
Towards Reuse of Synchronization Algorithms in
Co-simulation Frameworks?

Casper Thule1, Maurizio Palmieri23, Cláudio Gomes4, Kenneth Lausdahl5,
Hugo Daniel Macedo1, Nick Battle6, and Peter Gorm Larsen1

1 DIGIT, Department of Engineering, Aarhus University, Finlandsgade 22, 8200
Aarhus N, Denmark, {casper.thule, hdm, pgl}@eng.au.dk, http://digit.au.dk

2 University of Florence,
3 Pisa University, maurizio.palmieri@ing.unipi.it

4 University of Antwerpen, claudio.gomes@uantwerp.be
5 Mjølner Informatics A/S, kgl@mjolner.dk

6 Independent, nick.battle@acm.org

Abstract. An immediate industry challenge is to fashion a co-simulation
that replicates real systems behaviour with high fidelity. To achieve this
goal, developers rely on frameworks to enhance the creation and analysis
of the co-simulation. The problem is that new co-simulation frameworks
require extensive development, most of which in non-essential function-
alities, before they can be used in practice. Additionally, existing co-
simulations demand a thorough understanding before they can be ex-
tended.
Our vision is a modular co-simulation framework architecture, that is
easily extensible by researchers, and can integrate existing and legacy co-
simulation approaches. The architecture we propose permits extension
at three levels, each providing different degrees of flexibility. The most
flexible integration level involves the specification of a Domain Specific
Language (DSL) for Master Algorithm (MA) and this paper sketches
such DSL, and discusses how it is expressive enough to describe well-
known MAs.

Keywords: co-simulation · Functional Mock-up Interface · co-simulation
framework

1 Introduction

Co-simulation frameworks require extensive development before they can be-
come usable in practice. A co-simulation following the Functional Mock-up In-
terface (FMI) Standard is a collaborative simulation carried out by combining
multiple simulators called Functional Mock-up Units (FMUs), each represent-
ing a constituent of a system [7]. The algorithm describing how the coupling of

? This work has been supported by the Poul Due Jensen Foundation. C. G. is a
FWO Research Fellow, at the University of Antwerp, supported by the Research
Foundation - Flanders (File Number 1S06316N).



2 C. Thule et al.

FMUs is carried out is referred to as the MA, and the FMUs are denoted as
slaves. A scenario is the configuration of which FMUs to use, how the FMUs are
coupled, and which MA to use7.

A co-simulation framework provides the foundations that implement the ele-
ments above, allowing users to run co-simulations, and execute other simulation
activities such as optimization, sensitivity analysis, etc. In essence, such a frame-
work is what makes co-simulation an integral part of a development process. To
be usable, therefore, a co-simulation framework needs to seamlessly integrate
with existing design processes. For that, its users need not worry about:

1. how to establish communication with the FMUs; or
2. how to configure the MA and FMUs, to achieve reliable co-simulation results.

Fortunately, co-simulation standards such as the FMI have largely relieved
practitioners from having to worry about the former. As for the latter, however,
recent surveys [7, 13, 16, 21, 20] indicate that the configuration of an MA is still
an open challenge. For instance, the configuration of scenarios is one of the imme-
diate industry challenges [20], and there is evidence that reliable co-simulation
results might not be, in general, attainable without a custom combination of
existing co-simulation results [17, 9].

To research and develop novel co-simulation approaches, it is necessary to
equip researchers with proper foundations to conduct their research on. This
means relieving them from the need for extensive development efforts that are
not directly related to co-simulation configuration and execution. In fact, the
development team of the INTO-CPS application [14] has reported that the de-
velopment of the features surrounding the execution of a MA (e.g., simulator
loading, Graphical User Interface (GUI), setup and deployment, etc) far exceed
the effort of coding such MA. The development took place over three years, from
2015 to 2017, and the approximate time percentage spent on common function-
ality is shown in Fig. 1.

20

Management of Simulators and Co-simulation

30

Development of UI

30

Continuous Integration

20

Other

Fig. 1. Time(%) spent on developing common functionality.

