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Precision on Demand: Propositional Logic for
Event-Trigger Threshold Regulation

Valdemar Tang, Claudio Gomes and Daniel E. Lucani

Abstract—We introduce a novel event-trigger threshold (ETT)
regulation mechanism based on the quantitative semantics of
propositional logic (PL). We exploit the expressiveness of the
PL vocabulary to deliver a precise and flexible specification of
ETT regulation based on system requirements and properties.
Additionally, we present a modified ETT regulation mechanism
that provides formal guarantees for satisfaction/violation detec-
tion of arbitrary PL properties. To validate our proposed method,
we consider a convoy of vehicles in an adaptive cruise control
scenario. In this scenario, the PL operators are used to encode
safety properties and the ETTs are regulated accordingly, e.g., if
our safety metric is high there can be a higher ETT threshold,
while a smaller threshold is used when the system is approaching
unsafe conditions. Under ideal ETT regulation conditions in this
safety scenario, we show that reductions between 41.8 - 96.3%
in the number of triggered events is possible compared to using
a constant ETT while maintaining similar safety conditions.

Index Terms—Propositional Logic, Event-triggering mecha-
nisms, Interval Arithmetic

I. INTRODUCTION

Cyber-physical systems can collect large amounts of sensor
data making them costly to operate over time. In such systems,
data is often transmitted periodically. This causes a consistent
overhead of operating the system even when no new or
interesting events are happening. Freeing up communication
resources from sensors that do not require high accuracy would
also allow the system to increase communication with sensors
measuring critical values that require high accuracy. The
criticality associated with each sensor changes in time and will
depend on specific system properties and requirements. Thus,
there is a clear motivation to develop methods to match data
traffic to the safety and performance requirements of cyber-
physical systems to avoid unnecessary resource consumption,
delay or congestion in the communication network.

Event-triggering mechanism: A popular mechanism to
implement efficient communication in the state-of-the-art
(SOTA) is event-triggered state estimation and control. The
fundamental idea is to only sample and/or transmit informa-
tion when necessary. The necessity is defined by an event-
triggering condition that must be fulfilled for the system to
make use of the measurement. This can help to significantly
reduce communication costs compared to periodic sampling
and transmission [1]. The event-triggering condition typically
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uses an event-triggering threshold (ETT) which indicates when
the difference between new and known information is large
enough to be transmitted. Figure 1 visualizes the conceptual
differences between a periodic transmission strategy (top),
a static threshold (middle) and a safety-dependent threshold
(bottom). Intuitively, smaller thresholds (and thus better ac-
curacy) are beneficial in unsafe situations. A similar parallel
can be drawn to performance, where underperforming systems
require better accuracy and well-performing systems can po-
tentially operate with less sensor accuracy.
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Fig. 1: Visualization of periodic transmission (top), static
(middle) and safety-dependent (bottom) event-triggering con-
ditions. Yellow dots indicate measurement transmission. The
static event trigger prioritizes change in the signal regardless
of safety, while the safety-dependent event trigger prioritizes
change relative to the safety of the system.

Initially conceptualized in [2], [3], event-triggered tech-
niques have since undergone significant development and
have been applied to reduce communication in multi-agent
consensus systems [4], networked control systems (NCSs)
[5] and distributed state estimation [6] among others. As
the goals of these systems are different, so are the event-
triggering conditions. For example, in NCSs a central focus is
on designing a controller and event-triggering mechanism to
ensure stability of the controlled systems in the presence of
transmission delays, dropouts and other phenomena introduced
by the network. As a result, the event-triggering condition
is often designed in combination with the controller and
the system dynamics. Controller systems may employ state
observers (a.k.a. state estimators), which means that using
event-triggered techniques requires a corresponding adaptation
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of those observers. Several well-known techniques have been
adapted to event-triggered state estimation, e.g., the Kalman
filter [7], H∞ filtering [8] and set-membership filtering [9].

Propositional Logic: While some properties such as
stability and convergence are typically well-defined for a broad
class of systems, other safety (and performance) properties
require a formal definition on a per-system basis. Multiple
formalisms can be used to achieve this goal. In this paper, we
focus on signal-based Propositional Logic (PL) statements [10]
as detailed later in Section II-D. PL is fundamentally different
from stability analysis in that it provides a way to express and
verify system properties based on time series data rather than
exhaustively proving system stability. A PL formula outputs
a verdict specifying whether the given property was satisfied
or violated. Crucially, it provides a quantitative metric that
signifies how much the property is violated or how far it
is from being violated. Such properties can be related to
performance (liveness) or safety.

Contribution: Since the design of the ETT depends on
the goals of the system, and since PL provides a well-founded
approach to describe and monitor such goals, we propose
a method for leveraging the expressiveness of PL to enable
precise regulation of the ETT based on system requirements.
More specifically, we provide a parameterized ETT regulation
mechanism for inequality PL properties and their negations
and use the propositional operators and structure of the propo-
sitional property to refine the ETT. We provide a method for
determining a set of parameters that under certain assumptions
guarantee achieving the best possible accuracy before violating
a safety or performance property. Additionally, we also provide
guidance on parameter tuning for the proposed ETT regulation
mechanism and evaluate our approach on a case study concern-
ing a convoy of vehicles in an adaptive cruise control scenario.
We compare the numerical results in terms of the number of
triggered events for the time-triggered case, a constant ETT
and our proposed ETT regulation mechanism. Finally, we
explore key tradeoffs for different parameter configurations.

Structure: The considered system architecture, back-
ground terminology and problem formulation are presented in
Section II followed by the proposed method in Section III. This
method is applied to a simulated adaptive cruise control (ACC)
scenario in Section IV. We discuss the results and limitations
of our method in Section V as well as compare our work with
SOTA. Finally, we present concluding remarks and planned
future work in Section VI.

II. BACKGROUND

A. The event-triggered system architecture under study

We consider the system architecture in Fig. 2 with multiple
smart sensors measuring a process. The true state vector
of the system at time tk is denoted by xtk , the control
input vector by utk and f(xtk ,utk) is the function that
describes how the system evolves from tk → tk+1. Sensor
i measures a value yi,tk at time tk given by yi,tk = wi(xtk).
If the event-triggering condition is satisfied, the measurement
yi,τ i

m+1
is transmitted to the remote state estimator, where

τ im+1 identifies the current event-triggering time instant for the

Notation Description
x̂tk , x̂i,tk State estimate vector and state

estimate vector element at time
tk .

y,y∼φp Measurable system output vec-
tor and signals to regulate ETTs
for based on the inequality
property φp respectively.

φ,φp Arbitrary propositional and in-
equality property respectively

δyi,φ,tk+1 (tk, ϵyi,φ) ETT of signal yi at time tk
defined based on property φ.

e(·) Update error. Difference be-
tween predicted and current or
last and current measurement.

ρ(φ, x̂tk ) Robustness/satisfaction degree
of the property φ and corre-
sponding system states at time
tk .

∆x,w(∆x) Interval and widht of the vari-
able x respectively.

∆x̂tk+1|tk Vector containing intervals of
predicted states at time tk+1

based on the states at time tk .

ρ(φ,∆x̂tk+1|tk ), ρ(φ,∆x̂tk+1|tk ) Lower and upper bound respec-
tively, of the predicted robust-
ness interval of the inequality
property φ at time tk+1 based
on the state interval vector.

ϵyi,φ, λyi,φ, ϵρ,φp ETT regulation parameters re-
lated to signal yi and/or in-
equality property φp.

ζρ(φ, x̂tk ) The normalized robustness of
the property φ at time tk . Vari-
ants with different super-scripts
exist.

TABLE I: Overview of common notation used in the paper.

ith sensor. The state of the process is estimated by the remote
state estimator using a model of the process, the previously
estimated state x̂tk−1

, measurements and ETT information
from the sensors and monitor ŷtk−1

and control input utk−1
.

The system also has a set of properties based on the system
requirements (Φ), which are monitored by the monitor. The
monitor receives the x̂tk and optionally utk to determine
the state/satisfaction of the monitored properties. Based on
the current state of the properties and the measurable system
outputs y, the monitor calculates suitable ETTs for each smart
sensor. The smart sensor sampling and control system update
frequency are assumed to be the same and synchronized.
Additionally, we consider the case where the system, under
the periodic transmission case (i.e. all samples are transmitted)
satisfies all system properties.

B. ETT regulation strategies

The literature distinguishes between static and dynamic
ETTs. Static ETTs depend on the current state estimate
vector, are time-dependent or are constant, whereas dynamic
ETTs have additional dynamic variables. We focus on state-
dependent static ETTs and thus do not detail dynamic ETTs
further and interested readers are referred to [11], [12], [13],
[6], [14]. A general event-triggered transmission mechanism
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Fig. 2: An overview of the system architecture considered in this paper. Dotted black lines indicate an optional data flow. The
control input utk is necessary for the monitor if we wish to verify or monitor control actions in the system properties and
ŷi,tk is necessary if the innovation update error is used (described in Section II-B).

for a state-dependent static ETT can be defined as a sequence
of event-triggering times [12] for a sensor i:

τ im+1 = inf{t > τ im | ge(e(·), t, ...) > gx(x̂t, ...)}, (1)

where e(·) is the update error and can be defined as the
difference between the current measurement and previous
transmitted measurement (yi,tk − yi,τ i

m
) (also known as the

Send-on-Delta (SOD) method [15]) or the difference between
the predicted and actual measurement

|ŷi,tk − yi,tk | (2)

also known as the innovation [1]. In the SOTA, state-
dependent static ETTs are typically given by ge(e(·),Γ

1
2 ) =

||Γ 1
2 e(·)||2 and gx(x̂tk ,Γ

1
2 ) = ||Γ 1

2Z(x̂tk , ...)||2 where Γ is a
weighting matrix and Z(x̂tk , ...) is a suitable function to be
determined [11].

Example 1 (SOD Event-trigger). Consider a vehicle in an
adaptive cruise control scenario that has an estimate of its
position xc as well as the preceding vehicle xc+1 where
xc, xc+1 ∈ R. Intuitively, the further away vehicle c is from
vehicle c+1, the more uncertainty we can allow. For example,
we can define Z(xc, xc+1) = max(xc+1 − xc − 10, 1), where
the minimum ETT is then obtained once the vehicles are less
than 11 meters apart. Now consider the position estimates
x̂c
tk

= 10, x̂c+1
tk

= 22, the previous measured distance yτc
m

=
12 from vehicle c to c+ 1 at time τ cm, σ = 1, and the weight
Γ

1
2 = 0.2. We calculate Z(·) = 22 − 10 = 12. A new data

sample is now taken at the sensor with the value of ytk = 15.
The update error becomes: e(ytk , yτc

m
) = 15 − 12 = 3. We

can now determine if an event is triggered by calculating the
event-triggering condition:

ge(e(ytk , yτc
m
),Γ

1
2 ) = 0.2 · 3 = 0.6,

gx(Z(x̂c
tk
, x̂c+1

tk
),Γ

1
2 ) = 1 · 0.2 · 2 = 0.4.

