
Maestro: The INTO-CPS Co-simulation Framework

Casper Thulea,∗, Kenneth Lausdahlb,1, Cláudio Gomesc, Gerd Meisld, Peter
Gorm Larsena

aDIGIT, Aarhus University, Finlandsgade 22, 8200 Aarhus N, Denmark
bMjølner Informatics A/S, Finlandsgade 10, 8200 Aarhus N, Denmark

cUniversity of Antwerp, Prinsstraat 13, 2000 Antwerpen, Belgium
dTWT GmbH Science & Innovation, Ernsthaldenstraße 17, 70565 Stuttgart, Germany

Abstract

Cyber-Physical Systems (CPSs) often operate in a critical context where it is

crucial that they behave as intended. However, the heterogeneous nature of

CPSs makes them inherently challenging to develop. To assist in the develop-

ment process, one can perform co-simulation, where models of constituents of

a CPS are coupled to jointly simulate the full system. The challenge herein is

to combine heterogeneous formalisms in a sound fashion and address practical

needs such as stability, performance, platform compatibility and so forth. To

address this, Maestro is a tool for co-simulation using models adhering to the

Functional Mock-up Interface standard for Co-Simulation. Its development was

driven by needs from different industry domains such as railways, agriculture,

building automation and automotive. It supports both a fixed and variable

constraint-based iteration scheme along with platform distribution capabilities.

The tool is open-source as an attempt to increase adoption of co-simulation and

encourage researchers to collaborate. Maestro has been validated by industry

through application in the aforementioned domains. It is a step in the direction

of the two-folded long-term goals: ensure trustworthy co-simulation results and

make co-simulation a technology taken for granted.

∗Corresponding author.
Email addresses: casper.thule@eng.au.dk (Casper Thule), kgl@mjolner.dk (Kenneth

Lausdahl), Claudio.GoncalvesGomes@uantwerpen.be (Cláudio Gomes), g.meisl@mytum.de
(Gerd Meisl), pgl@eng.au.dk (Peter Gorm Larsen)

1Employed at Aarhus University at the time of writing this article.

Preprint submitted to Journal of LATEX Templates March 5, 2019

Keywords: Co-Simulation, Hybrid Co-Simulation, Discrete-Event Simulation,

Continuous-Time Simulation, Distributed Simulation, Functional Mock-up

Interface

2010 MSC: 00-01, 99-00

1. Introduction

Our daily life increasingly involves interaction with cyber elements control-

ling physical processes, e.g. cars, trains, and building automation. Such systems

are referred to as Cyber-Physical Systems (CPSs). As technology matures, it

enables the development of more complex systems, which in turn creates pres-5

sure for better development processes. To assist in the development of such

CPSs, it is desireable to perform full system evaluation.

An approach to carry out such evaluation is to simulate the system. How-

ever, a CPS consists of multiple constituent components, whose behavior is

best computed by different simulators [1]. To get the overall behavior of the10

system, these simulators need to cooperate, in what we denote co-simulation.

Co-simulation “. . . consists of the theory and techniques to enable global simula-

tion of a coupled system via the composition of simulators” [2]. This coupling is

carried out in a straightforward way: by connecting the outputs of one simulator

to the inputs of other simulators (see section 2), and executing each simulator15

in tandem with the other simulators.

Despite the apparent simplicity of this procedure, there is still no solution

that ensures that the results produced by the co-simulation can be trusted. This

is because the communication delays, numerical approximations, and simulator

coordination, all contribute to the errors in the results. As a result, researchers20

have set out to understand this topic, and there is already an extensive body of

knowledge, as can be concluded from recent surveys [2, 3, 4, 5].

These surveys identify a number of challenges all related to ensuring trust-

worthy results. However, these works do not give sufficient attention to the

practical challenges faced by industry, when using co-simulation to evaluate25

2

complex CPSs. This has been tackled by a more recent empirical survey [6].

In this work, the authors applied the Delphi method to interview practitioners

and researchers on perceived challenges regarding the Functional Mock-up In-

terface (FMI) for co-simulation. The FMI 2.0 standard for co-simulation defines

how to package, implement, and provide information on a simulator. Essentially,30

the results in [6] provide a ranking of academic challenges, and challenges that

have not received enough attention.

The following challenges where identified as barriers to the adoption of co-

simulation:

• “There is insufficient documentation and a lack of examples, tutorials,35

etc.”

• “There is not enough cooperation and exchange (theoretical/numerical,

implementation, application/industry) in defining and developing the FMI

standard.”

• “There is a lack of (scientific) community, forums, groups.”40

• “There is a lack of tools that sufficiently support FMI.”

Beside the challenges above, the communication between the Integrated Tool

Chain for Model-based Design of Cyber-Physical Systems (INTO-CPS) project

and its industrial follower group have highlighted that:

• multi-platform deployment of the same simulator is a barrier to the use of45

co-simulation; and

• variable step size orchestration algorithms need to allow for fine-grained

tunning, as each co-simulation problem has particular characteristics that

only the domain experts know about.

Maestro, the open-source co-simulation framework presented in this work,50

is an attempt to address the challenges described above. It was developed as

part of the INTO-CPS project to enable co-simulation using the FMI standard

and increase the benefits in integrated tool chains [7, 8, 9]. In this project, the

main purpose of Maestro was to address the challenges that industry faced when

applying co-simulation. The maintenance and further development of Maestro55

3

has been transferred to the non-profit INTO-CPS Association2. It is available

at https://github.com/INTO-CPS-Association/maestro and the protocol is

described in [10] and https://git.io/fNpaq.

Maestro is a co-simulation framework that has been validated extensively in

wildly different fields such as automotive, railways, maritime, building automa-60

tion, and agriculture (e.g. [11, 12, 13, 14, 15, 16]). Additionally, we report on

lessons learned and future research directions.

The remaining part of this article begins with the necessary background in-

formation in section 2, which introduces a running case study of a Line-Following

Robot (LFR) to help guide the reader through various concepts. Afterwards,65

Maestro is described in section 3 followed by section 4 presenting the applica-

bility of Maestro, validating the tool and reflecting on lessons learned. Next,

section 5 presents similar co-simulation tools and positions Maestro relative to

these. Section 6 concerns the future of Maestro and how we aim to improve its

applicability in the domain of co-simulation. Finally, section 7 concludes this70

work.

2. Background

In this section we introduce the main concepts required to understand the

motivation behind some of the features of Maestro, and how these are imple-

mented. This is carried out by first introducing modelling and simulation con-75

cepts before continuing on to co-simulation. To make the explanation of these

concepts clearer, we resort to a well known running example, introduced below.

2.1. Running Example: The Line Follower Robot

The LFR is one of the academic pilot studies of the INTO-CPS project3. It

was originally developed in the DESTECS project and presented in [17].80

2http://into-cps.org/ Visited on November 7, 2018.
3The project configuration specifically used for this case study is available at https://git.

io/fNpK0, and the data is available at: https://git.io/fNpi9

4

https://github.com/INTO-CPS-Association/maestro
https://git.io/fNpaq
http://into-cps.org/
https://git.io/fNpK0
https://git.io/fNpK0
https://git.io/fNpi9

The robot, shown in fig. 1a is supposed to follow a line painted on the ground

(an example line is shown in fig. 1b). The line contrasts with the background

and the robot uses infrared sensors to detect light and dark areas on the ground.

Figure 2 shows the conceptual subsystems and their interconnections. The

robot has two wheels, each powered by individual motors that allow the robot to85

change direction. The number, and position, of the sensors may be configured

in the model.

To quickly predict the behavior of the robot under different sensor configu-

rations and lines, a model of the robot has been built, a 3D image of it is shown

in fig. 1c. The behavior of this model is computed using co-simulation.90

(a) The physical LFR (b) A line-follow path

(c) 3D representation of the

LFR

Figure 1: The Line-Following Robot (LFR) and path

2.2. Modelling and Simulation Concepts

We will adopt the nomenclature in [2], and use the illustration in fig. 3

to exemplify the following concepts. A model of an original system, which is

an existing system or system that does not yet exist, is an abstraction whose

behavior should match the original system behavior, with respect to some goal.95

As the example illustrated in fig. 3 shows, the original system is the LFR, whose

behavior can be measured by experimentation. The model of the physical LFR

(a collection of differential equations) is sketched at the bottom of the figure. Its

behavior can be obtained via simulation, that is, by using an algorithm which

interprets the model and produces a behavior trace. We call such an algorithm100

5

controller : Controller

body : Body

sensor1 : Sensor

Real Real

robot_y

Real Real

robot_z

Real Real

robot_theta

Real
Real

robot_x

robot_y robot_z robot_thetarobot_x

sensor2 : Sensor

robot_y robot_z robot_thetarobot_x

servo_left_input servo_right_input

Real

servoLeftVal

Real

servoRightVal

Real

lf_1_sensor_reading

Real

lf_1_sensor_reading

lfLeftVal lfRightVal

Input/Output

Component

Coupling with Type

LEGEND:

Figure 2: The Connections Diagram for the LFR.

“the solver”. The combination of a solver and a model forms a simulator. The

difference between a simulator and a solver is that the solver requires a model

and its inputs signals, in order to compute the behavior of the model. The

simulator, on the other hand, just needs the input signals.

