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Abstract. Engineering modern, hybrid systems is becoming increas-
ingly difficult due to the heterogeneity between different subsystems.
Modelling and simulation techniques have traditionally been used to
tackle complexity, but with increasing heterogeneity of the subsystems, it
becomes impossible to find appropriate modelling languages and tools to
specify and analyse the system as a whole. Co-simulation is a technique
to combine multiple models and their simulators in order to analyse the
behaviour of the whole system over time. Past research, however, has
shown that the näıve combination of simulators can easily lead to in-
correct simulation results, especially when co-simulating hybrid systems.
This paper shows (i) how co-simulation of a family of hybrid systems can
fail to reproduce the order of events that should have occurred (event or-
dering); (ii) how to prove that a co-simulation algorithm is correct (w.r.t.
event ordering), and if it is incorrect, how to obtain a counterexample
showing how the co-simulation fails; and (iii) how to correct an incorrect
co-simulation algorithm. We apply the above method to two well known
co-simulation algorithms used with the FMI Standard, and we show that
one of them is incorrect for the family of hybrid systems under study,
under the restrictions of the standard. The conclusion is that either the
standard needs to be revised, or one of the algorithms should be avoided.
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1 Introduction

Engineered systems are becoming increasingly complex while market pressure
shortens the available development time [24]. There are many causes for the
increase in complexity, but to a large extent, it is caused by the number of in-
teracting subsystems and differences between their domains [31]. Thus, there is
a need for an improved development cycle with better tools, techniques, and
methodologies [32]. While modelling and simulation have been successfully ap-
plied to reduce development costs, these fall short in fostering more integrated
development processes [5].

A promising concept for the simulation of systems consisting of coupled com-
ponents is collaborative simulation (co-simulation) [23], which is based on the
idea that interacting subsystems are best modelled and simulated by dedicated
tools and formalisms [33]. Each subsystem is then modelled by a specialised
team using mature tools, tailored to the domain of the allocated subsystem.
Further, each subsystem internally uses its own simulation engine, so that the
most appropriate approximation techniques can be employed. The behaviour of
the coupled system is computed by having the simulation tools communicate
with one another by exchanging their outputs over time.

In order to run a co-simulation, all that is required is that the participating
simulation tools consume the inputs and expose the outputs, of the allocated
subsystem, over time. A co-simulation engine then synchronises the interface
values of the different subsystems. This powerful approach eases the integration
of subsystems simulated by different tools, but also poses some difficulties. In
particular, subsystems are modelled and treated as black boxes, and it is dif-
ficult in some cases to understand how the coordination of the subsystems—a
functionality provided by the co-simulation engine—affects the behaviour of the
co-simulated system [19].

One might be tempted to expect that the behaviour computed via co-simulation
matches the behaviour of the coupled system. In practice, however, this expecta-
tion turns out overly optimistic, and significant deviations may become visible,
which could, for example, be caused by discretization or the timing in which the
inputs are set. This is not only due to the inherent limitations of approximate
simulations [10], but also due to the internals of the subsystem simulations. It
is therefore important to study how a faulty co-simulation can be identified. If
a co-simulation preserves specific properties of a system, we then say that the
properties of the system are preserved under co-simulation. To serve as a refer-
ence for correctness, we consider the properties of the implemented system, i.e.
with no co-simulation effects.

This paper contributes to this line of research as follows:
– We identify a novel property called event ordering, which is often implicitly

required to be preserved by co-simulations of systems that combine software
with physical subsystems.

– We present a characterisation of the event ordering property as a model
checking problem [11] based on the Functional Mock-up Interface for co-
simulation (FMI) standard [6]. Our method can be utilised to decide whether



a given co-simulation satisfies this property for a restricted class of coupled
systems.

– We show how, exemplified using FMI, to adapt the co-simulation master
algorithm to preserve the event order, if the property is not preserved.
One of the strengths of our approach is that it yields a counterexample when

the property is violated. The counter example includes a co-simulation scenario
and an execution trace of the co-simulation, which provide valuable insight into
how the co-simulation violates the event ordering property. The Maestro [30]
master algorithm serves as a case study for our approach.

