co-simulation of multiple DEVS FMUs. The
feasibility of coupling multiple DEVS models through FMI
without breaking the DEVS formalism remained an open
question, now answered in the current manuscript.

For applications, we highlight Paris et al.”° where the
authors propose a component-based approach to DEVS
for enhancing reuse and integration in complex system
modeling and simulation. The authors draw parallels with
FMI’s success for equation-based models and advocate
for a DEVS-based standard to facilitate modularity and
co-simulation. Using the MECSYCO middleware as an
example, the paper illustrates how DEVS can bridge
heterogeneous simulation tools, enabling multi-paradigm
modeling and co-simulation.

Compared to previous works, we address the limitation
of the approach presented in Vanommeslaeghe et al.® to
demonstrate that FMI 3.0 FMUs can faithfully reproduce
PDEVS semantics, and that clocked partitions enable the
transport of event data in FMI 3.0, ensuring that coupling
PDEVS models through FMI does not violate the PDEVS
formalism. In this regard, we are the first to relate
FMI SC to PDEVS. Key considerations to adapt PDEVS
models for FMI 3.0’s interface include the development
of mechanisms for signaling events, managing input/output
communications, and synchronizing clocks. These are
detailed in the next section.

Contribution

To enable the integration of PDEVS models in FMUs and
their coupling through FMI, we need to make semantic
adaptations between PDEVS and FMI. These adaptations
require addressing several key aspects, including handling
internal transitions, communicating input and output events,
and ensuring that PDEVS models encapsulated in different

Prepared using sagej.cls

FMUs can be coupled without violating the PDEVS
formalism.

First, in Section Requirements, we define the general
requirements that a simulator must satisfy to correctly
simulate PPDEVS models. These requirements establish the
foundation for ensuring accurate and consistent behavior
when integrating PDEVS models within FMI and serve as
the basis for our approach.

Then, we detail our approach to adapting the semantics
of PDEVS to FMI. Specifically, we focus on three main
aspects. We describe how the FMI importer can be made
aware of internal transitions in PDEVS models, how input
and output events can be communicated using the standard
FMI interface, and how PDEVS models encapsulated in
separate FMUs can be coupled while preserving the PDEVS
formalism.

The following subsections elaborate on these aspects,
and provide the motivations and considerations behind our
chosen approach and its relation to the predefined require-
ments. Sections Signaling Imminent Internal Transitions and
Communicating Input/Output Events provide a static view of
the first two aspects, while Coupling DEVS FMUs presents
a dynamic view of the last.

Requirements

Based on the abstract simulator (Algorithms 1 to 3),
we identify requirements that a simulator must meet —
including the overall flow it must follow — to correctly
simulate PDEVS models. The simulator:

RO: Must advance the simulation time t to the next event
time t), meaning it:
RO0.a: Must advance the simulation time t
RO.b: Must obtain the next event time ty based on the

components’ ¢y

R1: Must generate outputs y for each component with an
imminent internal transition (each model m € {M;}
with m.ty == t), meaning it:

Rl.a: Must know when the next internal transition
should happen for each component (m.tx)

R1.b: Must trigger a call to the gefOutput{(...) function
of a component to generate (bags of) outputs y
for said component

R2: Must communicate events between component mod-
els, based on their coupling ({I;}), meaning it:
R2.a: Must get (bags of) outputs y from a component
R2.b: Must set (bags of) inputs = for a component
R2.c: Must respect the coupling defined in {I;}

R3: Must tell components to execute their transitions,
triggering a call to the doTransition(...) function

R4: Must preserve the overall flow imposed by the abstract
simulator, specifically:

R4.a: The getOuput(...) function must be called before
the outputs y are collected

10

Journal Title XX(X)

R4.b: Outputs y must be collected before they are
communicated, i.e., before inputs = are set

All events must be communicated before
components’ transitions (doTransition(...)) are
executed to ensure the correct transition function
(internal, external, or confluent) is executed

Rd.c:

Regarding the mapping to FMI, these requirements
determine (1) the overall flow an FMI orchestration
algorithm must follow, and (2) the functions that need
to be implemented in PDEVS FMUs, to ensure a correct
coupling of PDEVS models through FMI. Overall, the
FMI orchestration algorithm must impose the same flow
as Algorithms 2 and 3 to ensure it satisfies requirement
R4, while the FMUs must expose the functionality of
Algorithm 1 (or Algorithm 2 if they contain a coupled model)
through standard FMI functions to enable this.

Signaling Imminent Internal Transitions

To ensure proper event handling, an FMI importer must
transition the relevant FMUs into event mode when
necessary. This requires the importer to be aware of, and
keep track of, imminent events. In the context of PDEVS
models, these imminent events correspond to imminent
internal transitions. As such, this aligns with requirements
R1.a and by extension R0.b.

To signal these imminent internal transitions, we use a
subtype of FMI 3.0 time-based clock called the countdown
aperiodic clock. More concretely, for our PDEVS FMUs,
we define a countdown aperiodic input clock “ta” (“time
advance”), whose period is equal to the time until
the next internal transition (o). Therefore, a call to
fmi3GetInterval for this clock allows the importer to
query a PDEVS FMU for the time until the next internal
transition, thereby obtaining the next event time ¢y and
satisfying Rl.a. As the FMI importer is responsible for
keeping track of when any input clocks should tick, this
also allows it to satisfy RO.b. Listing 1, Line 2 shows
how this “ta” clock is defined in an excerpt from a
modelDescription.xml file from a PDEVS FMU.

Additionally, the importer is responsible for instructing
the relevant clocks to tick at the right point(s) in time. As
later described in Section Implementation Outline, triggering
a call to getOutput(...) on activation of this “ta” clock also
allows us to satisfy R1.b.

Rationale. An alternative mechanism provided in
FMI 3.0 that could be used to signal imminent internal
transitions is the ability for an FMU to signal the early
return from a fmi3DoStep call. When the importer calls the
fmi3DoStep function, we could check if the requested step
size is greater than the remaining time until the next internal
transition in the PDEVS model (o). If this is the case, we
could advance the internal time up to the point of the internal
transition, and signal the early return and need for event
handling to the importer using the relevant return values.

However, there are some major drawbacks to that
approach. First, the importer needs to explicitly support early
return. As such, relying on this mechanism would likely limit
in which tools these PDEVS FMUs could be used. Second,
in the case the importer does support early return, an FMU

Prepared using sagej.cls

Time-triggered
clock

G}"" fa Driver @———‘}ta
FMU ap>---------pa
a_data’>ﬁf;‘> a_data

Lead Vehicle
FMU state[>-->

state_data[>—>

Clocked

Event-triggered
variable

clock

Figure 4. Conceptual illustration of the open loop variant
represented using DEVS FMUs.

signaling such an early return might mean that the importer
needs to roll back the state of other FMUs which did fully
advance their internal time, such that they may be advanced
instead to the lastSuccessfulTime of the signaling FMU. In
addition, this is an optional feature that needs to be explicitly
supported by the FMUs. In our experience, most FMUs do
not support this feature, as it is not mandatory. As such, this
would likely severely limit the co-simulation setups in which
these PDEVS FMUs could be used. Additionally, relying
on this mechanism makes it difficult to satisfy requirements
RO.b and R1.a, as the importer does not know a priori when
an event will occur.

To avoid the mentioned drawbacks of relying on the early
return mechanism, we opt for the countdown aperiodic clock
instead. As it is basic required functionality for an FMI 3.0
compatible importer (1) to keep track of when input clocks
should tick, and (2) to move the FMUSs into event mode and
to instruct the relevant clocks fo tick at the right point(s)
in time, we believe that relying on this mechanism for the
PDEVS FMUs makes it more likely for them to be usable in
different (co-)simulation tools and scenarios.

Communicating Input/Output Events

As mentioned in Section Discrete Event System Specifica-
tion (DEVS), (P)DEVS models can generate output events
on internal transitions, and can transition between states in
response to input events (external transitions). To enable the
coupling of PDEVS FMUs through FMI, we need to be able
to communicate the occurrence of these events using some
interface defined in the FMI standard (R2).

Version 3.0 of the FMI standard introduces clocked
variables, which are discrete variables explicitly tied to the
activation of one or more clocks. These variables are subject
to access restrictions to ensure synchronization with their
associated clocks. Specifically, clocked variables can only be
accessed when one of the referenced clocks is active. This
ensures that the variables are updated and accessed in sync
with their associated clocks.

In the current work, we adopt this concept of clocks and
clocked variables to model input/output ports of PDEVS
models. For each input/output port of a PDEVS model, we
define both a triggered input/output clock and an associated
clocked variable. Conceptually, the clocks indicate the
occurrence of events on a specific port, while the clocked
variables are used to carry the associated data (i.e, the
actual event) for each port, updated strictly when their
corresponding clock signals an event. As further detailed in
Section Implementation Outline, these clocks and clocked

Vanommeslaeghe et al.

11

1 <ModelVariables>

2 <Float64 name="time" valueReference="999"
causality="independent" variability="
continuous" description="Simulation time"/
>

3 <Clock name="ta"

causality="input" intervalVariability="

valueReference="1001"

countdown"/>
4 <String name="state" valueReference="1"
causality="output" variability="discrete"/
>
<Clock name="update_a_wanted" valueReference="

[}

1002" causality="input"
intervalVariability="triggered"/>
6 <String name="update_a_wanted_data"
valueReference="2" causality="input"
variability="discrete" clocks="1002">
<Dimension start="1"/>
<Start value=""/>
</String>
<Clock name="vehicle_state" valueReference="
1003" causality="output" clocks="1001"
intervalVariability="triggered"/>

S O 0

11 <String name="vehicle_state_data"
valueReference="3" causality="output"
variability="discrete" clocks="1003"/>

12 </ModelVariables>

13 <ModelStructure>

14 <Output valueReference="1003" dependencies="
1001"/>

15 </ModelStructure>

Listing 1: Definition of the aperiodic countdown clock and
input/output clocks with associated clocked variables for the
lead vehicle model.

variables allow the FMI importer to get outputs and set
inputs using standard FMI functions, satisfying R2.a and
R2.b respectively.