7 We adopt the terminology in [10].



Towards Reuse of Synchronization Algorithms in Co-simulation Frameworks 3

Researchers looking to have an impact with their novel co-simulation ap-
proaches may never achieve it if they cannot afford such development effort. At
the same time, existing co-simulation frameworks cannot keep up with the new
developments in MAs, making the adoption of novel techniques slow.

Therefore, there is a need to modularize the architecture of a co-simulation
framework, in order to maximise reuse, and combination, of mature and industry
proven features common to every MA, in the deployment of novel MAs.

Contribution. In this paper, we propose an architecture to promote easy inte-
gration of novel MAs into a co-simulation framework. This architecture enables
researchers to contribute with custom MAs with three different levels of integra-
tion, each providing increasing levels of flexibility. The most flexible integration
level involves the specification of a DSL for MA and this paper proposes a pre-
liminary analysis of requirements for such a DSL.

2 Problem Statement

This section exposes the problem that we are trying to solve. We assume that
the reader is familiar with co-simulation (see, e.g., [10, 12] for an introduction
and tutorial), and the FMI standard (see, e.g., [3] for an introduction, and [5]
for the specification). We will adopt the following definitions:
FMU Runtime denotes the set of libraries that allows one to load, instantiate,

and communicate with SUs. Examples are: INTO-CPS FMI library8 (Java),
the FMPy library9 (Python), PyFMI10 (Python), or the FMI Library11 (C).

MA denotes the procedure that coordinates the time synchronization between
FMUs. It relies on the FMU Application Programming Interface (API) to
communicate with the FMUs. Examples are the Jacobi or Gauss Seidel al-
gorithms.

GUI, Command Line Interface (CLI), API denote the interfaces that en-
able a users to describe the co-simulation scenario, to configure the MA, and
to run co-simulations. Examples include the INTO-CPS Application12 [19,
2].

Simulation Activities denotes any activity that is part of a development pro-
cess and relies on the GUI/CLI/API to be completed. For example, optimiza-
tion/Design Space Exploration (DSE), sensitivity analysis, or X-in-the-loop
co-simulation.

Figure 2 summarizes the layered relationship of these concepts, and distinguishes
a co-simulation framework from co-simulation application.

Traditionally, co-simulation has been applied to mostly pairs of simulators,
with custom built MAs [11]. This worked well because the people who built

8 https://github.com/INTO-CPS-Association/org.intocps.maestro.fmi
9 https://github.com/CATIA-Systems/FMPy

10 https://jmodelica.org/pyfmi/
11 https://jmodelica.org/fmil/FMILibrary-2.0.3-htmldoc/index.html
12 https://github.com/INTO-CPS-Association/into-cps-application



4 C. Thule et al.

Fig. 2. Main definitions used.

those MAs were, or worked closely with, domain experts. However, this approach
does not scale in the number of simulators involved, and the FMI standard was
developed to address this need. As a result, many practitioners expect to use
FMI co-simulation without having co-simulation expertise, and the black box
nature of this standard (where the models being simulated, and solvers used,
are kept hidden) does not make it easier to understand what are the simulators
that are being coupled.

In fact, there is evidence that version 2.0 of the standard is insufficient to en-
sure that a co-simulation can be configured correctly, and that more information
about the FMUs is required13: a clear indication that research in co-simulation
will continue, and that researchers will have to code new co-simulation frame-
works. We want to minimize the effort required for these researchers to produce
usable frameworks.

Just as with simulation, it is instructive to run multiple co-simulations with
different MAs, to measure the degree of sensitivity of the results with respect
to the MA and simulator configuration. Therefore, we also want to be able
to produce a unified front-end to users who want to run such exploratory co-
simulations.