As ge(·) > gx(·), the event-triggering condition is satisfied
and the measurement is transmitted.

A central point in the above example is that the ETT is
relative to some function of x̂tk . Thus, gx(x̂tk , ...) should be
designed such that it produces a small value in situations that
require a small ETT.

Event-triggering conditions can be designed for many dif-
ferent purposes. For example, event-triggered techniques have
seen widespread use in multi-agent systems (MASs) [4]. In
such systems, a key design objective could be to achieve con-
sensus in bounded time, to which time-dependent ETTs have
been implemented to reduce the ETT over time as the agents
gradually achieve consensus [16]. Event-triggering techniques
have since been developed for a wide range of system classes
and setups from linear MASs [17] to heterogeneous nonlinear
MASs [18]. Event-triggering mechanisms may also adapt to
the state of the network. For example, if the network is
congested, we may want to increase the ETT resulting in
fewer triggered events to avoid further congestion, e.g., in [19].
Alternatively, the event-triggering condition may be designed
in combination with a controller to ensure the stability of
the controlled system, which is the primary focus in event-
triggered networked control systems [20].

C. Event-triggered state estimation (ETSE)

The event-triggered transmission scheme requires an adap-
tation of the classical state estimation techniques for periodic
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sampling and transmission. This is because the estimator
has to handle both point (explicit) and set-valued (implicit)
measurements where the latter is the result of the ETT [21].
There are two overall approaches for tackling this problem:
a deterministic and a stochastic approach, each of which
determines how the signals are modeled. A central issue in
the stochastic approaches is how to deal with the non-gaussian
distribution introduced by the ETT. Therefore, the traditional
Kalman filter is not directly applicable. An early attempt was
to implement the Kalman filter with intermittent observations
[22], where the update step of incorporating the measurement
is simply skipped at time instants when measurements are not
available. This can however lead to sub-optimal performance
compared to approaches that take the knowledge of intermit-
tent observations into account [1]. Exact or optimal solutions
to the event-based filtering problem are available but they
require numerically estimating the probability distributions
which makes them infeasible to use during runtime [21].
Therefore approximate solutions are necessary. For simplicity,
we focus on state estimators for discrete-time linear systems
of the type:

xtk+1
= Axtk +Butk +wtk ,

ytk = Cxtk + rtk ,
(3)

where xtk ∈ Rn is the system state vector at time tk, ytk ∈
Rm is the measurable system output at time tk, rtk ∈ Rm and
wtk ∈ Rn are the measurement and process noise respectively
at time tk and A,B and C are matrices of appropriate sizes.

Later in our experiments, we use an event-triggered state
estimation method that explicitly utilizes the knowledge of the
ETT to update the state estimate. One such method was pro-
posed in [23] and was later compared with several other ETSE
methods in [1] where it performed the best overall in terms of
state estimation accuracy and resulting communication rate.
We compared the method from [23] with an adaptation of
the Kalman filter originally developed for the SOD method
in [24] by empirically evaluating the estimation accuracy
for the system model, where we found that they produced
similar estimation accuracy for the case study scenario. As the
modified Kalman filter (KF) from [24] is significantly simpler,
we use this approach for our experiments.

Definition 1 (Modified Kalman filter adapted from [24]). A
modified Kalman filter which utilizes the knowledge of the
event-triggering threshold is given by the standard Kalman
prediction equations:

x̂−
tk = Ax̂tk−1

+Butk−1
, (4)

P−
tk

= APtk−1
AT +Q, (5)

a modification of the measurement and measurement covari-
ance matrix R:

R̄tk = R, (6)

then for all signals if measurement of signal yi is received at
time tk:

yi,tk = yi,tk (7)

else use the predicted measurement ŷ−i,tk = Cx̂−
tk :

yi,tk = ŷ−i,tk . (8)

Then, if a measurement was not received for signal yi, the
value of a given measurement is assumed to be equal to the
predicted value and have a uniform distribution with variance
δ2yi,tk

/3 where δyi,tk is the ETT of signal yi at time tk which
is then added to the measurement noise covariance matrix at
the corresponding entry.

Rtk(i, i) = Rtk(i, i) + δ2yi,tk
/3. (9)

We then proceed with the standard Kalman filter update
equations:

Ktk = P−
tk
CT (CP−

tk
CT + R̄tk)

−1, (10)

x̂tk = x̂−
tk +Ktk(ytk − Cx̂−

tk), (11)

Ptk = (I −KtkC)P−
tk
, (12)

where R is the measurement noise covariance matrix, Q is
the process noise covariance matrix and A,B and C are the
state-space equations from the system model in Eq. 3.

D. Propositional Logic

We consider signal-based PL statements with quantified
semantics. PL is defined by the following recursive syntax

φ ::= p(x̂) > c | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2, (13)

where x̂ is the state estimate vector, c is a constant, ¬ is the
negation operator ∧,∨ are the logical and and or operators
respectively. The syntax in Eq. (13) can be combined to form
the well-known implication operator (φ1 → φ2 ≡ ¬φ1 ∨ φ2)
which indicates that φ1 implies φ2. We introduce the notation
φp to refer to an inequality property as this will become useful
later.

We adopt the quantitative metrics (robustness) of proposi-
tional properties from Signal Temporal Logic [25] that indicate
how robustly a given property is violated/satisfied.

Definition 2 (Robustness adapted from [25]). The robustness
ρ of a PL property φ based on the system state x̂tk at time
tk, denoted as ρ(φ, x̂tk) is defined recursively by:

ρ(p(x̂tk) > c) = p(x̂tk)− c

ρ(¬φ, x̂tk) = −ρ(φ, x̂tk)

ρ(φ1 ∧ φ2, x̂tk) = min(ρ(φ1, x̂tk), ρ(φ2, x̂tk))

ρ(φ1 ∨ φ2, x̂tk) = max(ρ(φ1, x̂tk), ρ(φ2, x̂tk))

E. Interval arithmetic

Due to the ETT, the values of the system outputs can be
expressed as an interval Y = [Y , Y ] in terms of the ETT as
[26]:

Y (y, δy) = [y − δy, y + δy] = [Y , Y ], (14)

where δy is the ETT of the signal y and y is the previously
transmitted value or the estimated value in the case of the SOD
update error and innovation-based update error respectively.
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For the remainder of the paper, we use the notation ∆x(·) to
refer to the interval of x ∈ R and ∆x(·) to refer to a vector
containing intervals of x ∈ Rn. We say that an interval is
degenerate if Y = Y , which we assume to be the case when
an event is triggered as the true value of the signal is known.
Furthermore, we introduce the addition of intervals X and Y
as [26]: X+Y = [X+Y ,X+Y ], the subtraction of intervals
X and Y as: X − Y = [X − Y ,X − Y ], and the width of an
interval Y as:

w(Y ) = Y − Y (15)

and the product of two intervals X and Y as

X · Y = [minS,maxS] where S = {XY ,XY ,XY ,XY }.
(16)

We now present two results that will be useful later to provide
property satisfaction detection guarantees.

Lemma 1. Multiplying an interval X = [X,X] where
X ̸= X with a scalar α < 0, reverses the interval s.t.
αX = [Xα,Xα].

Proof. See appendix A.

Lemma 2. The addition or subtraction of two intervals
X(x, δx) and Y (y, δy) scaled by scalars αX and αY respec-
tively, where αX ∈ R, αY ∈ R, produces an interval where
w(αXX(x, δx)± αY Y (y, δy)) = 2|αX |δx + 2|αY |δy .

Proof. See appendix B.

For more information on interval arithmetic, the reader is
referred to [26].

F. Problem formulation

We introduce the notation y∼φ where y∼φ ⊆ y to denote
the system outputs to which the ETT regulation should be
applied based on the property φ. The set y∼φ is to be defined
by the system designer.

We consider the problem of finding an event-triggering
mechanism ET (Φ, x̂,Ξ) with a corresponding set of param-
eters Ξ to ensure the satisfaction of all system properties Φ
while transmitting as few measurements as possible. This is
stated formally as the following optimization problem:

argmin
ET (Φ,x̂,Ξ)

(
∑
yi∈y

|{yi,τ i
1
, ..., yi,τ i

m
}|)

s.t. ∀φ ∈ Φ ∀tk ∈ [t0, tend] ρ(φ, x̂tk) > 0,

(17)

Additionally, we assume that the original system under the
time-triggered transmission approach (TT) satisfies all system
properties. Thus we know that

ET (·) = TT (Ts) →
(ρ(φ, x̂tk) > 0) ∀tk ∈ [t0, tend]∀φ ∈ Φ,

(18)

where Ts denotes the sampling, transmission and controller
update interval.

III. PL ROBUSTNESS-BASED ETT REGULATION

An ETT based on state information requires the designer
to model gx(x̂t, ...) from Eq. (1) so that it outputs a small
value in situations with a low desired state estimate uncer-
tainty and vice versa. The robustness output of inequality
PL properties provides exactly this. For example, we may
allow a larger state-estimate uncertainty (and thus save com-
munication resources) in definitely safe or well-performing
states (large robustness) and require a lower uncertainty in
unsafe/underperforming states (low robustness) as depicted in
Fig. 1.

Relation with State of the Art (SOTA): The robustness
of inequality PL properties and their negations in Definition
2 is calculated by subtracting some state-dependent value
from a constant. This is similar to several implementations of
gx(x̂, ...) in SOTA. For example, [19] proposes a triggering
mechanism that depends on the difference between the steady-
state desired distance and the current distance between auto-
matically controlled vehicles in a cooperative cruise-control
scenario, which is similar to Example 1.

In [27], the authors study a multi-agent system that attempts
to achieve consensus where the triggering condition is relative
to a weighted difference of state estimates between agents. The
smaller the difference, the smaller the ETT. This is analogous
to a PL liveness property where we want to verify that the
system achieves consensus. This similarity indicates that the
quantitative semantics of PL properties is a suitable metric to
base our ETT regulation mechanism on.

