
Digital Twin as a Service (DTaaS):
A Platform for Digital Twin Developers and Users

Prasad Talasila10000-0002-8973-2640

prasad.talasila@ece.au.dk
Cláudio Gomes10000-0003-2692-9742

claudio.gomes@ece.au.dk
Peter Høgh Mikkelsen10000-0003-2321-758X

phm@ece.au.dk

Santiago Gil Arboleda10000-0002-1789-531X

sgil@ece.au.dk
Eduard Kamburjan20000-0002-0996-2543

eduard@ifi.uio.no
Peter Gorm Larsen10000-0002-4589-1500

pgl@ece.au.dk

1 Centre for Digital Twins, DIGIT
Department of ECE
Aarhus University

Finlandsgade 22, 8200 Aarhus N, Denmark

2 Department of Informatics, University of Oslo
Gaustadalleen 23 B, 0373 Oslo, Norway

Abstract—Establishing digital twins is a non-trivial endeavour
especially when users face significant challenges in creating them
from scratch. Ready availability of reusable models, data and
tool assets, can help with creation and use of digital twins. A
number of digital twin frameworks exist to facilitate creation
and use of digital twins. In this paper we propose a digital twin
framework to author digital twin assets, create digital twins
from reusable assets and make the digital twins available as a
service to other users. The proposed framework automates the
management of reusable assets, storage, provision of compute
infrastructure, communication and monitoring tasks. The users
operate at the level of digital twins and delegate the rest of the
work to the digital twin as a service framework.

Index Terms—digital twins, physical twin, automation, life
cycle, composition

I. INTRODUCTION

Digital Twins (DTs) are used to add value to systems
of interest which typically are called Physical Twins (PTs).
Such DTs can be assisting individual Cyber-Physical Sys-
tems (CPSs) in different ways and it is the vision of these
capabilities that makes DTs so interesting. At the heart of
a DT is a collection of models describing characteristics
of the CPS of interest. In practice, a comprehensive DT
may marshal a collection of diverse models, each developed
for different purposes. These models are evaluated on tools
using the data received from PT. Delivering such a DT
can be a complex task, especially because of the need for
several different modelling approaches, including information
models, geometry, physics, and behaviours [1], [2].

The main motivation for DTs is to enable real-time mon-
itoring, analysis, and simulation of a PT. This technology
facilitates improved decision-making, predictive maintenance,
and optimization in various industries, including manufactur-
ing, healthcare, and urban planning. DTs enhance efficiency,
reliability, and sustainability by providing a comprehensive
understanding of complex systems and supporting data-driven
insights. They represent a natural stepping stone from the
massive availability of sensors and data in different industries,

and it is our conviction that their architecture is common
across many such industries.

A number of DT platforms have been proposed to reduce
the implementation effort in relation to the structural aspects
of DTs [3]. Nevertheless, the other functional and behavioural
aspects are not necessarily supported. Other approaches for
co-simulation-oriented DTs can be complementary to existing
DT platforms [4], although they may need further contextual
design for DT structures to achieve reusability.

Recently the idea of establishing a Digital Twin as a Service
(DTaaS) has been proposed but with a primary focus on
services related to Augmented Reality [5]. In this paper we
extend that vision with more detail about the DT assets
involved and their realisation in a more general context.
We describe the foundational concepts needed to create DT
platforms. These concepts are then used to define a candidate
system architecture for a DTaaS platform. The primary system
requirement for the proposed DT platform is to support DT
through different phases of its lifecycle. The create, execute,
save, analyse, evolve and terminate phases of DT lifecycle
are supported. One possible implementation of the proposed
system is described in this paper. A library of reusable assets
reduces the difficulties faced by users in creation of DTs for
different CPSs [6]. The DTaaS platform supports DTs that
can be created from readily available and reusable library
assets. Such a reuse facilitates adoption of DTs among even
the non-technical users.

The rest of this paper is structured such that Section II
presents the background necessary to understand the results
reported here. Afterwards, Section III presents the envisaged
lifecycle of using DTs. This is followed by an overview of
the system architecture in Section IV. Then an overview of
the corresponding implementation is presented in Section V.
Finally, Section VI and Section VII completes the paper with
future work and concluding remarks respectively.

ar
X

iv
:2

30
5.

