
A Family of Digital T Workflows and Architectures:
Exploring Two Cases

Randy Paredis1[0000−0003−0069−1975],
Cláudio Gomes2[0000−0003−2692−9742], and
Hans Vangheluwe1,3[0000−0003−2079−6643]

1 University of Antwerp, Department of Computer Science, Middelheimlaan 1, Antwerp,
Belgium

2 Aarhus University, DIGIT, Department of Electrical and Computer Engineering, Åbogade 34,
Aarhus N, Denmark

3 Flanders Make@UAntwerp, Belgium

Abstract. Digital Models/Shadows/Twins/. . . have been given numerous defini-
tions and descriptions in the literature. There is no consensus on terminology,
nor a comprehensive description of workflows nor architectures. In this paper,
we use the catch-all “Digital T” (pronounced “Digital Twinning”) to refer to all
concepts, techniques, architectures, . . . related to the “twinning” paradigm. In this
paradigm, virtual instances, known as twins, of a System under Study (SuS) are
continually updated with the SuS’s health, performance, and maintenance status,
over its entire life-cycle. Digital T can be used for monitoring, analysis, opti-
mization, and adaptation of complex engineered systems, in particular after these
systems have been deployed. Digital T makes full use of both historical knowl-
edge and of streaming data from sensors. Following Multi-Paradigm Modelling
(MPM) principles, this paper proposes to explicitly model construction/use work-
flows as well as architectures and deployment of Digital T. Applying product fam-
ily modelling allows for the de-/re-construction of the different Digital T variants
in a principled, reproducible and partially automatable manner. Two small illus-
trative cases are discussed: a Line-Following Robot and an Incubator. These are
representative for respectively an Automated Guided Vehicle and an Industrial
Convection Oven, both important in an industrial context.

Keywords: Digital Model · Digital Shadow · Digital Twin · Architecture · Work-
flow · Variability Modelling

1 INTRODUCTION

Digital Twins (DTs) are increasingly used in Industry 4.0 and industrial processes for
purposes such as condition monitoring, analysis, and optimization. While their defini-
tion has changed throughout the years, the concept of “twinning” has stayed the same:
there exists a digital counterpart of a real-world (realized) system that provides infor-
mation about this system.

Academic and industrial interest in DTs has grown steadily, as they allow the accel-
eration through digitization that is at the heart of Industry 4.0. Digital Twins are made

2 Randy Paredis, Cláudio Gomes, and Hans Vangheluwe

possible by technologies such as the Internet of Things (IoT), Augmented Reality (AR),
and Product Lifecycle Management (PLM).

Despite the many surveys on the topic [26,17,12,4,23,30,1,13,3,5,15,28], there is no
general consensus on what characterizes a Digital Twin, let alone how it is constructed.
Some researchers state that a DT encompasses only the virtual counterpart of the sys-
tem, while for others, it encompasses both virtual and real-world systems as well as the
architecture connecting them. For example, Lin and Low [14] define DT as “a virtual
representation of the physical objects, processes and real-time data involved throughout
a product life-cycle”, whereas Park et.al. [23] define DT as “an ultra-realistic virtual
counterpart of a real-world object”. The ISO 23247 standard “Automation systems and
integration — Digital twin framework for manufacturing” defines a DT for manufactur-
ing as a “fit for purpose digital representation of an observable manufacturing element
with a means to enable convergence between the element and its digital representation
at an appropriate rate of synchronization” [9]. Rumpe [27] observes that there are at
least 118 different definitions in the literature that concern Digital Twins.

Additionally, many commonly used concepts such as Digital Shadows, Digital Mod-
els, Digital Passports, Digital Avatars, Digital Cockpits and Digital Threads, are closely
related to “twinning”.

In this paper, we introduce the catch-all “Digital T” (pronounced as “Digital Twin-
ning”) to refer to all concepts, techniques, architectures, . . . related to the “twinning”
paradigm. In this paradigm, one or more virtual instances, know as twins, of a Sys-
tem under Study (SuS) are continually updated with the SuS’s health, performance, and
maintenance status, and this over its entire life-cycle [16].

Our work focuses on the variability that appears when creating and managing Dig-
ital T systems, by unifying the most common definitions and viewpoints in the form
of product families of problems solved by, and conceptual architectures and possible
deployments for, Digital T. This allows for the de- and re-construction of the different
Digital T variants in a principled, reproducible and partially automatable manner.

In order to illustrate our approach, we apply our approach to the development of
Digital T systems for two complementary and small, but representative, use cases, a
Line-Following Robot and an Incubator. Our approach is a first step towards general-
ization to relevant industrial systems.

The rest of this paper is structured as follows. Section 2 discusses variability and
product family modelling. Section 3 introduces two simple examples that are represen-
tative for industrial systems. Next, Section 4 discusses the possible variations that may
occur at the exploration stage. Section 5 then focuses on the design of a Digital T system
and introduces some conceputal architecture models. In Section 6, possible deployment
architectures are shown for both example cases. Section 7 presents a generic workflow
for constructing Digital T systems. Finally, Section 8 concludes the paper.

2 VARIABILITY MODELLING

It is common for multiple variants of a product to exist. These variants share some
common parts/aspects/features/. . . but do vary in others. In the automotive industry for

A Family of Digital T Workflows and Architectures: Exploring Two Cases 3

example, it is common for all sold cars to be (often subtly) different due to small differ-
ences in salient features. Such variants can often be seen as different configurations.

