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Abstract. Co-simulation is a powerful technique for performing full-
system simulation. Multiple black-box models and their simulators are
combined together to provide the behaviour for a full system. However,
the black-box nature of co-simulation and potentially infinite configu-
ration space means that configuration of co-simulations is a challenging
problem for today’s practitioners.

Our previous work on co-simulation configuration operated on the
notion of hints, which allow system engineers to encode their knowledge
and insights about the system. These hints, combined with state-of-the-
art best practices, can then be used to semi-automatically configure the
co-simulation.

We summarize our previous hint-based configuration work here, and
explore the challenging problem of scheduling co-simulations which
contain algebraic loops. Solving or “breaking” these loops is required
for scheduling, yet this breaking process can induce errors in the co-
simulation. This work formalizes this scheduling problem, presents our
insights gained about the problem, and details an optimal search algo-
rithm as well as greedy scheduling algorithms. These heuristic algorithms
are evaluated on (synthetic) co-simulation scenarios to determine their
relative speedup and optimality.

1 Introduction

Cyber-Physical Systems (CPS) marry the complexities of software with the real-
ities of the physical world [24], and are becoming essential systems in today’s
world. For example, an airplane or self-driving car relies on safety-critical com-
munication between sensors, controller software, and actuators. A large driver
in the complexity of CPS is that their analysis spans multiple domains. Simulat-
ing these therefore requires integrating heterogeneous models. For example, the
integration of multi-body system models with communication network models.

The technique of co-simulation is designed to combine multiple co-simulation
units (simulators, each with their own model), in order to compute the behavior
of the combined models over time [16,21]. Each unit has its own interface for
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getting/setting inputs and outputs, and for computing the behaviour of its model
over a given interval of time. An example of such an interface is the Functional
Mockup Interface (FMI) Standard [7,10]. A master algorithm is then responsible
for scheduling the execution and communication of each co-simulation unit.

Co-simulation is therefore very promising for representing: a) systems assem-
bled from models in various domains, each with their own most appropriate sim-
ulator, and b) black-box models which hide internal details, allowing third-party
units to be integrated together, as happens in supplier-integrator relationships in
industry. These key benefits have led to multiple modeling and simulation tools
allowing the import and export of units implementing the FMI Standard [9],
and a wide variety of applications [16].

However, it can be difficult to ensure that the results produced by a co-
simulation can be trusted. This is due to not only the black box nature of
units, but also to the many ways in which a co-simulation can be computed
(i.e., communication frequency between differential-equation-based units, event
propagation order, etc. . . ). The correct configuration of a co-simulation also
depends on the numerical properties of the participating units. This challenge
is aggravated when units themselves may be modified as part of an optimiza-
tion loop (e.g., design space exploration) and/or impact analysis of sub-model
refinements, because the co-simulation user may be unaware of how to account
for these modifications in the master algorithm.

Prior Work. Our earlier work [18] focused on the core challenge that users
do not always know how to configure the co-simulation [25]. To tackle this, we
proposed a method, and a tool called HintCO which is summarized in Sect. 2
and available online [13]. In this tool, a user or engineer can write “hints”
about the co-simulation and involved units. HintCO then applies state of the
art heuristics to configure and run multiple promising co-simulations. This is
similar to design-space exploration techniques [28,30]. This approach works well
in practice because users usually can tell what properties a correctly configured
co-simulation should satisfy. This is demonstrated by an industrial case study
in [18], where state of the art co-simulation algorithms failed to produce expected
‘smooth’ (non-oscillatory) results. After specifying a few hints, the top candidate
results produced by HintCO were smooth.

Motivation. One limitation of HintCO was the assumption that the co-simulation
unit couplings do not form algebraic loops, as explained in Sect. 3. However,
when differential-algebraic-equation-based units are coupled, algebraic loops can
be formed [1]. The ideal technique to solve algebraic loops in co-simulations is
fixed point iteration (see, e.g., [15, Section 4] and [26]). However, this technique
requires that units support state rollback, which is an optional feature of the FMI
standard and is therefore seldom implemented currently. Therefore, the most
common technique is to “break” the algebraic loop by employing extrapolations
in one (or more) variables in the loop [3,5]. Naturally, variables have different
dynamics, hence, care must be taken when choosing the variables to break the
loop [19].
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Our prior work [18] näıvely generates all possible ways in which algebraic
loops can be broken, without regard for the dynamics of the variables involved. In
the current work, we build on [19] to formalize the problem of breaking algebraic
loops in co-simulations, and propose an optimal algorithm to solve it, plus a few
cost-effective approximation algorithms.

Contributions. Our contributions in this paper are: a) a formalization of the
problem of breaking algebraic loops in co-simulations, b) an optimal, but costly,
algorithm to solve it, and c) multiple cost-effective heuristic algorithms.

1.1 Paper Layout

The next section (Sect. 2) will provide a brief introduction to the HintCO frame-
work, including the hints and how they shape the search space for finding a
correct co-simulation master algorithm. While HintCO has been shown to be
effective for an industrial case [18], in Sect. 3 we demonstrate an example with
an algebraic loop, where the previous version of the HintCO framework was
unable to efficiently schedule this co-simulation.

Section 4 formalizes the essential components of our approach. We intro-
duce co-simulation and its involved concepts, as well as the background for
our improved approaches to co-simulation scheduling. The concrete problem
of scheduling co-simulations in the presence of algebraic loops is formalized in
Sect. 5 and a optimal yet costly algorithm is provided.