07
24

4v
2 

 [
cs

.S
E

] 
 1

3 
Ju

n 
20

23



II. BACKGROUND

A DT is digital representation of a physical object, that
through data exchange, reflects evolution of a PT over time
[7]. Kritzinger et al. [8] propose three subcategories of DTs:
(i) Digital Model, in which PT and DT have no automated
exchange of data, (ii) Digital Shadow, where PT emits data to
the DT automatically and finally (iii) Digital Twin, in which
case there exist a two-way automated data exchange between
the DT and PT.

The composition of a DT is considered by [9] who pro-
poses a five-level architecture. On the lowest level (i) Smart
Connection, resides the data exchange between DT and PT;
(ii) Data-to-information conversion, concerns conversion and
aggregation of data for monitoring and to make it useful for
(iii) Cyber, which is the central information hub and source of
analysis across multiple data sources. At level (iv) Cognition,
the knowledge acquired from lower levels are made available
for decision-making and finally at level (v) Configuration, is
where decisions or reconfiguration from the DT is fed back
to the PT, to make it self-adaptable. Thus, to create a DT,
infrastructure, tools, models and configurations must address
each level.

DTs might often be engineered and operated by reusing
existing software and parts of the DT. Completely new
development of a DT for each PT is not necessary if the
DT or its parts are reusable [10]. A DT can be structured
to be composed of reusable assets one of which is a model.
Zambrano et. al [2] discuss the reusability of models. The
DIGITbrain platform focuses on reusable data, models, and
algorithms (alias for software tools and frameworks). The
platform considers four reusable assets for creating DTs: data,
models, algorithms (tools) and model-algorithm pairs [11].

The reusable assets are to be selected and configured to
create new DTs. The configuration of DTs is also addressed
in [10] which uses Domain Specific Languages (DSLs) to
describe domain, data, tagging, constraint, and GUI as input to
a set of generation tools, to create the application-independent
parts of a DT platform. The platform can then be tailored by
a domain expert for a specific purpose, using a web-based
frontend. Several commercial and open-source projects pro-
pose DSLs to specify composition of a DT as a configuration
of models, relations and data exchange [12].

Existing development frameworks for DTs use different
modelling approaches, which require different sets of tools
and functional aspects as long as the bidirectional connec-
tivity is complied. They are normally based on reference
architectures for the definition of schemas, functionalities, and
services. These frameworks usually extend the infrastructure
from Internet of Things (IoT) frameworks [13].

The first group is based on object-oriented design [3].
The second group is based on co-simulation as a backbone
of the DTs. In this group, the frameworks use behavioural
models embedded in Functional Mock-up Units (FMUs). The
interfaces to inputs and outputs need to be provided externally
or by hand-coding. An example of this group is the INTO-

CPS Co-simulation Framework [14], which is composed of an
orchestration engine for FMUs and provide some additional
FMUs for connectivity.

Others, such as DIGITbrain and HUBCAP have used a
model-based design (MBD) approach in order to enable
the reusability of DT assets from a high-level perspective
[11]. These assets can be extended to a DTaaS platform
by considering replaceable tools and other aspects, such as
interaction with PTs, users, and semantic data exchange [5].

The DTaaS platform is a complementary approach across
different DT frameworks. It provides the infrastructure to run
and maintain DTs with a well-defined DT asset configuration.
The existing DT frameworks can be run within the DTaaS
software including the integration of live DTs running within
the software to external services. It means that, other existing
DT frameworks can make use of the reusable components
and services that the DTaaS software offers. On the other
hand, the DTaaS platform offers two additional features that
are not considered in existing DT frameworks that can be
highly beneficial for users, which are related to i) providing
private workspaces for authoring and verification of reusable
assets and ii) extending from the private workspaces, users
are also allowed to collaborate and share models and assets
in the platform, which enables the reusability of developed
assets by other users.

A key concern in all the frameworks is to support different
operating phases of DT. Successful software engineering
practices such as microservices, DevOps and GitOps have
found their way into the development and operation of DT
platforms [15], [16]. The DT platforms hosting reusable DT
assets must be able to verify the promised functionality of the
assets. The DevOps practices such as continuous integration
can help with the verification of published assets [17]. The
GitOps practices [18] allow provisioning of DT execution
infrastructure using familiar git workflows. These practices
can be adopted to support scalable execution of DTs.