Feature Modelling [11] is widely accepted as a way to explicitly model variability.
One possible representation to capture variability in a product family is by means of
a Feature Tree (also known as a Feature Model or Feature Diagram). It is a hierarchi-
cal diagram that depicts the features that characterize a product in groups of increasing
levels of detail. At each level, constraints in a Feature Tree model indicate which fea-
tures are mandatory and which are optional. Traversing a Feature Tree from its root
downwards, features are selected conforming to the constraints encoded in the Feature
Tree model. This feature selection leads to a configuration which uniquely identifies an
element of the product family. Note that Feature Trees are not the only way to model
product families. Wizards can be used to traverse a decision tree. In case the variability
is mostly structural, with many complex constraints, Domain-Specific Languages may
be used [6].

The notion of a product family is used to denote the often vast collection of variants.
Product families appear at multiple stages of a development process. The following
will describe variability in the goal exploration stage, in the design stage and in the
deployment stage.

To illustrate our proposed approach, we apply it to the two simple use cases of
Section 3.

3 EXAMPLE CASES

As this work is meant to guide the creation of Digital T systems in a multitude of
contexts, two cases are included as running examples: a Line-Following Robot and an
Incubator. These cases were chosen as representative (i.e., exhibiting the essential com-
plexity) for their industrial counterparts, an Automated Guided Vehicle and an industrial
oven, respectively.

3.1 Line-Following Robot

An Automated Guided Vehicle (AGV) is a simple transportation device in an industrial
setting. . It is a computer-steered vehicle that allows the transportation of materials,
resources and people. For the purposes of this use case, a Line-Following Robot (LFR)
is used as a simplification of an AGV. The LFR drives over a surface that contains a line
(which can be painted, reflective, fluorescent, magnetized, . . .), with the sole purpose
of following that line as closely as possible. However, unexpected situations (e.g., the
robot cannot find the line anymore, a forklift is blocking the robot’s trajectory, . . .) are
difficult to all accommodate for during the (LFR controller) design phase. Unforeseen
changes in the LFR’s environment is one of the scenarios where twinning provides a
solution as it may help detect the anomaly, identify its cause, and suggest adaptation.

Using AGVs reduces the need for conveyor belts, while being highly configurable
at the same time. It is an easy-to-understand system that still provides enough essential
complexity.

4 Randy Paredis, Cláudio Gomes, and Hans Vangheluwe

Our LFR is a nonholonomic, wheeled, differential-drive robot [25]. Nonholonomic-
ity is due to the fact that the robot has only two controls, but its confiuguration space
is three dimensional. The “differential-drive” (DD) aspect indicates that the robot has
two wheels next to each other, driven by two distinct motors. In the middle of the LFR,
there is a sensor that is able to detect the colour of the surface underneath the robot.
From this information, it is possible to infer whether or not the LFR is on the line. The
LFR is shown in Figure 1. It was described in detail in [21].

Fig. 1: The Line Following Robot.

The robot drives on a flat surface following a line. In Figure 2, trajectory data for
this system are shown. The blue, full line represents the path to follow, as marked on the

Fig. 2: Trace of an LFR experiment, as shown in a dashboard. Taken from [21].

floor, the orange, striped line identifies the twin’s simulation trace and the green, dotted
line represents a trace of the Physical Object’s position. This position is obtained using
machine vision on the data received from a depth vision camera, mounted statically in

A Family of Digital T Workflows and Architectures: Exploring Two Cases 5

a harness above the surface at such a height as to allow the camera’s field of view to
capture the entire driving range.

3.2 Incubator

A heating chamber (i.e., an industrial oven) is commonly used in industry for curing,
drying, baking, reflow,. . . It introduces high-temperature processes to the creation of a
product. Some ovens allow this product to be transported through the heating chamber
on a conveyor belt (or even an AGV).

The temperature in an industrial oven needs to be regulated, as a change in temper-
ature could damage the product. For instance, glazed ceramics could have a completely
different colour when baked at the wrong temperature. Additionally, such a system has
to react to unpredictable changes in its environment (e.g., complete a safety shutdown
when a person enters the chamber during the baking process). This makes an industrial
oven an excellent example for the use of a Digital T system.

Similar to the previous use case, a simplification of such a device is made for the
purposes of this paper, to focus on the essential Digital T workflows and architectures.
An incubator is a device that is able to maintain a specific temperature (or profile over
time) within an insulated container. With an appropriate temperature profiel, microbio-
logical or cell cultures can be grown and maintained.

The incubator (see Figure 3) consists of five main components: a thermally insu-
lated container, a heatbed (for raising the temperature), a fan (for circulating the air-
flow, which, through air convention, allows a uniformly distributed temperature when
in steady-state), three temperature sensors (two are used to measure the internal heat,
one is used to measure the temperature outside the container – the environment, which
is outside our control) and a controller. In our example this controller is similar to a
bang-bang (or on/off) controller, but has to wait after each actuation, to ensure that the
temperature is raised gradually.

Fig. 3: The Incubator (with lid removed).