Section overview: Initially we define the baseline constant
ETT policy in Section III-A. Then, in the following sections,
we gradually build and extend our ETT regulation mechanism
from inequality properties in Section III-B to include PL
properties with inequality sub-properties in Section III-E and
then arbitrary PL properties in Section III-F. Along the way,
we outline the parameter selection procedure in Section III-C
and provide guarantees for detecting property satisfaction first
for inequality properties in Section III-D which we then extend
to arbitrary PL properties in Section III-G.

A. Baseline scheme: Constant ETTs (CETT)
We consider the constant ETT policy CETT as a baseline

to compare our proposed method to. We adapt Eq. (17) where
we consider the problem of finding a set of constant ETTs
that minimize the total number of triggered events, while still
ensuring that the system satisfies all properties. Thus under the
CETT scheme Ξ = {δy0

, ..., δyi
} and we add the constraint

∀yi ∈ y δyi
≥ 0. The constant ETTs are chosen such that

they can ensure property satisfaction under the worst possible
system conditions, and thus do not take advantage of less
strict accuracy requirements in less critical situations. Thus,
if we required a similar accuracy in the bottom plot of Fig.
1, we would need to set the ETT correspondingly resulting in
significantly more triggered events in less critical situations.

B. A robustness-proportional ETT regulation mechanism for
inequality properties

In order to mitigate the disadvantages of the constant ETT
policy, we propose a runtime ETT regulation mechanism based
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on the robustness of inequality PL properties that can take
advantage of less critical situations.

Definition 3. A static robustness-proportional ETT regulation
mechanism for a signal yi ∈ y∼φ for the inequality property
φp of one of the types: p(x̂φ) > c, (p(x̂φ) < c) is defined as:

δyi,φ,tk+1
(x̂tk , ϵyi,φ) =

ρ(φ, x̂tk)

ϵyi,φ
(19)

where ϵyi,φ ∈ R+.

We can now adapt the optimization problem in Eq. 17 such
that Ξ becomes the set of defined ϵyi,φp parameters and we
add the constraint that ϵyi,φp ∈ R+.

Proposition 1. Using the ETT regulation mechanism in Defi-
nition 3, we achieve the property

lim
ρ(φ,x̂tk

)→0
δyi,φ,tk+1

(x̂tk , ϵyi,φ) = 0 (20)

which corresponds to smaller ETTs and thus improved accu-
racy in more critical situations.

For the remainder of this Section, we will focus on the
ETT regulation mechanism in Definition 3 and the extension
of this to arbitrary PL properties. We refer to this policy as
ρETT. Later, in Section IV, we will revisit the TT approach in
Eq. (18) and the CETT policy and compare these approaches
to the ρETT policy presented in this Section. Next, we sketch
the overall potential optimization approaches for determining
suitable parameters for the TT, CETT and ρETT policies.

C. Parameter selection procedure outline

Determining the ϵyi,φp parameters or constant ETTs in
Eq. 17, can be categorized into two overall approaches;
empirical and formal. The former approach entails running
a large number of simulations for different parameter sets
with random measurement noise and starting conditions. For
example, if we consider the optimization problem for static
ETTs in Eq. (17), we could start with all ETTs set to 0, and
then gradually increase the ETTs until the property is violated.
Conversely, if we consider the optimization problem in Eq (17)
for ρETT , we would start with large ϵyi,φp parameters and
gradually decrease them until the property is violated. This
may be a suitable approach if the system is complex and hard
to formally analyze, but may have significant computational
requirements. Alternatively, a suitable ETT can be determined
by formally analyzing the system and controller dynamics.
In this paper, we primarily consider the former empirical
approach. In the next section, we show how to obtain a lower
bound on the parameters such that when the uncertainty of
the measured signals is taken into account then the ETTs
will be reduced arbitrarily close to 0 as the system becomes
unsafe. Later, in Section IV we provide insights on how
parameter tuning of both constant ETTs and the proposed
ETT regulation method can be performed. We also explore
what effects suboptimal parameter configurations can have on
the satisfaction of the property and the number of triggered
events.

D. Guarantees for inequality property satisfaction detection

Recall that the robustness used to calculate the ETT in
Definition 3 is an estimated robustness rather than the actual
true robustness. As a result, the property in Proposition (1)
does not guarantee that the ETTs approach zero when the
robustness calculated on the true system state, becomes zero.
Because, while the robustness may attain a positive value that
is close to zero, because of its associated uncertainty, the real
robustness may already have become negative. According to
Eq. (14) and as Example 2 shows, we allow measurable signals
to reside in known intervals. Similarly, the state estimates will
also reside in an interval and consequently, the robustness
will also reside in an interval which can be calculated using
interval arithmetic. This robustness interval is then guaranteed
to contain the true robustness. If the robustness interval has a
negative lower bound, then we can conclude that the system
is potentially unsafe allowing the controller (and the ETT
regulation mechanism) to react appropriately.

Example 2 (Robustness interval). Consider the states x̂ =[
x̂1

x̂2

]
and the property φp = (2x1 + 4x2) > 9 and the

corresponding robustness ρ(φp, x̂tk) = 2x1 + 4x2 − 9. At
time tk, we have the following estimated values of the signals
x̂1,tk = 3, x̂2,tk = 1 corresponding to a robustness of
ρ(φ) = 2 · 3 + 4 · 1 − 9 = 1. We can measure both x1 and
x2 and use the ETT regulation mechanism from Definition 3
with the parameters ϵx1

= 3, ϵx2
= 3 providing us with ETTs

δx1
= 1

3 , δx2
= 1

3 . We assume that the signals x1 and x2 do
not change over the next time step and we apply the calculated
ETT. Thus the robustness interval at time tk+1 becomes
2[3− 1

3 , 3+
1
3 ] + 4[1− 1

3 , 1+
1
3 ] = [10− 6

3 , 10+
6
3 ] = [8, 12].

As a result, the system could potentially violate φ without
the remote state estimator or controller being aware which is
undesirable.

In the following section, we provide a method for deter-
mining the set of minimum ϵyi,φp parameters that ensure that
the minimum ETT is always applied before the robustness
calculated based on the true system state ρ(φp,xtk) reaches
zero.

Let ρ(φp,∆x̂tk) denote the robustness interval, where
∆x̂tk is the state estimate interval vector at time tk. We
assume that ∆x̂tk only contains directly measurable states
and that the innovation update error (eq. (2)) is used. Thus
∆x̂tk can be constructed as follows:

∆x̂tk =


[x̂1,tk − δx1,φp,tk(·), x̂1,tk + δx1,φp,tk(·)]

...

[x̂n,tk − δxn,φp,tk(·), x̂n,tk + δxn,φp,tk(·)]

 . (21)

We also assume that it is possible to predict the bounds of
the state estimate and consequently the robustness at the next
time step ∆x̂tk+1|tk , given the state estimate information at
time step tk:

[ρ(φp,∆x̂tk+1|tk), ρ(φ
p,∆x̂tk+1|tk)] = ρ(φp,∆x̂tk+1|tk).

(22)
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This prediction can be obtained using set-membership filtering
[28]. Alternatively, one may use a probabilistic state estimation
approach such as the KF and use the associated uncertainty
related to the state estimate, to construct a confidence interval
on the state interval. In Theorem 1, we present a method for
automatically determining the ϵyi,φp parameters from Defini-
tion 3 such that the sign of the robustness will always equal
the sign of the true robustness, i.e. we guarantee that we detect
the satisfaction/violation of a property.

Theorem 1. Consider an inequality property φp with the ro-
bustness interval width w(ρ(φp,∆x̂tk+1

)) and the robustness
of φp calculated on the true system state ρ(φp,xtk+1

) at
time tk+1. By setting ϵyi,φp =

∂w(ρ(φp,∆x̂))
∂δyi,φp,tk+1

(·)λyi,φpϵρ,φp where∑
yi∈y∼φp

1
λyi,φ

p
= 1, ϵρ,φp ≥ 1 and using ρ(φp,∆x̂tk+1|tk)

instead of ρ(φp, x̂tk) in Definition 3, we achieve the property

(ρ(φp, x̂tk) > 0) ⇔ (ρ(φp,xtk) > 0) (23)

when ∀xi ∈ x̂ ∂p(x̂)
∂xi

= αi, the innovation update error is
used and ∀xi ∈ x̂ : ∂p(x̂)

xi
̸= 0 ∃yi ∈ y∼φp : yi ≡ xi.

The latter formalizes that all relevant states are directly
measurable.

Proof. To satisfy the condition in eq. (23) we predict the
robustness interval at time tk+1 to determine the necessary
ETTs and thus signal intervals at time tk+1. As the true robust-
ness ρ(φp,xtk+1

) ∈ ρ(φp,∆x̂tk+1|tk), we consider the worst-
case scenario (ρ(φp,xtk+1

) = ρ(φp,∆x̂tk+1|tk)). Next, we
demonstrate that by setting ϵyi,φp =

∂w(ρ(φp,∆x̂))
∂δyi,φp,tk+1

(·)λyi,φpϵρ,φp

we have:

w(ρ(φp,∆x̂tk+1
)) ≤ max(

ρ(φp,∆x̂tk+1|tk)

ϵρ,φp

, 0). (24)

As the robustness is a linear combination of the bounded
scaled state estimates and we use the innovation update
error, the upper bound of the robustness interval width (the
case when no events are triggered) can be calculated us-
ing the state estimate intervals ∆x̂tk+1

from eq. (21). Us-
ing the result of Lemma 2, we have w(ρ(φp,∆x̂tk+1

)) =
2|α1|δy1,φp,tk+1

(·) + ... + 2|αn|δyn,φp,tk+1
(·) and thus also

∂w(ρ(φp,∆x̂))
∂δyi,φp,tk+1

(·) = 2|αi| where αi =
∂ρ(φ,x̂tk+1

)

yi
. If we insert

ϵyi,φp =
∂w(ρ(φp,∆x̂))
∂δyi,φp,tk+1

(·)λyi,φpϵρ,φp in Definition 3 and use
ρ(φp,∆x̂tk+1|tk) instead of ρ(φ, x̂tk) we have:

w(ρ(φp,∆x̂tk+1
))

=
∑

yi∈y∼φp

2|αi|
max(ρ(φp,∆x̂tk+1|tk), 0)

2|αi|λyi,φpϵρ,φp

,

=
1

ϵρ,φp

∑
yi∈y∼φp

max(ρ(φp,∆x̂tk+1|tk), 0)

λyi,φp

=
max(ρ(φp,∆x̂tk+1|tk), 0)

ϵρ,φp

.