In the rest of the paper, the software platform and the
software phrases are used to refer to the DTaaS software.

III. THE DIGITAL TWIN LIFECYCLE

A. DT Assets

The DTaaS software platform treats DTs as having reusable
assets. These assets are put together and configured in a
certain way. We use four categories of assets: data (D), model
(M), function (F) and Tool (T).

The data (D) asset refers to data sources and sinks available
to a DT. Typical examples of data sources are sensor measure-
ments from the PT, and test data provided by manufacturers
for calibration of models. Typical examples of data sinks
are visualisation software, external users and data storage
services. There exist special outputs such as events, and
commands which are akin to control outputs from a DT. These
control outputs usually go to the PT, but they can also go to
another DT [19].

The model (M) assets are used to describe different aspects
of a PT and its environment, at different levels of abstraction.



(a) Constitution of a minimum viable DT.
At least one asset from mandatory set is
required. An executable binary asset is a valid
DT.

(b) Composability among DTs. Composition
introduces recursion in the construction of
DTs.

(c) Configuration possibilities for
DTs. Flat configuration is more
flexible yet more complex.

Fig. 1: Data, Model, Function, Tool, ready to use Digital Twin assets of the DT platform. The DT configuration links assets
to form a meaningful DT.

Therefore, it is possible to have multiple models for the same
PT. For example, a flexible robot used in a car production
plant may have structural model(s) which will be useful in
tracking the wear and tear of parts. The same robot can
have a behavioural model(s) describing the safety guarantees
provided by the robot manufacturer. The same robot can also
have a functional model(s) describing the part manufacturing
capabilities of the robot.

The function (F) assets are primarily responsible for pre-
and post-processing of: data inputs, data outputs, control
outputs. The research results from data science can be used to
create useful function assets for the platform. In some cases,
DT models require calibration prior to their use; functions
written by domain experts along with right data inputs can
make model calibration an achievable goal. Another use of
functions is to process the sensor and actuator data of both
the PT and the DT.

The software tool (T) assets are software used to create,
evaluate and analyse models. These tools are executed on
top of a computing platforms, i.e., an operating system, or
virtual machines like Java virtual machine, or inside docker
containers. The tools tend to be platform specific, making
them less reusable than models. A tool can be packaged to run
on a local or distributed virtual machine environments thus
allowing selection of most suitable execution environment for
a DT. Most models require tools to evaluate them in the
context of data inputs. There exist cases where executable
packages are run as binaries in a computing environment.
Each of these packages are a pre-packaged combination of
models and tools put together to create a ready to use DT.

There is a dependency between the assets especially in the
context of creating DTs. These dependencies are illustrated
in Figure 1a. Only functions/tools can use models/data. A
specific combination of these assets constitute a DT. The in-
terconnections between assets, parameters (configurable run-
time variables) of the assets need to be specified for each DT.

This information becomes a part of the DT asset configuration
(Ca). The information encoded in Ca is not sufficient to truly
manifest a closed loop communication between a DT and a
PT. Thus each DT requires complete configuration (Cdt) that
is sufficient to execute a DT in the presence of supporting
services and execution environment. The possibilities of asset
combinations used in a DT can be expressed using Equation 1.

Dt :{D∗,M∗, (FT )+}Cdt (1)

where D denotes data, M denotes models, F denotes functions,
T denotes tools, Cdt denotes DT configuration and Dt is a
symbolic notation for a DT itself. The {D∗,M∗, (FT )+}Cdt

expression denotes composition of DT from D,M,T and F
assets. The ∗ indicates zero or one more instances of an asset
and + indicates one or more instances of an asset.

B. DT Configuration

The DT asset configuration (Ca introduced in Sec-
tion III-A) is only a part of the complete configuration (Cdt)
needed for running a live DT with feedback loop to its PT.
The Cpt denotes configuration information required by a DT
to communicate with a PT. Each DT may have constraints on
the kind of execution environments it is capable of using, i.e.
tools that can only run either on a specific operating system
or on a server with specific hardware capabilities. The Ci

denotes the infrastructure configuration required by a DT. The
Ce denotes configuration for integration of a DT with external
software systems, ex. third-party visual dashboards.