We distinguish three kinds of models: Continuous-Time (CT), Discrete-105

Event (DE), and hybrid. CT models describe how the abstracted state of the

system evolves continuously over time, whereas DE models describe how the

state evolves as a reaction to events. These evens can be internal (triggered by

the passage of time), or external (caused by the inputs). Hybrid models combine

characteristics of CT and DE models. Here, the state means a valuation of all110

variables in the model. Each state is associated with a point in time.

The solver typically computes the behavior trace iteratively, by taking the

current state and inputs to the model, and estimating the state and outputs at

the next timepoint.

The computation of the complete initial state of the system is called initial-115

ization. For example, if the user defines the (incomplete) initial state of the

LFR model as moving at 1m/s in a straight line, the solver has to determine

6

R
ea
lit
y

A
bs
tr
ac
tio
n

Experimentation

Simulation

Figure 3: Illustration of simulation concepts.

what the angular velocity of the wheels is, before being able to compute the

next state of the LFR model.

Since the solver often makes approximations of the behavior trace, we need120

a measure of how well the behavior traces produced by the solver correspond

to the idealized behavior traces of the model. We denote such a measure as

accuracy. Typically, the farther apart (in time) the states estimated by the

solver are, the less accurate the solver is.

A variable time-step size solver will adaptively vary the time-step, the time125

distance between estimated states, so as to keep a prescribed accuracy. For

example, in the LFR simulation, a variable time-step size solver will use smaller

time-steps when the robot is moving faster, and larger time steps otherwise.

In real-time simulation, the solver computes the state at time t roughly after

t seconds (in wall-clock time) have passed since the beginning of the simulation.130

For example, a 3D animation of the LFR will look more realistic if done in

real-time.

Since simulation can be used to automate the evaluation of a given model,

7

it enables the possibility of evaluation with many variations of a base model, in

order to select the best design based on a given objective. To the generation135

of such variations, and the evaluations of each one, we call Design-Space Ex-

ploration (DSE). The design space is the set of possible solutions for a given

design problem [18]. For example, in the LFR:

• the objective might be to minimize the time required to traverse a given

map, energy consumption, or maximum deviation from the line;140

• the design space represents the possible configurations of sensor placement

and controller implementation.

Figure 4 illustrates the path followed by two different sensor configurations and

the same controller.

Figure 4: Illustration of design space exploration on the LFR.

2.3. Co-simulation Concepts145

The need for co-simulation arises because the original system is composed of

different subsystems, each pertaining to a specialized domain, and the system

environment. For example, in fig. 5, we have highlighted two subsystems: the

electro mechanical components, and the software execution. The environment

is the sheet printed with a line. Each of these subsystems, and the environ-150

ment, can be modelled by abstractions. For example, the electro-mechanical

8

components can be modelled by differential equations, the software execution

by a state machine, and the environment by a table mapping a position to an

intensity of reflected light.

=

+ +R
ea
lit
y

A
bs
tr
ac
tio
n

Experimentation

+ + Co-simulation

Figure 5: Illustration of co-simulation concepts.

Models can be built by different people, specialized in the domain of the155

subsystem being modelled. For example, in fig. 5 a mechanical engineer might

build differential equations to model the movement of the robot, whereas a

software engineer may build a state machine to model the software execution.

We denote the term coupled model to be the combination of these models.

We assume that, if the inputs of each subsystem model are known, then160

its behavior can be computed. However, the subsystems interact, that is, the

input of each subsystem is the output of some other subsystem, modelled in a

different abstraction. This means that, to compute the coupled model behavior,

all subsystem models need to be simulated in tandem.

We denote co-simulation to the act of computing the subsystem model be-165

9

haviors in tandem, so as to obtain the coupled model behavior. A typical

co-simulation algorithm will compute each subsystem model state and output

at some time, set these as inputs to the other relevant subsystems, and repeat

the process for the next time point. We denote such an algorithm by the term

orchestrator, or master. We will denote by co-simulation framework the tool170

that implements a master and other related features such as visualization of

results.

In order to ensure good separation of concerns, the master typically delegates

the responsibility of computing each subsystem model behavior to a dedicated

solver. In the example of fig. 5, the differential equations are simulated by a175

numerical solver, whereas the state machine is simulated by a state machine

solver. Therefore, the master’s responsibility is to set inputs, get outputs, and

coordinate the execution of the simulators.

One example master, applied to the LFR, is illustrated in fig. 6. As the

figure indicates, at simulated time ti, the master requests the outputs of the180

body subsystem (the electro-mechanical subsystem) computed by the numerical

simulator and provides these as inputs to the DE software simulator (represented

by u(ti). Then the master does the same for the software simulator. After both

simulators exchanged inputs/outputs, the master asks them to compute their

outputs at the next time point ti +H, and so on.185

For other master algorithms, include those that minimize the synchroniza-

tion error at communication points and solve algebraic loops between FMUs,

we refer the reader to [19].

Since co-simulation is just a special class of simulation, the same concepts

introduced in section 2.2 can be extended to co-simulation, with the following190

highlighted differences:

Continuous Time/Discrete Event/Hybrid Coupled Model However, of-

ten the coupled model is Hybrid. We denote hybrid co-simulation when the

master is applied to a hybrid coupled model, i.e. consists of a DE and CT

model. One of the challenges in producing accurate hybrid co-simulation195

results is on how to ensure that all simulators are synchronized at the point

10

Legend:
Data transfer

Micro Step

1.
2.

3.
4.

Software

Body

Co-simulation Step

h

Figure 6: Example master: Jacobi [20].

of an event. Solutions to these typically involve retrying co-simulation

steps to find out the correct event time [21, Section 5.1].

Initialization is the process performed by the master and the simulators to

compute a complete initial state of the coupled model.200

Variable step is a kind of master that adapts the communication step size

(H in the example of fig. 6). The simulators can too adapt their internal

step size (h in fig. 6). Because in general the master has little knowledge

about how the simulators of each subsystem model work, providing a good

variable step master requires some fine tunning. This is where the domain205

knowledge of the system engineer is important. In the LFR, a poorly

chosen step size can cause the software controller to cross the line without

being aware that it did so.

Moreover, the decoupling between the solvers of each subsystem model enables

the inclusion of physical subsystems that interact with the other subsystem210

simulators. For example, in the LFR, one could run a co-simulation where a

microprocessor running the software controller is connected to a body and envi-

ronment simulators. Through the appropriate interfaces, the master will coordi-

nate the computation of the body and environment simulators, and set/get data

to/from the software execution simulator. This is called hardware-in-the-loop215

11

co-simulation.

Co-simulation has been applied extensively, and using many different simu-

lators [3]. It is important that the same master is independent of the simulators

being used to run a co-simulation. To achieve this, the community has proposed

a standard for the simulator interface—the FMI standard.220

The FMI standard is a tool independent standard for the exchange of models

and co-simulation. It is the result of the ITEA2 European Project called MOD-

ELISAR [22]. The standard provides and describes C-interfaces and the struc-

ture of a static description file. A component implementing the C-interfaces

and providing a static description file, referred to as an Functional Mock-up225

Unit (FMU), is essentially a zip file containing a binary library that can be

loaded by a co-simulation framework. The static description file contains in-

formation on inputs, outputs and parameters of an FMU including whether an

output is dependant on an input. Furthermore, it informs whether it is possi-

ble to retrieve and set a state on the FMU: important capabilities for hybrid230

co-simulation, which can be used to perform rollback of an FMU by setting it

to a previous state.

3. The Maestro Co-Simulation Framework

Maestro is a co-simulation framework that supports hybrid, distributed, and

parallel, co-simulation, with accuracy and stability control mechanisms, and235

real-time support. These features, and corresponding rationale, are detailed in

this section, while their applicability is discussed in the next section.

At the technical level, Maestro offers a RESTful web service Application

Programming Interface (API), implemented in a combination of Java, Scala,

and C, and available on all major platforms.240

To aid in the presentation of Maestro, we will make use of parts from the

4+1 View Model of Architecture [23]. The developmental view of Maestro is

depicted in fig. 7. It is split into two main projects: the FMI Interfacing con-

tains the logic required to interface with FMUs; and the Orchestration Engine

12

contains co-simulation related logic, including data exchange through the web245

service (HTTP Server), parsing and validation of the information regarding

the simulators (ModelDescriptionParser and ModelDefinitionChecker), and the

master (COE).

The architecture presented in fig. 7 separates the master from the interfaces

required to communicate with the simulators. It reflects some of the lessons250

learned during the INTO-CPS project: the FMI standard currently lacks some

features that are useful to fully support hybrid co-simulation (see, e.g., [24]);

and the co-simulation algorithm encodes knowledge that may outlive the inter-

facing standards. Technically, the object facilitating the communication with

individual FMUs is constructed using the factory Pattern [25]. This separates255

the construction logic of communication objects from the master, thereby mak-

ing it possible to alter the construction of communication objects, or add other

objects communicating in a different fashion, without making larger changes to

the architecture. The usage of the factory pattern is demonstrated in subsec-

tion 3.2 and subsection 3.3.260

Figure 7: Developmental View of Maestro

Figure 8 shows the typical requests required to execute a co-simulation using

Maestro4.