Next, assume ρ(φp, x̂tk+1
) ≤ 0. Since ρ(φp, x̂tk+1

) ∈
ρ(φp,∆x̂tk+1

) and ρ(φp,∆x̂tk+1
) ⊆ ρ(φp,∆x̂tk+1|tk), and

therefore ρ(φp,∆x̂tk+1|tk) ≤ ρ(φp, x̂tk+1
) ≤ 0. Conse-

quently

(w(ρ(φp,∆x̂tk+1
)) = 0) ⇒ (ρ(φp, x̂tk+1

) = ρ(φp,xtk+1
))

and thus (ρ(φp, x̂tk+1
) ≤ 0) ⇒ (ρ(φp,xtk+1

) ≤ 0). Follow-
ing the same line of arguments, we can obtain (ρ(φp,xtk+1

) ≤
0) ⇒ (ρ(φp, x̂tk+1

) ≤ 0). If (ρ(φp, x̂tk) ≤ 0) ⇔
(ρ(φp,xtk) ≤ 0), then (ρ(φp, x̂tk) > 0) ⇔ ((ρ(φp,xtk)) >
0) which concludes the proof.

Do note that the ETT regulation method in Theorem 1 does
not solve the optimization problem in Eq. (17), but rather
it provides a method to determine a sufficiently small ETT
such that the system is always aware of whether or not it
is potentially violating a property and can act accordingly.
The ϵρ,φp parameter in Theorem 1, determines how early the
robustness interval starts converging. Larger values of ϵρ,φp

correspond to generally lower ETTs and vice versa. We can
then adapt the optimization problem in 17 by setting Ξ to
the set of defined λyi,φp and ϵρ,φp parameters and adding the
constraints in Theorem 1. We provide a default way to set the
λyi,φp weights from Theorem 1, in Proposition 2.

Proposition 2. Consider the λyi,φp parameters in Theorem 1
where we require

∑
yi∈y∼x̂φ

1
λyi,φ

p
= 1, and dim({xi ∈ x̂ :

∂p(x̂)
xi

̸= 0)} = dim(y∼φp) (a consequence of the relevant
states being directly measurable) where dim(F ) is the number
of elements in the set F . If we set λyi,φp = dim(y∼φp) ∀yi ∈
y∼φ then

∑
yi∈y∼φp

1
dim(y∼φp ) = 1.

Next, we briefly discuss a few remarks regarding some of
the assumptions related to Theorem 1 followed by how to
handle the case when multiple inequality properties depend
on one or more of the same signals.

1) SOD update error and non-linearities: Instead of the
innovation-based update error, the SOD update error could also
be used to bound the state used to calculate the robustness
by using the interval determined by ∆x̂i,tk = [yi,τ i

m
−

δyi,φp,tk , yi,τ i
m
+ δyi,φp,tk ] where yi,τ i

m
is the value of yi at

time the previous event-triggering time τ im for the ith sensor.
Additionally, if the function p(x̂) contains non-linear com-

binations of any elements of x̂, the guarantees that Theorem
1 provide become more difficult to achieve as we need to
consider both the values that can be measured (bounded by
Eq. (22)), as well as the state estimate intervals in the case
that events are not triggered. However, we still note that it
is likely beneficial to consider the partial derivative of the
ETT w.r.t to the robustness interval width when choosing the
ϵyi,φp parameters in such cases as this gives a measure of how
“important” a given signal is.

2) Multiple properties with overlapping signal sets: We
now consider the case where multiple inequality PL properties
are present which depend on overlapping signal sets.

We introduce the notation δyi,tk(x̂,Φ) to denote the final
applied ETT to the signal yi at time tk based on all system
properties Φ. We rely on the assumption that if

∀yi ∈ y∼φb ,∀tk ∈ [t0, tend] δyi,tk(x̂,Φ) = δyi,φb,tk(·)
→ ∀tk ∈ [t0, tend]ρ(φb, x̂tk) > 0,
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then

∀yi ∈ y∼φb ,∀tk ∈ [t0, tend],

∀δyi,tk(x̂,Φ) ∈ {δyi,φa,tk(·) : δyi,φa,tk(·) ≤ δyi,φb,tk(·)}
→ ∀tk ∈ [t0, tend]ρ(φb, x̂tk) > 0,

(25)

meaning that an δyi,φa,tk(·) for a signal yi defined based on
the property φa, resulting in a smaller ETT than δyi,φb,tk(·)
defined based on another property φb, when applied to signal
yi, still guarantees the satisfaction of the other property φb.

Definition 4. For a set of PL properties Φ with either constant
ETTs or ETTs calculated using Definition 3 with overlapping
state estimate dependencies, the final ETT of a signal yi ∈ y
is given by:

δyi,tk(x̂,Φ) = min
φj∈Φ

δyi,φj ,tk(·) s.t. yi ∈ y∼φj . (26)

Eq. (26) is to be applied after any of the previous or following
ETT regulation mechanisms have been applied if multiple
separate properties are monitored.

Lemma 3. Definition 4 preserves Theorem 1, if Theorem
1 is used to regulate the ETT of the underlying inequality
properties and the inequality properties satisfy the conditions
in Theorem 1.

Proof. Using the result of Lemma 2, we know that
∂w(ρ(φ,∆x̂))
∂δyi,φ,tk

(·) = 2|αi|, meaning that if we decrease the ETT,
then w(ρ(φ,∆x̂tk)) decreases aswell which preserves the
inequality.

E. ETT regulation for PL properties with inequality sub-
properties

We now leverage the satisfaction relation of the remaining
PL operators to define an ETT regulation mechanism that
refines the ETT determined by the underlying inequality prop-
erty, based on the propositional operators. For the remainder
of the paper, we use the shorthand notation ρETT to denote
the application of the robustness-relative ETT regulation policy
based on Definition 3 and ρETT to denote the ETT regulation
policy based on Theorem 1. In this Section, we consider the
ρETT policy, and later in Section III-G we extend the ρETT
from Theorem 1 to arbitrary PL properties. For simplicity and
to facilitate intuition, the sub-properties of all propositional
properties are initially restricted to inequality properties. Later
in this section, we provide a way to compute the ETTs for an
arbitrary PL property.

1) The ∧ operator: By Definition 2, for a property φ∧ =
φ1 ∧ φ2 we desire to find an ETT policy ρETT that ensures

ρETT ⇒ (ρ(φ, x̂tk) > 0)

≡ (ρETT ⇒ (ρ(φ1, x̂tk)))∧
(ρETT ⇒ (ρ(φ2, x̂tk))),

∀tk ∈ [t0, tend].

(27)

As a result, we can treat the analysis of the sub-properties
φ1 and φ2 to determine suitable static ETTs or ETT regulation
parameters, separately.

2) The ∨ operator: According to Definition 3, for the
property φ∨ = φ1 ∨ φ2, we desire to find an ETT policy
ρETT such that

ρETT ⇒ (ρ(x̂φ∨,tk , φ∨) > 0)

≡ ρETT ⇒
[(ρ(x̂φ1,tk , φ1) > 0) ∨ (ρ(x̂φ2,tk , φ2) > 0)],

∀tk ∈ [t0, tend].

(28)

This is a notable difference from the ∧ operator. We could
treat the φ1 and φ2 sub-properties separately as we did with
the ∧ operator since (φ1∧φ2) ⇒ (φ1∨φ2) but we then loose
out on potential communication savings as only one property
has to be satisfied at any given time. According to Eq. (28),
the robustness of one sub-property can become negative, while
the overall property is still satisfied. Thus we need to define
how the ETT for a sub-property with negative robustness is
calculated. We argue that when an inequality property has
negative robustness, the ETT should be equal to 0 providing
the system with the best possible accuracy of states related to
that specific property. Thus we refine Definition 3 by adding:

δ+yi,φp,tk+1
(·) = max(δyi,φp,tk+1

(·), 0). (29)

We wish to leverage the relaxation in Eq. (28) to enlarge
the ETTs of the inequality sub-property that requires the best
accuracy (and thus the most measurements) to satisfy. We
intuitively want to avoid directly mixing ETTs as different
state estimates can have different ranges of values and thus the
properties have different ranges of robustness and ETTs. Later
in Example 2, we provide some intuition for this decision. To
this end, we propose to use the normalized robustness ζρ which
is defined in Definition 5, to represent the “criticality” of an
PL inequality property which is then later applied in Definition
6 to enlarge the ETT of the less critical inequality property.

Definition 5 (Normalized robustness ζρ). We define the nor-
malized robustness for an inequality property φp as:

ζρ(φ
p, x̂tk) =

max(ρ(φp, x̂tk), 0)

ρmax(φp)
,

where ρmax(φ
p) > 0 and is the maximum possible robustness

of the inequality property φp.

We now define the ETT refinement mechanism for propo-
sitional PL properties in Definition 6.

Definition 6. We define the ETT regulation mechanism for
propositional property φ with inequality sub-properties as a
refinement δ̄yi,φ,tk+1

(x̂tk , βφ,tk) of δ+yi,φ,tk+1
(·) from eq. (29)
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for a signal yi:

δ̄yi,φ,tk+1
(x̂tk , βφ,tk) =

min
φ′∈{φp

1 ,φ
p
2}
(δ∈yi,φ′,tk+1

(x̂tk , ϵyi,φ′ , βφ,tk)),

if φ = φp
1 ∨ φp

2,

min
φ′∈{φp

1 ,φ
p
2}
(δ∈yi,φ′,tk+1

(x̂tk , ϵyi,φ′ , 0))

if φ = φp
1 ∧ φp

2,

where βφ,tk = max
φ′∈{φp

1 ,φ
p
2}
(ζρ(φ

′, x̂tk)),

δ∈yi,φp,tk+1
(x̂tk , ϵyi,φp , βφ,tk) =

δ+yi,φp,tk+1
(·)

+ max(βφ,tk − ζρ(φ
p, x̂tk), 0)

ρmax(φ
p)

ϵyi,φp

if yi ∈ y∼φp ,

∞ otherwise,

Definition 4 is applied within Definition 6 using the min
operator for each sub-property. If more than one property is
present, Definition 4 should be applied externally.

