RoboCIM: Towards a Domain Model for
Industrial Robot System Configurators

Daniella Tola!, Cldudio Gomes!, Carl Schultz', Christian Schlette?, Casper
Hansen?®, and Lukas Esterle!

! Aarhus University, Aarhus, Denmark
{dt,claudio.gomes,cshultz,lukas.esterle}@ece.au.dk
2 University of Southern Denmark, Odense, Denmark
chschOmmmi.sdu.dk
3 Technicon ApS, Hobro, Denmark
cha@techicon.dk

Abstract. Determining which components are required for a system
configuration, and whether they are compatible, can be a difficult task,
especially in an industry with significant amounts of information that
resides within a group of experts. In this paper we illustrate some of the
main challenges we and our industrial partner (Technicon) face when
configuring a robot system (typically consisting of a robotic arm, end ef-
fector, coupling device, and a base) and present our domain model, Robot
System Configurator Information Model (RoboCIM). We formalise the
model within a defeasible reasoning framework, in order to explicitly
capture cases where information is missing or is obtained from the sys-
tem integrators’ experience. We provide a prototype implementation of
the framework in ASP and evaluate it on a subset of components from
Technicon’s component catalogue, illustrating the feasibility of the con-
figurator.

Keywords: Robot configurator - Incomplete information - Non-monotonic
reasoning - Defeasible reasoning - Knowledge engineering - Answer Set
Programming

1 Introduction

In the context of industrial robotics, integration is the process of introducing
and merging robotics hardware, peripherals, software, and supporting technol-
ogy into a production, or manufacturing line, to automate it [I0]. The rapid
re-purposing and reconfiguration of manufacturing cells allows for increased re-
silience in existing supply chains in response to unexpected disruptions such as
shifting policy and market preferences. Robotic system integrators (individuals
or businesses) play an essential role in reconfiguration, which still requires exten-
sive expertise and manual effort (e.g. which grippers to use, which robot models
to select, or which data connections to rely on).

Copyright (© 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

The challenge of configuration is not new. In other areas such as personal
computers (PCs), customisation tools have had tremendous success, thanks to
standardised interfacesﬂ These tools are easy to use, contain comprehensive
databases, and allow consumers to pick and choose the parts desired based on
their performance needs, while ensuring compatibility among the hardware ele-
ments.

Our vision, and that of our industrial partners, is that robot configuration
tasks should be as easy as their PC configuration counterparts. Recent devel-
opments [TTJT2/T4] attempt to simplify robot integration by modelling skills for
automation of robots and end effectors. While this is an important milestone,
the state of the art assumes the information regarding these skills is available.
We focus instead on how to represent compatibility constraints, in the face of in-
complete, contradictory, or rapidly changing, information. We sketch a solution
to this using Answer Set Programming (ASP).

The challenges described in this paper have been identified in the course of
our work with Technicon, while assembling robotic cells in the Aarhus University
Digital Transformation Lab, as well as discussions with Technicon’s engineers.
Technicon is a Danish system integrator, that has been in the market for 7 years,
and has made more than 300 robotic system integrations. So far, Technicon has
been able to successfully operate due to its engineers’ extensive experience and
internal documentation, determining compatibility constraints between robotic
components. However, it recognises the need to formalise these rules, into tools
that facilitate robotic system configuration.

The main contributions of this paper are:

1. (Section |3) We report on some of the challenges we encountered. The main
factor in these is the uncertainty and incomplete information.

2. (Section We sketch our open-ended domain model, the Robot System
Configurator Information Model (RoboCIM), which describes how to cap-
ture knowledge on robot products. We illustrate how to go from product
specifications to a formalised domain model, and how to tackle real world
challenges using a rule-based approach.

We give a brief description of the robotic domain in Section [2] and demonstrate
the results of our prototype implementation and validation in Section [5, con-
cluding in Section [0}

The robot components and challenges we describe originate from real indus-
trial manufacturers. In order to avoid harming the companies, we have anonymised
their names.

2 Background

In this section we describe what a robot system configurator is and introduce the
main components in a robot system that we will use in such a configurator. For

4 An example customisation tool: |https://pcpartpicker.com /list /|

https://pcpartpicker.com/list/

the remainder of this paper we will refer to a robot system configurator simply
as a configurator.