The remainder of this paper is structured as follows. First, Section 3 presents
a primer on co-simulation and co-simulation properties. Afterwards, in Section 4,
the event ordering property is demonstrated and described along with an encod-
ing of the problem as a model-checking instance. Finally, the paper presents a
discussion and perspective on future work in Section 5.

2 Background: Co-simulation
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Fig. 1: Behaviour trace
example.

In this section, we present some background concepts
in an informal manner. We adopt the definitions and
nomenclature introduced in [19] and refer the reader
to it for a more rigorous exposition.

A co-simulation is the behaviour trace of a coupled
system, produced by the coordination of simulation
units. The behaviour trace is a function mapping val-
ues to time, representing the outputs generated from
each simulation unit and their timestamps. An exam-
ple behaviour trace is shown in the bottom of Figure 1.

A simulation unit is an executable software entity
responsible for simulating a part of the system. To
communicate with other simulation units, each sim-
ulation unit implements a predefined interface. This
allows an orchestrator, described below, to communi-
cate with it.

One such communication interface is prescribed by
the Functional Mock-up Interface (FMI) standard [6].
A simulation unit implementing the FMI interface is
called a Functional Mock-up Unit (FMU). The main
functionality of an FMU concerns calculating outputs
based on inputs and time. This is represented in FMI as three C functions: a
function to set inputs, a function to perform a step with a given step size, and
a function to get outputs.

In the FMI Standard, there is an important restriction [13, p. 104]:

Restriction 1 There is the additional restriction in “slaveInitialized” state that
it is not allowed to call fmi2GetXXX functions after fmi2SetXXX functions with-
out an fmi2DoStep call in between.



As we show later, this restriction has important consequences on the co-simulation
of hybrid systems.
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Fig. 2: Co-simulation ar-
chitecture.

An orchestrator is a software component that set-
s/gets inputs/outputs of each simulation unit, and
asks it to estimate the state of its allocated subsys-
tem at a future time. For example, in Figure 1, the
orchestrator sets an input to the unit at time ti, and
asks the unit to compute the state at time ti +H. The
unit in turn might perform multiple micro-steps and
employ an input approximation scheme (this is unex-
posed to the orchestrator). Then, once the unit is at
time ti +H, the orchestrator requests an output, illus-
trated at the bottom of the figure.

The orchestrator follows the co-simulation scenario
to know the order in which to ask the simulation unit
to simulate and where to copy their outputs. A co-
simulation scenario is a description of how the subsys-

tems are interconnected and properties of the co-simulation, e.g. step size. For
example, the orchestrator box contains an illustration of how the subsystems are
connected, in Figure 2.

There are three main master algorithms: Jacobi, Gauss-Seidel, and Strong-
coupling [25]. We focus on the Jacobi and Gauss-Seidel, illustrated in Figures 3a
and 3b. The Jacobi algorithm proceeds by asking all simulators to produce out-
puts, then it computes and sets the inputs that all simulators need (illustrated by
data transfer arrows in Figure 3a). Afterwards, it asks all simulators to simulate
their corresponding subsystem until the next communication time, after which
the process repeats. This is represented by simulation step arrows in Figure 3a,
where the next communication time is ti + H.

The Gauss-Seidel algorithm assigns an order to each simulator, and, in that
order, computes the inputs of the simulator, then asks the same simulator to
simulate to the next time point, obtains its output, and uses that output to
compute the input to the next simulator. These steps are repeated until all
simulators have simulated until the next time point, and then the process starts
over again. See Figure 3b.

3 Related Work: Property Preservation in Co-simulation

In this section, we introduce intuitively the notion of property preservation, and
cover examples from the state of the art, where it is studied.

Given a property P that is satisfied by a coupled system, we say that the co-
simulation (of the coupled system) preserves P if it also satisfies P. For example, a
coupled system representing chemical kinetics always has positive concentrations.
Clearly, this property (every concentration variable must be positive) should be
preserved in co-simulations.
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Fig. 3: Coupling algorithms.