Required information. The configuration of the co-simulation is transferred to

Maestro as a JavaScript Object Notation (JSON) configuration. One such con-

4The reader is referred to [10] and https://git.io/fNpaq for more information on these

requests and the API.

13

https://git.io/fNpaq

Client Maestro

createSession<maestroURL>/createSession

sessionID

<maestroURL>/initialize/sessionID

OK

<maestroURL>/simulate/sessionID

Results

<maestroURL>/result/sessionID

simulationFinished

Sending Co-Simulation configuration

Possibly /attachSession request with
data on variables to live stream

OK

<maestroURL>/destroy/sessionID

Figure 8: Running a co-simulation with Maestro.

figuration can be seen in listing 1. The configuration includes the FMUs, FMU265

and co-simulation parameters (e.g., end time), input/output couplings, the mas-

ter to be used, and its configuration. See [10] and https://git.io/fNpaq for

additional details on the configuration.

270

1 { "fmus":{

2 "{x1}":"watertankcontroller -c.fmu",

3 "{x2}":"watertank -c.fmu"

4 },

5 "connections":{275

6 "{x1}. controller.valve":["{x2}.tank.valve"],

7 "{x2}.tank.level":["{x1}. controller.level"]

8 },

9 "parameters":{

10 "{x1}. controller.maxLevel":8,280

11 "{x1}. controller.minLevel":2

12 },

13 "algorithm": {

14 "type":"var -step",

14

https://git.io/fNpaq

15 "size":[1E-10, 1.0],285

16 "initsize":1E-4, "constraints":{

17 "maxstepsize": {

18 "type": "fmumaxstepsize"}}}}

Listing 1: Example of a co-simulation configuration in JSON. This example contains two

FMUs, their connections, initial parameters and the master to use.

The upcoming paragraphs detail the internal behavior of the Maestro, during290

the interactions depicted in fig. 8. The behavior is summarized in fig. 9.

Initialisation

Validation Topological SortingInstantiating

Co-simulation

Initalising

Get Outputs

Update
derivatives Set Inputs Get State Calculate

Step Size

Step FMUs

Get Completed Step Rollback Validate Step

Discard

Suggest new
step size

Success

Suggest new
step size

Retry

Success

Stabilisation
/Concurrent
/Real-time

Stabilisation

Figure 9: The Logical view of Maestro

Initialisation. The initialisation phase tries to ensure that the FMUs and con-

figuration of the co-simulation are valid. Experience has shown that FMU

providers do not always correctly implement the FMI standard. As such, the

15

validation of each FMU comprises checking for the existence of compatible bi-295

nary files and sound input/output descriptions, and trying to load/initialize the

FMU. This procedure, which heavily depends on the FMI specification, is im-

plemented and validated in VDM-SL [26]. This allows us to easily extend it in

future standard specifications.

The initialization of the input/output couplings is done by mapping them300

onto a graph, where variables map to nodes and dependencies map to edges, and

using a topological sorting algorithm, to determine the order of data exchange.

This resulting order is used to synchronize the FMUs inputs/outputs (recall

step 1 in fig. 6).

Co-Simulation. Overall, the iteration method used by Maestro is based on the305

Jacobi Iteration approach as presented in section 2. This method was chosen

because it allows the FMU to be run concurrently. The entities “Update deriva-

tives”, “Validate Step”, and “Calculate Step Size” in Figure 9 are related to

variable step size and described in section 3.1.

As shown in fig. 9, when an FMU discards a co-simulation step of size H,310

it is prompted for the how much of the step, H ′, it was able to complete. All

the other FMUs participating in the co-simulation are then rolled back to the

previous state and prompted to perform a step of size H ′. If a fixed step size

has been set, Maestro will attempt to perform the next step with the configured

step size.315

If the stabilization configuration is enabled, the master will repeat the same

co-simulation step multiple times, in order to ensure a more accurate data ex-

change between the FMUs, thereby avoiding instabilities [27]. In particular, this

is realised by simulating the FMUs to time ti+1 retrieving outputs, rolling them

back to time ti and stepping them again, but using the outputs from time ti+1320

as inputs. This continues until the outputs from two consecutive steps converge

according to |a− b| ≤ atol + rtol × |b|, where atol is absolute tolerance, rtol is

relative tolerance, a is an output variable at the current state and b is the cor-

responding output value at the previous state. atol and rtol are configuration

16

parameters.325

If real-time constraints are set, the master will impose a delay at the end of

a co-simulation step to slow down the simulation to real-time.

The following sections delve deeper into more advanced features of Mae-

stro: variable communication step size, hierarchical, and multi-platform co-

simulation.330

3.1. Variable Step

Traditional variable step size simulation algorithms allow the user to con-

trol the local error made during the co-simulation, under the assumption that

controlling the local error allows the global error to be controlled. Roughly, for

this assumption to hold, one needs at least to ensure that the co-simulation is335

numerically stable, and that the coupled model forms a Lipschitz continuous

ODE [28]. In practice, most of the industrial case studies where Maestro has

been applied, do not obey the Lipschitz continuity, because they include discon-

tinuities. As such, the variable step size functionality needs to go beyond the

traditional step size algorithms.340

The component responsible for computing the communication step size dur-

ing a co-simulation is the Variable Step size Calculator (VSC). It does so based

on: the current time, the previous step size, the current output values, the out-

put derivatives of the FMUs, the current local error estimate [3, Section 4.3.4],

and co-simulation specific constraints. If derivatives are not provided by the345

FMUs, then they are estimated.

These constraints can be specified by the user, and reflect the experience

collected from the industrial case studies:

Zero Crossing: A zero crossing constraint instructs the VSC to synchronize

all FMUs at a time where a given signal is zero or two signals intersect.350

This constraint is useful in the co-simulation of hybrid systems (e.g., col-

lisions). Maestro avoids the use of rollback functionalities by using the

derivatives of the signal to estimate when it will cross the zero. This

17

works well because in practice most FMUs providers do not support roll-

back functionalities.355

Bounded Difference: A bounded difference constraint ensures that the differ-

ence between signals or two consecutive observations of the same signal is

bounded by a pre-defined value. This constraint can be used, e.g., to assure

that a simulator does not differ on its input by more than the prescribed

value, or to support quantization [29, 30]. The underlying assumption360

is that the signal being observed is continuous, that is, the smaller the

observation interval (communication step size), the smaller the difference

between two consecutive observations. Concrete examples of this feature

include bounding the error on the computation of heatflow between two

simulators where each of them only have a prediction of the flow from the365

other model.

Sampling Rate: A sampling rate constraint makes sure all FMUs synchronize

at pre-determined time points. This can be used in co-simulation that

include software models that are supposed to run at some frequency. Note

that it does not force all communication step sizes to be of a fixed step size:370

it forces the synchronization at those times, but other synchronizations

outside those times can happen.

FMU Max Step Size: This constraint, well known in discrete event co-simulation,

and first proposed as an FMI extension getMaxStepSize in [31], aims at

avoiding the need to rollback the co-simulation. The constraint requires375

each FMU to implement a function getMaxStepSize, which returns the

largest possible step it can perform at the given point in time. The VSC

then chooses the minimum of the step sizes proposed by all FMUs.

When multiple constraints have been specified, the chosen step size will

be the minimum of the step sizes satisfying the constraints. However, there380

are cases that need special attention. To demonstrate these, we present two

scenarios in the following paragraphs.

18

Consider the case where constraint A is activated and increases the step

size by a factor ρA. This is referred to as relaxing the step size and ρA is

the relaxation factor. This might activate constraint B, because constraint B385

cannot relax the step size by more than factor ρB < ρA. Thus, constraint B

is activated, not because of a direct violation, but because it cannot relax the

step size as much as constraint A. To prevent this case, the constraints have

the same maximum relaxation factor. Thus, this factor is not a property of the

individual constraint, but of the VSC.390

Now consider the second scenario: a discrete constraint entails a large re-

duction in the step size, while the other constraints tolerate a larger step size.

In the ensuing co-simulation steps, there might not be any discrete events, but

the step size will not be increase immediately. This is addressed in different

ways for the different constraints. More details are available in [32, Sec. B.7]395

After a step has completed, the VSC is invoked to validate whether any of

the constraints have been violated. If that is the case, a rollback is initiated

and the VSC provides a new and reduced step size. More details can be found

in [10] and https://git.io/fNpaq.

3.2. Hierarchical Co-Simulation400

Maestro has been extended with a feature enabling the concept of Hier-

archical co-simulation, demonstrated at https://youtu.be/MKZb3HkyVtc, and

conceptually illustrated in fig. 10.

In the figure, FMU A and B, the connections between them and the co-

simulation settings are imploded into one FMU, thereby making this FMU a405

fully configured co-simulation. The resulting FMU can be then used in a co-

simulation.

The hierarchical co-simulation feature is motivated by two scenarios, encoun-

tered in some of the industrial cases of the INTO-CPS project: the co-simulation

includes FMUs that are tightly coupled (that is, they need to synchronize often),410

and the interaction between suppliers and system integrators demand a more

efficient way of reproducing co-simulation results. Additionally, recent work has

19

https://git.io/fNpaq
https://youtu.be/MKZb3HkyVtc

Figure 10: Hierarchical co-simulation

made use of this feature to change the FMU capabilities [33].