According to [9], to create a configurator, the knowledge of the domain can
be represented, for example, by creating a domain model. Utilising this model,
the configuration can be generated using algorithms or rules. Each object in the
domain model has properties, which can be attributes, resources, or ports.

A robot system consists of one or more robots, end effectors, and other devices
combined with the robot to perform a particular task [2]. A simple example,
illustrated in Figure[l] is a robotic arm with an attached end effector, mounted
on top of a mobile base. The most common tasks performed by such robot
systems are: Pick and Place, where the goal is to pick up an object and place it
in another location, and Screwdriving, where the goal is to tighten screws on a
surface.

Without loss of generality, we focus on robot systems consisting of the com-
ponents between the robotic arm and the tool, i.e. we do not consider the base
that the robotic arm is mounted on. The reason for this choice is that these
components cover a wide range of 104+ manufacturers. Most of these compo-
nents have mechanical and data interfaces, which are used to connect them with
other components. We briefly describe each of the components and their relevant
characteristics below.

End
effector

(a) Example Setup A (b) Example Setup B

Fig. 1: Example of two robot setups with a different number of components.

Robotic Arm has mechanical, data, and electrical interfaces. The tip of the
robotic arm is called the robot flange. The mechanical interface of the robot
flange is described using the ISO 9409-1 standard [3]. This can be used when
defining the compatibility of the mechanical interface. The supported data inter-
face is described by Industrial Communication protocols [I]. The main property
of the electrical interface of a robotic arm is the maximum current that can be
drawn by the end effector.

End Effector Coupling Device (EECD) has two mechanical interfaces, one for
connecting with the robotic arm, and one for connecting with the end effector.
It also has an electrical interface for supplying the current from the robotic arm
to the end effector.

Flange Adapter has two mechanical interfaces, as it adapts from one interface
to the other in order to be able to connect a robot flange to an EECD with a
different mechanical interface.

End Effector is connected to the tip of the robotic arm, and is application spe-
cific, i.e. gripper for Pick and Place, screwdriver for Screwdriving applications.
The end effector has a mechanical interface that connects to the EECD. Typi-
cally, both the end effector and EECD are developed by the same manufacturer.

Data Connection can be provided using different components, such as a Data
Cable or a Data Control Box. The Data Control Box supports more communi-
cation protocols.

3 Challenges

In this section we describe four main challenges that were found during the
modelling phase of the configurator. The underlying source of each of these
challenges is incomplete information.

CH1: Unexpected Sources of Information When looking for technical information
about a product, it is typical to expect this information to be present in the
data sheet or technical report of the product. Figure [2 illustrates an example of
unexpected sources of information, where the ISO of the robot flange of a robotic
arm was not found in the data sheet of the product. Instead, this information
was found in the data sheet of a compatible end effector, which is manufactured
by another company.

°@ISO-9409-1 22-22-2?

Dingo-A Catomatl(l:
robotic arm Catomatic CatomaAnc
: Screwdriver
Screwdriver
data sheet

Primary information source:
ISO flange information
missing

Secondary information source:
ISO flange information found
for Dingo-A robotic arm

Fig.2: An example of unexpected sources of information, missing from the pri-
mary data sheet of a product, but found in a related product’s data sheet.

CH2: Misleading Compatibility When a data sheet states that a product supports
an Industrial Communication Protocol [I], it can be expected that, this product
port is compatible with other products supporting the same protocol. However,

this was not the case for one of the product pairs we worked with, exemplified
in Figure [3] The data sheet of an end effector did not state anything about
the communication protocol it supports, and after contacting the manufacturer,
we obtained a non-public document which specified the end effector supports
Modbus TCP, which is also supported by a robotic arm. The document then also
specifies that the end effector requires a Data Control Box, that also supports
Modbus TCP, in order to be compatible with the robotic arm.

requires

Fig. 3: Illustration of the challenge of misleading compatibility. Note the shown
configurations exclude the mechanical parts for simplicity.

CHS3: Implicit Information In some cases, component properties were inferred
from the name of the component, and not from its data sheet. The example,
illustrated in Figure [4] shows that the maximum current load of the EECD 3A
can be interpreted as 3A, but this information is not in the data sheet. Moreover,
it leaves the authors to wonder what the maximum current load of the FECD
component is. Performing an empirical test of the configuration showed that the
Screwdriver was incompatible with the EECD.