Candidate greedy algorithms for scheduling co-simulations with algebraic
loops are presented in Sect. 6, and evaluated on synthetic examples in Sect. 7.
Following this, Sect. 8 will discuss related work in the field and compare our
approach to past approaches. Finally, we conclude in Sect. 9 with a summary of
our research and the steps to extend our framework further.

2 HintCO Framework

This section briefly introduces relevant aspects of the HintCO framework, such
that the importance of the contributions made in this paper to the auto-
mated configuration of co-simulations can be appreciated. In particular, this
section adapts text from [18] to briefly describe the problem statement tack-
led by the HintCO framework and the elements of the HintCO workflow. This
includes exemplifying some of hints the user can state about a co-simulation,
and a description of the process for generating candidate configurations for co-
simulations.

2.1 The Configuration Problem

As described in [18] and explored in-depth in the thesis of Gomes [14], it can be
challenging to configure a co-simulation which satisfies properties to the same
degree as the original system. This is due to the inherent approximation of the
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original system’s behaviour trace by the co-simulation’s behaviour trace, and due
to the many possible manners in which a co-simulation can be computed.

Assuming that co-simulation units are correctly implemented, the configu-
ration problem can be stated as: given a set of co-simulation units and their
interconnections, and a set of properties that the coupled system should satisfy,
find the master algorithm that produces co-simulation results satisfying those
properties (Problem 1 in [18]).

Fig. 1. The ExecRate and PowerBond hints.

Since the correct co-simulation configuration is not available as our reference
oracle, we are forced to rely on the user’s hints as a proxy for the correct set
of properties to satisfy. This assumption of hint correctness is quite strong, but
allows us to guide the search for a correct co-simulation configuration based on
a mapping from these hints to state-of-the-art configuration techniques.

2.2 Workflow

HintCO has four main components, briefly introduced here as part of the HintCO
workflow:

a) HintCO Hint Language: The user first specifies hints about the system by
selecting and configuring built-in hints relevant to the domain of the units
involved.

b) Generation of Candidate Master Algorithms: HintCO automatically
generates candidate co-simulation configurations based on those hints. This
is performed by translating those hints into adaptations on the configura-
tions, using state-of-the-art heuristics.

c) Scheduling the Co-simulation: A co-simulation schedule is then generated
for each candidate configuration using the techniques described in this paper.

d) Execution of the Co-simulation: Finally, the co-simulation variants are
executed in a ranked order (as determined by the hints) and the results
presented to the user for inspection.
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2.3 Hints

Hints are defined in a small domain-specific language (DSL). DSLs allow experts
in the problem space (the system engineers) to describe hints, without having
to become experts in the solution space (the co-simulation domain) [29].

As an example, Fig. 1 shows the hints exemplified in [18]. The first hint speci-
fies the frequency of a unit, which is useful to find a communication rate between
units, and determines whether a unit represents a time triggered software con-
troller. The second hint defines a power-bond, which declares that energy should
not be lost or gained in the communication between two units.

Each hint has a number of fields. The description field is for unstructured
text, as is commonly seen in industrial requirements. Following this are state-
ments, which can be events or properties. Finally, scopes and patterns specify
when the hint is valid. These scopes and patterns have been sourced from [2]
and have been utilized for verification of safety-critical automotive requirements
in another domain of our work [6].

2.4 Generating a Configuration Search Space

As will be detailed later in Definition 7, a co-simulation configuration (or master
algorithm) has three dimensions in our formalization:

– the rate at which co-simulation units execute;
– the concrete operations or execution order of those units;
– the semantic adaptations (described below) applied to the co-simulation

units.

It is not feasible to explore all possible configurations, so the hints are used
as a way to build a finite ranked list of possible candidate configurations.

Semantic adaptations are a technique to create a new co-simulation unit by
wrapping the old units [17] (also see Definition 4), thereby changing it’s behavior
when inputs are provided, when output are requested, or when time stepping is
performed. Some example semantic adaptations are:

Extrapolation/Interpolation: Applies the approximation to the input port.
Multi-rate: Adapt a co-simulation unit to perform multiple executions per one

larger co-simulation step.
Power-bond: Whenever two units share a power connection, one of the input

ports will correct for the energy dissipated using the technique from [4].
XOR: Is combined with other adaptations to represent alternative configura-

tions.

The following exemplifies a search space.

Example 1. Figure 2a shows the configuration space used in [18]. Possible adap-
tations are shown on each co-simulation unit and port: the Load and Plant
co-simulation units have a PowerBond adaptation on the v and f ports, and
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the Environment unit has an XorAdaptation with two alternative multi-rate
adaptations.

This space represents four alternative master algorithms, because of the two
possible rates for the Environment unit. These adaptations are represented in
the figure as the execution rate R = {100, 10}, and two possible communication
step sizes H =

{
1 × 10−7, 1 × 10−6

}
.

The key operation of the HintCO framework is to transform the user’s hints
into semantic adaptations, as exemplified in Fig. 2a. This is described in [18,
Procedure 1].

Having a configuration space, HintCO then generates a variant diagram,
as exemplified in Fig. 2b. This diagram reflects the weighting of the variants
as defined by the hints, and each path from root to leave node represents
a co-simulation configuration (a variant). HintCO employs a weighted depth-
first search to traverse this tree and generate the variants for scheduling and
execution.

For example, in Fig. 2b, the search will first select the adaptations of H =
1 × 10−7 for the step-size and then R = 100 for the Environment unit rate, due
to the highest weight. The user can opt for generate all variants, or only the
top n.