To illustrate the first scenario, consider fig. 10. Since FMUs A and B need

to communicate often, Maestro will synchronize all other FMUs at the same415

rate. This is clearly wasteful. With hierarchical co-simulation, FMUs A and B

can be turned into the same FMU and synchronize independently of the other

FMUs.

The second scenario is illustrated in fig. 11: System A is being developed,

and this system uses subsystem B from another company, which uses most of420

its components from third-parties. The supplier of subsystem B uses the FMUs

provided by third-party suppliers to evaluate subsystem B. However, the devel-

opers of system A have no easy way of obtaining the co-simulation parameters

required to correctly reproduce the co-simulations run by the provider of subsys-

tem B. Indeed, the developers of system A might not even have the knowledge to425

adequately configure the co-simulation. Thus, with hierarchical co-simulation,

the co-simulation of the subsystem can be configured by the supplier of subsys-

tem B and transferred.

Our experience is corroborated by a recent empirical survey [6], where the

configuration of the co-simulation parameters was identified as one of the chal-430

lenges faced by the practitioners. This is aggravated by the fact that Maestro

provides more flexibility in specifying how the synchronization of the FMUs

should be performed (recall section 3.1). These issues are mitigated if subsys-

tem B is turned into a hierarchical FMU.

The realisation of hierarchical FMU revolves around the fact that the factory435

20

Figure 11: System with subsystem that uses third-party components

pattern, mentioned in section 3, is employed to not only create FMU communi-

cation objects, but also to create master objects. The information on which type

of FMU to construct is contained within the fmus object of a co-simulation con-

figuration. For example, "watertank-c.fmu" in listing 1 on line 3 refers to the

default FMU, whereas the alternative "coe:hierarchicalWaterTank" refers to440

a hierarchical FMU as it begins coe:. The logical view of the hierarchical co-

simulation feature is presented in fig. 12. In this figure, the HierarchicalCOE

and the COE entities have the same type, but are constructed differently. The

static information file of the HierarchicalFMU is the union of the static infor-

mation files of the inner FMUs, namely FMU A and FMU B. Furthermore, the file445

contains a mapping that allows the HierarchicalFMU to distinguish between

scalar variables, such that they remain unique in the resulting static information

file.

HierarchicalFMU HierarchicalCOE

External FMU

FMU A

FMU B

COE
FMU C

Object created
by COE factory

Object created
by FMU factory

Object created
by FMU factory

Object created
by FMU factory

Figure 12: Logical View of the Hierarchical Feature

21

In fig. 12, the communication between inner FMUs and external FMUs from

the view of the hierarchical COE is carried out using an entity representing the450

external ports, denoted External FMU. When the Hierarchical FMU is asked to

perform a co-simulation step, a barrier synchronization mechanism is used to

ensure that all inner FMUs complete the co-simulation step. This is illustrated

in fig. 13, where SC and SW denote the two semaphores used.

<<THREAD>>
External COE

<<THREAD>>
Hierarchical COE

Inner
FMUs Hierarchical FMU

FMI
Functions

Process
Signals

processExternal
Signals(state)

setInputs

Sem
SC

Sem
SW

Initialised with
0 permits

acquire
doStep release

acquire
newState

setInputs

doStep

getOutputs
Outputs

processExternal
Signals(state) release

getOutputs
outputs

acquire

Blocked until
next doStep

Figure 13: Sequence diagram of synchronisation in relation to hierarchical co-simulation.

3.3. Distributed Co-Simulation455

The FMI standard enables models to be shared as FMUs. In practice, how-

ever, because the tools used to model and simulate are heterogeneous, we found

that implementing the FMI standard was insufficient. The major problems con-

cerned the platforms and architectures supported by the FMUs. A co-simulation

can only be run if all FMUs support the same combination of platform and ar-460

chitecture.

To overcome this challenge, the distributed co-simulation extension was pro-

vided. This feature is illustrated in fig. 14 and also makes use of the factory pat-

tern to create FMUs as was carried out in context of hierarchical co-simulation

22

COE

Factory

FMU

*.fmu

Distributed Factory

Proxy FMU

Host 1

Daemon

FMU

*.fmu

Host 2

Transferred

Figure 14: Distributed Extension Overview

in section 3.2. In the figure, during the co-simulation, the FMU that is not465

compatible with host 1 is replaced by a compatible proxy FMU. The proxy

FMU communicates with host 2, where the actual FMU has been transferred

to. A daemon ensures the correct transfer and initialization of the actual FMU

in host 2.

4. Validation, Applicability and Lessons Learned470

This section discusses the lessons learned during the development of Maestro

and its application to industrial case studies. Maestro has been applied exten-

sively, and it is outside the scope of this work to detail every use case where it

has been applied. For some published examples, refer to [34, 35, 36, 37, 38, 39,

40, 41, 42, 13, 43].475

The features described in this work where developed in response to the spe-

cific needs of the case studies. As a result, Maestro has become quite usable and

robust. This is corroborated by anecdotes from the companies using Maestro:

• “Throughout year 2 of INTO-CPS, the COE has become more stable,

which improved usability”, TWT GmbH [39];480

• “... co-simulation with the INTO-CPS COE was a very simple task . . . The

simulation is fast and gives immediate results.”, ClearSy [39].

23

The maturity of Maestro is also demonstrated on the FMI Tools page5,

where Maestro has passed cross-check using 183 FMUs exported by other tools

across the supported platforms. Furthermore, it is the only tool that has been485

successfully cross-checked on Windows, Linux on Mac across architectures. A

successful cross-check means that a master has successfully imported and sim-

ulated an FMU exported from another tool.

The remaining part of this section describes how Maestro’s features where

used and lessons learned concerning the following areas: API, Feedback, Exten-490

sibility, Distributed Co-Simulation, Real-time Simulation and Variable step. It

concludes by presenting how Maestro and the INTO-CPS project address some

of the challenges in the adoption of FMI, identified in [6].

API. Maestro is accessible via a RESTful web service API because the contexts

in which it has been used (e.g., DSE [44], and from a Graphical User Interface495

(GUI) [45]) require a programming-language agnostic interaction. Furthermore,

the API is kept minimalistic as experience has shown that some researchers are

not used to writing code that interacts with web services.

The API of Maestro also allows for different simultaneous co-simulations

by using a session mechanism. This was utilised by TWT GmbH to create500

co-simulations from an FMU taking part in another co-simulation, as depicted

in Figure 15 [42]. The role of the sub-co-simulation is to provide a realistic

remaining state-of-charge of the vehicle’s battery during and at the end of a

trip. This approach alters the usual notion of a co-simulation being based on a

predetermined scenario and makes it dynamic. It is different from hierarchical505

co-simulation in the sense that the sub-co-simulation runs to completion.

Rapid Feedback. Even though Maestro does not require a GUI, the INTO-CPS

Application6 was crucial to obtain rapid feedback on the use of Maestro. One

5https://fmi-standard.org/tools/, visited November 7, 2018
6Available at the INTO-CPS Association Github: https://github.com/

INTO-CPS-Association/.

24

https://github.com/INTO-CPS-Association/
https://github.com/INTO-CPS-Association/

Figure 15: Trip Assistant Case from TWT GmbH

of the results of such feedback is the live streaming feature of Maestro. This

feature, which consists of making available the co-simulation results as they are510

being computed, allows engineers to quickly spot whether the coupled model

is behaving as intended, or whether something has gone wrong with the co-

simulation. This saved time in long running co-simulations (e.g., one of the com-

panies had co-simulations that took at least two weeks to complete). The live

streaming feature was also used during DSE, where it was possible to evaluate515

the fitness of a particular coupled model without waiting for the co-simulation

to end. Currently, this feature does not allow setting external inputs during a

25

co-simulation.

Extensibility. The architecture of Maestro allowed multiple extensions to be

developed with minimal changes and decouples the co-simulation logic from the520

interaction with the FMUs. This extensibility will be put to the test with the

upcoming versions of FMI. This subject is extended upon in section 6.

Distributed Co-Simulation. This feature was applied to solve a problem faced

by MAN Diesel & Turbo [16]. They were developing a control system for a

water handling system, used to clean the exhaust gas using exhaust gas recircu-525

lation for a large two-stroke maritime combustion engine. The physical model

was developed in MATLAB 64-bit for Windows and the control system was

developed in an internal framework for Linux 32-bit with full support for HiL

simulation. Furthermore, the distribution feature also mitigates the problem

that some models could only be executed on a local computer with a specific530

environment (due to licensing).

Real-time Simulation. This feature was motivated in the co-simulation of agri-

cultural robots. Maestro was used to test and develop an interface for a robot

with real-time components [13, 43].

Variable Step. Variable Step has been applied to increase simulation speed,535

improve the precision of co-simulation results and support DE models. More-

over, the bounded difference constraint was applied to bound the error in the

co-simulation of the heat flow between FMUs. For more details see [10].