Example 3 (Normalized robustness). Consider the property
φζρ = (x1 < 1) ∨ (x2 > 1000) where the value of
x1 ∈ [0, 1.5] and the value of x2 ∈ [−1000, 3000]. We
use the parameters ϵx1,φζρ

= ϵx2,φζρ
= 5. At time tk,

x1,tk = 1.2 and x2,tk = 1500, resulting in robustnesses
of ρ(x1 < 1) = 1 − 1.2 = −0.2 and ρ(x2 > 1000) =
1500 − 1000 = 500 and ETTs: δx1,φζρ ,tk+1

(·) = 0
5 = 0 and

δx2,φζρ ,tk+1
(·) = 500

5 = 100. As (x2 > 1000) the overall
property is satisfied, but we want to utilize this fact to relax
δx1,φζρ ,tk+1

(·) as setting δx1,φζρ ,tk+1
(·) = 0 will likely result

in many triggered events. Directly setting δx1,φζρ ,tk+1
(·) =

δx2,φζρ ,tk+1
(·) = 100 is likely too large and does not preserve

the meaningful range of ETTs for δx1,φζρ ,tk+1
(·). Using Def-

initions 5 and 6, we instead obtain: ζρ(x1 < 1,−1.2) = 0,
ζρ(x2 > 1000, 1500) = 500

2000 . Refining δx1,φζρ ,tk+1
(·) gives

us: δ̄x1,φζρ ,tk+1
(·) = δx1,φζρ ,tk+1

(·)+( 500
2000−0) 15 = 0+ 1

4
1
5 =

0.05 and δ̄x2,φζρ ,tk+1
(·) = δx2,φζρ ,tk+1

(·). Thus Definition 5
gives us a way to translate/relate the “criticality” of properties
between each other.

In the following Section, we adapt Definition 6 to arbitrary
PL properties.

F. ETT regulation for arbitrary PL properties

1) Negation of PL properties: To regulate the ETT using
Definition 3 for an arbitrary PL property which potentially
includes negations of logical operators, we transform the
property into its Negation Normal Form (NNF), where the
negations are propagated to the underlying inequality proper-
ties. The robustness of the negated inequality is then used to
regulate the ETT according to Definition 3.

Example 4 (Negation Normal Form). Consider the PL prop-
erty φNNF = (φ1 ∧ ¬(φ2 → φ3)) where φ1, φ2 and φ3 are

all propositional PL properties. We propagate the negation as
follows

¬(φ2 → φ3)

≡ ¬¬φ2 ∨ ¬φ3

≡ φ2 ∨ ¬φ3,

which gives us the final property φNNF ≡ φ1 ∧ (φ2 ∨ ¬φ3).

Initially, we need to define how to calculate ζρ(φ, x̂tk) for
an arbitrary PL property.

Definition 7. The Normalized robustness ζ̃ρ(φ, x̂tk) for an
arbitrary PL property φ is defined recursively as:

ζ̃ρ(φ, x̂tk) =
max(ζ̃ρ(φ1, x̂tk), ζ̃ρ(φ2, x̂tk)) if φ = (φ1 ∨ φ2),

min(ζ̃ρ(φ1, x̂tk), ζ̃ρ(φ2, x̂tk)) if φ = (φ1 ∧ φ2),

ζρ(φ
p, x̂tk) otherwise,

where ζρ(φ
p, x̂tk) is calculated according to Definition 5.

Next, we present a property of Definition 7 that will
be useful in proving Theorem 1 for propositional and later
arbitrary PL properties.

Lemma 4. (ζ̃ρ(φ, x̂tk) > 0) ⇔ (ρ(φ, x̂tk) > 0).

Proof. We prove each case in Definition 7, below.

otherwise (φ = φp): It follows from Definition 5 that
ζ̃ρ(φ, x̂tk) preserves the sign since ρmax > 0.

φ = φ1 ∨ φ2: Assume ζ̃ρ(φ, x̂tk) > 0. Then by
Definition 7 (ζ̃ρ(φ1, x̂tk) > 0) ∨ (ζ̃ρ(φ2, x̂tk) > 0).
Consequently, we have (ρ(φ1, x̂tk) > 0) ∨ (ρ(φ2, x̂tk) > 0),
which through Definition 2 results in ρ(φ, x̂tk). Thus
(ζ̃ρ(φ, x̂tk) > 0) ⇒ (ρ(φ, x̂tk) > 0). Following the reverse
procedure, we can obtain ρ(φ, x̂tk) ⇒ ζ̃ρ(φ, x̂tk).

φ = φ1 ∧ φ2: The proof for this case can be obtained
following the same procedure as for the ∨ operator.

Thus for any arbitrary propositional property φ,
(ζ̃ρ(φ, x̂tk) > 0) ⇔ (ρ(φ, x̂tk) > 0).

After determining ζ̃ρ(φ, x̂tk) we need a slight adaptation
of Definition 6 to account for nested propositional operators
which we provide in Definition 8.

Definition 8 (Arbitrary propositional properties ETT refine-
ment). Consider the arbitrary propositional property φ. We
define the ETT refinement δ̃yi,φ,tk+1

(x̂tk , βφ,tk) for a signal
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yi ∈ y∼φ at time tk+1:

δ̃yi,φ,tk+1
(x̂tk , βφ,tk) =

δ∈yi,φ,tk+1
(x̂tk , ϵyi,φ, βφ,tk)

if φ = φp,

min
φ′∈{φ1,φ2}

(δ̃yi,φ′,tk+1
(x̂tk , βφ,tk))

if φ = φ1 ∧ φ2,

min
(φ′,φ′′)∈{(φ1,φ2),(φ2,φ1)}

(δ̃yi,φ′,tk+1
(x̂tk ,max(βφ,tk , ζ̃ρ(φ

′′, x̂tk))))

if φ = φ1 ∨ φ2,

where δ∈yi,φ,tk+1
(x̂tk , ϵyi,φ, βφ,tk) is defined in Definition 6

and we initialize βφ,tk = ζ̃ρ(φ, x̂tk) of the top-level property
φ. The min operations take care of potentially multiple defined
ETTs for a given signal, and thus Definition 4 is implicitly
applied.

An example of the application of Definition 7 and the
propagation of ζ̃ρ(φ, x̂tk) in Definition 8 is visualized in Fig.
3.
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Fig. 3: A binary tree representation of the PL property
((φ1 ∧ φ2) ∨ φ3) ∨ (φ4 ∧ (φ5 ∧ φ6)). The solid black arrows
indicate the application of Definition 7 and the red dotted
arrows indicate the applied β value in Definition 8 for each
inequality property.

Definition 8 concludes the proposed ETT regulation mecha-
nism ρETT . In the following Section, we extend the property
in Theorem 1 arbitrary PL properties using a modified version
of ρETT .

G. Providing detection guarantees for arbitrary PL properties

We start by adapting several Definitions from Sections III-E
and III-F. We denote the ETT ≥ 0 calculated using the result
of Theorem 1 as:

δ+yi,φp,tk+1
(φp,∆x̂tk+1|tk) =

max(ρ(φp,∆x̂tk+1|tk), 0)
∂w(ρ(φp,∆x̂))
∂δyi,φp,tk+1

(·)λyi,φpϵρ,φp

.

(30)
Next, we adapt the normalized robustness from Definitions 5
and 7.

Definition 9. We define the worst-case normalized robustness
of an inequality property φp as:

ζ
ρ
(φp,∆x̂tk+1|tk) =

max(ρ(φp,∆x̂tk+1|tk), 0)

ρmax(φp)

Definition 10. We define the worst-case normalized robust-
ness ζ̃

ρ
(φ,∆x̂tk+1|tk) of an arbitrary PL property as and

adaptation of ζ̃ρ(φ, x̂tk) as follows:

ζ̃
ρ
(φ,∆x̂tk+1|tk) =

max
φ′∈{φ1,φ2}

ζ̃
ρ
(φ′,∆x̂tk+1|tk) if φ = φ1 ∨ φ2,

min
φ′∈{φ1,φ2}

ζ̃
ρ
(φ′,∆x̂tk+1|tk) if φ = φ1 ∧ φ2,

ζ
ρ
(φ,∆x̂tk+1|tk) if φ = φp.

Next, we adapt δ∈yi,φp,tk+1
(x̂tk , ϵyi,φp , βφ,tk) from Defini-

tion 6.

Definition 11. We define an adapted version of
δ∈yi,φp,tk+1

(x̂tk , ϵyi,φp , βφ,tk) from Definition 6 to help
provide the guarantees in Theorem 1.

δ∈yi,φ,tk+1
(∆x̂tk+1|tk , ϵyi,φ, βφ,tk+1|tk

) =
δ+yi,φp,tk+1

(φp,∆x̂tk+1|tk)

+ max(β
φ,tk+1|tk

− ζ
ρ
(φp,∆x̂tk+1|tk), 0)

ρmax(φ
p)

ϵyi,φp

if yi ∈ y∼φp ,

∞ otherwise.

We are now ready to present ρETT for arbitrary PL
properties. Due to space constraints, we do not provide the
explicit definition, but instead list the changes necessary to
Definition 8, in Theorem 2.

Theorem 2. Definition 8 ensures

(ρ(φ, x̂tk) > 0) ⇔ (ρ(φ,xtk) > 0) (31)

for an arbitrary propositional property φ if ζ̃
ρ
(φ,∆x̂tk+1|tk)

is used instead of ζ̃ρ(φ, x̂tk), the inequality
properties satisfy the constraints in Theorem 1 and
δ∈yi,φp,tk+1

(∆x̂tk+1|tk , ϵyi,φp , β
φ,tk+1|tk

) is used instead
of δ∈yi,φ,tk+1

(x̂tk , ϵyi,φ, βφ,tk).

Proof. We prove that using the ETT regulation described in
Theorem 2 ensures (ρ(φ, x̂tk) ≤ 0) ⇔ (ρ(φ,xtk) ≤ 0) which
then guarantees (ρ(φ, x̂tk) > 0) ⇔ (ρ(φ, x̂tk) > 0). Using
the same technique as in Lemma 4, we can show that

(ζ̃
ρ
(φ,∆x̂tk+1|tk) = 0) ⇔ (ρ(φ,∆x̂tk+1|tk) ≤ 0). (32)

Now assume that ρ(φ,xtk+1
) ≤ 0. Since ρ(φ,xtk+1

) ∈
ρ(φ,∆x̂tk+1|tk), then ρ(φ,∆x̂tk+1|tk) ≤ 0. We now show
that the ETTs of the inequality property that produces the
resulting robustness remain unaffected by the operations in
Definition 6 in the case of negative robustness. We denote the
overall property φo and the inequality property that produces
the robustness value of the overall property, φp

ρ. We consider
the ∨ and ∧ operators in turn.
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φ = φ1 ∨ φ2: In order for φp
ρ to be a sub-property

of φ, then ρ(φ, x̂tk+1
) = ρ(φp

ρ, x̂tk+1
). Since we as-

sume ρ(φ,xtk+1
) ≤ 0, this entails ρ(φ1, x̂tk+1

) ≤ 0 and
ρ(φ2, x̂tk+1

) ≤ 0 which again entails ζ̃
ρ
(φ,∆x̂tk+1|tk) = 0.