(a) Possible adaptations. (b) Variant diagram.

Fig. 2. Case study introduced in [18].

2.5 Scheduling and Execution

To properly configure a co-simulation, HintCO must take a variant, and define
a concrete operation schedule for how the co-simulation units in the scenario
are executed and how values are passed between units. Operation schedules
and their creation are further explored in Sect. 4.2. This schedule must comply
with the requirements imposed by the adaptations chosen in the variant. These
requirements refer to the order in which: inputs can be set; outputs computed;
and time advancement operations performed. Thus, the schedule can be different
for different variants.
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Fig. 3. Example operation schedule for the co-simulation scenario in Fig. 2a [18].

Figure 3 demonstrates an example of an operation schedule for the co-
simulation scenario in Fig. 2a, as replicated from [18]. The left-hand side of
the figure defines the dependencies of function calls, as given by the interac-
tion between the variant’s adaptations and rules defining a valid co-simulation
configuration (Definition 9). The right-hand side of the figure depicts a schedule
of those operations, as given by a topological ordering of the dependencies.

The execution of the variants by HintCO is performed behind-the-scenes by
the tool, based on the concrete operation schedule automatically produced. The
user receives the co-simulation traces for each variant and can decide whether
to continue with the variant tree search or not. In this way, the variant tree
generation and the scheduling process are hidden to reduce complexity for the
system engineer.

An example trace for the Load co-simulation unit from Fig. 2a is shown on the
left-hand side of Fig. 4 before applying the hints and adaptation. The smoothed
results on the right-hand side of Fig. 4 are the result of the top variant, demon-
strating how HintCO can assist in configuring co-simulations.

(a) Signal before adapation (b) Signal after adapation

Fig. 4. Load signal before and after HintCO adaptations are applied [18].

3 Motivating Example

This example motivates our current work regarding scheduling, as the input/out-
put relationships of the units in the co-simulation form a dependency loop. This
is termed as an algebraic loop.

The version of HintCO proposed in [18] could produce an operation schedule
in the presence of algebraic loops, but HintCO would not consider the dynamics
of each connection in deciding which dependency was the least important and
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could be removed to break the algebraic loop. As discussed in [19] and Sect. 5.3, a
lower co-simulation error can be achieved by choosing a more appropriate point
to break the loop.

3.1 Example Description

Fig. 5. Example co-simulation network with algebraic loops.

The notion which leads to algebraic loops is feed-through (formalized in Defini-
tion 5), where the output of a co-simulation unit algebraically depends on its
inputs. That is, when the input value of a unit is modified, the connected output
value immediately changes, without the unit executing.

Figure 5 shows an co-simulation scenario from [19]. Feed-through is repre-
sented in Fig. 5 by the dashed arrows within the co-simulation units.

For this motivating example, we consider the case where the user does not
provide sufficient hints for HintCO to break the feed-through dependency loops.
If a dependency graph (such as Fig. 3) was generated by HintCO, the function
calls of these units would produce a graph with a cycle. Then, HintCO would
have to make a decision about the best dependency to break.

In the previous version of HintCO, this decision was performed without con-
sidering the dynamics of the connections. The current work attempts to formalize
this problem and present exact and heuristic solutions, such that HintCO can
be improved to better schedule these co-simulation scenarios.

4 Formalization of Co-simulation Concepts

This section formalizes the key concepts involved in co-simulation configuration,
in a refinement of those presented in our earlier work [18]. In particular, we
recall definitions for co-simulation units and co-simulation configuration. These
formalizations are required to support Sect. 5 which details the problem of co-
simulation scheduling in the presence of algebraic loops.
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4.1 Co-simulation Units and Relevant Characteristics

The following definitions focus on the concepts of a co-simulation unit and the
relevant characteristics which affect co-simulation behaviour. As with our ear-
lier formalization [18], we consider general co-simulation units in our scheduling
approach. This notion of co-simulation unit is inspired by and includes the Func-
tional Mockup Units (FMUs). As in our earlier work [18], we follow the notations
introduced in [8] and omit the details of initialization.

Definition 1 (Co-simulation Unit). [18, Definition 3]
A co-simulation unit with identifier c is a structure
〈Sc, Uc, Yc, Rc, setc, getc, doStepc〉 , where:

– Sc represents the state space;
– Uc and Yc the set of input and output variables, respectively;
– Rc : Uc → {true, false} the reactivity of each input (see Definition 3);
– Dc ⊆ Uc × Yc the set of input/output feed-through dependencies (see

Definition 5);
– setc : Sc × Uc × V → Sc and getc : Sc × Yc → V are functions to set the

inputs and get the outputs, respectively (we abstract the set of values that each
input/output variable can take as V); and

– doStepc : Sc × R≥0 → Sc is a function that instructs the co-simulation unit
to compute its state after a given time duration.

When configuring co-simulations, it is crucial to reason about the current
time of each co-simulation unit. The following definition defines the state times-
tamp for each unit, which the FMI Standard leaves implicit.

Definition 2 (State Timestamp). [18, Definition 4]
Given a communication step size H ∈ R≥0 and H > 0, we say that the state
sc ∈ Sc of an co-simulation unit c has timestamp t, denoted as ϕ(sc) = t when
doStepc has been called t

H times with H as parameter.

Definition 2 implies that if a co-simulation unit is in state sc at time t, then
doStepc(sc,H) will approximate the state at time t + H. If the correspond-
ing model is a continuous one, then an approximation function will be used to
estimate the values of the inputs in the interval [t, t + H].