Cdt = {Ca, Ci, Ce, Cpt} (2)

Among all the configurations shown in Equation 2, Ca and
Cpt are very specific to one DT or a class of DTs. Thus,
generalization of these two configurations into a configuration
specification standard is a challenging task. The other two
configurations – Ci and Ce – are more general and a config-
uration specification standard for these two is a manageable



Fig. 2: Mapping of the DT lifecycle phases to the incubator use case [20].

challenge. A sanity check is required on validity of any given
Cdt.

Two situations demand adjustments to Cdt. One is a user-
driven change in Ca, Cpt, Ci, Ce, or Cdt of included DTs.
In this case, a validity check is required before a transition to
new a configuration can be made. Second is a requirement to
perform a what-if analysis. A what-if analysis requires minor
variations on Cdt to plan and optimize future steps to be
undertaken either on a PT or a DT. Actual implementation of
a what-if analysis can be resource intensive with the resource
requirements scaling up in proportion to algorithmic bounds
on the (sub)-systems being used by a DT.

A DT can also use external tools such as planning and
optimization. This is especially true in what-if analysis. If
these tools are used exclusively within a DT, then they can
be considered as tools in asset library. Otherwise, they are
part of the infrastructure / external world.

C. Phases in DT Lifecycle

A DT lifecycle consists of create, execute, save, analyse,
evolve and terminate phases. In addition to having D,M,T
and F as assets in the library, the ready to use DTs can
also be a library assets. Users might choose to create a new
DT or select an existing DT. The create phase involves asset
selection and an specifying DT configuration. Sections III-A
and III-B describe the configuration phase. If DT is reused,
there is no creation phase at the time of reuse.

The execute phase involves automated execution of a DT
based on its configuration. If a DT is reused, there will be a
temporal gap between creation and execution times of a DT.
Thus, a need might arise for just-in-time DT reconfiguration
at the point of execution. The save phase involves saving the
state of DT to enable future recovery. The terminate phase
involves stopping the execution of DT and releasing all the
resources and connections mentioned in the DT configuration.

Analyse and Evolve Phases: Monitoring, at its most
basic level, requires data gathering and storage, of the in-

teraction between the PT and its environment, and among
the PT’s assets. However, even for a simple system such as
an incubator (like the one introduced in [20]), monitoring
requires that hidden quantities (that is, quantities for which
we cannot obtain a sensor measurement directly) be estimated.
This activity corresponds to the analyse lifecycle phase.
Often these hidden quantities are represented by variables
in the various models used by the DT. The consequence is
that estimates of these hidden quantities need to be stored
in the database, becoming then input to decision-making
simulations, where all variables of the models need to be
properly initialized. For more details we refer the reader to
[21].

Monitoring also informs the next lifecycle stage of the
DT: the evolve stage. The evolve phase involves user/event-
triggered reconfiguration of an instantiated DT. Note that the
monitoring and planning steps make use of the other DT
services.

Reconfiguration Phase and Consistency: The evolution
phase requires reconfiguration of DTs. The aim of reconfig-
uration is to ensure consistency between DT and its PT, i.e.,
the adequacy of the DT to mirror its PT, access its data, and
enable the required analyses.

Reconfigurations may be triggered by different kinds of
events, two of which we discussed above, they are specific
to the system and, thus, reconfiguration procedures must be
provided by the user. These procedures are highly application
specific. The reconfiguration procedures must be able to
access the current DT configuration and its assets. As the
configuration is highly heterogeneous, the platform should
offer a way for uniform access to it, i.e., a representation
mapping µ that is defined on Cdt and all its assets as well
as provide an interface for the user to program reconfigura-
tions in terms of the uniform access, i.e., define transitions
µ
(
Cl

dt

)
→µ µ

(
Cl+1

dt

)
. Knowledge graphs are a suitable

technology to implement for the mappings. The approaches to



Fig. 3: System components required to fulfil the functional requirements of a DTaaS software.

express consistency between DT and PT in terms of queries
on knowledge graphs have been shown to be useful [22].

D. The Incubator Use Case
Here we introduce a simple incubator as an example to

make the description of DT lifecycle stages more clear.
Consider an incubator that we wish to make smart by the use
of a DT. The PT consists of an insulated box with a heater
inside, that can be turned on or off by a controller, which
measures the temperature inside. Here the DT can adjust the
parameters of the controller based on past performance data,
and detect/mitigate anomalies, such as the box being opened
unexpectedly. Feng et. al [21], [23] provide complete details
on this use case. Figure 2 contains a mapping of different
activities done for the incubator DT and the conceptual
description of DT lifecycle phases.