In general it is a challenge to ensure that any property of interest is preserved
by co-simulations. The following paragraphs provide other examples of property
preservation from the state of the art.

Stability. A coupled system is stable when it eventually comes to a rest. Since
many systems are engineered to be stable [3], it is important that this property is
preserved under co-simulation. The works in [9,28,22,1,17] study the conditions
under which the stability property is conserved for selected physical coupled sys-
tems. The same works also provide insight into how the co-simulation algorithm
can preserve this property.

Energy Conservation. Systems whose models account for the flow of energy fol-
low the principle of conservation of energy. That is, no energy is lost when flow-
ing between subsystems. This property is not preserved in näive co-simulation
algorithms because of the input approximations, and the non-negligible commu-
nication step size. The work in [4], extended in [27], demonstrates a co-simulation
algorithm that monitors the power flow between simulators and employs a correc-
tion scheme to account for the artificial energy introduced by the co-simulation.
The work in [26] complements the above work by showing how the energy resid-
ual can be used as an error indicator to control the communication step size.

Event Synchrony. A co-simulation preserves event synchrony when any event
happening at a specific time in the original hybrid system is also reproduced by
the co-simulation at the same time. A hybrid system is a system comprising soft-
ware and physical subsystems. This is one of the properties studied in [15], in the
context of co-simulations involving two simulation units: one responsible for the
software subsystem, and the other for a continuous subsystem. In order to en-
able an easier comparison of event timestamps, [12] proposes the use of integers,
instead of floating point numbers, to represent time. Accurately detecting—and
locating the time of—events is paramount to the preservation of the energy and
stability properties in a co-simulation. As such, the work in [16] explores how the
energy of a hybrid system can be increased when state events are not accurately



reproduced by the co-simulation. It presents a way to find the maximum event
detection delay so that the stability is preserved in the co-simulation.

4 Verification of Master Algorithms

The previous section introduced multiple properties that should be preserved in
a co-simulation. In particular, it introduced the event synchrony property.

The event synchrony property states that every event happening in a hybrid
system, happens at the exact same time in the corresponding co-simulation. An
event is a value in the co-simulation whose timestamp should be approximated
as closely as possible. For example, the time at which the output of a simulation
unit crosses the zero; of the time at which a state machine based FMU changes
its output because of a change in its internal discrete state.

In order to detect an event, because its exact time is often difficult to pre-
dict without actually asking the units to compute, the master algorithm only
detects it after it occurs. Then, to find the exact time of the event, the orches-
trator restores the co-simulation to a prior state (where the event has not yet
happened) and proceeds with more caution (that is, smaller communication step
size). This is repeated until the time of the event is known with sufficiently high
accuracy [34]. A consequence is that this property can only be preserved up to
some tolerance level, dictated by the precision required for the co-simulation
experiment.

4.1 Relaxing Event Synchrony: Event Ordering

The FMI Standard partially supports master algorithms that preserve the event
synchrony property. Each FMU is allowed to advance to a time prior to the one
requested by the orchestrator, and supports state saving/restoring functional-
ities. However, making use of these capabilities in practice may be impossible
due to lack of implementation (these are not mandatory), or simply due to the
performance degradation entailed by saving/restoring the state multiple times.

As such, the event synchrony property might be too strong. Instead, it might
be more useful to require that the sequence of events be preserved, even if
the timestamps do not coincide. For example, suppose that the real/correct
behaviour of a coupled system, comprised of a software and a physical compo-
nent, yields 3 events: (t1,e1), (t2,e2), and (t3,e3), with the timestamps satisfying
t1 < t2 < t3. The co-simulation satisfies the event ordering property if it exhibits
the events (t ′1,e1), (t ′2,e2), and (t ′3,e3), with the timestamps satisfying the same
order, that is, t ′1 < t ′2 < t ′3, but not necessarily equal to t1, t2, t3.