Thus for the sub-property containing or equal to φp
ρ, the

propagated β
tk+1|tk

value is always equal to 0.
φ = φ1 ∧ φ2: According to Definition 6, β

φ,tk+1|tk
is simply propagated and is equal to 0 if the sub-properties
contain or are equal to φp

ρ.
Since the β

tk|tk−1
value propagated to φp

ρ will always
be 0 in the case of overall negative robustness the term
max(β

tk+1|tk
− ζ̃

ρ
(φp

ρ,∆x̂tk+1|tk), 0) in Definition 11 will
equal 0 meaning that the ETTs related to φp

ρ are unchanged
and thus satisfy Theorem 1 for the inequality property φp

ρ and
thus for the overall property φo.

This concludes the presentation of our proposed ETT regu-
lation mechanism for PL properties. In the following Section,
we evaluate the TT, CETT, ρETT and ρETT in a simulated
case study where we explore various parameter configurations
and their impact on the robustness and number of triggered
events.

IV. CASE STUDY

To evaluate our proposed threshold regulation mechanism, a
simulated vehicle convoy in an adaptive cruise control (ACC)
scenario is used. Initially, a single lane with two vehicles
is considered to evaluate the ETT regulation mechanism in
Definition 3 for a single inequality property. To evaluate more
complex propositional properties, we extend the scenario to
include an additional lane with faster vehicles. Fig. 4 shows an
overview of the two setups. Next, we describe the simulation
and scenario setup.

Multilane scenario

Fig. 4: An overview of the case-study simulated scenarios.
The blue vehicle corresponds to the ACC vehicle which can
measure its own speed (v), the distance to the preceding
vehicle in the same lane xp and the distance to the preceding
xlo,p and following xlo,f vehicles in the fast lane in the multi-
lane scenario.

A. Simulation setup

All vehicles in the convoy can be described by the linear
discrete-time state-space model specified in Eq. 3.

The noise is assumed to be standard Gaussian noise with
zero mean and the specified variance. For the remaining

vehicles, we use models without process noise or drift to
control their evolution over time. The ACC vehicle tracks itself
and all other relevant vehicles using the above model using a
separate Kalman filter (KF) for each vehicle. The A and B
matrices are the same for all instances and are given by

A =

[
1 Ts

0 1

]
, B =

[
1
2T

2
s

Ts

]
, (33)

where Ts is the sampling interval. As the ACC vehicle does
not know the control input for the other vehicles, B can be
disregarded when tracking other vehicles. The C matrices for
the ACC vehicle and remaining tracked vehicles denoted with
an o subscript, the process noise of the ACC vehicle wACC

and other vehicles wo, and the measurement noise of the speed
rv and distance rx∆ sensors are given by

CACC =

[
0

1

]
, Co =

[
1

0

]
,wACC =

[
2.5 · 10−9 5.0 · 10−7

5.0 · 10−7 1 · 10−4

]
,

wo = 10 ·wACC , rx∆ = rv = 0.1.

To control the ACC vehicle acceleration, we use the Intelligent
Driver Model (IDM) [29]. The IDM attempts to keep a
speed-dependent distance to the preceding vehicle given by
xss(d0, v, T ) = d0 + vT where d0 is a constant, v is the
speed of the ACC vehicle and T is a parameter known as the
time headway. We choose d0 = 2.7m and T = 2s.

The vehicles all start with the same initial speed of 30m/s
and are placed at intervals of xss(·)+20m. The lead vehicle in
the ACC vehicle lane has a predefined control schedule where
it keeps a constant speed for the first 20 seconds as the ACC
vehicle catches up whereafter it brakes with an acceleration
of amin = −5m/s2 for 5 seconds and then accelerates to the
original speed over 10 seconds at amax = 2.5m/s2 which
corresponds to the minimum and maximum acceleration of
the ACC vehicle respectively. Thus, the ACC vehicle will
experience a variety of more and less safety-critical scenarios.

To determine the update error (e(·) in Eq. (1)), we use the
innovation-based update error from Eq. 2. Since the prediction
model of the preceding vehicle at the ACC vehicle lacks
the control input information, the model is inherently more
inaccurate and will lead to significantly more transmitted
measurements compared to the sensor measuring the speed
of the ACC vehicle. To add some importance to the speed
sensor, we simulate an overestimation of the wind resistance
leading to greater acceleration than expected.

For the sake of simplicity, we assume that the measure-
ments, if they satisfy the event-triggering condition, are avail-
able instantly at the remote state estimator. Additionally, the
information necessary to evaluate the event-triggering condi-
tion is assumed to always be available at the smart sensors
without the need for additional communication. For single-
signal properties, the latter assumption is valid, but it may
not be the case for multiple-signal properties. We discuss this
further in Section V.

In Section IV-B, we compare the TT, CETT, ρETT and
ρETT approaches for an inequality property. Later in Section
IV-C, we compare the TT, CETT and ρETT policies for a
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more complex propositional property involving a multilane
scenario.

B. Inequality Property for Single Lane Vehicle Convoy

As perfect knowledge of the preceding vehicle is not
available, the controller will not be able to keep the desired
distance xss(·) when the lead vehicle brakes. As a result, we
construct our inequality property: φa = x∆ > xss(dφ, v, T )
where x∆ = xp−x, xp and x are the position of the preceding
and ACC vehicle, respectively, and 0 ≤ dφ < d0. The reason
for choosing dφ < d0 is that the IDM will not be able to keep
the desired distance to the lead vehicle as the ACC vehicle has
imperfect knowledge of the speed and acceleration of the lead
vehicle. Thus the target distance must be larger than the safe
distance. We choose dφ = 0m. This gives us the robustness:

ρ(φ, x̂tk) = x∆,tk − xss(0, vtk , T ).

Initially, we consider the feasibility problem in Eq. (18),
where we aim to find a sampling frequency that enables the
system to satisfy the property. We test two sampling intervals
Ts of 0.01s and 0.02 by running 20 simulations of the system
for each configuration. We then determine the minimum
overall robustness ρmin calculated using the true system state
produced for each configuration accross simulations. Setting
Ts = 0.01s resulted in ρmin = 0.36 while setting Ts = 0.02s
resulted in ρmin = -0.60 (negative robustness), wherefore we
choose Ts = 0.01s for all remaining experiments for all ETT
regulation policies. Note that Ts could potentially be increased
to somewhere between 0.01 and 0.02, but the number of
transmissions cannot be reduced by more than a factor of two
given the results of this test.

Next, we consider the CETT, ρETT , and ρETT policies
for the inequality property φa. We choose y∼φa = {v, x∆}
and test a variety of different combinations of ϵyi,φa

, λyi,φa

and ϵρ,φa
parameters and constant ETTs using a grid-search

technique. We run 20 simulations for each set of parameters
and the minimum robustness over all simulations is recorded
in Table II. Table II shows that the ETT policies perform
significantly better than the TT policy but also achieve a
smaller ρmin for the corresponding configuration. The ρETT
policy triggers approximately 41.8% fewer events compared
to the CETT policy while the ρETT policy triggers 28.4%
fewer events than the CETT policy.

As the results in Table II are found using a brute-force
parameter search, they are not guaranteed to be the global
minimum. However, the difference in the number of triggered
events between the TT, CETT and ρETT is large enough to
demonstrate a significant advantage of the ρETT policy over
the TT and CETT. Additionally, the ETT policies seem to lead
to a smaller ρmin value compared to the TT policy. In a real-
world scenario, we may not be interested in the robustness
being this close to zero, and we can instead revise the
optimization problem in Eq. (17) to ensure that ρ(φ, x̂tk) > η
where η > 0.

Parameter exploration: For the ρETT regulation mech-
anism, we provide a contour plot depicting parameter com-
binations that result in a positive minimum robustness value

along with the resulting number of triggered events in Fig. 5.
Fig. 5 shows that generally larger ϵyi,φ values result in more
triggered events regardless of the signal as we would expect.
However, increasing the ϵv,φa

value leads to a smaller increase
in the number of triggered events compared to increasing
ϵx∆,φa

by the same amount. The figure also shows that when
either of the ϵyi,φ parameters are below a certain threshold,
larger values of the other ϵyi,φ parameter will never result
in positive robustness. Additionally, we see that a tradeoff
is present in the lower left corner of the feasible set of
solutions. Smaller values of either ϵyi,φ parameter, require
larger values for the other parameter to ensure satisfaction.
Fig. 5 also shows that the assumption in Eq. (25) is always
true for the ϵx∆,φa signal but not necessarily for the ϵv,φa

parameter. For certain parameter configurations, some larger
values of the ϵv,φa

(resulting in smaller ETTs) do not enable
the controller to satisfy the property, while other smaller values
of ϵv,φa

do. This is likely due to the introduced random noise
and the relatively small number of simulations. Due to space
constraints, we do not provide the plot for the CETT policy,
but the experiments conducted for the CETT policy show a
similar tradeoff.
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Fig. 5: A contour plot of ϵv,φa
and ϵx∆,φa

parameter combina-
tions where the red area indicates a feasible configuration and
the grey hatched area indicates an infeasible configuration.
The white area indicates untested parameter configurations.
The shade of red indicates the average number of transmitted
measurements.

In Fig. 6, we provide a plot that explores the tradeoff
between the achieved minimum robustness and the number
of transmitted measurements for all transmission and ETT
regulation strategies. The results shown in Fig. 6 are the results
corresponding to the Pareto front (i.e. the set of parameters
that achieve a given ρmin value with the fewest number of
transmitted measurements). Fig. 6 shows that more transmitted
measurements generally lead to larger ρmin values for the
Pareto optimal parameter configurations. However, the number
of packets increases significantly as we achieve a larger ρmin

value resulting in a small performance gain per additional
transmitted packet. Generally, the ρETT achieves the best
tradeoff out of all ETT regulation mechanisms while the
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ρETT policy produces slightly worse results in terms of the
number of transmitted packets. This is to be expected since the
ETT is regulated based on a more conservative state estimate.
The percentage-wise reduction in the number of triggered
events is somewhat consistent around 40% for the ρETT
policy compared to CETT which also applies to the best found
configuration in Table II.
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Fig. 6: A plot of non-dominated parameter configurations for
the CETT and ρETT ETT regulation strategies, where m
is the average number of transmitted packets and ρmin is
the minimum robustness evaluated on the true system state
over all simulations for a given configuration. Several black
arrows indicate what fraction of packets are needed for the
ρETT method to achieve similar minimum robustness values
compared to the CETT approach.