E. Hierarchical DTs
A PT like a manufacturing factory consists of multiple

robots each of which can be have a DT of their own.
This hierarchical aggregation is to replicate the compositional
properties of a PT. A hierarchical DT can also use the
elementary DT assets in addition to the aggregated DTs
[19]. Figure 1b shows this possibility. Thus Equation 1 gets
modified to become:

Dt :{D∗,M∗, (FT )+}Cdt (3)

{(DMFT )∗, D+
t }Cdt

where the {(DMFT )∗, D+
t }Cdt expression represents use of

one DT and other reusable assets to create another DT.

In the case of hierarchical DTs, there may be a need to
provide configuration (Cdt) for each of the DTs included.
Thus, Equation 2 becomes generalized to Equation 4 for
a hierarchical DT configuration. In case of non-hierarchical
DTs, l = 0 and Cl

dt = ϕ.

Cl+1
dt = {Ca, Ci, Ce, Cpt, C

l
dt} (4)

Figure 1c shows a graphical illustration of the relationship
between Cdt and all other configurations.

The DT lifecycle of composed DT (Dl
t) is dictated by the

composing DT (Dl+1
t ). When Dl+1

t goes through Execute,
Persist and Terminate phases the Dl

t must adhere to the
lifecycle phase of Dl+1

t . Otherwise, the lifecycle phases of
Dl+1

t and Dl
t are independent.

IV. SYSTEM ARCHITECTURE

A. Requirements

The DTaaS software platform users expect a single platform
to support the complete DT lifecycle. To be more precise, the
platform users expect the following features:

1) Author – create different assets of the DT on the
platform itself. This step requires use of some software
frameworks and tools whose sole purpose is to author
DT assets.

2) Consolidate – consolidate the list of available DT assets
and authoring tools so that user can navigate the library
of reusable assets. This functionality requires support
for discovery of available assets.



Fig. 4: Current implementation catering to co-simulation and monolithic DTs. The system supports creation of DTs from
library assets.

3) Configure – support selection and configuration of
DTs. This functionality also requires support for val-
idation of a given configuration.

4) Execute – provision computing infrastructure on de-
mand to support execution of a DT.

5) Explore – interact with a DT and explore the results
stored both inside and outside the platform. Exploration
may lead to analytical insights.

6) Save – save the state of a DT that’s already in the
execution phase. This functionality is required for on-
demand saving and re-spawning of DTs.

7) What-if analysis – explore alternative scenarios to (i)
plan for an optimal next step, (ii) recalibrate new DT
assets, (iii) automated creation of new DTs or their
assets; these newly created DT assets may be used to
perform scientifically valid experiments.

8) Share – share a DT with other users of their organisa-
tion.

B. System Components

Despite the different user requirements, the platform must
present a unified interface to the users. This unified inter-
face is achieved by providing a gateway to consolidate the
functionality provided by internal system components. Figure
3 shows the system architecture of the the DTaaS software
platform. The users interact with the software platform using
a website. The gateway is a single point of entry for direct
access to the platform services. The gateway is responsible for
controlling user access to the microservice components. The
microservices are complementary and composable; they fulfil

core requirements of the system. The service mesh enables
discovery of microservices, load balancing and authentica-
tion functionalities. There are microservices for catering to
author, store, explore, configure, execute and scenario analysis
requirements.

C. Microservices

The microservices illustrated in Figure 3 provide bulk of the
platform functionality. The security microservice implements
role-based access control (RBAC) in the platform. The ac-
counting microservice is responsible for keeping track of the
platform, DT asset and infrastructure usage. Any licensing,
usage restrictions need to be enforced by the accounting
microservice. Accounting is a pre-requisite to commercial-
isation of the platform. Due to significant use of external
infrastructure and resources via the platform, the accounting
microservice needs to interface with accounting systems of
the external services.

The data microservice is a frontend to all the databases
integrated into the platform. A time-series database and a
graph database are essential. These two databases store time-
series data from PT, events on PT/DT, commands sent by
DT to PT. The PTs uses these databases even when their
respective DTs are not in the execute phase.