CHY4: Misleading Incompatibility Some data sheets specify that two products
A and B are incompatible in one part of the document, while revising this by
stating that A and B can be made compatible when some precondition is ful-
filled. An example is illustrated in Figure [5| describing that the Robotic Arm
is incompatible with EECD, unless the Data Control Box is used for the data
connection. This challenge example originates from the manufacturer adding the
EECD IO to their component list in order to support using a Data Cable. This
introduced the complexity of supporting both the configuration with the EECD
10 and the legacy configuration with the Data Control Box.

4 RoboCIM: Robot System Configurator Information
Model

In this section we describe the different concepts, layers and rules that we apply
in the methodology of developing a configurator, illustrated in Figure [6] We
present how RoboCIM has been designed to tackle the challenges presented

7‘/ = EECD 10
requires)
P Robotic Arm - J
e o Data Cable
,/ ..
incompatible X ?< = x EECD

""""""""""""""""""" Robotic Arm
7%
EECD Screwdnver x ata Cable

v v
S - =
= Data Control Box

Fig. 4: Example of implicit infor-
mation. Fig. 5: Challenge of misleading incom-
patibility.

in Section [3] above, based on the two rule layers illustrated in Figure [6] The
Universal Rules layer contains generic rules that can be applied to configurators
of various domains, focused on generating valid configurations. The Application
Rules layer is domain specific, containing rules that in this case are specific to
robot systems. Here, we illustrate some of the main rules used to describe a
configurator for robot systems, built on top of the Universal Rules.

Product Catalogue Solver Valid
configurations

i provides _
pplication Rules)
System (Domain Model)
integrator NN/ :(>
User Requirements Universal Rules %
Payload = 2kg (Meta-Model)
provides

Reach >=35cm '

Customer

Fig. 6: Overview of the RoboCIM framework and how it works.

4.1 Universal Rules (Meta-Model)

We describe the Universal Rules (Meta-Model) of the configurator to be applied
to domains where incomplete information is pervasive. We use similar concepts
to the ones defined in [d]: components, connections and attributes, and extend
them. Figure [7] shows the developed Meta-Model of the configurator, which in-
cludes the main concepts used for configuring products with missing information.
White rectangles represent Meta-Model classes, and purple rectangles represent
a subset of concrete subclasses of sources and justifications in this first version
of RoboCIM. Arrows with triangle arrowheads represent inheritance (subclass)
relations, arrows with pointed arrowheads represent association relations, and
arrows with filled diamond arrowheads represent composition.

*
e
*

Configuration Attribute:
Entity name

Source

¢

Port:

type,id
1 0.1
l connected Justification
Product L}
series has Product Primitive: Interval:

based_on

u 2.% int, string,... [lower, upper]

is_a |

e Empirical Test
Configuration

Fig. 7: UML class diagram representing RoboCIM at the Universal Rules level.

based_on

Product Configuration. A Configuration consists of a number of Products,
which are Port containers. Port Containers can be connected to other Port con-
tainers through their ports. A Product can be part of a Product series, which
is an abstract notion of a product. The concept of Product series represents a
group of products that have common attributes, in which a product belonging
to this series inherits these attributes. A product series itself can be defined as
a subclass of another product series via the is_a association relation (transitive,
irreflexive). A subset of constraints on Ports and Product series, are shown in
Listing which are made explicit using Object Constraint Language (OCL)H

--Constraint 1: A port cannot be connected to itself:
context Port inv: self.connected <> self

--Constraint 2: A product series cannot be its own product:
context Product_series inv: self.is_a <> self

--Constraint 3: A port must have an orientation:
context Port inv: self.attribute.name = ’input’ or self.attribute.name = ’output’

--Constraint 4: A port can connect to another port, if they have opposite orientation and
the same interface (represented by attribute value)
context Port inv:
self.connected(p2) implies
Set{self.attribute.name} union Set{p2.attribute.name} = Set{’input’, ’output’}
and
self.attribute.name.value = p2.attribute.name.value

Listing 1.1: Examples of basic Meta-Model axioms described using OCL.

Assuming general properties and compatibility of products in industrial con-
figurators is common, however, special cases exist where the initial assumption
about a product may be incorrect, defined by an explicit constraint which un-
derlies hidden information. “The relationship of support between premises and
conclusion is a tentative one, potentially defeated by additional information” is
stated by Koons [7] as one way to describe defeasible reasoning. He also de-
scribes defeasible reasoning as “exception-permitting generalisation”, which is
partly how we utilise this form of reasoning.