Figure 3 shows the space of simulator information that can be used to con-
figure co-simulations, and the space of capabilities currently covered by the FMI
standard (version 2.0). Our goal is that co-simulations taking advantage of these
extra capabilities, even the ones not covered by the standard, can be developed.
Moreover, in the long term, we aim at improving the co-simulation support for
the following simulation activities, each imposing specific requirements to co-
simulation frameworks:

Optimization/DSE: Co-simulations are run as part of an optimization loop.
This includes decision support systems, used, for example, in a digital twin
setting. Some of the specific requirements include: ability to define co-simulation

13 See [9, 17, 6] for example co-simulations that cannot be configured correctly without
information that is not covered in the standard.



Towards Reuse of Synchronization Algorithms in Co-simulation Frameworks 5

stop conditions, ability to compute sensitivity, high performance, fully auto-
mated configuration, faster than real-time computation.

Certification: Co-simulation results are used as part of certification purposes.
Requirements include fully transparent, and formally certified, synchroniza-
tion algorithms.

X-in-the-loop: Co-simulations include simulators that are constrained to progress
in sync with the wall-clock time, because they represent human operators or
physical subsystems.

Simulator
Requirements

Availability

Feature

Remote

Rollback
Support

None Single Multiple

Time
Constraints

None Scaled RT

Static Dynamic

Deadreckoning
Model

Discontinuity
Indicator

Values Serialization

State

Micro-step
Outputs

Input
Extrapolation

Detailed
Model

I/O Signal Kind

Outputs State

Derivative

Outputs State

JacobianTime

Step-size
Order of 
Accuracy

I/O
Causality

Propagation
Delay

Feedthrough

Model Solver

Information
Exposed

Local

Dependency
Kind

Non-Linear Linear

Abstract Feature

NextPreferred

Outputs State

Nominal Values

WCET

Outputs State

Frequency

FMI CS 2.0

Fig. 3. Simulator capabilities. The FMI standard capabilities represent only a subset,
and many of these are optional. Adapted from [11].

3 Envisioned Architecture

Our goal is to conceive an architecture which can be evolved to accommodate a
wide variety of co-simulation improvements. Figure 4 summarizes the proposed
architecture, and will be used as reference in the rationale and explanation below.



6 C. Thule et al.

3.1 Legacy Integration

The legacy integration, to the left of Fig. 4, involves the improvement of the
existing interface between the INTO-CPS application, so that existing MAs can
be integrated. Under this approach, a legacy MA, along with its own simulator
runtime libraries, uses the Master API to communicate with the INTO-CPS
Application.

Legacy integration is already partially supported by the MA API that has
been developed within the INTO-CPS project [22]. The Master API is detailed
in [18]. Any new MA needs to implement one of those. The following are some
of the operations.
Status which allows the Application to query the status of the MA.
Initialize which allows new co-simulation sessions to be created. A JSON pay-

load details the co-simulation scenario and other configuration parameters.
Simulate which instructs the MA to start the co-simulation, provided the ex-

periment parameters.
Result which queries the MA for the simulation results.
Destroy which instructs the MA to clear the resources of a session.
Reset which instructs the MA to reset a session.

3.2 MA Integration

The MA integration, in the middle of Fig. 4, unlike the legacy integration, re-
quires only that the new MA implements the Master API, and uses the provided
Runtime API for the management of FMUs.

Such API allows the new MA to easily instantiate FMUs, manage their life-
cycle, and inspect their information. For example, the new MA will not need to
parse the FMU description in order to access the available variables.

3.3 Approach Integration

Finally, the most ambitious of the integration schemes is aimed at researchers
who want to quickly develop and test new co-simulation approaches. We en-
vision the development of an extensible DSL, denoted by Master Specification
Language, that aims at expressing synchronization algorithms. The rationale is
that there are many operations which are common to all MAs, e.g., the act
of rolling back to a previous time point, or of retrying the co-simulation step.
This language will separate the planning of the co-simulation approach, from the
execution of such plan, freeing researchers from having to specify how the op-
erations of a synchronization scheme are executed, focusing only on developing
algorithms to describe what those operations are. Furthermore, the developed
APIs will allow for analysis/optimization plugins to be integrated as well. For
example, one can have an analysis that enforces a specific version of the FMI
standard.