Additionally, as outputs may be generated on imminent
internal transitions, as signaled using the “ta” clock, we
define a dependency between each triggered output clock and
the “ta” clock. This serves to satisfy R4.a.

An example of this can be seen in Listing 1, which shows
an excerpt of the model description for the ego vehicle
model. The PDEVS model of the ego vehicle (Definition 6)
has an input port “update_a_wanted” and an output port
“vehicle_state”. As such, the listing shows a triggered input
clock “update_a_wanted” (line 3), and a triggered output
clock “vehicle_state” (line 8). It also shows two clocked
variables, “update_a_wanted_data” and “vehicle_state_data”
(lines 4, 9), with a “clocks” attribute linking them to their
associated clocks. These values are computed and queried
while their corresponding clocks are active. (Recall Section
Orchestration Algorithm for FMI 3.0 Synchronous Clocks.)
Additionally, Line 14 shows the dependency between output
clock “vehicle_state”, and the “ta” clock.

Note that in our current implementation of the presented
approach, events are serialized to base64 encoded strings to
provide a generic implementation that is independent of the
types of events being exchanged. Hence, the shown clocked
variables are of type “String”. However, other data types
might be used depending on the specific implementation.

Prepared using sagej.cls

Rationale. This approach addresses limitations of our
previous work,® where we relied solely on triggered
input/output clocks to communicate events. More explicitly,
in that earlier approach, we defined a triggered input clock
for each admissible input event in X and a triggered output
clock for each admissible output event in Y (rather than
for each port). Then, we defined mappings associating each
input/output clock (using their value reference) to specific
events in X and Y respectively. While this approach was
shown to be sufficient for the use cases presented in the
previous paper, including the traffic system example also
shown in Figure 3, it does not scale to more complex
(P)DEVS models. Defining input/output clocks for each
rz€X and y €Y is feasible only when the sets are
small. However, when events contain data, e.g., the wanted
acceleration output by the controller in the adaptive cruise
control example, this previous approach becomes unusable.
As such, in the current work, we propose an alternative
approach using both clocks and clocked variables.

Coupling DEVS FMUs

In previous work,® we showed how we could use a single
DEVS FMU to trigger other (non-DEVS) FMUs to simulate
the behavior of a cyber-physical system. However, one major
question that remained unanswered was whether multiple
DEVS FMUs could be co-simulated (coupled) using FMI
without violating the DEVS formalism. In this section, we
address this question.

First, we describe the difficulties of coupling “classic”
DEVS models, as used in our previous work, 8 using FMI,
and motivate a switch to Parallel DEVS in the current
work. Then, we outline an approach to integrate PDEVS in
FMUs which satisfies the requirements defined in Section
Requirements. Lastly, we present an example orchestration
algorithm, based on one proposed by Ravi et al.,'® that
further satisfied these requirements.

Challenges in Coupling Classic DEVS Models. One major
point of attention in coupling DEVS models in general is
that due to the coupling of multiple concurrent components
(models), multiple state transitions can happen at the
same point in time. In sequential simulation systems, such
transition collisions are resolved by means of some form
of selection of which of the components’ transitions should
be handled first. This corresponds to the introduction of
priorities in some simulation languages. '’

In classic DEVS, coupled models explicitly include
a select function for tie-breaking between simultaneous
transitions. This function is used by the DEVS solver
to select one component from a set of components with
simultaneous transitions, essentially prioritizing certain
components over others and serializing the solving of the
coupled model. As such, to couple DEVS models through
FMI, we must be able to similarly prioritize the different
FMUs containing the component DEVS models to ensure
the FMI co-simulation exhibits the same behavior as a pure
DEVS simulation. However, as this select function is defined
at the level of the coupled model, and the coupling is to
be performed by the FMI importer, this complicates the
implementation as the importer must somehow preserve the
functionality of the select function.

12

Journal Title XX(X)

select flunction

triggers state info

Coordinating
i FMU

<
<
<
<
€

<

DEVS
FMU 1

DEVS
FMU 2

Y

DEVS
FMU n

Y

Figure 5. lllustration of the coordinating FMU concept for
“classic” DEVS.

Given these challenges, a more effective approach is to
adopt Parallel DEVS. PDEVS eliminates the need for a select
function by introducing explicit mechanisms for handling
concurrent transitions. Instead of requiring an external entity
to impose a priority order, PDEVS allows components to
execute transitions in parallel while ensuring deterministic
behavior through well-defined confluent transition functions.
As these confluent transitions are defined at the atomic model
level, this significantly simplifies the integration of PDEVS
model in FMUs and their coupling through FMI while
preserving the intended behavior of the PDEVS formalism.

Rationale. As mentioned, in “classic” DEVS, coupled
models incorporate a select function to resolve simultaneous
transitions. This function determines which component takes
priority when multiple transitions occur at the same time,
effectively serializing the solving of the coupled model.
Therefore, to correctly couple DEVS models through FMI,
the simulation must allow for similar prioritization of FMUs
containing individual DEVS components. This to ensure that
the co-simulation behaves consistently with a pure DEVS
simulation.

For simple cases in which there are no loops, such
as the traffic system (Figure 3), or indeed the open loop
scenario in Figure 1, it might be possible to ensure a specific
ordering of FMUs by strategically defining dependencies
between different input/output clocks or clocked variables.
However, this assumes (1) that the priorities match the flow
of data/events and (2) that the priorities do not change. As
such, this approach would be severely limited compared to
the expressiveness offered by the select function.

In any case, for more complex cases, such as the closed
loop scenario in Figure 1, a different approach is needed.
One option here would be to include the select function, or a
version thereof, as part of the orchestration itself. However,
this approach has drawbacks. First, it results in a DEVS-
specific orchestration algorithm. Not only that, as the select
function can be specific to a given coupling, this can even
result in a simulation-specific orchestration algorithm. As
such, such an approach would severely limit the possibility
of using DEVS FMU s in different co-simulation setups.

Another option could be to wrap the select function
itself as a separate “coordinating” FMU, which could then
coordinate the component DEVS FMUs using triggered
clocks. However, this approach also has its drawbacks.

Prepared using sagej.cls

The coordinating FMU would generally require certain
information from the different DEVS FMUs, including
their current state, time remaining, etc. This concept is
illustrated in Figure 5. This information would need to
be communicated using FMI, which would complicate
the co-simulation setup. Moreover, as the select function
can be specific to a given coupling, modifications to
the coupled model or the select function would likely
require the coordinating FMU to be re-generated and could
require extensive modifications to the co-simulation setup
(connections), e.g., when different component models are
added or removed.

To avoid these drawbacks, we instead propose to switch
to Parallel DEVS over classic DEVS. Parallel DEVS does
away with the select function and introduces other changes
to the DEVS formalism to explicitly handle the occurrence
of concurrent events/transitions.

Implementation Outline. The following outlines an imple-
mentation of “PDEVS FMUs” and their coupling using stan-
dard FMI 3.0 functions satisfying the requirements defined in
Section Requirements, with relevant parts also represented in
a sequence diagram (Figure 6):

RO: Advance the simulation time to the next event time

RO0.a: Advance the simulation time
Importer: use fini3DoStep(...) to tell FMUs to
advance in time
FMU: on a call to fmi3DoStep(...): advance the
local simulation time, as well as the elapsed time
(e) in the PDEVS model

Obtain the next event time

Importer: keep track of the time when “ta”
clocks are supposed to tick, selection of the
next event time is handled in the orchestration
algorithm, as detailed in Section Orchestration
Algorithm

RO.b:

R1: Generate outputs for each component with an immi-
nent internal transition (See also Section Signaling
Imminent Internal Transitions)

R1l.a: Know when internal transitions should happen
Importer: use fimi3GetintervalDecimall...) for
the ta clock to find when it should tick next
FMU: on a call to fmi3GetlntervalDecimal...)
for the “ta” clock, return the time remaining (o)
from the PDEVS model

Trigger a call to the getOutput(...) function
Importer: use fini3SetClock(...) to activate the
“ta” clock

FMU: on a call to fmi3SetClock(...) to activate
the ra clock, call the getOutput(...) function for
the PDEVS model and store outputs y

R1.b:

R2: Communicate events between models (See also
Section Communicating Input/Output Events)

R2.a: Get (bags of) output(s)
Importer: use fmi3GetClock(...) to get the
activation state of triggered output clocks
FMU: on a call to fmi3GetClock(...), return

Vanommeslaeghe et al.

13

fmi3ClockActive if there are stored events for the
associated output port of the PDEVS model,
else return fmi3ClockInactive

Importer: if fmi3GetClock(...) returned
fmi3ClockActive, use fmi3GetString(...) on
the associated clocked variable to get (serialized)
events (this information is in the model
description)

FMU: on a call to fmi3GetString(...), return
the (serialized) stored events for the associated
output port of the PDEVS model

R2.b: Set (bags of) input(s)

Importer: use fmi3SetClock(...) to activate trig-
gered input clocks connected to an active output
clock (from R2.a)

FMU: on a call to fimi3SetClock(...), store the
activation state of the clock

Importer: use fini3SetString(...) on the associ-
ated clocked variable to set the (serialized) events
obtained from the connected output port (from
R2.a)

FMU: on a call to fmi3SetString(...), deserialize
the events for the associated input port of the
PDEVS model and store them, cfr. bag in set-
Input(...)

R2.c: Respect the coupling

Importer: connections between FMUs are
defined using external relations, these are
used by the orchestration algorithm when

communicating outputs to inputs

R3: Tell models to execute their transitions

Importer: use fini3UpdateDiscreteStates(...) to signal
a converged solution at the current super-dense time
instant (this function must be called at least once per
super-dense time instant as per the FMI standard)
FMU: on a call to fini3UpdateDiscreteStates(...), call
doTransition(...) to execute the relevant state transition
function(s) in the PDEVS model

R4: Preserve the overall flow
Importer: the orchestration algorithm satisfies this
requirement and its subrequirements, as detailed in
Section Orchestration Algorithm

Note: (1) the PDEVS model inside the FMU as mentioned
can be either an atomic or coupled model, and (2) certain
checks, e.g., checking that a clocked variable being set has at
least one active associated clock, have been omitted from the
steps above for clarity.