Input Approximation Functions. There are two relevant approximation
functions we focus on. There can be an extrapolation on an input, where the
value of a input is calculated forward from the last received value. Otherwise
there can be an interpolation, where an intermediate value is calculated between
the last received value and a value from the sending unit at either the current
timestamp, or a (relative) future timestamp.

Assumptions can be made about relating these approximation functions to
the behaviour of co-simulation units. For example, as mentioned in Sect. 2 the
user can provide a hint that an co-simulation unit represents a software con-
troller. As software controllers rely on data from sampled sensors, the software
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controllers assume that their input readings are not from a future timestamp.
Therefore, it can be inferred that a software controller is using an extrapolation
approximation function.

As interpolations can only be employed when the sending unit can already
calculated the value, the choice of scheduling of co-simulation units can also
impact which approximation can be used. The interpolation/extrapolation choice
also affects the error of the system, as discussed in Sect. 5.3. Extrapolations
can induce more error in the co-simulation [19], but can be employed to break
algebraic loops as the dependency between units in the same timestep is then
removed.

In our notation, we choose to leave the approximation function implicit in
the doStepc, as reflected in version 2.0 of the FMI Standard. However, we make
explicit the requirements of each kind of input approximation in the form of the
reactivity Rc.

Intuitively, a co-simulation unit c with a reactive input [16] must wait until
the co-simulation unit d, which feeds that input to c, executes a step. Then, c
may receive that input value.

Definition 3 (Reactivity). [18, Definition 5]
For a given co-simulation unit c with input u ∈ Uc, Rc(u) = true if the function
doStepc makes use of an interpolation of input u.

Let t be the timestamp of the state sc prior to a call to doStepc(sc,H), and
let d denote the co-simulation unit whose output y ∈ Yd is connected to u.

Then, Rc(u) = true means that sc must have been produced from a call
to setc

(
. . . , u, getd(sd, y)

)
where the state sd of co-simulation unit d satisfies

ϕ(sd) = t + H.
Conversely, Rc(u) = false means that sc must have been produced from a call

to setc
(
. . . , u, getd(sd, y)

)
where ϕ(sd) = t.

As the FMI Standard version 2.0 does not include information about reac-
tivity, we make the following assumption for all co-simulation units:

Assumption 1. If an co-simulation unit c does not disclose its input approx-
imation scheme for an input u, then we assume that u is approximated with a
constant extrapolation. Therefore, Rc(u) = false.

We employ the technique of semantic adaptation, introduced in Sect. 2.4 to
control the input approximation scheme and reactivity for co-simulation units.

Definition 4 (Semantic Adaptation). [18, Definition 2]
Semantic adaptation is a technique that allows a new co-simulation unit c to be
constructed from a set of co-simulation units, using a custom implementation of
the setc,getc, and doStepc functions [17].

Feed-Through. The concept of feed-through is crucial for the current work. If
a co-simulation unit has feed-through, then an output value of a co-simulation
unit is a function of the input.
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Definition 5 (Feed-Through). The input u ∈ Uc of co-simulation unit c
feeds-through to output y ∈ Yc, that is, (u, y) ∈ Dc, when there exists two values
v1, v2 ∈ V and some state sc ∈ Sc, such that

getc(setc(sc, u, v1), y) �= getc(setc(sc, u, v2), y).

This means that the value of y obtained with getc is an algebraic function of the
value set for u. Hence, getc should be called to get the value of y only after setc
has been called to set the value of u, before doStepc is invoked.

Co-simulation units with feed-through will immediately change output values
when the corresponding input value changes, even without the co-simulation
unit executing a time-step. It is this ‘instant’ change which can form algebraic
loops when multiple co-simulation units have feed-through, as in the motivating
example in Sect. 3.

4.2 Co-simulation Scenario and Master Algorithms

A co-simulation scenario is a collection of co-simulation units and the input/out-
put connections between them. An example of a co-simulation scenario with four
co-simulation units and six connections is shown in Fig. 5 on page 7.

Definition 6 (Co-simulation Scenario). [18, Definition 7]
A co-simulation scenario is a structure 〈C,L〉 where each co-simulation unit
identifier c ∈ C is associated with an co-simulation unit, as defined in Definition
1, and L(u) = y means that the output y is connected to input u. Let U =⋃

c∈C Uc and Y =
⋃

c∈C Yc, then L : U → Y .

Master Algorithms. A master algorithm is the configuration to compute
the behaviour of a co-simulation scenario. As stated in Definition 7, a master
algorithm combines the co-simulation scenario, the step size, and a scheduling
sequence for the scenario. As described previously in Sect. 2.4, our approach is
to guide a search through the variation of these parameters, which each induce
a different co-simulation behaviour.

Definition 7 (Master Algorithm). [18, Definition 10] Given a co-simulation
scenario 〈C,L〉, a step size H, and an operation schedule (f)i∈N

, a master algo-
rithm is a structure defined as A =

〈
C,L,H, (f)i∈N

〉
.

Co-simulation Step. The execution of a master algorithm A = 〈C,L,H,
(f)i∈N

〉
is thus the application of the operation schedule on the co-simulation

scenario. One application of this sequence is a co-simulation step. Precisely,
executing this schedule in a co-simulation scenario 〈C,L〉 where all co-simulation
units c ∈ C have a state sc satisfying ϕ(sc) = t, will update each co-simulation
unit’s state sc to satisfy ϕ(sc) = t+H, where H is the argument of every call to
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doStep. Repeated co-simulation steps thus advance the state of the co-simulation
scenario, producing a co-simulation behaviour trace.