We now further investigate the ρETT policy. Fig. 7 depicts
results for different values of ϵρ,φ and λyi,φ combinations.
Fig. 7 shows that even though the overall uncertainty is
fixed relative to the robustness, different λyi,φ combinations
produce both different average minimum robustness and a
different number of triggered events. We see that for the
most part, especially for lower ϵρ,φ values, there is a large
difference in the number of transmitted packets and some
difference in resulting robustness for different λyi,φ parameter
combinations. Furthermore, Fig. 7 shows the more transmitted
packets do not necessarily lead to larger average ρmin values
if the parameters are configured sub-optimally. Despite the
irregularities in Fig. 7, there could be some potential to apply
a more intelligent numerical optimization algorithm to find
locally optimal parameter configurations as there seems to be
some structure to the parameter space and the cost in terms
of ρmin and the number of triggered events.

C. Propositional Property for Multi-lane Vehicle Convoy

To evaluate the ETT regulation mechanisms proposed in
Section III-E, we extend the scenario from Section IV-B to
a two-lane ACC scenario. We add a fast lane with additional
faster vehicles and enable the ACC vehicle to measure the dis-
tance to the two closest vehicles (xlo

∆,p, x
lo
∆,f in preceding and

following the ACC vehicle respectively) using two additional

Strategy Parameters
φa (Single lane)

ρmin m± σ(m)

TT Ts = 0.01s 0.36 7000

CETT δv,φa = 0.16
δx∆,φa = 0.50

0.005 1336± 27

ρETT ϵv,φa = 16.64
ϵx∆ = 4.95

0.007 777± 14

ρETT
ϵv,φa = 13.38
ϵx∆ = 3.95

0.018 957± 14

φb (Multilane critical)
ρmin m± σ(m)

TT Ts = 0.01s 3.60 14000

CETT

δv = 0.16
δx∆ = 0.50
δ
x
lo
∆,p

= 0.50

δ
x
lo
∆,f

= 2.00

3.59 1527± 23

ρETT

ϵv,φb1
= ϵv,φb3

= 16.64

ϵx∆,φb1
= 4.95

ϵ
x
lo
∆,p,φb3

= 4.95

ϵ
x
lo
∆,f

,φb2

= 4.03

3.21 166± 7

ρETT (No ∨)

ϵv,φb1
= ϵv,φb3

= 16.64

ϵx∆,φb1
= 4.95

ϵ
x
lo
∆,p,φb3

= 4.95

ϵ
x
lo
∆,f

,φb2

= 2.51

3.41 4846± 11

φb (Multilane non-crit.)
ρmin m± σ(m)

TT − ∥ − 20.25 14000

CETT − ∥ − 20.25 1502± 24

ρETT − ∥ − 20.25 55± 2

ρETT (No ∨) − ∥ − 20.25 1927± 6

TABLE II: An overview of the number of triggered events,
minimum robustness and parameters for the found optimal
configurations of the TT, CETT and ρETT ETT policies. The
average number of transmitted measurements and one standard
deviation over all simulations for a specific configuration is
denoted by m ± σ(m) and ρmin is the minimum robustness
over all simulations calculated on the true state. The presence
of − ∥ − indicates that the same ϵyi,φ parameters are used for
the non-critical multilane scenario as for the critical scenario.

sensors. We add additional control behavior to allow the ACC
vehicle to change to the fast lane. The vehicles in the fast lane
travel at a constant speed and are placed sufficiently far apart
to allow for safe overtaking when the lead vehicle brakes.

We construct the PL property
φb = ((φb1)∨ (φb2 ∧φb3)) where φb1 = x∆ > xss(dφ, v, T ),
φb2 = xlo

∆,f > xss(dφ, v
lo
f , T ), φb3 = xlo

∆,p > xss(dφ, v, T ),
and the lo superscript denotes vehicles in the other lane
relative to the ACC vehicle and the p and f subscripts
denote the vehicles preceding and following the ACC
vehicle. We use the following signal-to-property assignments
for the inequality properties in φb: y∼φb1

= {v, x∆},
y∼φb2

= {xlo
∆,f}, y∼φb3

= {xlo
∆,p, v}. We note that φb2

depends on vlof which is not directly measurable and must
be estimated. Thus the ρETT policy cannot be used for φb.
Additionally, we construct an identical property except we
replace the ∨ operator in φb with an ∧ for monitoring. This
is to demonstrate what would happen if the ETT relaxation
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Fig. 7: A plot of the resulting mean ρmin and corresponding
mean number of transmitted packest m for different values
of ϵρ,φa

and λyi,φa
parameters for ρETT . The black ND

solutions series corresponds to the non-dominated solutions
for the average ρmin values as opposed to Fig. 6 where the
overall ρmin was used to find the non-dominated solutions.

mechanism for the ∨ operator in Definition 6 was not
implemented and we treated the ∨ operators as an ∧. We
consider two scenarios: 1) a critical scenario where there
is little but enough room to overtake at the right time, and
2) a non-critical scenario where there is plenty of room to
overtake.

Parameter identification: Based on the results in the
single-lane scenario, we know that Ts = 0.01s is necessary
for the TT policy to ensure positive robustness in the most
critical scenario. In the case of the multilane scenario, the
most critical case is identical to that of the one-lane scenario
when there is no room to safely switch to the fast lane. Thus,
we conclude that the same sampling frequency is necessary
for the multilane scenario.

Next, we consider the CETT and ρETT transmission strate-
gies. If there is not enough room to overtake in the fast lane,
the ETTs should still ensure positive robustness in the current
lane. Thus, the ETTs for the sensors that monitor the speed of
the ACC vehicle and the distance between the ACC vehicle
and the preceding vehicles in either lane, should use identical
parameters to those found for the φa safety property in the
previous section. However, the property φb2 in φb is a different
case, as the estimated speed of the following vehicle is used
to determine the safe distance rather than the speed of the
ACC vehicle. To determine safe ETT parameters for the sensor
measuring the distance to the following vehicle in the fast lane
(xlo

∆,f ), we initially consider the critical scenario to determine
safe parameters. We test a range of different ρETT policy
parameters for the xlo

∆,f signal and run 20 simulations for each
configuration.

In Table II, we note the minimum robustness and corre-
sponding number of sent measurements in the critical scenario
(φb) for the best tested configuration for the CETT, ρETT, TT
and the ρETT regulation policy with the ∨ replaced by an
∧ operator. The robustness is measured as if the ∨ operator
were present. The results show that the ρETT policy with the

∨ operator triggers 89.1% and 96.6% fewer events compared
to the CETT and ρETT without the ∨ operator, respectively.
Another notable result is that the ρETT without the ∨ operator
transmits 3.17 times more packets than the CETT approach.
Upon investigation, we find that many of the transmitted
measurements can be attributed to the vehicles in the fast lane
as the robustness of the properties φb2 and φb3 is negative
for a significant duration of the simulation. This results in the
corresponding ETTs being zero for the duration of the negative
robustness resulting in many transmitted packets. However,
the CETT does not suffer from this problem as the ETTs
never reach zero. Based on the results in Fig. 6, we see that
once we reach a certain minimum robustness, many additional
transmitted measurements will not significantly increase ρmin.
Along with the fact that measurement noise is typically
present, this may suggest that some minimum ETT > 0 may be
a good idea to decrease the number of unnecessary transmitted
measurements in the case of low robustness.

Finally, we consider a non-critical multilane scenario where
there is plenty of space to overtake the braking vehicle,
resulting in an overall larger robustness. The parameters found
for the critical case are reused and the results are noted again
in Table II. The results for the non-critical multilane scenario
show similar results as the critical scenario where the ρETT
policy transmits 96.3 % and 97.1% fewer events compared
to the CETT and ρETT policy without the ∨ operator respec-
tively. The ρETT policy triggers significantly fewer events
in the non-critical scenario compared to the critical scenario
while the number of triggered events for the CETT policy
stays almost the same. This result highlights the ability of the
ρETT mechanism to adapt based on critical and non-critical
situations.

V. DISCUSSION

We now discuss our proposed ETT regulation method in
light of the obtained numerical results as well as differences
and similarities with other approaches in SoTA.

Parameter Tuning and Formal Guarantees: Section IV
also demonstrates the parameter tuning procedure used to
select constant ETTs or ETT regulation parameters. In the
simulated scenarios, the parameters chosen ensure safety.
However, these parameters do not provide formal guarantees
for a class of systems or scenarios, i.e., they do not provide
a guarantee for potentially similar scenarios. For example, if
we consider the multilane scenario and the sensor measur-
ing xlo

∆,f , the parameters resulting in triggering the smallest
number of events were sufficient to ensure a positive value of
ρmin. This is likely due to added acceleration meaning that
the estimated robustness of φb3 is typically larger than the
estimated robustness. However, if the drift was in the opposite
direction, then the large ETT (or small ϵyi,φ value) may not be
sufficient to satisfy the requirement. As a result, when using
such a numerical parameter tuning method, one has to consider
what situations have to be tested to ensure that the chosen
parameters ensure safety in all situations that the system will
experience, which is beyond the scope of this paper.

A potential way to combat the safety issue described above
is to make the control behavior aware of the uncertainty
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introduced by the event-triggering threshold. For example,
consider the scenario where the ACC vehicle is far away from
the safe distance to a preceding vehicle in the slow lane but for
some reason desires to change to the fast lane. The property
φb will then provide high ETTs to the sensors measuring the
distance to the vehicles in the fast lane. If the ACC vehicle for
some reason desires to switch lanes, it will have an inaccurate
estimate of the vehicles in the other lane, which may not
guarantee a safe overtaking. Thus, the uncertainty information
should be taken into account in the control behavior to ensure
safe operation. The reason this is not an issue in the case study,
is that the overtaking behavior is designed to only occur when
the ACC vehicle is close to the lead vehicle in the slow lane.
In this scenario, the low distance to the lead vehicle will not
contribute to altering the ETTs related to the distance of the
other vehicles in the fast lane through the ∨ operator.

To provide formal guarantees, other comparable methods,
such as the co-design of a controller and event-triggering
mechanism that ensures the stability of a networked control
system [30], [5] have been proposed. Such formalisms rely on
the ability to formalize a stability condition, which our method
does not require as the safety condition is implicitly spec-
ified in the optimization problem. Additionally, our method
allows us to simultaneously consider performance properties.
Allthough this was not shown in our case study, the overall
procedure and concept are the same.