4.2 Problem Formulation

We focus on a restricted class of hybrid systems in order to study an essential
challenge related to preserving the event synchrony property. The system under
study is illustrated in Figure 4. It consists of a software part, and a physical



part. The software part is represented as a Statechart [20], and the physical part
is represented by a differential equation.

Software Physical
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S3

[after(0.01s)]/e1

[after(0.04s)]

[e1]/e2
Legend:

Subsystem

State

[guard]/out-event

Fig. 4: Hybrid systems under study.

The software part is rep-
resentative of a control sys-
tem that has a timeout mech-
anism, triggered whenever the
physical part fails to react to
some stimuli (an event in this
case). The details of the dy-
namics of the physical subsys-
tem are not important. What
is important is that its output is a delayed function of the input, so that any
change in the input is reflected on the output, e.g., 0.01 seconds later. This is
a reasonable abstraction since most physical systems have some sort of inertial
reaction to inputs.

An execution of the software subsystem is plotted in Figure 5. At time 0.01s,
the event e1 is produced. This event affects the output of the physical system
(0.01s later), which is picked up by the software unit, causing it to change to S2
and produce event e2. If the physical plant shows no reaction within 0.04s, then
the software will change to state S3.
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[e1]/e2[after(0.01s)]/e1
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0.020 0.01 0.04 0.08 0.1

Fig. 5: Sample execution of the system in Figure 4, with Open Modelica [14].
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Fig. 6: Co-Simulation Scenario.

For the purposes
of co-simulating the
above system using
the FMI Standard,
suppose that the phys-
ical subsystem is de-
composed into N > 1
FMUs, connected se-
quentially, as shown in Figure 6. The Software FMU implements the simulation



of the software subsystem shown in Figure 4. FMU 1 is responsible for the dy-
namics of the physical subsystem in the same figure, which introduces a 0.01s
delay between input and output. The remaining FMUs are identity functions
and will be referred to as propagate FMUs. All the FMUs here behave according
to the FMI Standard 2.0, respecting Restriction 1. That is, no event is detected
when a new input is set.

Using the Jacobi algorithm to co-simulate the scenario in Figure 6, with
N = 3 and co-simulation step size H = 0.01, leads to the software execution trace
depicted in Figure 7. The events produced in this trace are the same as the ones
in the correct execution in Figure 5, but their timestamps are different. Event
e1 is produced at time 0.02s instead of 0.01s, and the reaction of the physical
subsystem is detected later at time 0.06s, instead of 0.02s.
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S1

S2

Software State

0.020 0.01 0.04 0.08 0.1

[e1]/e2[after(0.01s)]/e1

0.06

Fig. 7: Co-simulation using the Jacobi algorithm of the scenario in Figure 6.
Parameters: N = 3,H = 0.01. Produced with Maestro from INTO-CPS [30].

Naturally, the smaller the communication step size H, the smaller the delay
introduced by the propagate FMUs.

What this example illustrates is that, due to Restriction 1, the size of the
co-simulation scenario also plays a role in the delay introduced. By adding more
propagate FMUs to the example scenario, we get a qualitatively different event
sequence, as shown in Figure 8, where the final state of the software subsystem
is S3, instead of S2. The excessive delay, accidentally introduced by the Jacobi
algorithm, causes the software timeout to be triggered.

In general one would like to have co-simulations that either do not introduce
artificial delays, or that, at least, introduce a delays that depend only on the
communication step size, so that it is easier to satisfy the event ordering prop-
erty. In the following subsections we use model checking to formally study the
ordering of this property for the hybrid system shown in Figure 4, with a variable
structure co-simulation scenario illustrated in Figure 6. In the experiments the
co-simulation step size is kept the same, although it is straightforward to take
its variation into account.
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Fig. 8: Co-simulation using the Jacobi algorithm of the scenario in Figure 6.
Parameters: N = 6,H = 0.01. Produced with Maestro from INTO-CPS [30].

4.3 Model Checking the Jacobi Algorithm

We use the ProMeLa [21] notation to model the FMUs, and the master algorithm.
The Promela language uses a textual syntax to describe parallel and sequential
processes, communication channels, and non-determinism.