Readers may note that the definition of operation schedule provided in Def-
inition 8 was referred to as a co-simulation step in [18]. This redefinition was
performed in order to allow the co-simulation step concept to also refer to the
execution of a trigger sequence of co-simulation units, which is further described
in Sect. 5.1.

This presentation omits the handling of hierarchical co-simulation units,
which themselves contain a co-simulation scenario. However, this is accounted for
in our treatment, as we consider the sub-scenario to execute whenever the hier-
archical co-simulation unit itself executes. Thus, we create the schedule for the
top-level elements separately from the schedule for each individual hierarchical
co-simulation unit.

Operation Schedules. In Definition 7 a master algorithm contains an opera-
tion schedule. This operation schedule represents the sequence of function exe-
cution for each co-simulation unit in the scenario. That is, the sequence of oper-
ations get, set, doStep) which are executed on each port of each co-simulation
unit. We formalize this operation schedule concept in Definition 8.

Definition 8 (Operation Schedule). [Modified from Definition 8 of [18]]
Given a co-simulation scenario 〈C,L〉, an operation schedule is an ordered
sequence of co-simulation unit function calls (f)i∈N

with

f ∈ F =
⋃

c∈C

{setc, getc, doStepc} ,

and i denoting the order of the function call. A function call fi comes before a
function call fj, written as fi � fj, if i < j, and comes immediately before,
written as fi → fj, if i = j − 1.

Definition 9 states the restrictions on a well-formed master algorithm, and
how the hints provided to HintCO affect this schedule. For example, if an input
is reactive (it performs an interpolation approximation - Definition 3), then that
input’s get step must occur after the doStep of the preceding co-simulation
unit.

Definition 9 (Valid Master Algorithm). [Modified from Definition 9 of
[18]]
A master algorithm is valid with respect to reactivity and the co-simulation sce-
nario couplings if it satisfies the following conditions:

1. A co-simulation step size H > 0.
2. Each function call uses the most recent co-simulation unit state as parameter.

For example, if fj = getc(sc, y) then sc must be the result of the most recent
call to setc or doStepc, that is, the maximal i such that i < j, and fi =
setc(. . .) or fi = doStepc(. . .).
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3. For every c ∈ C, there exists one, and only one, call to doStepc, and it is
done with argument H.

4. Each call to doStepc for c ∈ C must come after every call to setc on the
input variables of c.

5. Each call to get is immediately followed by a sequence of calls to set to set
the affected input variables.

6. For each c ∈ C and (u, y) ∈ Dc, any call to getc(y, . . .) must be preceded by
a call to setc(. . . , u) without any call to doStepc in between.

7. For each c ∈ C and u ∈ Uc satisfying Rc(u) = true, doStepd �
getd(L(u), . . .), where L(u) ∈ Yd and d ∈ C.

8. For each c ∈ C and u ∈ Uc satisfying Rc(u) = false, setc(. . . , u) � doStepd,
where L(u) ∈ Yd and d ∈ C.

Remark 1. Regarding Definition 9:
– The most common master algorithms will satisfy conditions 2–4;
– Condition 5 is not mandatory but it facilitates the description of Conditions

7 and 8. Furthermore, it makes the implementation simpler.
– Conditions 7 and 8 ensure that the reactivity of each input is respected,

according to Definition 3.
• If Rc(u) = true, then the input approximation is interpolated, and the

preceding co-simulation unit must perform doStep before the get call
• If Rc(u) = false, then the input approximation is extrapolated, and the

set call is performed before the preceding co-simulation unit performs
doStep.

Generating an Operation Schedule. A particular variant co-simulation
configuration (discussed in Sect. 2.4) could define interpolation or extrapola-
tion adaptations on co-simulation units or their input ports. These adaptations
interact with the rules defined in Definition 9, which specify the dependencies
between the function calls in the operation schedule. This then induces a depen-
dency graph of the function calls in the co-simulation scenario. An example of
these ordering dependencies is demonstrated on the left-hand side of Fig. 3 on
page 3. In this dependency graph, the operation at the tail of an edge must be
executed before the operation at the head of an edge.

The dependency graph in Fig. 3 does not contain any cycles, due to the lack
of feed-through in the co-simulation scenario (shown in Fig. 2a). A topological
sort is therefore sufficient to generate an operation schedule to execute the co-
simulation units, as seen on the right-hand side of Fig. 3.

This operation schedule approach allows for a great deal of flexibility in the
concrete order of operations, as all topological orderings are considered to be
behaviourally equivalent. A Prolog-based algorithm for specifying co-simulation
scenarios and determining a valid operation schedule is presented in [12].

However, if cycles are present in this dependency graph (as in the motivat-
ing example in Sect. 3), the cycle will need to be broken to produce an opera-
tion schedule. As this cycle breaking produces errors (due to the extrapolation
approximation used), an optimization approach is required to determine the best
scheduling, as discussed in the following sections.
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5 Scheduling with Algebraic Loops

This section will detail our approach to scheduling co-simulation scenarios with
algebraic loops. This approach is based on co-simulation trigger sequences, which
are an intuitive scheduling of co-simulation units at a high level. We also present
how trigger sequence can be transformed into operation schedules to be exe-
cuted by HintCO. Third, the cost function for a trigger sequence is defined,
determined by the connections within the co-simulation scenario. Finally, we
discuss a directed search approach to calculating the optimal trigger sequence.