Orchestration Algorithm. Algorithm 4 shows an example
algorithm to orchestrate the co-simulation of DEVS FMUs.
Note that while this orchestration algorithm is somewhat
simplified for this use case, i.e., it contains the bare
minimum handling for the continuous-time part, it contains
no special “PDEVS-specific” constructs, i.e., the discrete-
event handling is as generic as possible. Indeed, our
orchestration algorithm is based on the one presented by
Ravi et al. '® and overall matches their version closely.

The relations of different parts of the orchestration
algorithm to the requirements are mostly indicated using

Prepared using sagej.cls

comments in the pseudocode. Some important parts not fully
covered in the outline (Section Implementation Outline) are
as follows:

¢ RO.b: Must be able to obtain the next event time ty
based on the components’ ty
The importer keeps track of when time-based clocks,
such as the “ta” clocks, need to tick. The selection
of the next event time is handled by the orchestration
algorithm using the function getEarliestTickTime() as
shown in Algorithm 4, Lines 3 and 57. This function
selects the earliest time at which one of the time-based
clocks (“ta” clocks) needs to tick, i.e., when the next
internal transition will occur. Hence, it serves to satisfy
RO.b.

* R2.c: Must respect the coupling defined in {1;}
As previously mentioned, connections between FMUs
are defined using external relations, which are used
by the orchestration algorithm when communicating
outputs to inputs. This can be seen in the orchestration
algorithm on Lines 32, where getConnectedOutput(...)
resolves the external coupling for a specific input port
to a specific output port. Then, on Line 33, this is used
to set the input value based on the connected output
value. Additionally, on Lines 44-46, the external
relations are used to communicate the occurrence of
events from output clocks to connected input clocks.
However, one limitation of the FMI standard in this
regard is that external relations can only be “one-
to-many”, while PDEVS supports a “many-to-many”
coupling. As such, these external relations only partly
satisfy R2.c.

In general, the orchestration algorithm must preserve the
overall flow imposed by the abstract simulator (R4). More
specifically:

e R4.a: The getOuput(...) function must be called before
the outputs y are collected
As described in Section Implementation Outline, a
call to activate the “ta” clock triggers a call to
the gerOutput(...) function in the FMU. This can
be seen in Algorithm 4, Lines 25-28. Additionally,
as described in Section Signaling Imminent Internal
Transitions, we define a dependency between output
clocks and the “ta” clock. This dependency is
reflected in the orchestration as an internal relation
between the “ta” clock and triggered output clocks
associated with outputs. In the orchestration algorithm,
Lines 35-38 use these internal relations to determine
which ports have output events. As such, these
dependencies/internal relations serve to satisty R4.a.

e R4.b: Outputs y must be collected before they are
communicated, i.e., before inputs x are set
This requirement is satisfied by the external relations
between output clocks and input clocks, as well as the
dependencies between clocks and clocked variables
as described in Section Communicating Input/Output
Events. On one iteration of the event handling, the
orchestration algorithm uses the output clocks to
determine the occurrence of events (Lines 35-38).
Then, for active output clocks, it stores the value of
the associated clocked output variables (Lines 41-43)
and flags connected input clocks for activation (Lines

14

Journal Title XX(X)

RO.a

R1.a

R1.b A

R2.a A

R2.b A

R3 A

:Importer :FMU :PDEVSModel
5 fmi3DoStep(t, At) o :
E advanceTime E
E updateElapsed :
' return >
SRR LR R R - :
H fmi3GetintervalDecimal(ta) : '
: > <<get>> o o
: < o '
, LS A e a3
(oo T !
: fmi3SetClock(ta) I I
; >t getOutput(time) o
; e Vo i
E store y
! return
,< __________________________________

check if y[outputPort] # @

opt

[fmi3ClockActive]
fmi3GetString(outputPort)

A 4

serialized y[outputPort]

< _________________________________

serialize y[outputPort]

fmi3SetClock(inputClock)

>
return L
Ry

store activation state

deserialize events

store x[inputPort]

return
e -
. fmi3UpdateDiscreteStates(...) I :
i return
S EECETCEEEEIPREERRERER L

Figure 6. Sequence diagram of the Implementation Outline.

Prepared using sagej.cls

setinput(x)

Vanommeslaeghe et al.

15

PDEVS FMU

Importer EM

) Wiepper < ol
" tOutpu(...
(UniFMU) dz?'ra:sli:;:r(w(..).) i)
Sl

IFRIEVE Exporter

Model

_ Export _ Import | PDEVS

Model

A

Figure 7. Overview of the implementation.

44-46). Then, in the next iteration, connected input
clocks are activated (Lines 25-28) and their associated
clocked input variables are set (Lines 31-34). As such,
this ensures output are collected before connected
inputs are set, satisfying R4.b.

* Rd.c: All events must be communicated before compo-
nents’ transitions (doTransition(...)) are executed...
As described in Section Implementation Outline, we
use the function fini3UpdateDiscreteStates(...) to trig-
ger a call to the doTransition(...) function. As per the
FMI 3.0 standard, this function is called to signal
a converged solution at the current super-dense time
instant. Therefore, this function gets called when there
are no more clocks needing activation, i.e., no more
events to communicate, as can be seen on Lines 50-
52. As such, this satisfies requirement R4.c.

Results and Discussion

A prototype implementation was made to validate the
presented approach using the adaptive cruise control use
case presented in Section Running Example. First, Section
Implementation details our implementation. After this,
in Validation, we present the results of our validation
efforts. Our prototype implementation and all code
required to reproduce the presented results is available on
GitHub: https://github.com/Cosys—Lab/2025-
SIMULATION-DEVS-FMI3.0

Implementation

Figure 7 shows an overview of our implementation. The
different parts are detailed below. From left to right:

Importer. We implemented an example FMI importer to
demonstrate the presented approach. It provides functionality
for importing FMUs and defining external relationships (con-
nections) between ports of those FMUs, provides logging
capabilities, and implements the presented Orchestration
Algorithm (Algorithm 4) to run the co-simulation. Hence, it
implements the “Importer” part of the steps outlined in para-
graph Implementation Outline. The importer is implemented
in Python, making use of the FMPy library *’ to interact with
the FMUs.

PDEVS FMU. The PDEVS FMUs were largely imple-
mented in Python by using UniFMU?' and its Python back-
end. UniFMU is a tool that facilitates the implementation of
FMI-compatible FMUs in programming languages that can-
not (easily) produce C-compatible binaries. It achieves this
by providing generic binaries that implement the standard
FMI functions. These binaries can forward the FMI function-
calls to several supported language-specific backends, where

Prepared using sagej.cls

PDEVS model copied unmodified

the user can implement their required functionality. Overall,
the FMUs consist of three main parts: an FMI wrapper, a
PDEVS wrapper, and the PDEVS model itself.

FMI Wrapper. The FMI wrapper is implemented in
the UniFMU Python backend. It provides the translation
between the standard FMI functions (fmi3...(...)) and
the functions used to interact with the PDEVS models
(getOutput(...), setinput(...), doTransition(...)), including the
serialization and deserialization of events. Therefore, it
implements the “FMU” part of the steps outlined in
paragraph Implementation Outline.

PDEVS Wrapper. The PDEVS wrapper (Python) imple-
ments the functions used to interact with the PDEVS models.
Depending on the type of the PDEVS model being wrapper,
i.e., atomic or coupled, it acts as respectively a simulator
(Algorithm 1) or orchestrator (Algorithm 2). This enables a
more generic implementation of the PFMI wrapper that can
handle both atomic and coupled models.

In the case of a coupled model being wrapped, the
model hierarchy is first flattened using the direct connection
technique.®”> This technique transforms any hierarchically
constructed coupled model into an equivalent flat coupled
model with only directly connected atomic models, without
changing the behavior of the coupled model. This is not
strictly necessary, but simplifies the implementation as it
negates the need to implement a full hierarchical simulator
in the PDEVS wrapper. In our implementation, this step
is carried out using the implementation of this technique
provided by PythonPDEVS. '

PDEVS Model. This is the PDEVS model being wrapped.
As such, this constitutes the “PDEVS model” part of
the steps outlined in paragraph Implementation Outline.
The PDEVS models are implemented in Python using
PythonPDEVS'? and are included in the FMU without
modification.

Exporter. To automate the process of creating the FMUs
from PDEVS models, we implemented a prototype exporter.
The exporter is implemented in Python and allows
PythonPDEVS models to be exported to FMUs using a
single function-call. Additionally, the exporter provides
functionality to easily set up a co-simulation equivalent of a
coupled model. Meaning, from a coupled model, the exporter
can generate a folder containing an FMU for each component
of that model, together with a JSON file describing the
coupling of those components.

PDEVS Model. This is the PDEVS model being wrapped,
and is the same as the PDEVS Model part of Section
PDEVS FMU. The models are implemented using a standard
(unmodified) version of PythonPDEVS, and needs no

https://github.com/Cosys-Lab/2025-SIMULATION-DEVS-FMI3.0
https://github.com/Cosys-Lab/2025-SIMULATION-DEVS-FMI3.0

16 Journal Title XX(X)

Algorithm 4: Example FMI orchestration algorithm.