In [8], a full description of this incubator is given. Figure 4, adapted from [8], shows
an example scenario where the lid of the incubator is opened. This is detected as an

6 Randy Paredis, Cláudio Gomes, and Hans Vangheluwe

anomaly by a Kalman (tracking) filter [10] (the purple temperature trajectory is the
result of the Kalman filter; the blue trajectory is the real temperature as measured inside
the incubator.). The Kalman filter uses a model for the prediction of the temperature.
Such a model does not consider the thermal dynamics when the lid is open. As a result,
when the lid is opened, the predictions start to perform poorly, a fact that can be the basis
for anomaly detection. Note that the figure also shows a simulation that runs completely
independently of the measured data. The reason the Kalman filter does not perform as
poorly as this simulation is because it still takes into account real sensor data. This,
in contrast to the simulation, which uses a model of the environment. Also note that,
compared to the simulation, after the lid is closed, the simulation has difficulty returning
to normal, whereas the Kalman filter, because it uses the measured data, quickly returns
to tracking the system behaviour.

30

40

14:50
Jan 22, 2021

14:55 15:00 15:05 15:10

30

40

50

60

avg_T heater_onavg_temp(4pModel) avg_temp(Kalman)

T_heater(4pModel) T_heater(Kalman)

Incubator Temperature

Heat-bed Temperature

Timestamp

Lid Opened

Lid Closed

Lid Opened

Lid Closed

Fig. 4: Example experiment where an anomaly is detected using the Kalman filter.
Adapted from [8].

4 EXPLORATION STAGE

Based on our experience with the two use cases and on the extensive Digital T litera-
ture, we built feature models for each of the development stages in creating Digital T
systems. Note that these are by no means complete, but are rather meant as a starting
point, to illustrate our approach. They can therefore be seen as a “base” feature model
that can be critiqued and extended by others.

A Family of Digital T Workflows and Architectures: Exploring Two Cases 7

Goals

Observe

Modify

Data Recording

Monitoring

Condition Monitoring

Predictive Maintenance

Fault Diagnosis

Dashboard
Visualization

2D/3D Animation

Explanatory

Predictive
What-If Simulation

Self-Adaptation

Self-Healing

Self-Reconfiguration

Self-Organisation

Self-Learning

Self-Optimization

Anomaly/Fault Detection

State Estimation

LEGEND

Feature

Mandatory

Optional

Implies

Calibration

Fig. 5: Feature model of the Goals of a Digital T System.

When creating a solution for a problem (that is to be solved by twinning), it is impor-
tant to first describe the individual Properties of Interest (PoIs) for the problem. These
PoIs are attributes (or descriptors) of an artifact that are either logical (i.e., the LFR has
wheels) or numerical (i.e., the LFR has 2 wheels). They can be computed (or derived)
from other artifacts, or specified (i.e., defined by a user) [24]. These PoIs describe the
goals of the system that will solve the problem. Each specific goal corresponds to a
specific choice in the variability models for that system. They define the problem space.

A (sub)set of the most common Goals for a Digital T system is shown in Figure 5.
Notice the separation of the mandatory “Observe” and the optional “Observe and Mod-
ify”. This separation identifies the split between analysis, whereby the real-world system
is not modified, and adaptation, where it is.

While the LFR case allows for additional PoIs to be added, we will only focus on
the “Dashboard” section for the purposes of this work. The incubator case also supports
“Anomaly Detection”.

In addition to the selection of the Goals, there is also the Context in which the
Digital T system is to be used. This is shown in the feature model of Figure 6. In
the first layer, under Context, all features are mandatory. There is always some User,
always a Scale, always a Product Lifecycle Stage, . . . This is an indication that these are
orthogonal dimensions. Feature choices in each of these dimensions can be combined.

8 Randy Paredis, Cláudio Gomes, and Hans Vangheluwe

Context

User
Manufacturer

Customer

Scale

Time
Monitoring Time

Response Time

Product Type

Single Digital T

Digital Z Ecosystem

Higher-Order Digital T

Connection

Throughput

Speed

Availability

PLM Stage

Design

Manufacturing

Distribution

Usage

End of Life

LEGEND

Feature

Mandatory

Optional

Fig. 6: Feature model of the Contexts for a Digital T System.

Note that the context in which the Digital T system is active constrains downstream
choices in the Solution Space.

The LFR case focuses on “Customers”, only requires “Monitor Time” and is a
“Single Digital T System”. The “Connection” is not critical, and the Digital T sys-
tem is meant to work at the “Usage PLM Stage”. The incubator case focuses on “Cus-
tomers”, requires a certain “Response Time” and is also a “Single Digital T System”.
The “Speed” of the “Connection” is important, as it must adapt to anomalies in a timely
manner. It is also meant to be used at the “Usage PLM Stage”.

Many different Ilities can be listed and discussed. According to [29], the Ilities are
desired properties of systems, such as flexibility or maintainability (usually but not al-
ways ending in “ility”), that often manifest themselves after a system has been put to
its initial use. These properties are not the primary functional requirements of a sys-
tem’s performance, but typically concern wider system impacts with respect to time
and stakeholders than are embodied in those primary functional requirements.

The main Ilities to be focused on in our example cases are “Testability”, “Repeata-
bility”, “Replicability” and “Usability”.

A Family of Digital T Workflows and Architectures: Exploring Two Cases 9

Actual / Physical
Object

Digital
Object

Digital Model

Actual / Physical
Object

Digital
Object

Digital Shadow

Actual / Physical
Object

Digital
Object

Digital Twin

Automatic Data Flow

Manual Data Flow

Fig. 7: Three main Design variants of DTs, adapted from [12].