Teaching Advanced Features. It was observed that most applications of Mae-

stro use fixed step rather than variable step, although variable step has the540

potential to improve performance or accuracy. When asked why, Industry Part-

ners explained that they believe in the potential of variable step, but there is

a challenge of convincing users to actually use it. Furthermore, it was reported

that the behaviour in terms of time steps can be different than expected. They

propose tutorials that show how to use it, under which conditions to use it,545

26

which option is best suited for which use case, and what can be gained from

it. Furthermore, they propose tooling to provide suggestions for the parame-

ters of the co-simulation, as is done in [46]. The INTO-CPS project reacted to

these queries by publishing step-by-step tutorials, a user manual, and several

examples. This subject is touched upon again in section 6.550

FMI Barriers. To conclude this section we will relate the development of Mae-

stro and the INTO-CPS technology to the barriers of FMI uncovered by the

aforementioned empirical survey [6]. Many of the same barriers were noted by

researchers involved in INTO-CPS project, who also contributed to the devel-

opment of the standard by relaying information and examples at an FMI user555

meeting7 [47]. Below, the relation is carried out for several barriers

FMI has limited support for discrete co-simulation and it is not easily

applicable:

The public example “Ether” simulates a network protocol using strings

and booleans [48] and is also applied in co-simulating a swarm of UAVs

[37]. The supported Get Max Step Size [31] extension allows a DE FMU560

to convey its preferred step size [49].

The standard does not support certain requirements that would be

widely needed by industry and academia:

The extension Get Max Step Size was implemented by Maestro. Further-

more, it was reported at an FMI user meeting that compilation informa-

tion is missing for source-code FMUs and functionality to retrieving addi-565

tional resources of interest generated by FMUs during a co-simulation is

lacking, e.g. to perform model checking.

There is insufficient documentation and a lack of examples, tutorials,

etc.:

Maestro and INTO-CPS offer regularly updated resources on the INTO-

CPS Association’s Github page: step-by-step tutorial, several examples570

7Related 1-page document available on request.

27

[48], step-by-step user manual [50], guidelines on using the INTO-CPS

technology [51], protocol and more. The INTO-CPS Application makes it

simple to use the technology by having an examples and tools download

manager and can be used to configure and launch a co-simulation using

Maestro.575

Lack of transparency in features supported by FMI tools:

The features of Maestro are clearly described in the user manual [50].

FMI has limited support for hybrid co-simulation and it is not easily

applicable:

This information was also unearthed as part of applying Maestro and

INTO-CPS technology to various challenges as presented at the FMI User580

Meeting and in [35]. The supported FMI extension Get Max Step Size

mitigates part of this challenge.

There is a lack of (scientific) community, forums, groups:

The INTO-CPS Association has been formed to offer this.

There is a lack of tools that sufficiently support FMI:585

Maestro is one such tool and also has an associated GUI called The INTO-

CPS Application.

There is not enough cooperation and exchange (theoretical/numeri-

cal, implementation, application/industry) in defining and developing

the FMI standard:

Maestro (and INTO-CPS) is a result of academia and industry working

together to produce tools, methodologies, theoretical novelties and more.590

More specifically, both Aarhus Univerity and TWT GmbH contributed

to development of Maestro. The 48 publications8, the industrial follower

group of 79 members9, the INTO-CPS Association10, and the attendance

8http://into-cps.org/publications/, visited on November 7, 2018.
9http://projects.au.dk/into-cps/industry/industry-follower-group/, visited on

November 7, 2018.
10http://into-cps.org, visited on November 7, 2018

28

http://into-cps.org/publications/
http://projects.au.dk/into-cps/industry/industry-follower-group/
http://into-cps.org

at the FMI User Meeting and the reporting of an issue11 bears witness of

cooperation and exchange of knowledge.595

5. Related Work

Co-simulation is a large field that is difficult to do justice in this section.

See [2, 4, 5, 52] for some surveys on the topic. In this section, we focus on co-

simulation tools that represent the diversity of FMI co-simulation frameworks

and share the same goal as Maestro. These are summarized in table 1.600

Several of the summarized tools are proprietary, require writing source code

using a particular framework, or are not standalone but integrated into different

environments, e.g. Eclipse. Maestro, compared to these, is a standalone orches-

trator, only focusing on performing the co-simulation. Related tooling such as

creating FMUs, configuring co-simulation scenarios, and processing simulation605

results is not part of Maestro, but does exist. The philosophy is to offer in-

dividual tools that can be integrated in other workflows. Thus, Maestro and

INTO-CPS offers a full tool chain consisting of individual tools, that can be em-

ployed on a needs basis. Furthermore, Maestro is open source, cross-platform,

and industrially tested. It is the only orchestrator on the FMI Tools page that610

has been crosschecked for Linux, Windows, and Mac across architectures12.

11https://trac.fmi-standard.org/ticket/338, visited on November 7, 2018.
12The results as of November 7, 2018. It is called the INTO-CPS Orchestration Engine on

this website: https://fmi-standard.org/tools/.

29

https://trac.fmi-standard.org/ticket/338
https://fmi-standard.org/tools/

Product Description

DACCOSIM

[53]

Eclipse-Plugin with additional features; Companion tool DacRun to

compile, run, and collect results using DACCOSIM; Open-source;

Cross-platform; FMI Tools website shows no crosscheck results;

Multithreaded and distributed architecture; Approximates discrete

events [54], e.g. events in DACCOSIM occurs in a time interval, but

these are to be considered instantaneous [55]. Maestro both approx-

imates and allows the FMUs to report their specific synchronisation

time using an FMI extension, which is described in section 3.1.

DYMOLA Proprietary; Windows only; FMI Tools website shows successful

crosscheck results; Tool for both modeling and simulation; Both

slave and master; Approximates discrete events in a fashion similar

to DACCOSIM [54].

FIDE [54] IDE for building applications using FMUs (Maestro is standalone);

open-source; cross-platform; Based on the open-source Ptolemy II

framework [56] for analysis and design of heterogeneous systems;

Supports many extensions to FMI 2.0 [31, 57] including the one

mentioned under DACCOSIM.; FMI Tools website shows planned

FMI 2.0 support13.

PyFMI14 Python package for loading and interacting with FMUs and thereby

not a standalone tool; Open-source; FMI Tools website shows cross-

check results for Win32 only; Based on FMILibrary15.

C2WT [58] C2WT leverages the High Level Architecture (HLA), a general pur-

pose architecture for distributed simulation systems, to perform co-

simulation. The work presents a novel approach that integrates

FMUs within the HLA-based simulations.

Table 1: Tools with FMI.

13Publications indicate that FMI 2.0 is supported.
14https://jmodelica.org/pyfmi/index.html Visited on November 7, 2018.
15https://jmodelica.org/fmil/FMILibrary-2.0.3-htmldoc/index.html Visited on

November 7, 2018. FMILibrary is a C library serving as foundation for applications

interfacing FMUs

30

https://jmodelica.org/pyfmi/index.html
https://jmodelica.org/fmil/FMILibrary-2.0.3-htmldoc/index.html

6. Future Work

Since Maestro is envisioned as a stable research tool for co-simulation, im-615

proving its extensibility is one of the top priorities. One of the ways to achieve

this is to support external plugins. For example, a plugin could implement a

Gauss-Seidel master [59], or support an FMI extension, and so forth. Further-

more, version 3.0 of the FMI standard is expected to be released during 2019

and Maestro will be updated to support it.620

It is also of interest to allow the usage of FMUs in context of other standards

for simulation architectures such as High Level Architecture (HLA). Initial work

has been carried out on this topic [60, 61].

Maestro will continue to be improved as it will be used in future projects,

such as “Application of co-simulation to support test and operations (ACOSIM)”625

[62]. In this project, Maestro will be integrated within the simulation framework

(Simulation Model Portability 2) used by The European Space Agency.

To increase the adoption of co-simulation in both research and industry, it is

desireable to make improvements on the accessability of Maestro. Currently, the

approach is to download the INTO-CPS Application, use the built-in download630

manager to download Maestro, and then perform co-simulations. To avoid the

need for downloading and hosting it locally, we are investigating a cloud version

of the INTO-CPS Application, which would allow public access to a running

instance of Maestro. There are several challenges involved in this: resources, as

some co-simulations are demanding; sandboxing, as FMUs execute native code;635

a new API with security measures to ensure that co-simulations are available

to the permitted clients only; and others.

The final goal of our research is that the user simply provides the simu-

lators and their coupling, pushes a button and gets valid results. In order to

realise this, the simulators must provide additional meta-data. For example, the640

shortest timed reaction of a DE FMU implementing a timed automata and the

propagation delay of other FMUs in the system could aid in automatically cal-

culating the step size or algorithm to use [63]. Another example is the property

31

of energy conservation, where the flow of energy between the coupled simulation

units are considered, and energy residuals are an expression of coupling errors645

[64]. This requires information on the physical power quantities of coupling

variables. If such meta-data was exported from the tools used to create the sim-

ulation units, it would be possible to automatically disqualify certain algorithms

and qualify others. If several mutual exclusive algorithms were qualified, these

could be employed in a DSE-like approach and the appropriate algorithm could650

be chosen. This would also help to mitigate the challenge of using variable step

introduced in section 4, as the orchestrator would automatically apply the most

appropriate algorithm and configuration.