The main difference with respect to the previous mode of integration is that
a new MA, instead of invoking the runtime API to run the co-simulation, will



Towards Reuse of Synchronization Algorithms in Co-simulation Frameworks 7

produce a sequence of instructions detailing how the simulator synchronizes. This
sequence of instructions, denoted the synchronization protocol, will be produced
through a series of transformations that are applied to the co-simulation scenario
given.

More details are given in Section 4.

Fig. 4. The three planned integration approaches. Each approach is represented as a
layered architecture, and an example of given of a newly integrated component (in or-
ange). In green we represent the key interfaces that enable the integration. Components
below the API implement it, while the ones above, use it.

4 MA Specification Language

In this section, we provide a preliminary specification of the DSL introduced
in the previous section. The language is comprised of three main parts: syn-
chronization protocols; scenario and adaptations; and transformations (which
describe how a co-simulation scenario is transformed into a MA). Each part is
now described. We end this section with a discussion on the extensible part of
the DSL.

4.1 Synchronization Protocols

We start by giving examples of how known co-simulation algorithms can be
implemented in this framework, and then we generalize to the specification of
the language.

Example 1 (Running Example). We will use, as running example, the co-simulation
scenario illustrated in Fig. 5.



8 C. Thule et al.

A
ay bu

byau

bw

bv

cu

cy
B C

Fig. 5. Running example. The rectangles define FMUs and the round rectangles denote
inputs/outputs.

A generic co-simulation algorithm has a predictable structure, shown in
Fig. 6, and variations in the implementation of each of the stages shown will
yield different MAs. Our DSL allows one to describe the structure of the Step
and Initialize stages of Fig. 6. We focus on the Step stage, as it is the richest in
terms of variability, and the Initialize activity can be seen as a special case of
the Step stage.

Instantiate Setup

InitializeStart

no

Terminate?

Step End

Plotting Freeyes

Fig. 6. Generic MA structure. Each round rectangle represents a stage in the execution
of the MA. For instance, the plotting stage will query the outputs of the FMUs and
record them in a CSV file.

DoStep(A, H) DoStep(B, H) DoStep(C, H)

GetOut(ay)

StepStart

SetIn(bu)GetOut(bw)SetIn(cu)

GetOut(cy) SetIn(bv) GetOut(by) SetIn(au)

StepEnd

Fig. 7. Jacobi Step specification, applied to Example 1.

The simpler MAs are those with fixed step sizes. Well known examples are
the Jacobi and the Gauss-Seidel. The Jacobi MA, applied to Example 1, is shown
in Fig. 7. Each operation is translated to the corresponding FMI function call,
with the DSL implementation filling in the missing arguments: the simulated



Towards Reuse of Synchronization Algorithms in Co-simulation Frameworks 9

time, used in the FMI stepping operation, is automatically computed; the values
computed by the GetOut operations are stored in variables that are then used to
compute the correct value for the SetIn operations. The management of values
is implemented by translating the GetOut and SetIn operations to their refined
counterparts, as is shown in Fig. 8.

DoStep(A, H) DoStep(B, H) DoStep(C, H)

vay :=
GetOut(ay)

StepStart

SetIn(bu, vay)vbw := 
GetOut(bw)SetIn(cu, vbw)

vcy :=
GetOut(cy) SetIn(bv, vcy) vby :=

GetOut(by) SetIn(au, vby)

StepEnd

Fig. 8. Explicit memory refinement of Fig. 7.

The MA in Fig. 8 can be enhanced in a number of ways:
– Automate the choice of step size to use at each step to control the error,

rolling back with the error is deemed too large.
– Dealing with an FMU that refuses a given step.
– Use apply fixed point iteration of algebraic conditions and/or the co-simulation

step.
The insight of our contribution is that the above items can be orthogonality

combined by refinements of the Step specification (e.g., the one shown in Fig. 7).
An example for each of the above enhancements is provided in the following, by
showing the resulting refinement.