1 Function runUntil(stop _time):

2 time < 0
3 t_next < getEarliestTickTime() // RO.Db
4 while t_next < stop_time do
5 step_size <— t_next — time
6 foreach fmu € fmusdo // RO.a
7 fmu.enterStepMode()
8 fmu.doStep(time, step_size, True)
9 end
10 time < t_next
11 foreach fmu € fmus do
12 ‘ fmu.enterEventMode()
13 end
14 it 0
15 eventHandlingNeeded < True
16 while eventHandlingNeeded do
17 clocksNeeding Activation < {clock € time_based_clocks | clock.nextTickTime = time} // R1
18 if clocksNeeding Activation == () then
19 eventHandlingNeeded < False
20 break
21 end
22 while clocksNeedingActivation # () do
23 activeInputClocks < ()
24 activeOutputClocks < ()
25 foreach clock € clocksNeedingActivation do
26 clock.activateClock() // Rl.b for ‘‘ta’’, R2.b for inputs
27 activelnputClocks <— activelnputClocks U clock
28 end
29 clocksNeedingActivation < ()
30 foreach inClock € activeInputClocks do
31 foreach inPort € dataPorts where inClock € inPort.clocks do // clocked inputs
32 outPort +— getConnectedOutput(inPort) // R2.c
33 inPort.setValue(outPort.value) // R2.b
34 end
35 foreach outClock € inClock.internalRelations where
36 outClock.getState() == active do // activated output clocks, R4.a
37 ‘ activeOutputClocks <+ activeOutputClocks U outClock // R2.a
38 end
39 end
40 foreach outClock € activeOutputClocks do
a1 foreach outPort € dataPorts where outClock € outPort.clocks do // clocked outputs
42 ‘ outPort.value <— outPort.getValue() // R2.a
43 end
44 foreach inClock € outClock.externalRelations do // connected input clocks, R2.c
45 ‘ clocksNeedingActivation.append(inClock)
46 end
47 end
48 it +1
49 end
50 foreach finu in fmus do
51 ‘ fmu.updateDiscreteStates() // R3, R4.c
52 end
53 foreach clock in time_based_clocks do
54 ‘ clock.updateNextTickTime(time) // Rl.a
55 end
56 end
57 t_next < getEarliestTickTime() // RO.Db
58 end
59 end

Prepared using sagej.cls

Vanommeslaeghe et al.

17

Table 1. Analysis of the differences in values communicated in events between our approach and PythonPDEVS.

Component Value Max. Abs. Mean Std.
Overall Time 6.39 x 10~13 213 x 10713 228 x 10713
Position 1.50 x 10~ 11 432 x 10712 6.24 x 10712
Ego Vehicle Speed 7.85x 1071 —7.65 x 1071* 1.49 x 10713
Acceleration 2.15 x 10712 471 x 10715 419 x 10713
Position 1.50 x 10~11 419 x 10712 6.28 x 10712
Lead Vehicle Speed 451 x 1071 —1.05x107'% 1.18 x 10713
Acceleration 4.13 x 10715 5.61 x 10717 1.15 x 10715
Controller Wanted Acceleration 1.01 x 10~11 4.67 x 10715 1.52 x 10712
Supervisor ~ Wanted Speed 853 x 10713 —7.60 x 10714 1.61 x 10713

modifications or specific construct to be compatible with the
presented approach. For all intent and purposes, they are
“normal” PythonPDEVS models.

Validation

Validation Strategy. To validate our approach, we use our
prototype exporter to generate FMUs for the different
components of the ACC system model (i.e., Ego Vehicle,
Lead Vehicle, Controller, Supervisor, Controller Generator,
Supervisor Generator) described in PDEVS Models of the
Running Example. We then use our example importer
to set up and run a co-simulation using the generated
PDEVS FMUs. We then compare the co-simulation with the
PythonPDEVS simulation in two ways.

First, we numerically compare the communicated events
where possible (i.e., vehicle states, controller output,
supervisor output), as well as the simulation time at which
events occur. The reasoning being that if our co-simulation
approach is correct, the obtained simulation traces should be
the same as those obtained using PythonPDEVS.

Second, we directly compare the behavior of the PDEVS
models themselves. Meaning, which transitions occur at
what point in simulation time, with which inputs, which
outputs are generated, etc. We do this by instrumenting
each atomic PDEVS model, having them generate a log of
each state transition. We then compare the logs for each
atomic PDEVS model between the co-simulation and the
PythonPDEVS simulation to ensure they are equivalent.
Logs are deemed equivalent if all the same transitions
occur in the same order, with the same input and/or output
events on the same ports, at the same time instant. The
reasoning being that if our co-simulation approach is correct,
the logs should be equivalent to those obtained using only
PythonPDEVS.

Rationale. The reason for comparing behavior (logs) at
the level of atomic models is that events in coupled models
can occur in parallel. However, these parallel events are
recorded sequentially in the logs. This means that logs
for coupled models can have multiple valid orderings. As
a result, comparing logs at the level of coupled models
becomes more complex because differences in ordering may
not necessarily indicate issues in the co-simulation. The

Prepared using sagej.cls

behavior of atomic models, however, is inherently sequential.
Therefore, our reasoning is that issues with the orchestration
will likely be visible as differences in the logs.

Discussion

First, the results of comparing the values of the communi-
cated events are shown in Table 1. This table shows an anal-
ysis of the differences between the (FMI) co-simulation and
the PythonPDEVS simulation. For each relevant component
of the ACC system model, it shows the mean absolute error,
and the mean and standard deviation of the error for different
values in the communicated events (for 801 samples each).
Additionally, it shows this same analysis for the difference
in the time at which events occur in both simulations.
From the results, it’s clear that the simulation results do not
match exactly. However, the differences between the two
simulations are small, with the biggest differences being on
the order of 10~!!. These numerical differences appear to
be caused by issues related to floating-point representation
and/or conversions occurring somewhere in our implementa-
tion, which involves both compiled (C) binaries (UniFMU)
and Python code. Examining the obtained traces, we observe
small discrepancies in numerical values for our approach
compared to PythonPDEVS, which is fully implemented in
Python. For example, we observe timestamps with a value of
0.7999999999999999 instead of the expected 0.8. As several
of our PDEVS models make use of the elapsed time when
updating their internal state, such as the new position and
speed of a vehicle, it stands to reason that these differences in
time cause small differences in the states, which cause further
differences in the closed-loop behavior of the simulation.

Second, we use the logs to directly compare the
behavior of each atomic PDEVS model, as described in
Section Validation Strategy. However, We need to take into
account the previously observed numerical differences when
comparing the logs. As such, we add an absolute tolerance of
10~ 1% when comparing timestamps and input/output events
between the two approaches. Excerpts from the logs for
the ego vehicle model when using PythonPDEVS and our
approach are shown in Listings 2 and 3 respectively.

In both excerpts, the following behavior can be observed:
First, at time 0.3 (line 4), the vehicle model receives a
message to update the vehicle state (lines 6-8), causing an

18 Journal Title XX(X)
1 ... 1 ...

2 <event> 2 <event>

3 <model>ego_vehicle_vehicle</model> 3 <model>ego_vehicle_vehicle</model>

4 <time>0.3</time> 4 <time>0.30000000000000004</time>

5 <kind>EX</kind> 5 <kind>EX</kind>

6 <port name="update_state" category="I"> 6 <port name="update_state" category="I">

7 <message>1.0</message> 7 <message>1.0</message>

8 </port> 8 </port>

9 <port name="update_a_wanted" category="I"> 9 <port name="update_a_wanted" category="I1I">
10 </port> 10 </port>

11 <state> 11 <state>

12 <mode>update_state</mode>update_state 12 <mode>update_state</mode>update_state
13 </state> 13 </state>

14 </event>
15 <event>

16 <model>ego_vehicle_vehicle</model>

17 <time>0.3</time>

18 <kind>IN</kind>

19 <port name="vehicle_state" category="0">

20 <message>[16.003999999999998, 20.04,
0.3999999999999999]</message>

21 </port>

22 <state>

23 <mode>idle</mode>idle

24 </state>

25 </event>

26 <event>

27 <model>ego_vehicle_vehicle</model>

28 <time>0.3</time>

29 <kind>EX</kind>

30 <port name="update_state" category="I1">

31 </port>

32 <port name="update_a_wanted" category="I">

33 <message>-3.0</message>

34 </port>

35 <state>

36 <mode>idle</mode>idle

37 </state>

38 </event>

14 </event>
15 <event>

16 <model>ego_vehicle_vehicle</model>

17 <time>0.30000000000000004</time>

18 <kind>IN</kind>

19 <port name="vehicle_state" category="0">

20 <message>[16.004, 20.04,
0.40000000000000013]</message>

21 </port>

22 <state>

23 <mode>idle</mode>idle

24 </state>

25 </event>
26 <event>

27 <model>ego_vehicle_vehicle</model>

28 <time>0.30000000000000004</time>

29 <kind>EX</kind>

30 <port name="update_state" category="I">
31 </port>

32 <port name="update_a_wanted" category="I">
33 <message>-3.0</message>

34 </port>

35 <state>

36 <mode>idle</mode>idle

37 </state>

38 </event>
39

Listing 2. Excerpt of the ego vehicle log, with PythonPDEVS.

external transition (line 5) to “update_state” (line 11-13).
From “‘update_state”, there is an instantaneous transition to
the “idle” state, whereby a message will be generated with
the new vehicle state (position, velocity, and acceleration).
However, at the same time, the vehicle model receives a
message from the controller with a new wanted acceleration.
Hence, the confluent transition function must be executed.
As is common, the confluent transition function has been
defined as first executing the internal transition function,
followed by the external transition function.'” This can be
observed in the logs, whereby the internal transition (line
18) is executed, generating an output message with the new
vehicle state (lines 19-21), and transitioning the model to the
“idle” state (line 23). Then, an external transition (line 29) is
executed, wherein the vehicle model receives the new wanted
acceleration (lines 32-34), and transitions back to the “idle”
state (line 36).

Comparing both excerpts, it can be observed how the
behavior is equivalent between both approaches. Meaning,
the same events occur at (nearly) the same points in time, in
(exactly) the same order, with (nearly) the same input/output
messages. However, the numerical differences between both
approaches is also apparent. It can be observed how the

Prepared using sagej.cls

Listing 3. Excerpt of the ego vehicle log, using our approach.

timestamps do not match exactly between both approaches
(lines 4, 17, and 28). As the vehicle state (position, velocity,
and acceleration) is dependent on the elapsed time, this also
results in small differences in the “vehicle_state” message
(lines 19-21).