7. Concluding Remarks

In this paper, the open source, cross-platform, co-simulation framework655

called Maestro has been presented. The tool offers functionality to statically

validate co-simulation configurations and perform centralised or distributed co-

simulations using a fixed or variable step algorithm. The variable step algorithm

can be constrained in several ways to ensure accurate co-simulation results.

Furthermore, Maestro enables hierarchical co-simulation where FMUs can be660

grouped in subsystems with different co-simulation requirements and still en-

gage in a full system co-simulation. Maestro offers co-simulation as a service

and can therefore be used for purposes such as DSE or launching a nested co-

simulation to, for example, predict a future position.

The applicability of Maestro has been presented by examples, industrial665

case studies and academic case studies, which also served to validate Maestro’s

approach to co-simulation. Additionally, Maestro has passed 183 cross-checks

in total, and is the only tool to have passed cross-checks on Linux, Mac and

Windows across architectures16. Furthermore, the challenges faced and lessons

learned during the development and usage of Maestro have been presented.670

16As of November 7, 2018.

32

These can be summarized as follows:

• The API of an orchestrator should be language agnostic, as researchers

use a variety of programming languages and might not have a software

development background.

• Rapid feedback during a co-simulation is important, as errors might be675

exposed before the co-simulation has finished, allowing users and tools

to react faster. Furthermore, it is important during tool development to

support the desired features.

• Extensibility is important for future research.

• Due to simulation units supporting different platforms and architectures,680

it should be possible to perform a co-simulation across platforms and

architectures.

• Advanced features of co-simulation, e.g. configuring variable step, should

be accompanied by teaching material such as examples and tutorials.

It is our goal to turn Maestro into a tool for conducting research within the685

domain of co-simulation to ensure trustworthy co-simulation results. Further-

more, by providing a stable and validated tool it is a step in the direction of

turning co-simulation into a technology taken for granted.

Acknowledgements

The authors would like to thank the anonymous reviewers for reviewing690

and providing ideas on how to improve the paper. The work presented here is

partially supported by the INTO-CPS project funded by the European Com-

mission’s Horizon 2020 programme under grant agreement number 664047, and

the Agency for Innovation by Science and Technology in Flanders (IWT, dossier

151067). We would like to thank all the participants of those projects for their695

efforts making this a reality. Furthermore, we would like to thank United Tech-

nology Research Centre Ireland for providing feedback on using the technology

and Nick Battle for proofreading the paper.

33

References

References700

[1] H. Vangheluwe, J. De Lara, P. J. Mosterman, An introduction to multi-

paradigm modelling and simulation, in: AI, Simulation and Planning in

High Autonomy Systems, SCS, 2002, pp. 9–20.

[2] C. Gomes, C. Thule, D. Broman, P. G. Larsen, H. Vangheluwe, Co-

simulation: a Survey, ACM Comput. Surv. 51 (3) (2018) 49:1–49:33.705

[3] C. Gomes, C. Thule, D. Broman, P. G. Larsen, H. Vangheluwe, Co-

simulation: State of the art, Tech. rep. (Feb. 2017).

URL http://arxiv.org/abs/1702.00686

[4] I. Hafner, N. Popper, On the terminology and structuring of co-simulation

methods, in: Proceedings of the 8th International Workshop on Equation-710

Based Object-Oriented Modeling Languages and Tools, ACM Press, New

York, New York, USA, 2017, pp. 67–76. doi:10.1145/3158191.3158203.

[5] P. Palensky, A. A. Van Der Meer, C. D. Lopez, A. Joseph, K. Pan, Cosim-

ulation of Intelligent Power Systems: Fundamentals, Software Architec-

ture, Numerics, and Coupling, IEEE Industrial Electronics Magazine 11 (1)715

(2017) 34–50. doi:10.1109/MIE.2016.2639825.

[6] G. Schweiger, C. Gomes, G. Engel, I. Hafner, J. Schoeggl, A. Posch,

T. Nouidui, Functional Mock-up Interface: An empirical survey identi-

fies research challenges and current barriers, in: The American Modelica

Conference, Cambridge, MA, USA, 2018, p. to be published.720

[7] J. Fitzgerald, C. Gamble, P. G. Larsen, K. Pierce, J. Woodcock, Cyber-

Physical Systems design: Formal Foundations, Methods and Integrated

Tool Chains, in: FormaliSE: FME Workshop on Formal Methods in Soft-

ware Engineering, ICSE 2015, Florence, Italy, 2015.

34

http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1702.00686
http://dx.doi.org/10.1145/3158191.3158203
http://dx.doi.org/10.1109/MIE.2016.2639825

[8] P. G. Larsen, J. Fitzgerald, J. Woodcock, R. Nilsson, C. Gamble, S. Foster,725

Towards semantically integrated models and tools for cyber-physical sys-

tems design, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications

of Formal Methods, Verification and Validation, Proc 7th Intl. Symp., Vol.

9953 of Lecture Notes in Computer Science, Springer International Pub-

lishing, 2016, pp. 171–186.730

[9] P. G. Larsen, J. F. andJim Woodcock, C. König, S. Basagiannis, E. Brosse,

C. Gomes, J. Cabral, H. D. Macedo, C. Thule, A. Sadovykh, C.-B. Zam-

firescu, M. Neghina, K. Pierce, C. Gamble, R. Payne, The INtegrated

TOolchain for Cyber-Physical Systems (INTO-CPS): a Guide, Tech. rep.,

INTO-CPS Association (October 2018).735

URL www.into-cps.org

[10] A. Pop, V. Bandur, K. Lausdahl, M. Groothuis, T. Bokhove, Final Inte-

gration of Simulators in the INTO-CPS Platform, Tech. rep., INTO-CPS

Deliverable, D4.3b (December 2017).

URL http://into-cps.org/fileadmin/into-cps.org/Filer/D4.3b_740

Integration_of_simulators.pdf

[11] J. Fitzgerald, C. Gamble, R. Payne, P. G. Larsen, S. Basagiannis, A. E.-D.

Mady, Collaborative model-based systems engineering for cyber-physical

systems, with a building automation case study, INCOSE International

Symposium 26 (1) (2016) 817–832. doi:10.1002/j.2334-5837.2016.745

00195.x.

[12] P. G. Larsen, J. Fitzgerald, J. Woodcock, T. Lecomte, Trustworthy Cyber-

Physical Systems Engineering, Chapman and Hall/CRC, 2016, Ch. Chapter

8: Collaborative Modelling and Simulation for Cyber-Physical Systems,

iSBN 9781498742450.750

[13] F. Foldager, P. G. Larsen, O. Green, Development of a Driverless Lawn

Mower using Co-Simulation, in: 1st Workshop on Formal Co-Simulation of

Cyber-Physical Systems, Trento, Italy, 2017.

35

www.into-cps.org
www.into-cps.org
www.into-cps.org
www.into-cps.org
http://into-cps.org/fileadmin/into-cps.org/Filer/D4.3b_Integration_of_simulators.pdf
http://into-cps.org/fileadmin/into-cps.org/Filer/D4.3b_Integration_of_simulators.pdf
http://into-cps.org/fileadmin/into-cps.org/Filer/D4.3b_Integration_of_simulators.pdf
http://into-cps.org/fileadmin/into-cps.org/Filer/D4.3b_Integration_of_simulators.pdf
http://into-cps.org/fileadmin/into-cps.org/Filer/D4.3b_Integration_of_simulators.pdf
http://into-cps.org/fileadmin/into-cps.org/Filer/D4.3b_Integration_of_simulators.pdf
http://dx.doi.org/10.1002/j.2334-5837.2016.00195.x
http://dx.doi.org/10.1002/j.2334-5837.2016.00195.x
http://dx.doi.org/10.1002/j.2334-5837.2016.00195.x

[14] L. D. Couto, S. Basagianis, A. E.-D. Mady, E. H. Ridouane, P. G. Larsen,

M. Hasanagic, Injecting Formal Verification in FMI-based Co-Simulation of755

Cyber-Physical Systems, in: The 1st Workshop on Formal Co-Simulation

of Cyber-Physical Systems (CoSim-CPS), Trento, Italy, 2017.

[15] M. Neghina, C.-B. Zamrescu, P. G. Larsen, K. Lausdahl, K. Pierce, A Dis-

crete Event-First Approach to Collaborative Modelling of Cyber-Physical

Systems, in: Fitzgerald, Tran-Jørgensen, Oda (Ed.), The 15th Overture760

Workshop: New Capabilities and Applications for Model-based Systems

Engineering, Newcastle University, Computing Science. Technical Report

Series. CS-TR- 1513, Newcastle, UK, 2017, pp. 116–129.

[16] N. Pedersen, K. Lausdahl, E. V. Sanchez, P. G. Larsen, J. Madsen, Dis-

tributed Co-Simulation of Embedded Control Software with Exhaust Gas765

Recirculation Water Handling System using INTO-CPS, in: Proceedings of

the 7th International Conference on Simulation and Modeling Methodolo-

gies, Technologies and Applications (SIMULTECH 2017), Madrid, Spain,

2017, pp. 73–82, iSBN: 978-989-758-265-3.