Figure 9 shows an example of a pessimistic adaptive set size control scheme.
The implementation of the UpdateStep operation can be defined in a plugin
(see Section 4.4). The Transaction, Commit, and Rollback operations are
implemented in the DSL.

Figure 10 shows an example that handles step size rejections, and Fig. 11 an
example of fixed point iteration with convergence testing on one signal (multiple
signals can be supported, but its implementation is a straightforward extension
of Fig. 11).

4.2 Scenarios and Adaptations

The synchronization protocol sub language allows one to describe a wide range of
co-simulation algorithms. However, it is not expressive enough to describe the fol-
lowing MAs: multi-rate; signal corrective; waveform relaxation; MAs that spawn
new co-simulations (e.g., for each step of an FMU, an entire co-simulation is run



10 C. Thule et al.

DoStep(A, H) DoStep(B, H) DoStep(C, H)

vay :=
GetOut(ay)

StepStart

SetIn(bu, vay)vbw := 
GetOut(bw)SetIn(cu, vbw)

vcy :=
GetOut(cy) SetIn(bv, vcy) vby :=

GetOut(by) SetIn(au, vby)

StepEnd ok H :=
UpdateStep()

Transaction

repeat

Commit

Rollback

Fig. 9. Pessimistic adaptive step size MA.

to calculate some result). We now describe how the use of semantic adaptations
which, when carefully combined with the synchronization protocol sub-language,
can be used to implement the above algorithms.

Multi-rate. A semantic adaptation is a transformation that rewrites a co-simulation
scenario by either changing a group of, or adding more, FMUs (see [8] for exam-
ples of semantic adaptations). For instance, a multi-rate adaptation consists of
grouping a given set of FMUs into one hierarchical FMU, where the implementa-
tion of the latter ensures that the group of FMUs communicate at a higher rate
than the rest of the co-simulation, as illustrated in Fig. 12. The multi-rate adap-
tation transformation can be applied to a scenario prior to passing the scenario
to the synchronization protocol generation, explained in Section 4.1.

Signal-Corrective. Regarding signal corrective adaptations, we describe here the
energy preserving adaptation, first described in [4]. The adaptation applies to a
pair of connections that form a power bond (see [1, Chapter 9] for an introduc-
tion). Whenever a value is propagated in those connections, it gets corrected to
account for approximation errors made in the receiving FMU. Hence, the adap-
tation replaces the ports connected by the power bond to apply that correction
whenever an input is set. Alternatively, a new FMU that performs the correction
can be inserted in place of the power bond connections. These are illustrated in
Fig. 13.

The application of the energy preserving adaptation depends on the imple-
mentation of the synchronization protocol. As such the resulting scenario (after
applying the adaptation) cannot be given to any synchronization protocol gen-
erator.

Waveform Relaxation. A waveform relaxation algorithm is an iterative co-simulation
synchronization protocol that, instead of applying a fixed point iteration of point



Towards Reuse of Synchronization Algorithms in Co-simulation Frameworks 11

Status =
DoStep(A, H)

Status = 
DoStep(B, H)

Status = 
DoStep(C, H)

vay :=
GetOut(ay)

StepStart

SetIn(bu, vay)vbw := 
GetOut(bw)SetIn(cu, vbw)

vcy :=
GetOut(cy) SetIn(bv, vcy) vby :=

GetOut(by) SetIn(au, vby)

StepEnd

Transaction

no

yesH:=
Accepted(Status)?

Rollback no

yes

H:= 
Accepted(Status)?

no

yes H:= 
Accepted(Status)?

Commit

Fig. 10. Step specification that handles step size rejection.

values (as the iterative Jacobi described in Fig. 11 does), it applies a fixed point
iteration on functions. There are multiple ways to check for equality of two func-
tions. One of those ways is to perform a point-wise comparison, and return the
maximum of such comparisons. Two functions are then considered equal if that
value is within some given threshold.