5 DESIGN STAGE

There is variability in the kind of Digital T system we wish to build. [12] defines three
Digital T variations, as outlined in Figure 7.

As shown in the figure, each variant contains a Physical Object (PO) and a Digital
Object (DO). The PO represents the System under Study (SuS) within its Environment.
The DO represents a virtual copy of the SuS (often in the form of a real-time simula-
tor), trying to mimic its behaviour, assuming it is active in the same Environment as the
PO. Depending on one’s viewpoint and on the application domain, “physical” may be
an ambiguous term as not all SuS are constructed from what we typically call physical
(mechanical, hydraulic, . . .) components. The SuS may for example also contain soft-
ware components. Hence, the more general term “Realized Object” (RO) will be used.
The same logic can be applied to the DO. For instance, a DO of a train may be modelled
using a scale model of the train, instead of a mathematical model used in a simulator.
In this case, the DO will be an “Analog Object” (AO) or Analog Twin instead. For the
purpose of this paper, the focus will be on DOs.

The three main Design variants of DTs follow from the nature of the data/information
flow between RO and DO. In a Digital Model (DM), there is no automated flow of
data/information between the objects. The only way data/information is transferred is
by a human user. If something changes in the RO, the DO must manually be updated,
and vice-versa.

In a Digital Shadow (DS) however, the data flow from the RO to the DO becomes
automated (i.e., without human intervention). This data, more specifically, is environ-
mental information captured by sensors. This, to ensure that the RO and the DO “see”
the same Environment. This is an important step, as it allows the DO to “track” the RO.
In Figure 5, the Observe family of goals leads to a DS solution.

Finally, the Digital Twin (DT) closes the loop between RO and DO. If something
now changes in the DO, the RO will receive an automated update corresponding to this
change. This is usually optimization information, fault tolerance notification, predictive
maintenance instructions, etc. Note that in the DT case, automation may also refer to
the inferencing and decision making without human intervention.

When building a DT, these variants are typically all traversed in different “stages”
in of the Digital T workflow. When a system exists as a DM, the introduction of an
appropriate data communication connection yields a DS. When the DO of a DS is now
expanded to do system analysis and optimizations (and the RO is able to evolve to allow
for system adaptation), we obtain a DT. Note that there needs to be an initial plan to
build a DT, so the architecture of the RO can be engineered to allow for adaptation.

10 Randy Paredis, Cláudio Gomes, and Hans Vangheluwe

Design

Actual World

Virtual World
Single Digital Object

Multiple Digital Objects

Realized Object

Harness

Services

Historical Information Service

Clustering Service

Kalman Filtering

Dashboard

2D/3D Visualizer

Machine Learning Service

Model Plant-Controller-Environment

Real-Time Simulator

Model

Simulator
Real-Time

Offline

Sensors

Plant-Controller-Environment
Data from Env

Sensor and Service Data

Experiment Manager

Classification Service

LEGEND

Feature

Mandatory

Optional

XOR

Implies

Min 1
Required

Fig. 8: Variability for the Design of a Digital T System.

If there was no original plan to build a DT, modifying an existing RO may be hard.
Making the RO configurable from the outside as an afterthought may introduce security
risks.

Similar to the Exploration Stage, we present a Feature Tree to model the variability
in the conceptual Design of a Digital T system. This is shown in Figure 8.

Many options exist. Does the realized Digital T system contain a Testing Harness?
Is there a single Digital Object in the Virtual World, or are multiple Digital Objects
required, one for each Property of Interest. Finally, there are the Services that provide
solutions for the Goals presented earlier. There will always be a Historical Informa-
tion Service (HIS) to store and access historical data of experiments carried out in the
past. Additionally, there will be an Experiment Manager that orchestrates Services and
Digital Objects.

Figure 7 presents a very high-level view on Digital T architectures. Going into more
detail, there must be some component to set up and handle any and all experiments
being done with the RO and DO. This will be done by a set of Experiment Managers
(EMs) or Assimilation Objects (in case only data if collected from RO and DO). An
Experiment can therefore be seen as an execution of a Digital T system such that one
or more PoIs can be analyzed. All this information is communicated to the HIS, over
which one or more Reasoners may make inferences. Such inferences are important, both
in the design of new Digital T systems and in the optimization of future SuS designs.

In Figure 9, a high-level architecture is shown for the DM. The SuS is modelled
containing a Plant-Controller feedback loop. Both in the RO and in the DO, this SuS
interacts with an Environment. For the DO, however, this Environment is a modelled
mock-up of the real environment. It should interact with the SuS in exactly the same
way as the real environment. In practice, the environment models a typical “duty cy-
cle” of the SuS and is based on historical (measured) data. At the heart of a DO is a
Simulator to produce behaviour traces from the SuS and mock-up Environment mod-
els. Note that there is no direct link between RO and DO (only an indirect one, via

A Family of Digital T Workflows and Architectures: Exploring Two Cases 11

the Experiment Managers). Simulation will hence typically not be real-time, but rather
as-fast-as-possible.