Listing 1.1: Channels

1 mtype:events = {e0, e1};
2 typedef channels {
3 chan in = [0] of {mtype:events};
4 chan out = [0] of {mtype:events};
5 chan step = [0] of {int};
6 }

The Promela model follows closely the co-simulation scenario sketched in
Figure 6. The communication between the master algorithm and the FMUs
is made via three channels: one to set inputs, one to set outputs, and one to
perform a co-simulation step. These channels are detailed in Listing 1.1. The in
and step channels are read by the FMU, while the out channel is read by the
master algorithm.

Listing 1.2: Statechart FMU

1 proctype stateFMU(channels chans) {
2 int t_time = 0;
3 mtype:events input;
4 do
5 :: chans.step ? t_time ->
6 if
7 /* if state is 0 and more than 1 time unit have passed, then change the state

↪→ to 1 and output an event. */
8 :: (state == 0) ->
9 if

10 :: (t_time > 1) ->
11 state=1;
12 chans.out ! e1; /* e1 is the output that we are interested in receiving

↪→ again */
13 :: else -> chans.out ! e0;
14 fi;



15 /* If the state is 1 and 4 additional time units have passed, then change to
↪→ state 3 */

16 :: (state == 1) ->
17 if
18 :: t_time > 5 & input != e1 -> state = 3;
19 :: input == e1 -> state = 2;
20 :: else -> skip;
21 fi;
22 chans.out ! e0;
23 :: (state == 2) -> chans.out ! e1;
24 :: else -> chans.out ! e0;
25 fi;
26 :: chans.in ? input
27 :: (terminate == 1) -> break;
28 od;
29 }

The FMU corresponding to the software subsystem is modelled in ProMeLa
by implementing the reaction to events received from the channels in and step.
When a event is present in channel in, it is stored in the intermediate variable
input, such that it can be accessed when an event is present in channel step.
When an event is present in channel step, the FMU follows the state machine
of the software subsystem, taking into account that the time is represented as an
integer and the communication step size is 0.01s. Listing 1.2 presents this model.

The other FMUs are propagate FMUs. As such, the FMU model shown in
Listing 1.3 just stores and outputs whatever input it receives.

Listing 1.3: Propagate FMU

1 proctype propFMU(channels chans){
2 mtype:events inp;
3 int t_time = 0;
4 do
5 :: chans.in ? inp
6 :: chans.step ? t_time -> chans.out ! inp;
7 :: (terminate == 1) -> break;
8 od;
9 }

The Jacobi master algorithm essentially sends events through the in chan-
nel of each FMU, asks the FMU to step via the step channel, and stores the
output events at the out channels. The non-deterministic aspect of this model
is encoded in the choice of the number of propagate FMUs that can be added to
the scenario. The number of FMUs (maxN) is limited to 10, as it is enough to
prove this property. The implementation is shown in Listing 1.4.

Listing 1.4: The Jacobi Master Algorithm in ProMeLa

1 proctype MAJacobi(){
2 int propagateCount;
3 select ( propagateCount : 1 .. (maxN-1) );
4 int FMUCount = propagateCount + 1;
5
6 channels fmuChannels[maxN];
7 mtype:events inputs[maxN];
8
9 smpid = run stateFMU(fmuChannels[0]);

10
11 int i;
12 for(i : 1 .. propagateCount){



13 run propFMU(fmuChannels[i]);
14 }
15
16 do
17 :: time < endTime ->
18 /* Step the FMUs */
19 for(i : 0 .. FMUCount-1){
20 fmuChannels[i].step ! time+1;
21 }
22
23 /* Retrieve the outputs */
24 for(i : 0 .. FMUCount-1){
25 fmuChannels[i].out ? inputs[(i + 1) % (FMUCount)];
26 }
27
28 /* Set inputs */
29 for(i : 0 .. FMUCount-1){
30 fmuChannels[i].in ! inputs[i]
31 }
32
33 time++;
34 :: else ->
35 terminate = 1;
36 break;
37 od;
38 }

The event ordering property can be encoded in this model as a reachability
property: the Statechart FMU eventually reaches S2. This is shown in Listing 1.5.
The state variable is global, and is set as part of the execution of the FMU.