5.1 Trigger Sequences

As described in Sect. 4.2, execution of a co-simulation scenario requires the pro-
duction of an operation schedule, which details the precise sequence of function
calls within the scenario. However, another (possibly more intuitive and more
elegant) approach is to define a trigger sequence for the co-simulation scenario,
as is done in [19]. Following this trigger sequence, each co-simulation unit would
be visited and executed in turn, with input and output approximation and prop-
agation handled as required.

The motivation for defining and utilizing trigger sequences is therefore to
consider co-simulation scenarios at an abstract level. The presence of algebraic
loops leads to a ‘strong component’ notion, where co-simulation units must be
reasoned about as one entity. In particular, the problem statement in Sect. 5.3
deals with co-simulation units, not their individual function calls.

Example and Definition. Consider the motivating example co-simulation sce-
nario in Fig. 5, which contains four co-simulation units S1, S2, S3, and S4. There
are 24 different permutations of these units, and therefore 24 possible trigger
sequences (Definition 10) can be created, such as {S1, S2, S3, S4} or {S2, S4,
S3, S1}.

Definition 10 (Trigger Sequence). Given a co-simulation scenario 〈C,L〉,
trigger sequence is an ordered sequence of co-simulation unit executions (ci) with
c ∈ C and i denoting the order of the co-simulation unit execution.

5.2 Transformation to Operation Schedule

The definition of a master algorithm in Definition 7 contains a schedule of func-
tion calls on the co-simulation units. Therefore, a transformation from a trigger
sequence to an operation schedule is required for co-simulation execution.

This transformation must respect the constraints defined in Definition 9 for
a valid master algorithm. In particular, condition 5 must be followed, in which
each call to get an output is immediately followed by a call to set for the
associated input.

A trigger sequence is thus transformed into an operation schedule by
Procedure 1.
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Procedure 1. Produce an operation schedule from a given trigger sequence:

– For each co-simulation unit c in the trigger sequence:
• Add the appropriate get and set calls for each input of c to the operation

schedule.
• Add extrapolation adaptations to co-simulation unit inputs where required

(see Sect. 5.3)
• Add the doStep call for c to the operation schedule.

For example, Example 2 presents the operation schedule for the trigger
sequence {S2, S1, S3, S4} for the co-simulation scenario in Fig. 5.

Example 2. {getY 11, setU21, doStepS2, getY 42, setU11, doStepS1,
getY 21, setU31, getY 41, setU32, doStepS3,
getY 31, setU41, getY 12, setU42, doStepS4}

5.3 Problem Statement

As presented in Sect. 3, our motivating example contains feed-through of inputs
and outputs arranged in a cycle. This implies that the dependency graph for
operations (as in Fig. 3) would also have a cycle.

Section 5.4 will answer the important question of how the above trigger
sequence {S2, S1, S3, S4} was created for this co-simulation scenario, despite
the cyclic dependency. However, we first focus on what impact the breaking of
the algebraic loop has on our co-simulation results.

The scheduling of the co-simulation trigger sequence can impact the results of
the co-simulation, as seen in related work [19]. This is due to the presence of input
approximation algorithms used in the co-simulation, as discussed in Sect. 4.1.
Recall that interpolation algorithms may interpolate input values between the
previous time step and the next one. This (may) reduce error compared to
extrapolations, but interpolations are only available to use on a co-simulation
unit when the preceding unit has already executed. That is, any co-simulation
unit ci in a trigger sequence can interpolate values from co-simulation units cj<i,
and must extrapolate the values from co-simulation units ck>i.

Holzinger and Benedikt [19] take these considerations into account and pro-
duce a trigger sequence which minimizes the number of extrapolations performed
to reduce error. However, their technique is based on a Travelling Salesman
Problem approach, which can be computationally expensive. Instead, Sect. 5.4
presents a directed search algorithm, and Sect. 6 explores heuristic algorithms
to perform this scheduling.

Therefore, the problem statement considered in the following sections is:
given a co-simulation scenario, what is the trigger sequence with a minimum
cost, where this cost represents performing extrapolations of co-simulation unit
inputs?

The following sections investigate trigger sequence creation and define this
cost function.
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5.4 Trigger Sequence Creation

This section will detail how a trigger sequence can be constructed from a co-
simulation scenario. First, we describe a scenario graph to intuitively represent
the co-simulation units in a scenario and a measure of the dependency strength
of their connections. Second, we detail how this graph is used to build a trig-
ger sequence. Finally, a directed search approach for finding an optimal trigger
sequence is presented.

Scenario Graph. A scenario graph represents the necessary information from
a co-simulation scenario to define a trigger sequence. Vertices in this scenario
graph represent each co-simulation unit in the scenario. Edges are weighted,
directed, and connect vertices which are connected in the original co-simulation
scenario.

An example co-simulation scenario graph is shown in Fig. 6a. Not shown in
this example is that each edge in this scenario graph could represent more than
one co-simulation connection in the original scenario. The weight of the edges
represent a measure of the interdependence of the units in the original scenario,
such as a count of the number of connections. More advanced analysis are pos-
sible to represent a more nuanced calculation of sensitivity of the connection, as
in [19].

In our formulation of the scenario graph, which follows [19], the weight of
each edge represents the cost for performing an extrapolation approximation on
the input/output connections in the original co-simulation scenario, which are
represented by that edge. This weight can be set through hints from the user,
though we are exploring automated determination of costs.