When comparing the full logs for all atomic DPEVS
models, we find that they are all equivalent between the two
approaches. Therefore, the behavior of the atomic models
matches in our approach when compared to an established
PDEVS simulator, i.e., PythonPDEVS.

While these results confirm that FMI 3.0 can indeed
preserve PDEVS semantics for the presented case study,
some practical limitations remain. These are discussed in the
following section.

Limitations

Although the presented results demonstrate that our
approach can preserve PDEVS semantics in FMI 3.0
co-simulations, some limitations remain that may affect
applicability in broader settings. In this section, we discuss
these and outline potential strategies to address them where
possible.

Vanommeslaeghe et al.

19

Coupling Restrictions

Many-to-Many Coupling. The current version of the
FMI standard only allows a one-to-many structure when
connecting inputs and outputs of FMUs. However, PDEVS
is more flexible as it allows for many-to-many couplings,
where multiple component models can influence each other.
Therefore, the use of FMI for co-simulating PDEVS FMUs
restricts the allowed couplings. While this restriction does
not break correctness for simple examples, it does limit the
applicability of the presented approach for more complex co-
simulations.

Possible workarounds include the introduction of addi-
tional “aggregator FMUs”, which could collect events on
multiple inputs, combine them, and then forward them to
one or more other FMUs using a single output. Alterna-
tively, further semantic adaptation could be performed to
achieve a similar effect. More specifically, a PDEVS FMU
could be again wrapped into an FMU with multiple inputs,
whereby the parent wrapper could perform the aggregation
function for the enclosed PDEVS FMU. Similar approaches
are described by Gomes et al.”* to extend FMUs with
functionality such as input interpolation.

However, both approaches have similar drawbacks. They
add modeling overhead and their concrete implementation
(e.g., number of supported inputs, aggregation logic) would
depend heavily on the specific co-simulation setup in which
they are used, making them application-specific, limiting
re-use, and increasing maintenance effort when the co-
simulation setup changes.

Translation Functions. Coupled PDEVS models can
include a set of translation functions ({Z; ;}) to translate
an output event of one component to a corresponding input
event for another component if necessary. This increases
the flexibility of the PDEVS formalism as it allows the
coupling of component models with otherwise incompatible
event definitions. However, in the presented approach, we
do not explicitly consider translation functions, essentially
assuming them to be identity functions. While sufficient for
the presented example, it does limit the flexibility of the
presented approach and its applicability to more complex
scenarios that require event translation.

As these translation functions are defined at the level
of the coupled models, these also need to be considered
at the level of the co-simulation. The FMI standard itself
has no specific provisions for adapting incompatible signals.
As with the many-to-many coupling, such functionality
could be introduced through additional semantic adaptation.
Gomes et al.”* describe such an approach to introduce unit
conversions between FMUs to solve signal data mismatches.
While this would restore flexibility, it again comes at the cost
of additional modeling overhead and limited re-use.

Hierarchical Modeling

A core strength of the PDEVS formalism is its support for
hierarchical modeling, where coupled models can contain
both atomic models and other coupled models. This allows
large systems to be organized into nested coupled models,
improving modularity and maintainability. However, FMI
co-simulation is inherently flat as FMUSs are coordinated by
a central orchestration algorithm without an explicit notion

Prepared using sagej.cls

of hierarchy. As such, once PDEVS models are wrapped into
FMU, this hierarchical modeling capability is lost.

This loss of hierarchical modeling capability when using
FMI has practical drawbacks to modelers. Particularly, it
makes maintaining, modifying, and debugging models more
difficult as the structure of the modeled system is not
easily visible in the co-simulation. However existing PDEVS
debugging approaches** may provide useful support in this
regard.

A potential strategy to reintroduce hierarchical modeling
is to adopt a hierarchical co-simulation technique, as
described by Gomes et al.>* and supported in the FMPy*"
tool. In their approach, a set of coupled “internal” FMUs
is wrapped into a higher-level “external” FMU, such that
the entire assembly behaves as a standard FMU from
the perspective of the orchestration algorithm. While this
reintroduces hierarchical modeling in an FMlI-based co-
simulation, it again requires additional modeling effort and
increases implementation complexity.

Numerical Precision and Time-Keeping

Another limitation concerns numerical precision and how
it affects time-keeping and simulation results. In FMI co-
simulations, time and step sizes are communicated using
floating-point numbers. As in most simulation setups, this
can introduce small rounding errors, which can accumulate
over time if not managed carefully. In our results, we also
observed such discrepancies when comparing our FMI-based
approach to PythonPDEVS. While these discrepancies were
small and did not meaningfully affect the simulated behavior
of the system, they do complicate strict reproducibility across
different simulation tools.

It is important to note that these difficulties are not unique
to our approach, or FMI in general, but affect most simulators
that rely on floating-point arithmetic. In fact, FMI includes
different mechanisms to detect and mitigate the potential
of time-drift or mismatched time between FMUs. First,
the doStep call communicates both the current simulated
time and the requested step size to an FMU, allowing
it to detect mismatches between FMU and orchestrator,
and the FMU can opt for calculating the next time
as current_time + step_size instead of just accumulating
step_size, which would indeed introduce time-drift. Second,
the synchronous clocks introduced in FMI 3.0°* provide an
additional mechanism for time-synchronization. While an
FMU can communicate to the importer when a particular
time-based input clock should tick, it is up to the importer
to activate the clocks at the correct moment in time. Here,
the importer is considered as the single source of truth for
simulation time. When a clock ticks, the FMU is expected
to synchronize to the corresponding time. Additionally,
fixed-point arithmetic may be used to further manage time-
keeping, e.g., by defining a fixed time-base, in situations
where strict reproducibility is critical.

Together, these mechanisms help to manage time-
drift and resulting numerical discrepancies. However, it
should be noted that perfect reproducibility across different
simulators is difficult to guarantee in any floating-point-
based environment.

20

Journal Title XX(X)

Continuous Dynamics and Hybrid Simulations

In the current paper, we focused exclusively on discrete-
event models. While we demonstrated that FMI 3.0 can pre-
serve PDEVS semantics, we have not yet considered hybrid
settings that combine PDEVS FMUs with continuous-time
FMUs. This is a limitation as many practical applications,
such as the simulation of cyber-physical systems, require
the co-simulation of both continuous dynamics and discrete-
event-driven components.

In such a hybrid setting, the events produced by the
PDEVS FMUs must be correctly deserialized and interpreted
by continuous FMUs, while state changes in continuous
FMUs must be translated into events the PDEVs FMUs
can understand. While FMI 3.0 provides mechanisms such
as synchronous clocks and event mode to support such
interoperability, these do not by themselves solve this
communication.

One way to provide a bridge between continuous and
discrete-event components is to introduce explicit interface
models. Jiresal and Wainer®> formalize cyber-physical
system interfaces in DEVS using dedicated sensor and
actuator models. In their work, the sensor models translate
physical sensor signals into discrete events that their DEVS
models can process, while actuator models translate events
into physical signals. A similar approach could be taken
in FMI-based co-simulations, where interface FMUs would
take on the role of translating between continuous signals and
PDEVS events. Such constructs could provide a structured
way to bridge PDEVS and continuous-time FMUs, though
at the cost of additional modeling effort.

Use of PDEVS over DEVS

A possible limitation of our approach is that it relies on
PDEVS rather than the original DEVS formalism. This
choice was necessary because PDEVS solves fundamental
challenges in coupling models, in particular it avoids reliance
on a global select function to resolve simultaneous events.
This proved essential to correctly couple models using
FMI 3.0 without relying on a DEVS-specific orchestration
algorithm or other model-specific coordination mechanisms.

In practice, the impact of this choice is limited. Many
existing models are already defined in PDEVS, requiring
no additional effort. For models defined in classic DEVS,
migration to PDEVS should be straightforward, as PDEVS
is a conservative extension of DEVS. The actual cost—benefit
trade-off will depend on the specific scenario, but in cases
where FMI-based co-simulation is needed, the additional
effort of migration is generally manageable relative to the
advantages offered by this approach.

Together, the identified limitations define the boundaries
of the presented contribution. They emphasize both the
assumptions under which PDEVS semantics can be pre-
served in FMI 3.0 and the challenges that remain for broader
applicability. The demonstrated preservation of PDEVS
semantics confirms the feasibility of the approach, while
the identified challenges highlight promising directions for
extending it. The next section summarizes our contributions
and outlines directions for future research.

Prepared using sagej.cls

Conclusions and Future Work

To summarize, we have presented an approach to couple
DEVS models using the FMI standard 3.0 making heavy
use of the new synchronous clocks. We have shown how
Parallel DEVS can be used to avoid the need for a select
function when coupling DEVS models through FMI. We
have also shown how the different steps in the PDEVS
abstract simulator map to different FMI functions, and how
an FMI orchestration algorithm can be implemented to
ensure the correct coupling of DEVS FMUs. Lastly, we have
presented a common example orchestration algorithm based
on the literature that meets these requirements.

It is worth stressing the importance of bridging these
two formalisms. As shown by Vangheluwe,” many hybrid
and discrete formalisms can be transformed into DEVS.
By enabling the coupling of DEVS models using FMI 3.0,
we open up new possibilities for hybrid system simulation,
allowing for broader interoperability and more flexible co-
simulation setups across different modeling paradigms.

As limitations, we have chosen to not validate the work
with combinations of non-PDEVS FMUs and PDEVS
FMUs. Since we obey the FMI standard interface, we do not
lose generality in assuming all FMUs are PDEVS FMUs. A
minor limitation is in the serialization of events that forces
other FMUs to parse them accordingly. It is trivial to adjust
this to ensure interoperability with a set of known FMUs, but
impossible to ensure its compatibility with any FMU.