Listing 1.5: Eventually Correct LTL formula.

1 ltl eventuallyCorrect { <> (state == 2)}

Using SPIN [21] to carry out the verification of this property, applied to
Listing 1.4, quickly shows that it cannot be verified. The error trail provides a
counter example execution, by showing that S3 is reached when there are four
propagate FMUs. Informally, the error trail is the following: At step 2 (0.02 s), e1
is outputted from the Statechart FMU. At step 3 (0.03 s) it is outputted from the
following propagate FMU. At step 4 it is outputted from the second propagate
FMU, at step 5 it is outputted from the third propagate FMU. Finally, at step
6 it is outputted from the last propagate FMU but this is the same time as the
Software FMU transitions to S3. Therefore, the Statechart FMU never reaches
S2. This is consistent with the result in Figure 8.

4.4 Model Checking the Gauss-Seidel Algorithm

The Gauss-seidel algorithm is introduced in Section 2 and illustrated in Fig-
ure 3b. The main difference between this algorithm and the Jacobi is in the
timestamp of the outputs and inputs provided to the simulation units. From
the perspective of a simulation unit, the Gauss-Seidel algorithm provides future
inputs to the unit, before asking it to compute a co-simulation step. This allows
the unit to react to the inputs without any delay [18]. Its implementation is
detailed in Listing 1.6.



Listing 1.6: The Gauss-Seidel Master Algorithm in ProMeLa

1 proctype MAGauss(){
2 int propagateCount;
3 select ( propagateCount : 1 .. (maxN-1) );
4 int FMUCount = propagateCount + 1;
5
6 channels fmuChannels[maxN];
7 mtype:events inputs[maxN];
8
9 run stateFMU(fmuChannels[0]);

10
11 int i;
12 for(i : 1 .. FMUCount-1){
13 run propFMU(fmuChannels[i]);
14 }
15
16 do
17 :: time < endTime ->
18 for(i : 0 .. FMUCount-1){
19 /* Step the FMU */
20 fmuChannels[i].step ! time + 1;
21
22 /* Retrieve the output */
23 fmuChannels[i].out ? inputs[(i + 1) % FMUCount];
24
25 /* Set the input */
26 fmuChannels[(i + 1) % FMUCount].in ! inputs[(i + 1) % FMUCount]
27 }
28 time++;
29 :: else ->
30 terminate = 1;
31 break;
32 od;
33 }

Verifying Listing 1.6 with the LTL formula in Listing 1.5 shows that the
Gauss-seidel algorithm correctly preserves the execution sequence of the events.
This matches our intuition since the Gauss-Seidel algorithm allows each FMU to
perform computation while knowing the future input. Therefore, Restriction 1
does not affect the ability to propagate events instantaneously. The next section
discusses these results.

5 Discussion and Future Work

In this paper we have shown how a co-simulation using the Jacobi algorithm, and
respecting the FMI Standard, can fail to preserve the event ordering property.
To this end, we picked a particular class of hybrid systems that are sensitive to
delays.

The correctness property we used is a weak form of event synchrony: the
order of events is preserved, but their timestamps can be different than the ones
happening in the correct behaviour of the coupled system. Under the restrictions
of the FMI Standard, two master algorithms have been used to study the prop-
erty: The Jacobi and the Gauss-Seidel. It is shown that the Jacobi algorithm
does not preserve it, in general making it unsuitable for general, hybrid FMI
based co-simulation.



Albeit a very simple example, the hybrid system used is meant to illus-
trate that, based on minimum information on the FMUs, we can prove if a
co-simulation algorithm is appropriate or not for a scenario. The proof is based
on an abstraction of the FMU in the form of timed automata and the definition
of properties to be respected by some FMUs. To extend this preliminary work,
we intend to explore how to deal with black box simulation units, so that a
conservative (and provably correct) abstraction can be built for them. It is also
important for an FMU to expose some of the properties that must be preserved
without revealing the internal details, keeping intellectual property safe.