The waveform relaxation is a kind of multi-rate adaptation that is combined
with an iterative synchronization protocol (see [15] for an introduction). First,
as illustrated in Fig. 14, each FMU is grouped into a multi-rate FMU, along
with new FMUs that represent proxies of its environment. The multi-rate FMU
will run a complete co-simulation each time it is invoked. When running this
co-simulation, the Proxy FMUs will record the outputs of the non proxy FMU,
and construct a function with these. The proxy FMUs also “replays” the input
function they have in their storage. When this co-simulation is over, it means that
the multi-rate FMU has completed a step. At that moment, the multi-rate FMUs
will exchange input and output values. These values are complete functions,
which are tested for convergence (recall Fig. 11). If they have converged, the co-
simulation is over. Otherwise, the process is repeated, with the proxies having
exchanged the recorded functions.

Sub-co-simulations. Finally, co-simulation scenarios that have FMUs that may
spawn a new co-simulation are constructed with a Hierarchical Cosim FMU.
Figure 15 illustrates an example of this. At each DoStep of the hierarchical
cosim, a new co-simulation is run, with the parameters defined by the input
value bu.

4.3 Transformations

The application of semantic adaptations, as introduced in Section 4.2, require
careful coordination with the application of synchronization protocols, intro-



12 C. Thule et al.

DoStep(A, H) DoStep(B, H) DoStep(C, H)

vay :=
GetOut(ay)

StepStart

SetIn(bu, vay)vbw := 
GetOut(bw)SetIn(cu, vbw)

vcy :=
GetOut(cy) SetIn(bv, vcy) vby :=

GetOut(by) SetIn(au, vby)

StepEnd

no

Converged(pvby, vby)?

Transaction Rollback

Commit

yes

pvby := Guess(au)

SetIn(au, pvby)

pvby := vby

Fig. 11. Iterative refinement of the Jacobi step specification, with convergence test on
one signal.

Multi-rate FMU

A B C
ay bu

byau

bw

bv

cu

cy

bu

by

Fig. 12. Example multi-rate adaptation created by rewriting the scenario introduced
in Fig. 5. FMUs B and C communicate at a higher rate.

duced in Section 4.1. Attempting to automatically derive the rules of such com-
positions is a tremendous challenge, and subject of future work. Instead, we
support a library of transformations that can be composed manually to generate
a MA. Such transformations operate on models described in our DSL.

A model contains a scenario, adaptations, and a MA, as is illustrated in
Fig. 16. A particular co-simulation approach is then a sequence of transforma-
tions applied to a model that yield an executable co-simulation algorithm.

A composition of transformations describes how the model is refined until
it can be executed. For example, a multi-rate composition would first apply
the multi-rate adaptation to rewrite the scenario in Fig. 16 to the scenario in
Fig. 12, and then would apply the Jacobi algorithm transformation to refine the
step operation in Fig. 16 to Fig. 7. Different sequences of transformations will
yield potentially different MAs.



Towards Reuse of Synchronization Algorithms in Co-simulation Frameworks 13

PBond FMU
ay

correction
au

A

PBond FMU

C
ay

bu

by
au

bw

bv

cu

cy
B

bu bw

bvby

correction

A B C
ay bu

byau

bw

bv

cu

cy
PBond

pu

py

pw

pv

OR

Fig. 13. Illustration of two implementations of the energy correction adaptation.

MultiRateCMultiRateBMultiRateA

A Bproxy
ay ay

auau

ayFun

auFun auFun

ayFun
AProxy B CProxy

bu bu

byby

bw

bv

bw

bv

bwFun

bvFun

buFun

byFun

buFun

byFun

bwFun

bvFun
BProxy C

cuFun

cyFun

cu

cy

cu

cy

cuFun

cyFun

Fig. 14. Illustration of waveform relaxation adaptation, applied to Example 1.

4.4 Extensibility

There are several ways to extend the DSL:

Protocol Operation New synchronization operations can be declared. Our in-
terpreter will then load the declared plugins and execute them. For example,
the UpdateStep operation, in Fig. 10, could be implemented in a plugin.