The visualisation microservice is again a frontend to visu-
alisation software that are natively supported inside the plat-
form. Any visualisation software running either on external
systems or on client browsers do not need to interact with
this microservice. They can directly use the data provided by
the data microservice.



The reusable assets microservice (Asset MS) provides
search, explore, and select functions over DT assets. Thus
Asset MS should aid users in performing create-read-update-
delete operations on the private and shared reusable assets.
Any ready to use DTs are also made available via the Asset
MS.

The execution manager microservice (Exec MS) is re-
sponsible for on-demand provisioning of virtual compute
infrastructure. To make the platform scalable, the Exec MS
must be capable of integrating with private and public cloud
providers. The Exec MS creates virtual workspaces on top
of the provisioned compute infrastructure. Users operate with
these isolated workspaces.

The DT lifecycle microservice assists users during all
phases of a DT. This microservice extensively uses other
microservices to provide atomic operations at the level of
DTs. This microservice acts as a controller to both the Asset
and Exec microservices.

V. IMPLEMENTATION

The DTaaS software platform is currently under develop-
ment. Crucial system components are in place with ongoing
development work focusing on increased automation and
feature enhancement. Figure 4 shows the current status of the
development work. The current security functionality is based
on signed Transport Layer Security (TLS) certificates issued
to users. The TLS certificate based mutual TLS (mTLS)
authentication protocol provides better security than the usual
username and password combination. The mTLS authentica-
tion takes place between the users browser and the platform
gateway. The gateway federates all the backend services.
The service discovery, load balancing, and health checks are
carried by the gateway based on a dynamic reconfiguration
mechanism.

A time-series database is now incorporated in the platform.
The database comes with query and visualisation dashboards.
Users are permitted to share the dashboards. Thus DT experts
can develop custom dashboards and share them with other
users. A file server has been setup to act as a DT asset
repository. Each user gets space to store private DT assets and
also gets access to shared DT assets. Users can synchronize
their private DT assets with external git repositories. In
addition, the asset repository transparently gets mapped to
user workspaces within which users can perform DT lifecycle
operations.

All users have dedicated workspaces. These come in four
different flavours: isolated docker container, streaming desk-
top, shared virtual machine and dedicated virtual machine.
The required docker container and virtual machine images
are fetched from the private repository. This repository only
contains docker images, and virtual machine images specifi-
cally created for the DTaaS platform.

The user workspaces are managed using compute infras-
tructure configuration tools [18]. These tools are being used to
start and stop docker containers and virtual machines. All the
user workspaces are started using provisioning scripts at the

time of installation. An execution manager microservice will
provide an application programming interface for on-demand
provisioning of user workspaces. This microservice is still
under development.

All the user workspaces have a unified interface via the
web browser. In addition, these workspaces have Internet
access. Thus a PT to DT bidirectional communication link
is as simple as spawning a required client-server communi-
cation protocol software. It is possible to restrict the DT-PT
and DT-Internet communication. A suitable network firewall
configuration can easily enforce the necessary restrictions.

Users can also permit remote access to live DTs. There is
already shared access to visualisation dashboards. With these
two provisions, users can treat live DTs as service components
in their own software systems.

VI. FUTURE WORK

Quite a few development tasks are in-progress to enhance
the functionality provided on the platform. We foresee three
major areas of work.

First is the DT configuration and implementation. This is
a significant research and implementation challenge, mostly
because the domain is fuzzy and expanding so fast, that
applying DSLs would be a moving target. There is a need
to define a new DSL, or at least repurpose existing DSL
to enforce the semantic restrictions on DT configuration. A
more complex problem of configuration optimization awaits
the researchers intending to scale up DT deployments in a
cost-efficient manner.

Second, we would like the DT platform tool to follow
the DT lifecycle. In the beginning, the DT features provided
are more or less standard, and focus is on those services
that are application agnostic. The user provides DT assets
(models, data, tools, functions), a configuration file, and gets
a cloud based DT. The current platform is in this category.
Then, as the user of the DT learns more about the PT
(through visualisation and basic historical simulation support),
(s)he can develop basic state estimation algorithms that use
simulation on historical data, such as the one introduced in
[24]. Then we can introduce more advanced state estimation
algorithm such as the Kalman filtering, but these require
slightly different models provided by the user. This introduces
the challenge of keeping models consistent, since the models
used for state estimation are similar to the models used for
historical simulation, but have extra inputs. So we need a way
to relate models in the platform, and keep them consistent.