UTILITY OBJECTUTILITY OBJECT

Digital Object

Simulator

SuS model
PLANT

CTRL

Virtual Mock-Up Environment

Realized Object

SuS
PLANT

CTRL

Environment

Experiment Managers
Assimilation Objects

Historical Information Service
gives access to data, models, experiments, measurements..., stored in a database

ReasoningReasoningReasoners

Fig. 9: High-level DM architecture, originally presented in [22].

When taking a closer look at Figure 10, a high-level architecture for a DS, it be-
comes clear that (in the DO) the mock-up Environment is now (partially) replaced by
a data connection from the input of the SuS in the RO. This provides both RO and DO
sub-systems with the exact same input and should, therefore, yield identical behaviour
in both. Note that deviations are still possible as the plant’s behaviour may be influ-
enced by the environment in ways that are not recorded by the sensors in the RO. In
that case, the DO still relies on a mock-up (model, possibly based on historical data) of
the Environment 4.

Figure 11 shows a similar architecture for a DT. Compared to the DS, a connection
from the EM goes towards the inputs of both RO and DO of the SuS. If the EO identifies
the need for a change in the RO, it will ask the SuSs in both RO and DO to apply this
change.

Notice how Figures 9, 10 and 11 describe variant architectures. They are models in
an appropriate Architecture Description Domain-Specific Language (AD DSL). DSLs
are more appropriate than Feature Trees when the variability is structural.

4 The authors are grateful to Francis Bordeleau for pointing this out during Dagstuhl Seminar
22362 on Model Driven Engineering of Digital Twins.

12 Randy Paredis, Cláudio Gomes, and Hans Vangheluwe

UTILITY OBJECTUTILITY OBJECT

Digital Object

Real-Time Simulator

SuS model
PLANT

CTRL

Virtual Mock-Up Environment

Realized Object

SuS
PLANT

CTRL

Environment

Experiment Managers
Assimilation Objects

Historical Information Service
gives access to data, models, experiments, measurements..., stored in a database

ReasoningReasoningReasoners

Fig. 10: High-level DS architecture, originally presented in [22].

6 DEPLOYMENT STAGE

For the deployment stage, no feature model has been created. Due to the vast number of
possible options, this is left as future work. We plan to still provide feature models, but
at an appropriate level of abstraction, in particular, distinguishing between commonly
used architectures. Here, deployment diagrams are presented for the current implemen-
tation of the two cases. Each component type is the result of a specific choice that has
been made in the creation of these systems. Unmarked, dashed arrows denote data flow.
For the LFR, the deployment diagram is given in Figure 12. The LFR was constructed
using the LEGO Mindstorms EV3 Core Set (313131), which connects to a Computer
(for which the specifications are not mentioned here) via a TCP/IP connection. Above
the LFR, there is a depth vision camera, whose image needs to be processed before a
valid representation of the system can be shown in a Dashboard.

Figure 13 shows the deployment diagram for the incubator case. The core of the in-
cubator is a Raspberry Pi that controls the temperature in a Styrofoam box. Inside, there
are two temperature sensors to measure the inside temperature. Additionally, there is
one temperature sensor on the outside of the box. Control information is communicated
to the heatbed and the fan through a relay. On a Computer (for which the specifica-
tions are not mentioned), multiple OS applications and processes implement anomaly
detection and data management.

Even with only two example cases, some commonality is apparent. This will form
the basis for a feature model of the Deployment Stage.

A Family of Digital T Workflows and Architectures: Exploring Two Cases 13

UTILITY OBJECTUTILITY OBJECT

Digital Object

Real-Time Simulator

SuS model
PLANT

CTRL

Virtual Mock-Up Environment

Realized Object

SuS
PLANT

CTRL

Environment

Experiment Managers
Assimilation Objects

Historical Information Service
gives access to data, models, experiments, measurements..., stored in a database

ReasoningReasoningReasoners

Fig. 11: High-level DT architecture, originally presented in [22].

7 WORKFLOW

Section 4 looked at the required setup and features in the problem space and Section 5
presented the general architectures of Digital T systems. Finally, the two example cases
were deployed as described in Section 6. Each of these stages have their own worflows
and final results. On top of that, the overall creation of the Digital T system also fol-
lows a workflow. Such a workflow describes in which order which activities are carried
out, on which artifacts. A well-chosen workflow may optimize the overall development
time. Note that a workflow or Process Model (PM) follows partly from the constraints
imposed by the variability models. Figure 14 shows a PM that yields a Digital T sys-
tem, going through the previously defined stages. It has been created by analyzing and
unifying the workflows followed for both cases from Section 3. The PM shown is mod-
elled in a language similar to a UML Activity Diagram, but following the notations
defined in [19]. It describes the order of activities (bold, blue control flow), annotated
with their in- and output artifacts (thin, green data flow). The blue roundtangles repre-
sent the activities carried out and the green rectangles identify the input/output artifacts.
All activities and artifacts have a name and a type, denoted as “name : Type”. Some
of the activities can be automated. This depends on the modelling languages and tools
that were used.