[17] C. Ingram, K. Pierce, C. Gamble, S. Wolff, M. P. Christensen, P. G.770

Larsen, D3.4a – Examples Compendium, Tech. rep., The DESTECS

Project (INFSO-ICT-248134) (January 2013).

URL http://destecs.org/images/stories/Project/Deliverables/

D34aExamplesCompendium.pdf

[18] J. F. Broenink, J. Fitzgerald, C. Gamble, C. Ingram, A. Mader, J. Marincic,775

Y. Ni, K. Pierce, X. Zhang, Methodological guidelines 3, Tech. rep., The

DESTECS Project (INFSO-ICT-248134) (October 2012).

[19] C. Gomes, C. Thule, P. G. Larsen, J. Denil, H. Vangheluwe, Co-simulation

of Continuous Systems: A Tutorial, Tech. Rep. arXiv:1809.08463 [cs, math]

(Sep. 2018). arXiv:1809.08463.780

URL http://arxiv.org/abs/1809.08463

36

http://destecs.org/images/stories/Project/Deliverables/D34aExamplesCompendium.pdf
http://destecs.org/images/stories/Project/Deliverables/D34aExamplesCompendium.pdf
http://destecs.org/images/stories/Project/Deliverables/D34aExamplesCompendium.pdf
http://destecs.org/images/stories/Project/Deliverables/D34aExamplesCompendium.pdf
http://arxiv.org/abs/1809.08463
http://arxiv.org/abs/1809.08463
http://arxiv.org/abs/1809.08463
http://arxiv.org/abs/1809.08463
http://arxiv.org/abs/1809.08463

[20] R. Kübler, W. Schiehlen, Two Methods of Simulator Coupling, Mathemat-

ical and Computer Modelling of Dynamical Systems 6 (2) (2000) 93–113.

doi:10.1076/1387-3954(200006)6:2;1-M;FT093.

[21] C. Gomes, C. Thule, D. Broman, P. G. Larsen, H. Vangheluwe, Co-785

simulation: A Survey, ACM Computing Surveys 51 (3) (2018) Article 49.

doi:10.1145/3179993.

[22] ITEA Office Association, Itea 3 ? project ? 07006 modelisar, https:

//itea3.org/project/modelisar.html (December 2015).

[23] P. B. Kruchten, The 4+1 view model of architecture, IEEE Software 12 (6)790

(1995) 42–50. doi:10.1109/52.469759.

[24] F. Cremona, M. Lohstroh, D. Broman, E. A. Lee, M. Masin, S. Tripakis,

Hybrid co-simulation: It’s about time, Software & Systems Modelingdoi:

10.1007/s10270-017-0633-6.

[25] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of795

Reusable Object-oriented Software, Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1995.

[26] M. Hasanagić, P. W. V. Tran-Jørgensen, K. Lausdahl, P. G. Larsen, For-

malising and Validating the Interface Description in the FMI standard, in:

The 21st International Symposium on Formal Methods (FM 2016), 2016.800

[27] M. Busch, B. Schweizer, Numerical stability and accuracy of different co-

simulation techniques: Analytical investigations based on a 2-DOF test

model, in: 1st Joint International Conference on Multibody System Dy-

namics, 2010, pp. 25–27.

[28] M. Arnold, C. Clauß, T. Schierz, Error Analysis and Error Estimates805

for Co-simulation in FMI for Model Exchange and Co-Simulation v2.0,

in: S. Schöps, A. Bartel, M. Günther, W. E. J. ter Maten, C. P.

Müller (Eds.), Progress in Differential-Algebraic Equations, Springer

37

http://dx.doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
http://dx.doi.org/10.1145/3179993
https://itea3.org/project/modelisar.html
https://itea3.org/project/modelisar.html
https://itea3.org/project/modelisar.html
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1007/s10270-017-0633-6
http://dx.doi.org/10.1007/s10270-017-0633-6
http://dx.doi.org/10.1007/s10270-017-0633-6

Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 107–125. doi:10.1007/

978-3-662-44926-4_6.810

[29] J.-S. Bolduc, H. Vangheluwe, Mapping ODES to DEVS: Adaptive quantiza-

tion, in: Summer Computer Simulation Conference, Society for Computer

Simulation International, Montreal, Quebec, Canada, 2003, pp. 401–407.

[30] W. P. M. H. Heemels, A. R. Teel, N. van de Wouw, D. Nešić, Networked

Control Systems With Communication Constraints: Tradeoffs Between815

Transmission Intervals, Delays and Performance, IEEE Transactions on

Automatic Control 55 (8) (2010) 1781–1796. doi:10.1109/TAC.2010.

2042352.

[31] D. Broman, C. Brooks, L. Greenberg, E. Lee, M. Masin, S. Tripakis,

M. Wetter, Determinate composition of FMUs for co-simulation, in: Em-820

bedded Software (EMSOFT), 2013 Proceedings of the International Con-

ference on, 2013, pp. 1–12. doi:10.1109/EMSOFT.2013.6658580.

[32] K. Lausdahl, P. G. Larsen, S. Wolf, V. Bandur, A. Terkelsen, M. Hasanagić,

C. T. Hansen, K. Pierce, O. Kotte, A. Pop, E. Brosse, J. Brauer, O. Möller,

Design of the INTO-CPS Platform, Tech. rep., INTO-CPS Deliverable,825

D4.1d (December 2015).

[33] C. Gomes, B. Meyers, J. Denil, C. Thule, K. Lausdahl, H. Vangheluwe,

P. De Meulenaere, Semantic Adaptation for FMI Co-simulation

with Hierarchical Simulators, SIMULATION (2018) 1–29doi:10.1177/

0037549718759775.830

[34] M. Neghina, C.-B. Zamrescu, P. G. Larsen, K. Lausdahl, K. Pierce, Multi-

Paradigm Discrete-Event Modelling and Co-simulation of Cyber-Physical

Systems, Studies in Informatics and Control 27 (1) (2018) 33–42.

[35] L. Diogo Couto, S. Basagiannis, E. H. Ridouane, E. Zavaglio, P. Antonante,

H. Saada, S. Falleni, Lessons learned using fmi co-simulation for model-835

based design of cyber physical systems, in: T. Margaria, B. Steffen (Eds.),

38

http://dx.doi.org/10.1007/978-3-662-44926-4_6
http://dx.doi.org/10.1007/978-3-662-44926-4_6
http://dx.doi.org/10.1007/978-3-662-44926-4_6
http://dx.doi.org/10.1109/TAC.2010.2042352
http://dx.doi.org/10.1109/TAC.2010.2042352
http://dx.doi.org/10.1109/TAC.2010.2042352
http://dx.doi.org/10.1109/EMSOFT.2013.6658580
http://dx.doi.org/10.1177/0037549718759775
http://dx.doi.org/10.1177/0037549718759775
http://dx.doi.org/10.1177/0037549718759775

Leveraging Applications of Formal Methods, Verification and Validation.

Distributed Systems, Springer International Publishing, Cham, 2018, pp.

488–503.

[36] J. Cabral, M. Wenger, A. Zoitl, Enable co-simulation for industrial automa-840

tion by an fmu exporter for iec 61499 models, in: IEEE 16th International

Conference of Industrial Informatics (INDIN), 2018.

[37] G. Zervakis, K. Pierce, C. Gamble, Multi-modelling of Cooperative Swarms,

in: Proceedings of the 16th Overture Workshop, 2018.

[38] F. Hantry, T. Lecomte, S. Basagiannis, C. König, J. Esparza, Case Studies845

1, Public Version, Tech. rep., INTO-CPS Public Deliverable, D1.1a (De-

cember 2015).

[39] J. Ouy, T. Lecomte, M. P. Christiansen, A. V. Henriksen, O. Green,

S. Hallerstede, P. G. Larsen, C. J. ger, S. Basagiannis, L. D. Couto, A. E.

din Mady, H. Ridouanne, H. M. Poy, J. V. Alcala, C. König, N. Balcu,850

Case Studies 2, Public Version, Tech. rep., INTO-CPS Public Deliverable,

D1.2a (December 2016).

[40] J. Ouy, T. Lecomte, F. F. Foldager, A. V. Henriksen, O. Green, S. Haller-

stede, P. G. Larsen, L. D. Couto, P. Antonante, S. Basagiannis, S. Falleni,

H. Ridouane, H. Saada, E. Zavaglio, C. König, N. Balcu, Case Studies 3,855

Public Version, Tech. rep., INTO-CPS Public Deliverable, D1.3a (Decem-

ber 2017).

[41] J. Fitzgerald, C. Gamble, M. Mansfield, J. Ouy, R. Palacin, K. Pierce,

P. G. Larsen, Collaborative modelling and co-simulation for Transportation

Cyber-Physical Systems, Elsevier, 2018, Ch. 3, pp. 51–79.860

[42] C. F. J. König, G. Meisl, N. Balcu, B. Vosseler, H. Hörmann, J. Höll,

V. Fäßler, Engineering of cyber-physical systems in the automotive con-

text: Case study of a range prediction assistant, in: T. Margaria, B. Stef-

fen (Eds.), Leveraging Applications of Formal Methods, Verification and

39

Validation. Distributed Systems, Springer International Publishing, Cham,865

2018, pp. 461–476.