Third, is the on-demand management of user workspaces
which frees up the execution resources and accommodates
more users on the platform. A natural next step in this
direction is the separation of DT lifecycle management from
the user workspace. One user can create a DT, hand over
the same to another user who will manage the other lifecycle
phases of the given DT.

VII. CONCLUDING REMARKS

There is a strong interest in the DT community to provide
DTaaS to spread the user base of DTs. A typical DT lifecycle



involves create, execute, save, analyse, evolve and terminate
phases. Only software platforms developed with awareness of
DT lifecycle can aspire to fulfil the DTaaS vision. Reusabil-
ity of DT assets, creation of meaningful DT configuration,
scalable deployment are key challenges in the development
of DTaaS platforms.

In this paper, we have described some nuances in DT con-
figuration that is valid in the context of reusable assets, shared
infrastructure, and desired integration with external world. We
propose one architecture for DTaaS software platform. With
the aid of our implementation, we bring forth the potential
benefits of our proposed DTaaS software architecture.

Source Code

The source code for the project is available at:
https://github.com/INTO-CPS-Association/DTaaS.

ACKNOWLEDGMENT

This work has been partially supported by the EU Horizon
2020 projects DIGITbrain and HUBCAP and the Poul Due
Jensen foundation, as well as the RCN grants PeTWIN
(294600) and SIRIUS (237898).

We thank in no particular order the successful discussions
and feedback provided by the DIGITbrain technical coordi-
nation committee, Daniel Lehner, Mirgita Frasheri, Henrik
Ejersbo, Gianmaria Bullegas and Omar Nachawati.

REFERENCES

[1] F. Tao, B. Xiao, Q. Qi, J. Cheng, and P. Ji, “Digital Twin Modeling,”
Journal of Manufacturing Systems, vol. 64, pp. 372–389, jul 2022.

[2] V. Zambrano, J. Mueller-Roemer, M. Sandberg, P. Talasila, D. Zanin,
P. G. Larsen, E. Loeschner, W. Thronicke, D. Pietraroia, G. Landolfi,
A. Fontana, M. Laspalas, J. Antony, V. Poser, T. Kiss, S. Bergweiler,
S. P. Serna, S. Izquierdo, I. Viejo, A. Juan, F. Serrano, and A. Stork,
“Industrial digitalization in the industry 4.0 era: Classification, reuse
and authoring of digital models on digital twin platforms,” Array, p.
100176, 2022.

[3] D. Lehner, J. Pfeiffer, E. F. Tinsel, M. M. Strljic, S. Sint, M. Vierhauser,
A. Wortmann, and M. Wimmer, “Digital Twin Platforms: Requirements,
Capabilities, and Future Prospects,” IEEE Software, vol. 7459, no. c,
pp. 1–7, 2021.

[4] J. Fitzgerald, P. G. Larsen, and K. Pierce, Multi-modelling and Co-
simulation in the Engineering of Cyber-Physical Systems: Towards the
Digital Twin. Springer International Publishing, 2019, vol. 11865
LNCS.

[5] S. Aheleroff, X. Xu, R. Y. Zhong, and Y. Lu, “Digital Twin as a Service
(DTaaS) in Industry 4.0: An Architecture Reference Model,” Advanced
Engineering Informatics, vol. 47, p. 101225, 2021.

[6] C. Human, A. H. Basson, and K. Kruger, “A Design Framework for
a System of Digital Twins and Services,” Computers in Industry, vol.
144, p. 103796, jan 2023.

[7] M. Grieves and J. Vickers, “Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems,” in Transdisci-
plinary Perspectives on Complex Systems, F.-J. Kahlen, S. Flumerfelt,
and A. Alves, Eds. Springer International Publishing Switzerland,
August 2017, pp. 85–113.

[8] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital
Twin in Manufacturing: A Categorical Literature Review and Classi-
fication,” in IFAC-PapersOnLine, vol. 51, no. 11. Elsevier B.V., jan
2018, pp. 1016–1022.