In the following, we detail some of the process steps.
First, starting from some “Requirements”, the environment in which the Digital T

system is active is modelled. Once the environment is available, the plant and controller
models can be constructed in the hierarchical “PlantControllerModelling” activity. To
allow for more possibilities and variability, no details will be provided on the exact re-
alization of this activity (i.e., , this is a Variant Subsystem). The “CommunicationMod-

14 Randy Paredis, Cláudio Gomes, and Hans Vangheluwe

:TI SITARA 1808

:ev3dev

:Python 3.8

:CBD Simulator

:LFR Controller
Model

wired: USB network: ROS2

network: ROS2

w
ire

d:
El

ec
tri

c
C

on
ne

ct
or

 C
ab

le

wired:
Electric Connector Cable

wired:
Electric Connector Cable

network: TCP/IP

:drivesOnTopOf

:Wheel
:drivesOnTopOf

:Wheel

:Line

:Servomotor

:Axle

:Servomotor

:Color
Sensor

:Axle

:CameraSwivel

: Harness

:Intel RealSense D455

:Intel RealSense Vision Processor D4

:isObservedBy
network: TCP/IP

:isObservedBy

:Computer

:Windows 10

:Python 3.8

:Computer Vision :Computer

:Windows 10

:Python 3.8

:Dashboard:Computer

:Windows 10

:Python 3.8

:CBD Simulator

:LFR Model

LEGEND

HARDWARE

OS

EXECUTOR SIMULATOR

MODEL / CODEPROCESS

Fig. 12: Deployment mapping diagram for the LFR case.

elling” activity provides for communicating data to an external instance. At the same
time as “CommunicationModelling” and “PlantControllerModelling”, it is possible to
concern the services required for creating Digital T systems.

Next, the system is built, potentially also resulting in a 3D CAD model as an in-
termediate artifact. Once the system is built, all components are deployed as described
by a corresponding deployment diagram. After deployment, the overall functionality is
validated and (if need be) new requirements are constructed for a next iteration of this
process.

8 CONCLUSIONS AND RELATED WORK

This paper has discussed the variability in creating Digital Ts (e.g., (a family of) Digital
Models/Shadows/Twins/...) using Multi-Paradigm Modelling principles [2], at the ex-
ploration, design and deployment stage. For the design stage, an architecture was also
presented. The feasibility of the presented workflow has been demonstrated by means
of two distinct, exemplary cases that are simplifications of often used industrial compo-
nents (potentially used together). We plan to further explore the various product family
models introduced here using the recent Cross-Domain Systematic Mapping Study on
Software Engineering for Digital Twins [7] as a starting point. In particular, the relation-
ships between the features will be further investigated, with as ultimate goal, to chart
and automate as much as possible of the workflow. The link will be made with the Asset

A Family of Digital T Workflows and Architectures: Exploring Two Cases 15

:Computer

:Windows 10

wireless: WiFi

:GPIO

:Styrofoam Box

:isInsideOf

:Heatbed :isInsideOf

:Fan

t2 :WireDigitalThermometer_DS18S20

:isInsideOf

t1 :WireDigitalThermometer_DS18S20

t3 :WireDigitalThermometer_DS18S20

:GPIO

:GPIO

:GPIO

:isInsideOf

:Relay
:Wire
:Wire

:Python 3.8

Kalman Filter
:StateEstimator

:Ubuntu :Ubuntu

:Rabbit MQ Server:InfluxDBServer

:isInsideOf

LEGEND

HARDWARE

OS

EXECUTOR

SIMULATOR

MODEL / CODE

PROCESS

:Python 3.8

:Calibrator :SelfAdaptation
Manager :CtrlOptimizer

:Raspberry Pi Model B

:Raspberry Pi OS

:Python 3.8

:Controller Model

:Python 3.8

:Low Level Driver

Fig. 13: Deployment mapping diagram for the incubator case.

Administration Shell (AAS). Oakes et.al. [18] provided a mapping of their Digital Twin
framework onto the Asset Administration Shell.

ACKNOWLEDGEMENTS

This research was partially supported by Flanders Make, the strategic research center
for the Flemish manufacturing industry and by a doctoral fellowship of the Faculty
of Science of the University of Antwerp. In addition, we are grateful to the Poul Due
Jensen Foundation, which has supported the establishment of a new Center for Digital
Twin Technology at Aarhus University.

References

1. Aivaliotis, P., Georgoulias, K., Alexopoulos, K.: Using digital twin for maintenance applica-
tions in manufacturing: State of the Art and Gap analysis. In: 2019 IEEE International Con-
ference on Engineering, Technology and Innovation (ICE/ITMC). pp. 1–5. IEEE, Valbonne
Sophia-Antipolis, France (Jun 2019). https://doi.org/10.1109/ICE.2019.8792613

2. Amrani, M., Blouin, D., Heinrich, R., Rensink, A., Vangheluwe, H., Wortmann, A.: Multi-
paradigm modelling for cyber–physical systems: a descriptive framework. Software and Sys-
tems Modeling (2021). https://doi.org/10.1007/s10270-021-00876-z

3. Bradac, Z., Marcon, P., Zezulka, F., Arm, J., Benesl, T.: Digital Twin and AAS in the Industry
4.0 Framework. IOP Conference Series: Materials Science and Engineering 618, 012001
(Oct 2019). https://doi.org/10.1088/1757-899X/618/1/012001

https://doi.org/10.1109/ICE.2019.8792613
https://doi.org/10.1109/ICE.2019.8792613
https://doi.org/10.1007/s10270-021-00876-z
https://doi.org/10.1007/s10270-021-00876-z
https://doi.org/10.1088/1757-899X/618/1/012001
https://doi.org/10.1088/1757-899X/618/1/012001