5 version 2.4: https://www.omg.org/spec/OCL/

https://www.omg.org/spec/OCL/

We define default properties of products, which can be defeated by explicit ev-
idence disproving the assumption, based on Nute’s defeasible logic framework [g].
This is typically given in forms of incompatibility requirements, that is an extra
requirement imposed on the compatibility of a product. We extend the tradi-
tional concept of inferring component compatibility in a purely deductive setting,
to making contingent inferences about compatibility in a non-monotonic setting.

Listing exemplifies a constraint for defining incompatible products, and
a constraint on the uniqueness of products in a configuration.

--Constraint 5: Two products (productA and productB), known to be incompatible, must not
exist in the same configuration:
context Configuration inv:
self.products->excludes (’productA’) and self.products->excludes(’productB’)
--Constraint 6: Only one instance of a product can exist in the same configuration:
context Configuration inv: Set{self.products} = self.products

Listing 1.2: Examples of configuration related axioms described using OCL.

Tackling Incomplete Information. To formally model cases of incomplete in-
formation, the configurator is designed with a notion of information sources from
various categories, defined as justifications. This provides the basis in RoboCIM
for reasoning about defeasible compatibility. Categories that have been used
when integrating data from multiple sources (e.g. in [I3]), are primary and sec-
ondary information sources.

A primary source comes from the manufacturer of the product in forms of
data sheets, technical reports or brochures. The secondary source comes from
another manufacturer of a related product, typically this product can be con-
nected to the referred product. We also add the two categories empirical test
and observation. An empirical test can be derived from physical test results of
connecting products, which could be performed by system integrators. An obser-
vation is a property of a product that is defined by a domain expert, which has
acquired this knowledge by observing how this product can connect to others.

The veracity of information about (in)compatibility varies for each category.
The primary source is the strongest justification category, followed by the em-
pirical test, and then observation. Importantly, RoboCIM is customisable such
that users can specify which justifications are used to infer defeasible compat-
ibility, e.g. users can setup a RoboCIM solver to generate configurations such
that compatibility must be justified by primary sources (thus only delivering
strongly justified configurations), as illustrated in Listing 1.3

--Constraint 7: Configurations using information from primary justifications only:
context Configuration inv:
self.products->forAll(pl | pil.attribute.value.justification = primary)
and
self .products->forAll (product->forAll(
port | port.attribute.value.justification = primary))

Listing 1.3: Example of justification related axiom described using OCL.

Rationale of Modelling Choices. Both challenges CH3 and CH4 can be
dealt with by explicitly defining that these products may not exist in the same

configuration. Constraint 5 in Listing [I.2] solves the issue in CH3, and can be
extended to include three products for solving CH4. Although CH2 can also be
addressed using incompatibility constraints (as CH3 and CH4), this incompati-
bility constraint differs in the sense that the two products can exist in the same
configuration but cannot be directly connected. An incompatibility constraint
only on neighbouring products can be used, defining that if two products are di-
rectly incompatible, then their ports are also incompatible, shown in Listing[T.4]

--Constraint 8: Two directly incompatible products cannot be connected:
context Configuration inv:
self .products->forAll(pl,p2 | pl <> p2 and incompatible_neighbours(pl,p2) implies
pl.ports->forAll(portl | p2.ports->forall(port2 | portl.connected <> port2)))

Listing 1.4: Example of incompatibility axiom described using OCL.

Solving the challenge of CH1 can be done using justification and sources of
information. To ensure the certainty of the candidate configurations, it is possible
to exclude configurations using knowledge from specific justifications.

4.2 Application Rules (Domain Model)

The Application Rules layer extends the Universal Rules layer with concepts
and rules related to the robotics domain, and also incorporates rules to impose
the user requirements in the configurator. A robot configuration must contain
specific products, as the examples shown in Figure [I} Each of these products
must have specific types of ports, for example, a robotic arm must have a robot
flange interface. These rules are defined in the Application Rules and illustrated
in Listing Defining which products must exist in a robot configuration can
also be used to solve challenges, such as CH2 described in Section [3| above.