Virtual FMUs Virtual FMUs, implemented in Scala or Java, can be declared.
These will be loaded and executed by the interpreter as any other FMUs,
with the difference that they do not need to be represented as FMUs in the
FMI standard.

Transformation Rules New transformation rules that manipulate the co-simulation
scenario, and/or the synchronization protocol, can be declared.

Transformation Compositions New transformation compositions can be de-
clared.

Hiearchical CS FMU

A B C
ay bu

byau

bw

bv

cu

cy

bu

by

Parameter

I/O

Fig. 15. Illustrations of the use of a hierarchical FMU to run a co-simulation between
B and C, for each step in the co-simulation of A.



14 C. Thule et al.

A B C
ay bu

byau

bw

bv

cu

cy

Instantiate Setup

InitializeStart

no

Terminate?

Step End

RecordOuts Freeyes

Scenario and Adaptations

Master

Fig. 16. Example model.

We envision these extensions to be done in the form of plugins, without the
need to recompile the tool. The rationale for this requirements is that researchers
experimenting with novel master algorithms need not be proficient with building
and deploying the DSL.

5 Prospect and Future Work

We have sketched an architecture to support multiple levels of integration, in
order to maximize the reuse of existing co-simulation algorithms, and facilitate
the development of new ones. Our main contribution is a DSL that allows novel
co-simulation algorithms to be developed, by refining a given scenario and a
generic master algorithm. A preliminary prototype has been built defining the
semantics of simple synchronization protocols. Ongoing work is formalizing the
language. A general goal is that the language and extension interfaces shall
consistently be in a stable and usable state once the initial plugins and native
functionality to conduct a co-simulation has been realized.

An interesting research opportunity is to devise analysis that ensure the va-
lidity of arbitrary transformation compositions. Such analysis would be a first
step towards deriving rules for automated enhancement of master algorithms
provided by researchers (for example, the addition of step size rejection han-
dlers). The final goal that we foresee is a free marketplace where plugins are
selected and composed to produce MAs addressing specific needs.

We expect to validate the DSL by developing master algorithms that make
use of vendor specific information in FMUs to achieve better results, and enable
co-simulation within the digital twin context. This will require the use of the
multi-rate and hierarchical co-simulation adaptations, plus custom synchroniza-
tion operations.



Towards Reuse of Synchronization Algorithms in Co-simulation Frameworks 15

References

1. van Amerongen, J.: Dynamical Systems for Creative Technology. Controllab Prod-
ucts B.V., http://doc.utwente.nl/75219/

2. Bandur, V., Larsen, P.G., Lausdahl, K., Thule, C., Terkelsen, A.F., Gamble, C.,
Pop, A., Brosse, E., Brauer, J., Lapschies, F., Groothuis, M., Kleijn, C., Couto,
L.D.: INTO-CPS Tool Chain User Manual. Tech. rep., INTO-CPS Deliverable,
D4.3a (December 2017)

3. Bastian, J., Clauß, C., Wolf, S., Schneider, P.: Master for Co-Simulation Using
FMI. In: 8th International Modelica Conference. pp. 115–120. Linköping University
Electronic Press, Linköpings universitet. https://doi.org/10.3384/ecp11063115

4. Benedikt, M., Watzenig, D., Zehetner, J., Hofer, A.: NEPCE-A Nearly Energy
Preserving Coupling Element for Weak-coupled Problems and Co-simulation. In:
IV International Conference on Computational Methods for Coupled Problems in
Science and Engineering, Coupled Problems. pp. 1–12

5. Blochwitz, T., Otter, M., Åkesson, J., Arnold, M., Clauss, C., Elmqvist, H.,
Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., Viel, A.: Func-
tional mockup interface 2.0: The standard for tool independent exchange of simu-
lation models. In: Proceedings of the 9th International Modelica Conference. pp.
173–184. The Modelica Association (2012). https://doi.org/10.3384/ecp12076173,
key=blo+12mc project=LCCC-modeling

6. Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tripakis, S.: Hybrid
co-simulation: It’s about time 10270. https://doi.org/10.1007/s10270-017-0633-6

7. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a Survey. ACM Comput. Surv. 51(3), 49:1–49:33 (May 2018)

8. Gomes, C., Meyers, B., Denil, J., Thule, C., Lausdahl, K., Vangheluwe, H., De Meu-
lenaere, P.: Semantic Adaptation for FMI Co-simulation with Hierarchical Simu-
lators 95(3), 1–29. https://doi.org/10.1177/0037549718759775

9. Gomes, C., Oakes, B.J., Moradi, M., Gamiz, A.T., Mendo, J.C., Dutre, S., Denil,
J., Vangheluwe, H.: HintCO - Hint-Based Configuration of Co-Simulations. In:
International Conference on Simulation and Modeling Methodologies, Technologies
and Applications. p. accepted

10. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
A Survey 51(3), Article 49. https://doi.org/10.1145/3179993

11. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
State of the art, http://arxiv.org/abs/1702.00686

12. Gomes, C., Thule, C., Larsen, P.G., Denil, J., Vangheluwe, H.: Co-simulation of
Continuous Systems: A Tutorial, http://arxiv.org/abs/1809.08463

13. Hafner, I., Popper, N.: On the terminology and structuring of co-simulation
methods. In: Proceedings of the 8th International Workshop on Equation-
Based Object-Oriented Modeling Languages and Tools. pp. 67–76. ACM Press.
https://doi.org/10.1145/3158191.3158203

14. Larsen, P.G., Fitzgerald, J., Woodcock, J., Fritzson, P., Brauer, J., Kleijn,
C., Lecomte, T., Pfeil, M., Green, O., Basagiannis, S., Sadovykh, A.: Inte-
grated tool chain for model-based design of Cyber-Physical Systems: The INTO-
CPS project. In: 2016 2nd International Workshop on Modelling, Analysis, and
Control of Complex CPS (CPS Data). IEEE, Vienna, Austria (April 2016),
http://ieeexplore.ieee.org/document/7496424/

15. Li, L., Seymour, R.M., Baigent, S.: Integrating biosystem models using waveform
relaxation 2008, 308



16 C. Thule et al.

16. Palensky, P., Van Der Meer, A.A., Lopez, C.D., Joseph, A., Pan, K.: Cosimulation
of Intelligent Power Systems: Fundamentals, Software Architecture, Numerics, and
Coupling 11(1), 34–50. https://doi.org/10.1109/MIE.2016.2639825

17. Pedersen, N., Lausdahl, K., Sanchez, E.V., Thule, C., Larsen, P.G., Madsen, J.:
Distributed Co-simulation of Embedded Control Software Using INTO-CPS, pp.
33–54. Springer International Publishing, Cham (2019)

18. Pop, A., Bandur, V., Lausdahl, K., Thule, C., Groothuis, M., Bokhove, T.: Fi-
nal Integration of Simulators in the INTO-CPS Platform. Tech. rep., INTO-CPS
Deliverable, D4.3b (December 2017)

19. Rasmussen, M.B., Thule, C., Macedo, H.D., Larsen, P.G.: Moving the INTO-CPS
Application to the Cloud. In: Submitted for publication

20. Schweiger, G., Gomes, C., Engel, G., Hafner, I., Schoeggl, J., Posch, A., Nouidui,
T.: Functional Mock-up Interface: An empirical survey identifies research chal-
lenges and current barriers. In: The American Modelica Conference. pp. 138–146.
Linköping University Electronic Press, Linköpings universitet, Cambridge, MA,
USA (2018). https://doi.org/10.3384/ecp18154138

21. Schweiger, G., Gomes, C., Engel, G., Hafner, I., Schoeggl, J.P., Posch, A., Nouidui,
T.: An empirical survey on co-simulation: Promising standards, challenges and
research needs 95, 148–163. https://doi.org/10.1016/j.simpat.2019.05.001

22. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.:
Maestro: The INTO-CPS Co-simulation Framework 92, 45–61.
https://doi.org/10.1016/j.simpat.2018.12.005