Similarities and Differences with SoTA: Using proposi-
tional properties to describe system safety/performance re-
quirements has similarities with other ways of describing
systems, such as Fuzzy modeling and control [31]. Fuzzy
modeling and control allows the specification of IF-THEN
statements to describe control and system behavior which is
conceptually similar to how the → operator can be used.
Several works have been published for event-triggered control
of fuzzy systems [32], [33], [34] but they typically only
consider behaviors of the form (φ1 ∧ φ2...) → behavior.
Additionally, many of the formal methods that guarantee
safety, do not explore the tradeoff between varying the ETTs
for different sensors and its impact on the overall number of
transmitted packets.

Connection to Signal Temporal Logic: As mentioned
in Section II-D, PL is a subset of STL, which extends
propositional logic with temporal operators. For example, the
eventually (⋄I ) and always (□I ) operators allow the system to
verify that something will eventually become true or is always
true within some interval I , respectively. This enables STL
to specify properties over constrained time intervals rather
than simply stating that something always has to be true.
Several results on controller synthesis to ensure satisfaction
of STL properties or other similar formalisms have been
published (some useful references include [35], [36]) but only
very few on event-triggered control [37], [38], [39] exist.
Furthermore, most of the event-triggered control publications
only consider a subset of STL excluding the ∨ operator. To
our knowledge, the publication that is closest to our work is
[39], which develops an event-triggering strategy that ensures
that the event-triggered state trajectory stays within an ϵ-
tube of the ideal trajectory given by the continuous state

feedback controller for Temporal Logic over Reals (RTL)
[40] formulas. These correspond roughly to unbounded PL
formulas but without the definition of numerical satisfaction
semantics. Additionally, the event-triggering condition in [39]
is evaluated based on the full state and only considers the
option of transmitting the full state, rather than measurements
of individual signals.

Another similarity with the SoTA is that the optimization
problems presented in this paper are always constrained to
ensure that the robustness of the property is positive for
all time steps. This corresponds to an implicit unbounded
STL □ operator. The subset of STL considered in [37],
[38], considers bounded □ operators but does not consider
disjunctions. Extending our approach to include the STL
temporal operators and refining the currently proposed ETT
regulation mechanisms will be a core part of our future work.

Assumptions and Impact in Real Systems: The case study
makes several other assumptions that need to be handled in a
real-world setting. For example, we assumed that the necessary
information for evaluating the event-triggering condition is
available at the sensor without the need for communication.
In a real-world scenario, this assumption does not hold in
every case and the required communication could diminish
the savings introduced by the ETT. The SOD update error
may be a better fit in a real-world scenario as it does not
require additional information to predict the value of the
measurement. We also note that the ETT refinement as a
result of the ∨ operator will likely also require additional
communication since properties (and thus signals) can affect
the ETT of other signals. However, the fact that there is a
large gap between the ρETT and the constant ETT (namely,
the ρETT approach triggers between 41.8 - 96.3 % less events
compared to the CETT), provides ample room to address these
challenges while maintaining significant gains. Despite many
of these potential challenges, the expressiveness of PL has
the potential to save communication resources and optimize
performance in a variety of scenarios by enabling fine-grained
control of the ETT through our proposed method.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel ETT regulation
mechanism that infuses ETT regulation with propositional
logic. Through the expressiveness of PL, our approach enables
accurately defining circumstances in a wide array of problems
under which the ETTs are either increased or decreased
depending on the safety and/or performance requirements of
the system as well as how well these requirements are satisfied
at runtime. We explored the intuition and possibilities of our
method using a safety-related case study. The case study
showed a large potential for reduction in the number of trig-
gered events, e.g. between 41.8 - 96.3 % fewer events while
maintaining similar minimum safety. Assessing the usability
of our proposed method in a wide range of systems will be
a core part of our future work as this will help us identify
potential issues and beneficial improvements. Future work will
focus on expanding our approach to include temporal operators
from Signal Temporal Logic (STL) in order to capture more
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complex properties that have specific timing considerations as
well as methods for parameter tuning of the system.

APPENDIX

A. Proof of Lemma 1

Proof. The scalar α can be represented as the degenerate
interval A = [α, α]. Multiplying X and A, according to
eq. (16), we have: A · X = [minS,maxS] where S =
{AX,AX,AX,AX}. Since A = A, then AX = AX and
AX = AX . Since α < 0 and X > X , consequently
αX < αX , resulting in minS = αX and maxS = αX
and the interval A ·X = [αX,αX].

B. Proof of Lemma 2
Proof. We show the proof for the case αX > 0 and αY < 0.
The proof for the remaining cases (αX > 0 and αY >
0, αX < 0 and αY > 0, αX < 0 and αY < 0) can be
obtained by following the same approach. Using the result
of Lemma 1:

w(αXX(x, δx) + αY Y (y, δy))

= w([αX(x− δx), αX(x+ δx)] + [−|αY |(y + δy),−|αY |(y − δy)])

= w([αX(x− δx) +−|αY |(y + δy), αX(x+ δx) +−|αY |(y − δy)])

= αX(x+ δx) +−|αY |(y − δy)− (αX(x− δx) +−|αY |(y + δy))

= 2αXδx + 2|αY |δy = 2|αX |δx + 2|αY |δy.
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[10] H. K. Büning and T. Lettmann, Propositional Logic: Deduction and
Algorithms. Cambridge University Press, Aug. 1999.

[11] X. Ge, Q.-L. Han, L. Ding, Y.-L. Wang, and X.-M. Zhang, “Dynamic
Event-Triggered Distributed Coordination Control and its Applications:
A Survey of Trends and Techniques,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 50, no. 9, pp. 3112–3125, Sep.
2020.

[12] X. Ge, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic Event-triggered
Control and Estimation: A Survey,” International Journal of Automation
and Computing, vol. 18, no. 6, pp. 857–886, Dec. 2021.

[13] X. Ge, Q.-L. Han, X.-M. Zhang, L. Ding, and F. Yang, “Distributed
Event-Triggered Estimation Over Sensor Networks: A Survey,” IEEE
Transactions on Cybernetics, vol. 50, no. 3, pp. 1306–1320, Mar. 2020.

[14] X.-M. Zhang, Q.-L. Han, and B.-L. Zhang, “An Overview and Deep
Investigation on Sampled-Data-Based Event-Triggered Control and Fil-
tering for Networked Systems,” IEEE Transactions on Industrial Infor-
matics, vol. 13, no. 1, pp. 4–16, Feb. 2017.

[15] M. Miskowicz, “Send-On-Delta Concept: An Event-Based Data Report-
ing Strategy,” Sensors, vol. 6, no. 1, pp. 49–63, Jan. 2006.

[16] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based
broadcasting for multi-agent average consensus,” Automatica, vol. 49,
no. 1, pp. 245–252, Jan. 2013.

[17] W. Hu, L. Liu, and G. Feng, “Consensus of Linear Multi-Agent
Systems by Distributed Event-Triggered Strategy,” IEEE Transactions
on Cybernetics, vol. 46, no. 1, pp. 148–157, Jan. 2016.

[18] H. Li, J. Luo, H. Ma, and Q. Zhou, “Observer-Based Event-Triggered
Iterative Learning Consensus for Locally Lipschitz Nonlinear MASs,”
IEEE Transactions on Cognitive and Developmental Systems, vol. 16,
no. 1, pp. 46–56, Feb. 2024.

[19] X. Ge, S. Xiao, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic Event-
Triggered Scheduling and Platooning Control Co-Design for Automated
Vehicles Over Vehicular Ad-Hoc Networks,” IEEE/CAA Journal of
Automatica Sinica, vol. 9, no. 1, pp. 31–46, Jan. 2022.

[20] X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng,
“Networked control systems: A survey of trends and techniques,”
IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp. 1–17, Jan.
2020.

[21] D. Shi, L. Shi, and T. Chen, Event-Based State Estimation, ser. Studies
in Systems, Decision and Control. Cham: Springer International
Publishing, 2016, vol. 41.

[22] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and
S. Sastry, “Kalman Filtering With Intermittent Observations,” IEEE
Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, Sep.
2004.

[23] D. Shi, T. Chen, and L. Shi, “An event-triggered approach to state esti-
mation with multiple point- and set-valued measurements,” Automatica,
vol. 50, no. 6, pp. 1641–1648, Jun. 2014.

[24] Y. S. Suh, V. H. Nguyen, and Y. S. Ro, “Modified Kalman filter
for networked monitoring systems employing a send-on-delta method,”
Automatica, vol. 43, no. 2, pp. 332–338, Feb. 2007.

[25] O. Maler and D. Nickovic, “Monitoring Temporal Properties of Contin-
uous Signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, ser. Lecture Notes in Computer Science,
Y. Lakhnech and S. Yovine, Eds. Berlin, Heidelberg: Springer, 2004,
pp. 152–166.

[26] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. Society for Industrial and Applied Mathematics, Jan. 2009.

[27] W. Hu, L. Liu, and G. Feng, “Consensus of Linear Multi-Agent
Systems by Distributed Event-Triggered Strategy,” IEEE Transactions
on Cybernetics, vol. 46, no. 1, pp. 148–157, Jan. 2016.

[28] M. Milanese and A. Vicino, “Optimal estimation theory for dynamic
systems with set membership uncertainty: An overview,” Automatica,
vol. 27, no. 6, pp. 997–1009, Nov. 1991.

[29] M. Treiber, A. Hennecke, and D. Helbing, “Congested Traffic States in
Empirical Observations and Microscopic Simulations,” Physical Review
E, vol. 62, no. 2, pp. 1805–1824, Aug. 2000.

[30] X.-M. Zhang, Q.-L. Han, and X. Yu, “Survey on Recent Advances in
Networked Control Systems,” IEEE Transactions on Industrial Infor-
matics, vol. 12, no. 5, pp. 1740–1752, Oct. 2016.

[31] R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control.
USA: Wiley-Interscience, Jun. 1994.

[32] Y. Pan and G.-H. Yang, “Event-triggered fuzzy control for nonlinear
networked control systems,” Fuzzy Sets and Systems, vol. 329, pp. 91–
107, Dec. 2017.

[33] X. Su, F. Xia, J. Liu, and L. Wu, “Event-triggered fuzzy control of
nonlinear systems with its application to inverted pendulum systems,”
Automatica, vol. 94, pp. 236–248, Aug. 2018.

[34] Y. Pan, Y. Wu, and H.-K. Lam, “Security-Based Fuzzy Control for
Nonlinear Networked Control Systems With DoS Attacks via a Resilient
Event-Triggered Scheme,” IEEE Transactions on Fuzzy Systems, vol. 30,
no. 10, pp. 4359–4368, Oct. 2022.

[35] C. Belta and S. Sadraddini, “Formal Methods for Control Synthesis:
An Optimization Perspective,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 2, no. 1, pp. 115–140, 2019.
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