[43] F. Foldager, O. Balling, C. Gamble, P. G. Larsen, M. Boel, O. Green,

Design Space Exploration in the Development of Agricultural Robots, in:

AgEng conference, Wageningen, The Netherlands, 2018.

[44] C. Gamble, Comprehensive DSE Support, Tech. rep., INTO-CPS Deliver-870

able, D5.3e (December 2017).

[45] C. Gamble, O. Möller, V. Bandur, Integration of Tool Chain Extension

Modules with the COE, Tech. rep., INTO-CPS Deliverable, D5.3a (De-

cember 2017).

[46] M. Benedikt, F. R. Holzinger, Automated configuration for non-iterative875

co-simulation, in: 17th International Conference on Thermal, Mechanical

and Multi-Physics Simulation and Experiments in Microelectronics and

Microsystems (EuroSimE), IEEE, Montpellier, 2016, pp. 1–7. doi:10.

1109/EuroSimE.2016.7463355.

[47] K. Lausdahl, C. Thule, P. Larsen, J. Höll, C. König, A. Klueber, M. Pfeil,880

V. Fässler, The INTO-CPS Co-Simulation Orchestration Engine – Experi-

ences with FMI 2.0 and proposed extensions, in: FMI User Meeting, 2017,

FMI User Meeting at the Modelica Conference 2017; Conference date:

15-05-2017.

URL https://svn.fmi-standard.org/fmi/branches/public/docs/885

Modelica2017/08_20170515_FMI_user_meeting_Prague.pdf

[48] M. Mansfield, C. Gamble, K. Pierce, J. Fitzgerald, S. Foster, C. Thule,

R. Nilsson, Examples Compendium 3, Tech. rep., INTO-CPS Deliverable,

D3.6 (December 2017).

[49] K. L. Casper Thule, P. G. Larsen, Overture FMU: Export VDM-RT Models890

as Tool-Wrapper FMUs, in: Proceedings of the 16th Overture Workshop,

2018.

40

http://dx.doi.org/10.1109/EuroSimE.2016.7463355
http://dx.doi.org/10.1109/EuroSimE.2016.7463355
http://dx.doi.org/10.1109/EuroSimE.2016.7463355
https://svn.fmi-standard.org/fmi/branches/public/docs/Modelica2017/08_20170515_FMI_user_meeting_Prague.pdf
https://svn.fmi-standard.org/fmi/branches/public/docs/Modelica2017/08_20170515_FMI_user_meeting_Prague.pdf
https://svn.fmi-standard.org/fmi/branches/public/docs/Modelica2017/08_20170515_FMI_user_meeting_Prague.pdf
https://svn.fmi-standard.org/fmi/branches/public/docs/Modelica2017/08_20170515_FMI_user_meeting_Prague.pdf
https://svn.fmi-standard.org/fmi/branches/public/docs/Modelica2017/08_20170515_FMI_user_meeting_Prague.pdf
https://svn.fmi-standard.org/fmi/branches/public/docs/Modelica2017/08_20170515_FMI_user_meeting_Prague.pdf

[50] V. Bandur, P. G. Larsen, K. Lausdahl, C. Thule, A. F. Terkelsen, C. Gam-

ble, A. Pop, E. Brosse, J. Brauer, F. Lapschies, M. Groothuis, C. Kleijn,

L. D. Couto, INTO-CPS Tool Chain User Manual, Tech. rep., INTO-CPS895

Deliverable, D4.3a (December 2017).

[51] J. Fitzgerald, C. Gamble, K. Pierce, Method Guidelines 3, Tech. rep.,

INTO-CPS Deliverable, D3.3a (December 2017).

URL http://into-cps.org/fileadmin/into-cps.org/Filer/D3.3a_

Method_Guidelines_3.pdf900

[52] C. Gomes, C. Thule, D. Broman, P. G. Larsen, H. Vangheluwe, Co-

simulation: State of the art, CoRR abs/1702.00686. arXiv:1702.00686.

URL http://arxiv.org/abs/1702.00686

[53] V. Galtier, S. Vialle, C. Dad, J.-P. Tavella, J.-P. Lam-Yee-Mui, G. Plessis,

FMI-Based Distributed Multi-Simulation with DACCOSIM, in: Spring905

Simulation Multi-Conference, Society for Computer Simulation Interna-

tional, Alexandria, Virginia, USA, 2015, pp. 804–811.

[54] F. Cremona, M. Lohstroh, S. Tripakis, C. Brooks, E. A. Lee, FIDE – An

FMI Integrated Development Environment, in: Symposium on Applied

Computing, 2015.910

[55] D. Broman, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis, M. Wetter,

Requirements for hybrid cosimulation standards, in: Proceedings of 18th

ACM International Conference on Hybrid Systems: Computation and Con-

trol (HSCC), ACM, 2015, pp. 179–188.

[56] C. Ptolemaeus (Ed.), System Design, Modeling, and Simulation using915

Ptolemy II, Ptolemy.org, 2014.

URL http://ptolemy.org/books/Systems

[57] F. Cremona, M. Lohstroh, D. Broman, E. A. Lee, M. Masin, S. Tripakis,

Hybrid co-simulation: it’s about time, Software & Systems Modelingdoi:

41

http://into-cps.org/fileadmin/into-cps.org/Filer/D3.3a_Method_Guidelines_3.pdf
http://into-cps.org/fileadmin/into-cps.org/Filer/D3.3a_Method_Guidelines_3.pdf
http://into-cps.org/fileadmin/into-cps.org/Filer/D3.3a_Method_Guidelines_3.pdf
http://into-cps.org/fileadmin/into-cps.org/Filer/D3.3a_Method_Guidelines_3.pdf
http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1702.00686
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
https://doi.org/10.1007/s10270-017-0633-6
http://dx.doi.org/10.1007/s10270-017-0633-6
http://dx.doi.org/10.1007/s10270-017-0633-6
http://dx.doi.org/10.1007/s10270-017-0633-6

10.1007/s10270-017-0633-6.920

URL https://doi.org/10.1007/s10270-017-0633-6

[58] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema,

T. Bapty, J. Batteh, H. Tummescheit, C. Sureshkumar, Model-based in-

tegration platform for fmi co-simulation and heterogeneous simulations of

cyber-physical systems, in: The 10th International Modelica Conference925

2014, Modelica Association, Lund, Sweden, 2014.

[59] J. Bastian, C. Clauss, S. Wolf, P. Schneider, Master for Co-Simulation

Using FMI, in: 8th International Modelica Conference, 2011.

[60] M. U. Awais, M. Cvetkovic, P. Palensky, Hybrid simulation using implicit

solver coupling with HLA and FMI, International Journal of Modeling,930

Simulation, and Scientific Computing.

[61] Thomas Nägele and Jozef Hooman, Co-simulation of Cyber-Physical Sys-

tems using HLA, in: Proceedings 7th IEEE Annual Computing and Com-

munication Workshop and Conference (CCWC 2017), IEEE, 2017, pp. 267–

272.935

[62] corallia, ESTEC awards ”ACOSIM - Application of co-simulation to sup-

port test and operations” project to EMTECH Space P.C. consortium

- Corallia, http://www.corallia.org/en/si-news/si-cluster-news/

4011-estec-acosim-emtech.html, (Accessed on 08/16/2018) (February

2018).940

[63] C. Thule, C. Gomes, J. Deantoni, P. G. Larsen, J. Brauer, H. Vangheluwe,

Towards the Verification of Hybrid Co-simulation Algorithms, 2018, Ac-

cepted for publication at the CoSim-CPS-18 Workshop.

[64] S. Sadjina, L. T. Kyllingstad, S. Skjong, E. Pedersen, Energy conservation

and power bonds in co-simulations: non-iterative adaptive step size control945

and error estimation, Engineering with Computers 33 (3) (2017) 607–620.

42

http://dx.doi.org/10.1007/s10270-017-0633-6
http://dx.doi.org/10.1007/s10270-017-0633-6
https://doi.org/10.1007/s10270-017-0633-6
http://www.corallia.org/en/si-news/si-cluster-news/4011-estec-acosim-emtech.html
http://www.corallia.org/en/si-news/si-cluster-news/4011-estec-acosim-emtech.html
http://www.corallia.org/en/si-news/si-cluster-news/4011-estec-acosim-emtech.html
https://doi.org/10.1007/s00366-016-0492-8
https://doi.org/10.1007/s00366-016-0492-8
https://doi.org/10.1007/s00366-016-0492-8
https://doi.org/10.1007/s00366-016-0492-8
https://doi.org/10.1007/s00366-016-0492-8

doi:10.1007/s00366-016-0492-8.

URL https://doi.org/10.1007/s00366-016-0492-8

43

http://dx.doi.org/10.1007/s00366-016-0492-8
https://doi.org/10.1007/s00366-016-0492-8

	Introduction
	Background
	Running Example: The Line Follower Robot
	Modelling and Simulation Concepts
	Co-simulation Concepts

	The Maestro Co-Simulation Framework
	Variable Step
	Hierarchical Co-Simulation
	Distributed Co-Simulation

	Validation, Applicability and Lessons Learned
	Related Work
	Future Work
	Concluding Remarks