--Constraint 9: One product of each type robotic_arm, eecd, end_effector, and
data_connection, must exist in the configuration:
context Configuration inv:
let product_types_attr = self.products->forAll(
p->select (attribute | attribute.name = ’type’)) in
’robotic_arm’) and
’eecd’) and
’end_effector’) and
’data_connection’)

product_types_attr->one(value
product_types_attr->one (value
product_types_attr ->one (value
product_types_attr ->one (value

--Constraint 10: Products of type robotic_arm must have specific port types:
context Product inv:

self.attributes->exists(attribute | attribute.name = ’type’ and attribute.value = °’
robotic_arm’) implies
self .ports->exists (port | port.type = ’robotic_arm_flange’)

Listing 1.5: Configuration rules on required product and port types in a
configuration described using OCL.

Other than rules on the specific products and their ports in a configuration,
rules related to user requirements are also implemented in the Application Rules.
As illustrated in Figure [6 the user can specify different requirements, such as
the required payload of the robotic arm, and the type of application. Different
robotic arms have different payload requirements, e.g. some can carry up to 3kg,
while others up to 10kg. Here, the user should be able to specify their application
requirements, and the configurator should only give the relevant configurations.
Examples of rules related to the user requirements are shown in Listing

--Constraint 11: User requirement on payload of robotic_arm:
context Product inv:
req_payload <> none and

self.attributes->exists(attribute | attribute.name = ’type’ and attribute.value = °’
robotic_arm’) implies

self.attributes->one(attribute | attribute.name = ’payload’) and

req_payload <= self.attributes->select(attribute | attribute.name = ’payload’).value

--Constraint 12: User requirement on application
context Configuration inv:
req_application <> none and self.applications->exists(req_application) implies
let end_effector_type = self.applications->select(req_application).end_effector_type
in

let end_effector_product = self.products->select(p | p.attributes->exists(attribute |
attribute.name = ’type’ and attribute.value = ’end_effector’)) in
end_effector_product.attributes->exists(attribute | attribute.name = ’subtype’ and

attribute.value = end_effector_type))

Listing 1.6: Rules related to user requirements described using OCL.

The concept of Product series allows to easily group products with similar
properties. In the robotics domain this can be applied to incorporate product
type series, such as robotic arm series, but even extend this to gripper types, by
creating product series of electrical grippers, vacuum grippers etc.

Apart from these general domain rules that are defined in the Application
Rules, RoboCIM is designed to incorporate knowledge about specific products,
even without their existence in the product catalogue. This allows users to build
up the knowledge base on robotic products, and later specify which products a
company owns, by specifying its product catalogue.

5 Prototype Implementation and Evaluation

In this section we describe the prototype implementation and evaluation of
RoboCIM using ASP. We have chosen to use ASP, since it can handle non-
monotonic and default reasoning for cases where information is incomplete. We
use clingo [5] to ground and solve the implementation.

RoboCIM was implemented in ASP, using the UML diagram in Figure [7}
and the constraints described above in Section [d] A product is defined as an
ASP fact, it’s belonging to a product series is defined as a rule and a fact on the
specific product and series. Listing exemplifies how these concepts have been
implemented in ASP, and the remaining concepts in RoboCIM were implemented
likewise. The complete code can be found in the public Github repositoryﬂ

product (koala_a) . % robotic arm

product (catomatic_gripperA). % end effector (gripper)

series_has_product (koala, koala_a). % koala_a belongs to the product series koala

% A product inherits the same attributes as the product series it belongs to
has_primitive_attr(X,I,V,J,S8) :- has_primitive_attr(Y,I,V,J,S), series_has_product(Y,X).

Listing 1.7: Product and product series in ASP.

The ASP implementation was validated on a subset of 20 products from 3
manufacturers, from Technicon’s product catalogue. The configurator was vali-
dated with regards to both product compatibility and user requirements, where

5 lhttps://github.com/Daniellal /robocim_configurator

https://github.com/Daniella1/robocim_configurator

the user could specify an application and payload. The time taken to generate
all configurations is presented in Table [I} The very short runtimes (within 0.1
seconds) demonstrate the practicality of our approach for defeasible reasoning
via ASP to infer plausible configurations in the case of incomplete knowledge.

Table 1: Results of generating valid configurations using RoboCIM and ASP.

Products in Catalogue|Products in Configuration|Configurations|Time [s]
20 4 122 0.255
20 5 11 0.094

6 Conclusion and Future Work

We presented our configurator model, RoboCIM, which was designed to deal
with incomplete information and a number of challenges found in the robot
system integration domain. RoboCIM uses the concept of products, product
series, ports, information sources and justifications which are all used to generate
valid configurations composing compatible products.