To illustrate, in the previous example, if we expose the shortest timed reaction
of each software FMU, and the input-to-output propagation time of each FMU
then we can determine which communication step size can be used in order
to ensure the order of the event sequence with the Jacobi algorithm. To see
how the step size H can be computed, let T denote the smallest timeout used
in the software FMU, and P(H) denote the largest propagation time from any
output to itself, for the communication step size H. For the scenario in Figure 6,
P(H) = H× (N + 1). Then the communication step size must be chosen so that
P(H) < T .

This example shows that the Jacobi algorithm is still suitable for black box
co-simulations, since exposing the shortest timed reaction and the propagation
time does not expose the Intellectual Property of the subsystems.

Providing abstract information from the FMU is common in research on black
box co-simulation (e.g., exposing the Jacobian [29], exposing the I/O feedthrough
[2], exposing the maximum allowed step size [7]). While this is usually carried
out to allow the setup of a co-simulation algorithm, we propose here to expose
the minimum, relevant information to have a correct co-simulation, ie. to allow
verification such as model checking of the co-simulation.

The FMI webpage7 contains a list of tools capable of performing co-simulation,
and in order to be on this list, a tool must pass some tests. These tests, however,
are limited – for example they only concern simulation of a single FMU, and not
an actual co-simulation. In the long term, this research aims at producing a set of
benchmarks, for various correctness properties, that can be used by the research
community in the development of co-simulation tools. This idea is inspired by
the work of [8], which defined the building blocks of these benchmarks.
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University Electronic Press, Munich, Germany (Nov 2012)

7. Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wet-
ter, M.: Determinate composition of FMUs for co-simulation. In: Eleventh ACM
International Conference on Embedded Software. p. Article No. 2. IEEE Press
Piscataway, NJ, USA, Montreal, Quebec, Canada (2013)

8. Broman, D., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter, M.: Re-
quirements for Hybrid Cosimulation Standards. In: 18th International Conference
on Hybrid Systems: Computation and Control. pp. 179–188. ACM New York, NY,
USA, Seattle, Washington (2015), series Title: HSCC ’15

9. Busch, M.: Continuous approximation techniques for co-simulation methods: Anal-
ysis of numerical stability and local error. ZAMM - Journal of Applied Mathematics
and Mechanics 96(9), 1061–1081 (Sep 2016)

10. Cellier, F.E., Kofman, E.: Continuous System Simulation. Springer Science & Busi-
ness Media (2006)

11. Clarke, E.M., Veith, H.: In: Verification: Theory and Practice, Essays Dedicated to
Zohar Manna on the Occasion of His 64th Birthday. Lecture Notes in Computer
Science, vol. 2772, pp. 208–224. Springer (2003)

12. Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tripakis, S.: Hybrid
co-simulation: It’s about time. Software & Systems Modeling (Nov 2017)

13. FMI: Functional Mock-up Interface for Model Exchange and Co-Simulation. Tech.
rep. (2014)

14. Fritzson, P., Aronsson, P., Pop, A., Lundvall, H., Nystrom, K., Saldamli, L., Bro-
man, D., Sandholm, A.: Openmodelica - a free open-source environment for system
modeling, simulation, and teaching. In: 2006 IEEE Conference on Computer Aided
Control System Design, 2006 IEEE International Conference on Control Applica-
tions, 2006 IEEE International Symposium on Intelligent Control. pp. 1588–1595
(Oct 2006)

15. Gheorghe, L., Bouchhima, F., Nicolescu, G., Boucheneb, H.: A Formalization of
Global Simulation Models for Continuous/Discrete Systems. In: Summer Com-
puter Simulation Conference. pp. 559–566. Society for Computer Simulation Inter-
national San Diego, CA, USA, San Diego, CA, USA (Jul 2007), series Title: SCSC
’07
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