A more significant limitation, as previously mentioned,
is that FMI cannot fully preserve the coupling semantics of
PDEVS models in all cases. Specifically, FMI only supports
“one-to-many”’ connections, whereas PDEVS allows “many-
to-many” coupling. This restriction impacts the correct
propagation of simultaneous events across interconnected
FMUs in specific scenarios. Additionally, in adapting
PDEVS models into FMUs, we lose PDEVS’ ability
for hierarchical composition of models, and floating-point
time communication can introduce small discrepancies that
complicate strict reproducibility. Finally, our contribution
has so far only addressed discrete-event models, leaving open
the question of how PDEVS FMUs can be co-simulated
with continuous-time FMUs. Together, these limitations
define the boundaries of the presented approach, but the
demonstrated preservation of PDEVS semantics confirms its
feasibility and motivates further extension.

In future work, we aim to address these challenges.
Extending FMI-based co-simulation with support for many-
to-many couplings and translation functions will likely
require additional semantic adaptations of PDEVS FMUs. >
We also plan to investigate wrapper-based techniques for
reintroducing hierarchical modeling.

Most importantly, we intend to explore the integration
of PDEVS FMUs with continuous-time FMUs to enable
hybrid system simulation, such as the cyber-physical systems
application shown in previous work.® This will require
addressing the event serialization to allow interoperability
with non-DEVS FMUs, potentially through structured
interface models such as sensors and actuators that translate
between discrete events and continuous signals. *°

Finally, we plan to evaluate the computational overhead
introduced by coupling DEVS models through FMIL

Vanommeslaeghe et al.

21

Using benchmarks such as DEVStone,?® we will assess
performance trade-offs and scalability of the approach.

Acknowledgements

GPT-4 and GPT-5 were used to improve the clarity and structure
of this paper, particularly in refining explanations and enhancing
readability. Additionally, GPT-4 assisted in generating and refining
sections of code used for obtaining and analyzing the results.
However, all intellectual contributions, analyses, and conclusions
are the authors’ own, and they take full responsibility for the final
content.

Statements and Declarations
Ethical considerations

This article does not contain any studies with human or
animal participants.

Consent to participate
Not applicable.

Consent for publication
Not applicable.

Declaration of conflicting interest

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding statement

This research was supported by Flanders Make, the strategic
research center for the manufacturing industry, within the
Flexible Multi-Domain Design for Mechatronic Systems
(FlexMoSys) project. In addition, part of this work has
been funded and supported by the DIGIT-Bench project
(case no. 640222-497272), funded by the Energy Technology
Development and Demonstration Programme (EUDP).

Data availability

All code and models required to reproduce the results of this
article are openly available at: https://github.com/
Cosys—-Lab/2025-SIMULATION-DEVS—-FMI3.0.

References

1. Zeigler BP. Theory of Modelling and Simulation. New York,
Wiley, 1976. ISBN 0-471-98152-4.

2. Chow ACH and Zeigler BP. Parallel DEVS: A parallel,
hierarchical, modular modeling formalism. In Proceedings of
Winter Simulation Conference. IEEE, pp. 716-722.

3. Vangheluwe H.
multi-formalism hybrid systems modelling. In International
Symposium on Computer-Aided Control System Design (Cat.
No.00TH8537). Anchorage, AK, USA: IEEE. ISBN 0-7803-
6566-6, pp. 129-134. DOI:10.1109/CACSD.2000.900199.

4. Gomes C, Thule C, Broman D et al. Co-simulation: A Survey.
ACM Computing Surveys 2018; 51(3): 49:1-49:33. DOL:
10.1145/3179993.

DEVS as a common denominator for

Prepared using sagej.cls

10.

11.

12.

13.

14.

15.

16.

17.

. Gomes C, Najafi M, Sommer T et al.

. Hansen ST, Gomes C and Kazemi Z.

. Vanommeslaeghe Y, Acker BV, Denil J et al.

. The MathWorks, Inc.

The FMI 3.0
Standard Interface for Clocked and Scheduled Simulations. In
Proceedings of the 14th International Modelica Conference.
online: Linkoping University Electronic Press, Linkdpings
Universitet, pp. 27-36. DOI:10.3384/ecp2118127.

. Hansen ST, Thule C, Gomes C et al. Verification and synthesis

of co-simulation algorithms subject to algebraic loops and
adaptive steps. Int J Softw Tools Technol Transfer 2022; 24(6):
999-1024. DOI:10.1007/s10009-022-00686-8.

Synthesizing
Orchestration Algorithms for FMI 3.0. In 2023 Annual
Modeling and Simulation Conference. Ontario, Canada, pp.
184-195.

Integrating
devs and fmi 3.0 for the simulated deployment of embedded
applications. In 2024 Annual Modeling and Simulation
Conference (ANNSIM). Washington, DC, USA: to appear, p.
to appear.

Adaptive Cruise Control System
Using Model URL https:
//www.mathworks.com/help/mpc/ug/adaptive-

Predictive Control.

cruise—-control-using-model-predictive-—
controller.html.

Van Tendeloo Y and Vangheluwe H.
distributed parallel DEVS simulator.
DEVS). pp. 91-98.

Blochwitz T, Otter M, Arnold M et al. The Functional Mockup
Interface for Tool independent Exchange of Simulation Mod-
els. In Proceedings of the 8th International Modelica Con-
ference. Dresden, Germany: Linkdping University Electronic
DOI:10.3384/

PythonPDEVS: a
In SpringSim (TMS-

Press; LinkOpings universitet, pp. 105-114.
ecp11063105.

Junghanns A, Blochwitz T, Bertsch C et al. The Functional
Mock-up Interface 3.0 - New Features Enabling New
Applications. In Proceedings of the I4th International
Modelica Conference. online: Linkdping University Electronic
Press, Linkopings Universitet, pp. 17-26. DOI:10.3384/
ecp2118117.

Hansen ST, Gomes C, Najafi M et al. The FMI 3.0 Standard
Interface for Clocked and Scheduled Simulations. Electronics
2022; 11(21): 3635. DOI:10.3390/electronics11213635.
Bastian J, Clau C, Wolf S et al Master for Co-
Simulation Using FMI. In 8th International Modelica Con-
ference. Dresden, Germany: Linkoping University Electronic
Press, Linkopings universitet, pp. 115-120. DOI:10.3384/
ecpl1063115.

Broman D, Brooks C, Greenberg L et al. Determinate
In Eleventh ACM
International Conference on Embedded Software. Montreal,
Quebec, Canada: IEEE Press Piscataway, NJ, USA. ISBN 978-
1-4799-1443-2, p. Article No. 2.

Ravi S, Beermann L, Kotte O et al. Timing-Aware Software-

composition of FMUs for co-simulation.

in-the-Loop Simulation of Automotive Applications with FMI
3.0. In 2023 ACM/IEEE 26th International Conference on
Model Driven Engineering Languages and Systems (MOD-
ELS). pp. 62-72. DOI:10.1109/MODELS58315.2023.00022.
Vangheluwe H. The discrete event system specification
(DEVS) formalism. Course Notes, Course: Modeling
and Simulation (COMP522A), McGill University, Montreal
Canada 2001; 13.

https://github.com/Cosys-Lab/2025-SIMULATION-DEVS-FMI3.0
https://github.com/Cosys-Lab/2025-SIMULATION-DEVS-FMI3.0
https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.html
https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.html
https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.html
https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.html

22 Journal Title XX(X)

18. Van Tendeloo Y and Vangheluwe H. Classic DEVS modelling 33. Van Mierlo S, Van Tendeloo Y and Vangheluwe H. Debugging
and simulation. In 2017 Winter Simulation Conference (WSC). parallel DEVS. Simulation 2017; 93(4): 285-306.

IEEE, pp. 644-658. 34. The Modelica Association. Functional mock-up interface

19. Van Tendeloo Y and Vangheluwe H. Introduction to parallel specification, 2022. URL https://fmi-standard.org/
DEVS modelling and simulation. In SpringSim (Mod4Sim). docs/3.0/.
pp- 10-1. 35. Jiresal RS and Wainer GA. Formalizing cyber-physical system

20. Chow AC, Zeigler BP and Kim DH. Abstract simulator for the interfaces using DEVS. In ANNSIM. pp. 159-170.
parallel DEVS formalism. In Fifth Annual Conference on Al, 36. Glinsky E and Wainer G. DEVStone: a benchmarking tech-
and Planning in High Autonomy Systems. IEEE, pp. 157-163. nique for studying performance of DEVS modeling and simu-

21. Vangheluwe H, De Lara J and Mosterman PJ. An introduction lation environments. In Ninth IEEE International Symposium
to multi-paradigm modelling and simulation. In Proceedings on Distributed Simulation and Real-Time Applications. IEEE,
of the Al, Simulation and Planning in High Autonomy pp- 265-272.

Systems Conference. Lisbon, Portugal: Society for Computer
Simulation International, pp. 9-20.

22. Mustafiz S, Gomes C, Barroca B et al. Modular Design Author Biographies
of Hybrid Languages by Explicit Modeling of Semantic Yon Vanommeslaeghe is a postdoctoral researcher at the
Adaptation. In Proceedings of the Symposium on Theory of University of Antwerp, Faculty of Applied Engineering in the
Modeling & Simulation: DEVS Integrative M &S Symposium. Electronics and ICT department, Cosys-Lab, and is a co-worker
Pasadena, California: IEEE, pp. 29:1-29:8. DOI:10.23919/ at Flanders Make. His research interests include modeling and
TMS.2016.7918835. simulation for optimal (embedded) deployment in the context of

23. Gomes C, Meyers B, Denil J et al. Semantic Adaptation for cyber-physical systems.

FMI Co-simulation with Hierarchical Simulators. SIMULA- Claudio Gomes is an Assistant Professor at Aarhus University
TION 2018; 95(3): 1-29. DOI:10.1177/0037549718759775. in the Department of Electrical and Computer Engineering. His

24. Camus B, Galtier V, Caujolle M et al. Hybrid Co-simulation research interests include co-simulation, digital twin engineering,
of FMUs using DEV&DESS in MECSYCO. In Symposium and machine learning for digital twins, with a focus on ensuring
on Theory of Modeling & Simulation - DEVS Integrative M&S reliability and accuracy in complex cyber-physical systems.
Symposium (TMS/DEVS 16). Pasadena, CA, United States: Bert Van Acker is a postdoctoral researcher at the University
Society for Computer Simulation International San Diego, CA, of Antwerp, Faculty of Applied Engineering in the Electronics and
USA, p. No. 8. ICT department, Cosys-Lab, and is a co-worker at Flanders Make.