An initial prototype implementation executed on a real data set of 20 prod-
ucts from 3 manufacturers demonstrates the practicality of our approach, taken
within 0.3 seconds to generate all configurations consisting of either 4 or 5 com-
ponents. This proof of concept operates on about a third of the devices usually
offered by system integrators, in future work we will verify our approach in full
inventory sets. We plan on working with human expert system integrators to
evaluate the usability and impact of RoboCIM. Specifically, we plan to integrate
this work with Technicon and perform a small user experiment, where one of
the engineers will extend the product catalogue and constraints of the currently
developed domain model prototype.

To ease the work of adding information to the knowledge base, an approach
of extracting rules from natural language, as the one presented in [6] will be
investigated in the future. Rules to extract products with missing information
can be added to the framework, and used to identify which products require
attention before they can be used in configurations.

Acknowledgement

We acknowledge the Innovation Foundation Denmark for the MADE FAST
project. The views and opinions expressed in this paper are those of the au-

thors and do not necessarily reflect the official policy or position of Technicon
ApS.

References

10.

11.

12.

13.

14.

. Industrial robot communication protocols, https://s3.amazonaws.com/

RobotigContent /Documents/Industrial-robot-communication-protocols.pdf),
(Accessed: 05-06-2021)

Manipulating industrial robots — vocabulary. Standard, International Organization
for Standardization, Geneva, CH (2013)

Manipulating industrial robots — mechanical interfaces — part 1: Plates. Standard,
International Organization for Standardization, Geneva, CH (2004)

Felfernig, A., Friedrich, G., Jannach, D.: Uml as domain specific lan-
guage for the construction of knowledge-based configuration systems. Inter-
national Journal of Software Engineering and Knowledge Engineering (2001).
https://doi.org/10.1142/S0218194000000249

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = asp + control:
Preliminary report (2014)

Hassanpour, S., O’Connor, M., Das, A.: A framework for the automatic extraction
of rules from online text. pp. 266-280 (2011). https://doi.org/10.1007/978-3-642-
22546-8_21

Koons, R.: Defeasible Reasoning. In: Zalta, E.N. (ed.) The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University (2017)

. Nute, D.: Apparent obligation. In: Defeasible deontic logic, pp. 287-315. Springer

(1997)

Sabin, D., Weigel, R.: Product -configuration frameworks-a survey.
IEEE Intelligent Systems and their Applications 13(4), 42-49 (1998).
https://doi.org/10.1109/5254.708432

Sanneman, L., Fourie, C., Shah, J.A.: The state of industrial robotics: Emerging
technologies, challenges, and key research directions (2020)

Schou, C., Hansson, M., Madsen, O.: Assisted hardware selection for in-
dustrial collaborative robots. Procedia Manufacturing 11, 174-184 (2017).
https://doi.org/10.1016/j.promfg.2017.07.222, proceedings of the 27th Interna-
tional Conference on Flexible Automation and Intelligent Manufacturing
Schéffer, E., Bartelt, M., Pownuk, T., Schulz, J.P., Kuhlenkétter, B., Franke,
J.: Configurators as the basis for the transfer of knowledge and stan-
dardized communication in the context of robotics 72, 310-315 (2018).
https://doi.org/10.1016/j.procir.2018.03.190, proceedings of the 51st Conference
on Manufacturing Systems

Shi, L., Roman, D.: Using rules for assessing and improving data quality: A case
study for the norwegian state of estate report (2017)

Stampfer, D.: Contributions to system composition using a system design process
driven by service definitions for service robotics (2018)

https://s3.amazonaws.com/RobotiqContent/Documents/Industrial-robot-communication-protocols.pdf
https://s3.amazonaws.com/RobotiqContent/Documents/Industrial-robot-communication-protocols.pdf
https://doi.org/10.1142/S0218194000000249
https://doi.org/10.1007/978-3-642-22546-8_21
https://doi.org/10.1007/978-3-642-22546-8_21
https://doi.org/10.1109/5254.708432
https://doi.org/10.1016/j.promfg.2017.07.222
https://doi.org/10.1016/j.procir.2018.03.190

	RoboCIM: Towards a Domain Model for Industrial Robot System Configurators