[9] J. Lee, B. Bagheri, and H. A. Kao, “A Cyber-Physical Systems Archi-
tecture for Industry 4.0-based Manufacturing Systems,” Manufacturing
Letters, vol. 3, pp. 18–23, jan 2015.

[10] M. Dalibor, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B. Rumpe,
S. Varga, and A. Wortmann, “Generating Customized Low-Code Devel-
opment Platforms for Digital Twins,” Journal of Computer Languages,
vol. 70, p. 101117, jun 2022.

[11] P. Talasila, D. C. Crăciunean, P. Bogdan-Constantin, P. G. Larsen,
C. Zamfirescu, and A. Scovill, “Comparison Between the HUBCAP
and DIGITBrain Platforms for Model-Based Design and Evaluation
of Digital Twins,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 13230 LNCS, 2022, pp. 238–244.

[12] J. Pfeiffer, D. Lehner, A. Wortmann, and M. Wimmer, “Modeling
Capabilities of Digital Twin Platforms-Old Wine in New Bottles?”
Journal of Object Technology, vol. 21, no. 3, 2022.

[13] S. Bader, E. Barnstedt, H. Bedenbender, M. Billman, B. Boss, and
A. Braunmandl, “Details of the Asset Administration Shell Part 1 -
The Exchange of Information Between Partners in the Value Chain of
Industrie 4.0,” Plattform Industrie 4.0, 2020.

[14] C. Thule, K. Lausdahl, C. Gomes, G. Meisl, and P. G. Larsen, “Mae-
stro: The INTO-CPS Co-simulation Framework,” Simulation Modelling
Practice and Theory, vol. 92, no. August 2018, pp. 45–61, 2019.

[15] G. Steindl and W. Kastner, “Semantic Microservice Framework for
Digital Twins,” Applied Sciences, vol. 11, no. 12, 2021.

[16] M. Ciavotta, G. D. Maso, D. Rovere, R. Tsvetanov, and S. Menato,
“Towards the Digital Factory: A Microservices-based Middleware for
Real-to-Digital Synchronization,” in Microservices: Science and Engi-
neering. Springer International Publishing, jan 2019, pp. 273–297.

[17] S. H. Reiterer, S. Balci, D. Fu, M. Benedikt, A. Soppa, and H. Szczer-
bicka, “Continuous Integration for Vehicle Simulations,” in 2020 25th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), vol. 1. IEEE, 2020, pp. 1023–1026.

[18] F. Beetz and S. Harrer, “GitOps: The Evolution of DevOps?” IEEE
Software, vol. 39, no. 4, pp. 70–75, 2021.

[19] L. Esterle, C. Gomes, M. Frasheri, H. Ejersbo, S. Tomforde, and P. G.
Larsen, “Digital Twins for Collaboration and Self-integration,” in 2021
IEEE International Conference on Autonomic Computing and Self-
Organizing Systems Companion (ACSOS-C). IEEE, sep 2021.

[20] H. Feng, C. Gomes, C. Thule, K. Lausdahl, M. Sandberg, and P. G.
Larsen, “The Incubator Case Study for Digital Twin Engineering,” Feb.
2021.

[21] H. Feng, C. Gomes, C. Thule, K. Lausdahl, A. Iosifidis, and P. G.
Larsen, “Introduction to Digital Twin Engineering,” in 2021 Annual
Modeling and Simulation Conference (ANNSIM). IEEE, jul 2021.

[22] E. Kamburjan and E. B. Johnsen, “Knowledge Structures Over Simu-
lation Units,” in ANNSIM. IEEE, 2022, pp. 78–89.

[23] H. Feng, C. Gomes, S. Gil, P. H. Mikkelsen, D. Tola, P. G. Larsen, and
M. Sandberg, “Integration Of The Mape-K Loop In Digital Twins,” in
2022 Annual Modeling and Simulation Conference (ANNSIM). IEEE,
jul 2022.

[24] C. M. Legaard, C. Gomes, P. G. Larsen, and F. F. Foldager, “Rapid
Prototyping of Self-Adaptive-Systems using Python Functional Mockup
Units,” in Proceedings of the 2020 Summer Simulation Conference,
ser. SummerSim ’20. Virtual Event, Spain: Society for Computer
Simulation International, San Diego, CA, United States, 2020, pp. 1–
12.