25. Quraishi MH, Sarjoughian HS and Gholami S. CO- His research interests include modeling and simulation for optimal
SIMULATION OF HARDWARE RTL AND SOFTWARE deployment in the robotics and automation domain.

SYSTEM USING FML. In 2018 Winter Simulation Conference Joachim Denil is an Associate Professor at the University of
(WSC). pp. 572-583. DOI:10.1109/WSC.2018.8632395. Antwerp, Faculty of Applied Engineering in the Electronics and

26. Lin X. Co-simulation of Cyber-Physical Systems Using DEVS ICT department, Cosys-Lab, and is associated with Flanders Make.
and Functional Mockup Units. Technical report, Arizona State His research interest include the design, verification and evolution
University, 2021. of cyber-physical systems.

27. Joshi R, Nutaro J, Zeigler B et al. Functional Mock- Paul De Meulenaere is a Professor at the University of
up Interface Based Simulation of Continuous-Time Sys- Antwerp, Faculty of Applied Engineering in the Electronics and
tems in Cadmium. In 2024 Annual Modeling and Sim- ICT department, Cosys-Lab, and is associated with Flanders Make.
ulation Conference (ANNSIM). pp. 1-15. DOI:10.23919/ His research interests include co-design and software deployment
ANNSIM61499.2024.10732622. for cyber-physical systems.

28. Vanommeslaeghe Y, Van Acker B, Vanherpen K et al. A co-
simulation approach for the evaluation of multi-core embedded
platforms in cyber-physical systems. In Proceedings of
the 2020 Summer Simulation Conference. SummerSim ’20,

San Diego, CA, USA: Society for Computer Simulation
International. ISBN 978-1-7138-1429-0, pp. 1-12.

29. Paris T, Ciarletta L and Chevrier V. A component
approach for DEVS. In Proceedings of the 50th
Computer Simulation Conference. Proceedings of the 50th
Computer Simulation Conference, Bordeaux, France: Society
for Computer Simulation International, p. 30.

30. CATIA Systems. FMPy. URL https://github.com/

CATIA-Systems/FMPy.

31. Legaard CM, Tola D, Schranz T et al A universal
mechanism for implementing functional mock-up units. In
11th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications. SIMULTECH
2021, Virtual Event, pp. 121-129.

32. Chen B and Vangheluwe H. Symbolic flattening of DEVS

models. In SummerSim. Citeseer, pp. 209-218.

Prepared using sagej.cls

https://github.com/CATIA-Systems/FMPy
https://github.com/CATIA-Systems/FMPy
https://fmi-standard.org/docs/3.0/
https://fmi-standard.org/docs/3.0/

Vanommeslaeghe et al.

23

Appendix A: Formal Specification of the
ACC Models

For completeness, Definitions 1 to 8 provide the formal
definition of all atomic and coupled models described in
PDEVS Models of the Running Example. The Python-
PDEVS implementation of these models is also avail-
able on GitHub: https://github.com/Cosys—Lab/
2025-SIMULATION-DEVS-FMI3.0.

Notes:

1. For all models, the confluent transition function 0 cony

is defined as:

6conf(87 €, LL’) = 6ezt ((sint(s)v 07 1’)

2. For state transition functions, updated parts of the state
are highlighted in bold for clarity

3. The Vehicle, SpeedController, and SupervisorPID
atomic models are event-driven, with external events
periodically triggering state updates. For these models,
the “update_state” mode is not represented in the exter-
nal transition functions. As there is an instantaneous
internal transition from “update_state” to “idle”, any
events received while in the “update_state” mode will
be handled by the confluent transition function. As
the confluent transition function is defined as first
executing the internal transition function and then the
external transition function (see Note 1), the models
will always be in the “idle” mode when executing
the external transition function. The inclusion of the
“update_state” mode is an consequence of the PDEVS
formalism, wherein only internal transitions can gen-
erate output events.

Vehicle. Definition 1 formalizes the Vehicle atomic
model, which implements its longitudinal dynamics. The
state is defined as s = (mode, x,v, a, a,,), where mode is
the discrete mode of the vehicle model, = the position, v the
velocity, a the acceleration, and a,, the wanted acceleration.

For transitions involving update _state, the updated state
variables (z’,v’, a’) are obtained by applying a semi-implicit
Euler integration step with elapsed time e:

a =a+e-2(a, —a)
vV=v+e-d

=xz+e-0

If both update_state and update_a_wanted are received
simultaneously, the integration step is applied first using the
current a,,, after which a,, is updated to a;“*. The updated
value takes effect in subsequent steps.

Generator. Definition 2 formalizes the Generator atomic
model. This model produces update_state events at a fixed
interval and is used to periodically trigger state updates in
other models. The generator has no input ports, hence both
the input set X and the external transition function d.,; are
empty. Its behavior is fully determined by the time advance,
internal transition, and output functions.

Sine. Definition 3 formalizes the Sine atomic model. This
model generates a periodic signal according to v(t) = A -
sin(w - t) + offset, where A is the amplitude, w the angular

Prepared using sagej.cls

frequency, and offset a constant bias. The signal is produced
at a specified interval.

The state is defined as (¢,v), with ¢ € R the current
internal time and v € R the current signal value. At each
internal transition, the state is updated to:

(t + interval, A -sin(w - (¢t + interval)) + offset)

The output function A emits the current value v at every
internal transition. As the Sine model has no input ports, both
the input set X and the external transition function J.,; are
empty. As with the Generator model, its behavior is fully
determined by the internal transition and output functions.

SpeedController. Definition 4 formalizes the SpeedCon-
troller atomic model. This implements a standard discrete
PID controller to controls the ego vehicle’s wanted accel-
eration based on the difference between a desired speed
(setpoint) and the actual vehicle speed. The state is defined as
(mode, I, eyrev, SP, act, out), with mode the discrete mode,
I the accumulated integral term, e,,., the previous error, sp
the current speed setpoint, act the measured actual speed
of the vehicle, and out the most recently computed control
output.

The model can receive events on three input ports:

* update _state, which triggers a controller update
* update _setpoint, which provides a new desired speed
Spnew
* vehicle_state, which provides the current actual speed
act
When an update_state event is received, the new controller
output is calculated using the standard discrete PID equations
with elapsed time e:

err = sp — act

I'=I+err-e
€7“7"—6PT5U
d, = e
e
out' =Ky, -err+ K; - I' + Kq - d.
Eprev = €T

The output function A generates events with the controller
output out.

SupervisorPID. Definition 5 formalizes the Supervisor-
PID atomic model. This model supervises the ego vehi-
cle’s speed in order to maintain a safe distance to a lead
vehicle. In the adaptive cruise control (ACC) scenario, it is
responsible for generating updated speed setpoints vVyanted
for the SpeedController model. The state is defined as
(mode, Tego, Vego, Tiead; Vieads Vwanted), With mode the dis-
crete mode, (zego, vego) the ego vehicle’s position and veloc-
ity, (Ziead, Viead) the lead vehicle’s position and velocity, and
Uywanted the current wanted velocity. For clarity, additional
PID-related state variables such as the integral term I, the
previous €rror ¢,,¢,, and the current setpoint sp have been
omitted from the formal definition, but their role is analogous
to the SpeedController model described earlier.

The model can receive events on three input ports:

* update _state, which triggers a supervisor update
* ego_vehicle_state, providing Zcg, and vego
* lead_vehicle_state, providing xjcqq and vieqq

https://github.com/Cosys-Lab/2025-SIMULATION-DEVS-FMI3.0
https://github.com/Cosys-Lab/2025-SIMULATION-DEVS-FMI3.0

24

Journal Title XX(X)

When an update_state event is received, the supervisor
updates vynteq based on the relative position and velocity
of the ego and lead vehicle. More specifically, vyanted 1S
adjusted using a PID controller based on the actual relative
position (gap) between the vehicles and a safe distance,
calculated from their relative velocities.

The output function A\ generates events with this wanted
velocity Vyanted-

EgoVehicle. Definition 6 formalizes the EgoVehicle
coupled model. It consists of a Vehicle atomic model and a
Generator that periodically issues update_state events. The
coupled model has an input port update_a_wanted for the
wanted acceleration and outputs the current vehicle state on
the vehicle_state port.

LeadVehicle. Definition 7 formalizes the LeadVehicle
model. It combines Vehicle, Generator, and Sine atomic
model. The LeadVehicle model works similar to the
EgoVehicle model, with the Generator periodically issuing
update_state events for the Vehicle. In this case however, the
wanted acceleration is provided by the Sine model, which
represents the driver of the lead vehicle. This model also
outputs the current vehicle state on its vehicle_state port.

AdaptiveCruiseControlSystem. Definition 8 formalizes
the full AdaptiveCruiseControlSystem. It integrates the
EgoVehicle, LeadVehicle, SpeedController, and Supervisor-
PID models. Here, the supervisor determines speed setpoints
for the speed controller based on the relative distance and
relative velocity between the ego and lead vehicles. The
speed controller then provides a wanted acceleration for the
ego vehicle to regulate its speed. Generators provide periodic
update _state events to both the controller and supervisor to
trigger updates. Together, the coupled system captures the
closed-loop adaptive cruise control scenario.