Selecting the weight of an edge must also take into account any interpola-
tion or extrapolation information provided by hints on the scenario. That is, the
variant generation described in Sect. 2 may determine the approximation for cer-
tain co-simulation unit inputs. This sets the weight of the relevant edge to zero,
as the hint suggests that the co-simulation unit is constructed to appropriately
handle the resulting approximation error.

Trigger Sequence Cost Function. Following the definition of the co-
simulation graph above, building a trigger sequence involves selection of the
co-simulation units to execute, taking into account the weights of the edges
between them.

For example, consider the situation where the A unit in Fig. 6a is executed
first in a trigger sequence. Both the inputs from B and the inputs from C must
be extrapolated, for a summed cost of eight.

The real complication in determining the optimal trigger sequence arises in
that scheduling the execution of a co-simulation sets the costs of outgoing edges
of that unit to zero. That is, co-simulation units on outgoing edges will not be
forced to extrapolate the output, but instead can rely on interpolation, which is
beneficial to the error of co-simulation [19].
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(a) Scenario graph. (b) Directed search tree.

Fig. 6. An example scenario graph and a directed search tree for the optimal trigger
sequence.

As an example, consider the co-simulation graph in Fig. 6a. Each of the six
possible trigger sequences for the co-simulation scenario has a different cost
given by this interpretation. If co-simulation unit B is selected for execution in
the trigger sequence first, the cost will be four due to the weight of the edge
from A. However, the weight on the edge from B to C will then be zero, as C
can now interpolate the output value of B.

Cost Equation. The following equation defines the cost function for a trigger
sequence, in a reformulation of the cost equation found in [19]. Informally, each
node is considered and incoming weights from nodes not yet encountered in the
trigger sequence are summed.

Let G = (V,E) denote the scenario graph, where E ⊆ V × V × R denotes
the (positively-)weighted edge set. Given a trigger sequence v0, v1, . . . , vn, with
distinct v’s, n = |V |, and vi ∈ V for all i = 0, . . . , n, its cost is:

c(v0, v1, . . . , vn) =
n−1∑

i=0

n∑

j=i+1

w(vj , vi)

w(u, v) =

{
x if (u, v, x) ∈ E

0 otherwise.

(1)

An alternative formulation to the above would be to sum up the incoming
edge weights for each node, and then subtract the outgoing edge weights for
those nodes not yet visited.

As an example, consider two trigger sequences {B,C,A} and {A,B,C} for
the scenario graph in Fig. 6a. The total cost for these trigger sequences is pro-
vided in Example 3.
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Example 3.
Trigger Sequence: {B,C,A}
Cost: B = 4, C = 3, A = 0
Total: 7 (optimal)

Trigger Sequence: {A,B,C}
Cost: A = 8, B = 0, C = 0
Total: 8

Directed Search. Given Eq. (1) for defining the cost of a trigger sequence,
an brute-force algorithm can be easily created: a) all possible trigger sequences
are created, b) each is evaluated using Eq. (1), c) the sequence with the lowest
cost is the optimal one. However, this brute-force approach is computationally
infeasible, as the number of possible trigger sequences is a factorial explosion of
the number of co-simulation units.

A directed search is instead preferable to find the optimal solution. This
directed search builds up a tree of possible sequences, selecting the next branch
to expand based on the cost of the branch so far. This search is possible because
the cost function is defined for partial trigger sequences, and is consistent as
well. That is, adding further nodes to a trigger sequence can only maintain or
raise the total cost, so there cannot be a local maxima reached in the search.

The directed search begins with the root of the tree as the empty set ∅. Then
in an iterative manner the branch with the lowest cost is expanded, by adding
as children all those nodes not considered yet in that branch of the tree.

For example, Fig. 6b demonstrates the final search tree for the scenario graph
in Fig. 6a. The layer just below the root in Fig. 6b considers the execution of
each node individually. As partial sequence {B} has the lowest cost, it would
be expanded next. Those children ({B, A} and {B, C}) have a higher cost than
{C}, so the {C} branch is expanded next into {C, A} and {C, B}. The search
returns to {B, C}, which is expanded into {B, C, A} (bolded in Fig. 6b) which
is the optimal solution with a cost of seven.

This directed search provides the optimal solution, but could be exhaustive
and therefore computationally prohibitive. The next section presents the Travel-
ling Salesman and optimal branching approaches, along with heuristic algorithms
to find a trigger sequence with near-optimality but at lower computational com-
plexity.

6 Approaches for Constructing Trigger Sequences

This section details approaches for producing a trigger sequence with the lowest
cost (as defined by Eq. (1)), while avoiding the computational complexity of the
directed search approach described in Sect. 5.4. Each proposed approach will be
presented along with a discussion, including counter-examples if known.

6.1 Travelling Salesman Problem

The Travelling Salesman Problem approach to trigger sequence construction is
to find a walk (or Hamiltonian cycle) which visits each unit in the scenario graph
once. While this approach is intuitive, as one can think of execution as ‘walking’
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around the scenario graph, this approach is overly restrictive and computation-
ally expensive.

First, the trigger sequence to be produced does not have to be a cycle, nor
is it required that co-simulation units which are next to each other in the trig-
ger sequence have to be directly connected in the scenario graph. For instance,
consider a scenario graph with three nodes A, B, and C, where A and B are con-
nected to each other, and B and C are connected to each other. Clearly there
cannot exist a cycle that visits every unit exactly once. Therefore, Hamiltonian
cycles are not required for a trigger sequence.