16 Randy Paredis, Cláudio Gomes, and Hans Vangheluwe

req_eli
: RequirementElicitation

cin1

cout

dout_reqs

env_mdl
: EnvironmentModelling

cin

cout

din_reqs

dout_env

plt_ctrl_mdl
: PlantControllerModelling

cin din_env

din_dzcoutdout_sys

comm_mdl
: CommunicationModelling

cin

din_sys

cout dout_csys

dt_srv_mdl
: DTServicesCreation

cin

din_reqs

coutapps

sys_building
: SystemBuilding

cin

dout_cad

cout

dout_phys

deploy
: Deployment

cin

din_csys

cout

din_srvs

validation
: Validation

cin

cout_ok

din_reqs

cout_redo

reqs :
Requirements

plant3D : CAD

env :
Environment

sys : DZ

din_cad

din_reqs

sys : Model

phys :
PhysicalSystem

csys : Model

dout_dz

din_dz

cin2

dt_srvs :
Set[App]

din_phys

Fig. 14: Workflow model for the construction of a Digital T system. Adapted from [20].

A Family of Digital T Workflows and Architectures: Exploring Two Cases 17

4. Cheng, Y., Zhang, Y., Ji, P., Xu, W., Zhou, Z., Tao, F.: Cyber-physical integration for moving
digital factories forward towards smart manufacturing: A survey. The International Journal of
Advanced Manufacturing Technology 97(1-4), 1209–1221 (Jul 2018). https://doi.org/
10.1007/s00170-018-2001-2

5. Cimino, C., Negri, E., Fumagalli, L.: Review of digital twin applications in manufacturing.
Computers in Industry 113, 103130 (Dec 2019). https://doi.org/10.1016/j.compind.
2019.103130

6. Czarnecki, K.: Overview of generative software development. In: Banâtre, J., Fradet, P., Gi-
avitto, J., Michel, O. (eds.) Unconventional Programming Paradigms, International Work-
shop UPP, Revised Selected and Invited Papers. LNCS, vol. 3566, pp. 326–341. Springer
(2004). https://doi.org/10.1007/11527800_25

7. Dalibor, M., Jansen, N., Rumpe, B., Schmalzing, D., Wachtmeister, L., Wimmer, M., Wort-
mann, A.: A Cross-Domain Systematic Mapping Study on Software Engineering for Digital
Twins. Journal of Systems and Software 193, 111361 (2022). https://doi.org/https://
doi.org/10.1016/j.jss.2022.111361, https://www.sciencedirect.com/science/
article/pii/S0164121222000917

8. Feng, H., Gomes, C.a., Thule, C., Lausdahl, K., Iosifidis, A., Larsen, P.G.: Introduc-
tion To Digital Twin Engineering. In: 2021 Annual Modeling and Simulation Conference
(ANNSIM) (2021)

9. International Organization for Standardization (ISO/DIS): ISO 23247: Automation systems
and integration — Digital Twin framework for manufacturing. Tech. rep. (2020)

10. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Journal
of Basic Engineering 82(1), 35–45 (03 1960). https://doi.org/10.1115/1.3662552,
https://doi.org/10.1115/1.3662552

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. rep., Carnegie-Mellon University (1990)

12. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital Twin in Manufacturing:
A Categorical Literature Review and Classification. IFAC-PapersOnLine 51(11), 1016–1022
(Jan 2018). https://doi.org/10.1016/j.ifacol.2018.08.474

13. Kutin, A.A., Bushuev, V.V., Molodtsov, V.V.: Digital twins of mechatronic machine tools
for modern manufacturing. IOP Conference Series: Materials Science and Engineering 568,
012070 (Sep 2019). https://doi.org/10.1088/1757-899X/568/1/012070

14. Lin, W.D., Low, M.Y.H.: Concept and implementation of a cyber-physical digital twin
for a SMT line. In: 2019 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM). pp. 1455–1459 (2019). https://doi.org/10.1109/
IEEM44572.2019.8978620

15. Lu, Y., Liu, C., Wang, K.I.K., Huang, H., Xu, X.: Digital Twin-driven smart manufacturing:
Connotation, reference model, applications and research issues. Robotics and Computer-
Integrated Manufacturing 61, 101837 (Feb 2020). https://doi.org/10.1016/j.rcim.
2019.101837

16. Madni, A.M., Madni, C.C., Lucero, S.D.: Leveraging Digital Twin Technology in Model-
Based Systems Engineering. Systems 7(1), 7 (2019)

17. Negri, E., Fumagalli, L., Macchi, M.: A Review of the Roles of Digital Twin in CPS-based
Production Systems. Procedia Manufacturing 11, 939–948 (Jan 2017). https://doi.org/
10.1016/j.promfg.2017.07.198

18. Oakes, B.J., Parsai, A., Meyers, B., David, I., Van Mierlo, S., Demeyer, S., Denil, J., De Meu-
lenaere, P., Vangheluwe, H.: A Digital Twin Description Framework and its Mapping to As-
set Administration Shell. arXiv preprint arXiv:2209.12661 (2022)