Prepared using sagej.cls

Vanommeslaeghe et al.

25

Vehicle = <Sa ta> 6int; X7 6ezt; 5conf7 K)\>

S = {(mode, x,v,a,a,) | mode € {idle, update_state}, x,v,a,a, € R}

{ (idle,x, v, a, ay) — +oo,}

ta =
(update_state, x,v,a,a,) — 0

Sint = {(update_state, z,v,a,a,) — (idle,z,v,a,a,)}

X = Xupdate,state X Xupdate,a,wanted = {update,state} x R
(idle,z,v,a,ay), €, (¢, ap’™") — (idle, z,v,a,an™),
Sext = (idle,z,v, a,ay), e, (update_state,) — (update_state,z’, v’ a’,a,),
idle,x,v,a,ay), e, (update_state, a™™) — (update_state,z’, v’ , a’, a™®"
() b b) w /s) p b w p b b) bl b

w

3
Y = Yvehicle,state =R

)= (update_state, z, v, a, a,) — (x,v,a),
B (idle,x,v,a,ay) — ¢

Definition 1. Atomic PDEVS specification of the Vehicle model.

Generator = (S, ta, Sint, X, Ocat, Oconf, Y, A)

S = {idle}
ta = {idle — interval}
dint = {idle — idle}
X=9
Ocat = @
Y = Yupdate_state = {update_state}
A = {idle — update_state}

Definition 2. Atomic PDEVS specification of the Generator model.

Sine = <57 ta7 5inta X) 5ext7 6conf7 Y»)\>

S={(tv)]| t,veR}
ta = {(t,v) — interval}

Oint = {(t,v) = (t 4+ interval, A - sin(w - (t 4+ interval)) + offset)}

X=9

Ocat = ¢
Y =Yoame =R
A={(t,v) = v}

Definition 3. Atomic PDEVS specification of the Sine model.

Prepared using sagej.cls

)

26 Journal Title XX(X)

SpeedController = (S, ta, dint, X, dext, Y, A)
S = {(mode, I, ey, sp, act,out) | mode € {idle, update_state}, I, eprey, sp, act,out € R}

ta =

(idle, I, €prey, Sp, act, out) — +00,
(update_state, I, epreq, Sp, act, out) — 0

Oint = {(update_state, I, €yrey, Sp, act, out) — (idle, I, yrey, Sp, act, out) }
X = Xupdate,state X Xupdate,setpoint X Xvehicle,state = {update—State} x R x Rg

(idle, I, Eprev; SP, GCL, out), e, (¢, ¢, (z,v,a))
— (idle, I, éprey, sp, v, 0ut),

(idlev I: Eprevs SP, ClCt, Out)a €, (¢a Spnewa ¢)
— (idle, I, eprey, SP™Y, act, out),

(idle, I, €prev, SD, act, out), e, (update_state, ¢, ¢)

— (update_state, I', e, ., sp, act,out’),
6ewt = .
(idle, I, eprev, SP, act, out), e, (update_state, sp™*, ¢)

’
— (update_state, I, €., sp™*" act,out’),

(idle, I, eprev, Sp, act, out), e, (update_state, ¢, (x,v, a))

— (update_state, I’, eI'wev, sp,v,out’),

(idle, I, eprev, Sp, act, out), e, (update_state, sp™*, (z,v,a))

— (update_state, I’, ez'wev, sp™” v, out’)

Y = Youtput =R

) (update_state, I, eprev, P, act, out) — out,
B (idle, I, €prey, sp, act, out) — ¢

Definition 4. Atomic PDEVS specification of the SpeedController model.

Prepared using sagej.cls

Vanommeslaeghe et al. 27

ta =

6int =

X =

5ezt =

Y =

>\:

SupervisorPID = (S, ta, dint, X, Sewts Oconf, Yy A)

{(mOdev xegoa Uegoa Llead; Viead, Uwantad) ‘ mode S {Zdl@, update*State}a megoa ’Uegoa Llead Viead, Vwanted € R}

(Zdl@, Zegos Vegos Lleads Viead Uwanted) — +00,

(update*Stat& Legos Vegos Lleads Vieads Uwanted) —0

{(Updat@ﬁmt@, Tegos Vegoyr Lleads Viead Uwanted) — (zdle, Tegos Vegoy Lleads Vieads Uwanted)}

3 3
Xupdate,state X Xego:uehicle,state X Xlead,vehicle,state = {update,state} x R? x R

(idl@, Tegos Vegos Lleads Vlead Uwanted)7 €, (¢7 (ba (l‘lnec;zuéa ’Ulnéf;gh alnee;lc)l))

; new , new
- (“”67 ZegoysVegor Liead: Vlead’ 'Uwanted)a

(idl@, xegoa 'Uegoa Zlead Viead, Uwanted)a €, (d)a (SUZ;;U, Ug;fa ag;;u)» d))

: new ,new
- (Zdlev wego ’ vego y Lleads Vlead Uwanted)a

(idle, Zegos Vegos Lieads Viead, Uwanted)a €, (update,state, o, d))

’
— (update—Stat67 Legoy Vegos Lleads Vlead Uwanted)’

. new ,new new
(Zd167 Zegos Vegos Lieads Viead Uwanted)7 €, (Update—smﬁey Qsa (xleadv Vieads alead))
new ,new ,./
— (update_state, Tego, Vegos Tpnans Voo Vwanted)
new , new new
) 9)

(Zdlea Legos Vegoy Lleads Viead vwanted)a €, (update,state, (Iego ’ Uego ’ aego

new new ’
— (update_state, x 2 V7 Y, Tiead, Vieads Vapanted):

new ,new _new new , new ,new
ego v a)7 ($lead7 Vlead> a’lead))

ego » Yego
new ,new ,new ,new ,/
ego vego ' Lieads Viead? vwanted>

(idle, Zegos Vegos Lieads Viead, Uwanted)a €, (update,state, (Z‘

— (update_state,
Youtput =R

(upda'te*Statea Zegos Vegos Lleads Vieads Uwanted) — Vwanted,

(Z'dlev Tegos Vegos Lleads Vieads Uwanted) — ¢

Definition 5. Atomic PDEVS specification of the SupervisorPID model.

EgoVehicle = (Xseif, Ysers, D, {Mi}, { L}, {Zi ;})

Xself = Xupdate,a,wanted =R
Yiery = Yoeni =R?
self vehicle_state

D = {wvehicle, generator}

Myenicie = Vehicle,

{M;} =
M generator = Generator

vehicle — {self},
{L} = self — {wvehicle},

generator — {vehicle}

Zyehicle,self = {vehicle_state — vehicle_state},
{Zi,j} = denerator,vehicle = {Updatefst(lte — update,state},
Zseif wehicle = {update_a_wanted — update_a_wanted }

Definition 6. Coupled PDEVS specification of the EgoVehicle model.

Prepared using sagej.cls

28

Journal Title XX(X)

LeadVehicle = (Xse1f, Yserf, D, {M;}, {L;},{Zi ;})

Xself = ¢

3
Y:self = Yiehicle_state = R
D = {wehicle, generator, sine}

Myenicle = VehiCl@,
{M;} = § Myenerator = Generator,
Msine = Sine

vehicle — {self},
{I;} = < generator — {vehicle},
sine — {vehicle}

Zyehicle,self = {vehicle_state — vehicle_state},
{Zi;} = { Zgenerator,vehicle = {update_state — update_state},

Zsine vehicle = {value — update_a_wanted }

Definition 7. Coupled PDEVS specification of the LeadVehicle model.
AdaptiveCruiseControlSystem = (Xser, Yserr, D, {M; },{L:},{Z: ;})

Xself = (b
Y—self = ¢
D = {ego, lead, controller, controller_gen, supervisor, supervisor_gen }

Mqo = EgoVehicle,
Mieaq = LeadVehicle,
M contronier = SpeedController,
{M;} = B
Mcontmller,gen = Generator,

Mupervisor = Supervisor PID,

Msupervisor,gen = Generator

controller — {ego},
controller_gen — {controller},
(1) = ego — {controller, supervisor},
! lead — {supervisor},

supervisor — {controller},

supervisor_gen — {supervisor}

Z controller_gen, controller = { update_state — update_state},
Zego,controller = {vehicle_state — vehicle_state},
Zcontroller,ego = {output — update_a_wanted},

{Z, ;} = § Zsupervisor_gen,supervisor = {update_state — update_state},

Zego,supervisor = { vehicle_state — ego_vehicle_state},

Ziead, supervisor = {vehicle_state — lead_vehicle_state},

Zsupervisor,controller = {OUtpU't — updatefsetpomt}

Definition 8. Coupled PDEVS specification of the AdaptiveCruiseControlSystem model.

Prepared using sagej.cls

	Introduction
	Background
	Running Example
	Test Scenario.

	FMI 3.0 - Synchronous Clocks (SC)
	Motivation for Synchronous Clocks in Co-Simulation.
	Synchronous Clocks and Event Mode in FMI 3.0.
	Orchestration Algorithm for FMI 3.0 Synchronous Clocks.

	Discrete Event System Specification (DEVS)
	Atomic DEVS Models.
	Coupled DEVS Models.

	Parallel DEVS (PDEVS)
	PDEVS Abstract Simulator.

	Comparison between FMI SC and (P)DEVS
	PDEVS Models of the Running Example

	Related Work
	Contribution
	Requirements
	Signaling Imminent Internal Transitions
	Communicating Input/Output Events
	Coupling DEVS FMUs
	Challenges in Coupling Classic DEVS Models.
	Implementation Outline.
	Orchestration Algorithm.

	Results and Discussion
	Implementation
	Importer.
	PDEVS FMU.
	Exporter.
	PDEVS Model.

	Validation
	Validation Strategy.

	Discussion

	Limitations
	Coupling Restrictions
	Hierarchical Modeling
	Numerical Precision and Time-Keeping
	Continuous Dynamics and Hybrid Simulations
	Use of PDEVS over DEVS

	Conclusions and Future Work