19. Paredis, R., Exelmans, J., Vangheluwe, H.: Multi-Paradigm Modelling for Model-Based Sys-
tems Engineering: Extending the FTG+PM. In: 2022 Annual Modeling and Simulation Con-
ference (ANNSIM). SCS (2022)

https://doi.org/10.1007/s00170-018-2001-2
https://doi.org/10.1007/s00170-018-2001-2
https://doi.org/10.1007/s00170-018-2001-2
https://doi.org/10.1007/s00170-018-2001-2
https://doi.org/10.1016/j.compind.2019.103130
https://doi.org/10.1016/j.compind.2019.103130
https://doi.org/10.1016/j.compind.2019.103130
https://doi.org/10.1016/j.compind.2019.103130
https://doi.org/10.1007/11527800_25
https://doi.org/10.1007/11527800_25
https://doi.org/https://doi.org/10.1016/j.jss.2022.111361
https://doi.org/https://doi.org/10.1016/j.jss.2022.111361
https://doi.org/https://doi.org/10.1016/j.jss.2022.111361
https://doi.org/https://doi.org/10.1016/j.jss.2022.111361
https://www.sciencedirect.com/science/article/pii/S0164121222000917
https://www.sciencedirect.com/science/article/pii/S0164121222000917
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/10.1088/1757-899X/568/1/012070
https://doi.org/10.1088/1757-899X/568/1/012070
https://doi.org/10.1109/IEEM44572.2019.8978620
https://doi.org/10.1109/IEEM44572.2019.8978620
https://doi.org/10.1109/IEEM44572.2019.8978620
https://doi.org/10.1109/IEEM44572.2019.8978620
https://doi.org/10.1016/j.rcim.2019.101837
https://doi.org/10.1016/j.rcim.2019.101837
https://doi.org/10.1016/j.rcim.2019.101837
https://doi.org/10.1016/j.rcim.2019.101837
https://doi.org/10.1016/j.promfg.2017.07.198
https://doi.org/10.1016/j.promfg.2017.07.198
https://doi.org/10.1016/j.promfg.2017.07.198
https://doi.org/10.1016/j.promfg.2017.07.198

18 Randy Paredis, Cláudio Gomes, and Hans Vangheluwe

20. Paredis., R., Gomes., C., Vangheluwe., H.: Towards a Family of Digital Model/Shadow/Twin
Workflows and Architectures. In: Proceedings of the 2nd International Conference on In-
novative Intelligent Industrial Production and Logistics - IN4PL,. pp. 174–182. INSTICC,
SciTePress (2021). https://doi.org/10.5220/0010717600003062

21. Paredis, R., Vangheluwe, H.: Exploring A Digital Shadow Design Workflow By Means Of
A Line Following Robot Use-Case. In: 2021 Annual Modeling and Simulation Conference
(ANNSIM) (2021)

22. Paredis, R., Vangheluwe, H.: Towards a Digital Z Framework Based on a Family of Architec-
tures and a Virtual Knowledge Graph. In: Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems (MODELS) (Dec 2022)

23. Park, H., Easwaran, A., Andalam, S.: Challenges in Digital Twin Development for Cyber-
Physical Production Systems. In: Chamberlain, R., Taha, W., Törngren, M. (eds.) Cyber
Physical Systems. Model-Based Design, vol. 11615, pp. 28–48. Springer International Pub-
lishing, Cham (2019). https://doi.org/10.1007/978-3-030-23703-5_2

24. Qamar, A., Paredis, C.: Dependency Modeling And Model Management In Mechatronic
Design. In: Proceedings of the ASME Design Engineering Technical Conference. vol. 2.
Chicago, IL, USA (08 2012). https://doi.org/10.1115/DETC2012-70272

25. Rajamani, R.: Vehicle Dynamics and Control. Springer Science & Business Media (2011)
26. Rosen, R., von Wichert, G., Lo, G., Bettenhausen, K.D.: About The Importance of Autonomy

and Digital Twins for the Future of Manufacturing. IFAC-PapersOnLine 48(3), 567–572 (Jan
2015). https://doi.org/10.1016/j.ifacol.2015.06.141

27. Rumpe, B.: Modelling for and of Digital Twins. Keynote (Oct 2021)
28. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital Twin in Industry: State-of-the-Art. IEEE

Transactions on Industrial Informatics 15(4), 2405–2415 (Apr 2019). https://doi.org/
10.1109/TII.2018.2873186

29. de Weck, O.L., Roos, D., Magee, C.L., Vest, C.M.: Life-Cycle Properties of Engineering
Systems: The Ilities, pp. 65–96. MIT Press (2011)

30. Zhang, H., Ma, L., Sun, J., Lin, H., Thürer, M.: Digital Twin in Services and Industrial
Product Service Systems:. Procedia CIRP 83, 57–60 (2019). https://doi.org/10.1016/
j.procir.2019.02.131

https://doi.org/10.5220/0010717600003062
https://doi.org/10.5220/0010717600003062
https://doi.org/10.1007/978-3-030-23703-5_2
https://doi.org/10.1007/978-3-030-23703-5_2
https://doi.org/10.1115/DETC2012-70272
https://doi.org/10.1115/DETC2012-70272
https://doi.org/10.1016/j.ifacol.2015.06.141
https://doi.org/10.1016/j.ifacol.2015.06.141
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1016/j.procir.2019.02.131
https://doi.org/10.1016/j.procir.2019.02.131
https://doi.org/10.1016/j.procir.2019.02.131
https://doi.org/10.1016/j.procir.2019.02.131

	A Family of Digital T Workflows and Architectures: Exploring Two Cases