A second issue with the Travelling Salesman Problem approach is that the
starting unit of the cycle must also be selected, which induces another optimiza-
tion problem. For example, assume that a Travelling Salesman algorithm gives
the optimal solution for the scenario graph in Fig. 6a, which is executing B, C,
and then A for a total cost of seven. However, this cannot be treated as a cycle,
for while the trigger sequence {B,C,A} has a total cost of seven, the trigger
sequence {A,B,C} has a total cost of eight due to the extrapolations required.

Based on the above discussion, Travelling Salesman Problem approaches to
co-simulation scheduling are certainly intuitive but are not the correct approach.

Fig. 7. Second example scenario graph.

6.2 Optimum Branching

Another approach to trigger sequence construction is to determine the optimum
branching for a scenario graph, such as a (minimum) spanning tree. That is,
which set of edges spans the entire graph with minimal cost. This approach is
also highly intuitive, as the optimal solution must have the minimum weight
from incoming edges for each node. However, this approach does not provide the
ordering of the nodes which provides that minimal cost.

For example, consider again the scenario graph from Fig. 6a. The optimal
branching is the edges B → A and A → C, with a cost of six. However, it is unclear
how this minimal tree relates to the optimal trigger sequence of {B,C,A}, which
has a cost of seven. Therefore, the minimal spanning tree can provide a lower
bound on the optimal trigger sequence cost, but (currently) cannot be used to
produce this optimal trigger sequence.

From this counter-example, it is clear that while the scheduling problem is
related to an optimum branching problem, it is not sufficient to apply optimal
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branching algorithms. This is due to the order of nodes in the trigger sequence
affecting the weights of the edges, which is not the case in standard graph prob-
lems.

6.3 Greedy Approaches

As discussed in Sect. 5.4, a directed search is able to find the optimal trigger
sequence, given enough computational resources. However, it would be beneficial
to have algorithms with lower computational complexity for producing trigger
sequences.

In this section, we present a number of greedy approaches to the trigger
sequence construction problem. We note that these algorithms are not optimal
and we do not provide formal bounds on the relative error to the optimum.
However, our contribution is to provide a selection of algorithms that could be
used for scheduling, until future work provides an optimal algorithm (if it exists).
These algorithms will be evaluated in Sect. 7, which provides relative error results
of the algorithms against the optimum on synthetic scenario graphs.

For the below algorithms, we will present examples calculations based on
Fig. 6a and Fig. 7. These calculations are not intended to prove optimality, but
only to illustrate the operation of the algorithms. As well, differences in imple-
mentation tie-breaking may also affect the results.

Lowest Incoming. As a simple greedy algorithm, Lowest Incoming selects the
node from those remaining which has the lowest incoming weights. The intuition
is that the trigger sequence should be built according to choosing the ‘cheapest’
node next.

Algorithm:

– While not all nodes are in the trigger sequence:
• Calculate the node with the lowest sum of incoming edge weights.
• Add that node to the trigger sequence.
• Remove cost for outgoing edges.

Examples

Scenario Found Sequence Cost Opt. Sequence Cost

Figure 6a {B,C,A} 7 {B,C,A} 7

Figure 7 {H,F,E,G} 5 {F,E,H,G} 4
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6.4 Benefit Ratio

The next greedy algorithm we present is Benefit Ratio. In this algorithm, the
ratio between the incoming edge weights and the outgoing edge weights for each
node is calculated such that the node with the highest ‘benefit’ can be selected
next. The ratio is calculated as output weight divided by input weight, and nodes
selected from high ratio to low.

There are two versions of this algorithm which we evaluate here. The first is
static where the benefit ratio is determined at the beginning of the scheduling
process. The second version is dynamic, where the benefit ratio is re-calculated
after each sequence addition, to take into account that the input weights of other
nodes are then reduced.

Algorithm

1. Calculate the benefit ratio for each node.
2. While not all nodes are in the trigger sequence.

– Add the node with the highest benefit ratio.
– If the dynamic version, recalculate the benefit ratios.

Examples for the Static Version

Scenario Ratios Found Sequence Cost Opt. Sequence Cost

Figure 6a A= 0.88, B= 1.5, C = 0.83 {B,A,C} 9 {B,C,A} 7

Figure 7 E= 0.75, F = 3, {H,F,E,G} 5 {F,E,H,G} 4

G = 0.12, H = 10

Edge Avoidance. Based on the idea of optimum branching, the Edge Avoid-
ance greedy algorithm has the intention of ensuring that the most expensive
edges in the graph have their cost reduced to zero. The most expensive edges
are selected such that maximal spanning tree is created and a topological sort
gives the trigger sequence. An optimality improvement to this algorithm may be
to perform a brute-force search on all possible topological sorts to find the one
with the lowest cost.

Algorithm

1. Sort the edges in descending order of weight.
2. From each edge from the beginning of that list:

– Connect those nodes, unless doing so would create a cycle.
3. Produce the first possible topological sort.
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Examples

Scenario Max. Weight Edges Found Sequence Cost Opt. Sequence Cost

Figure 6a C → A → B {C,A,B} 9 {B,C,A} 7

Figure 7 H → G, F → G, Five possibilities, - {F,E,H,G} 4

F → E including optimal

7 Algorithm Evaluation

This section will provide evaluations of the brute-force, directed search, and
greedy algorithms presented in Sect. 5.4 and Sect. 6. In particular, measures of
relative performance and optimality are discussed to provide insight into their
characteristics.

7.1 Set-Up

As we are unaware of a large corpus of co-simulation scenario graphs, synthetic
graphs are studied here. One hundred graphs for each sequence length from
one to ten were created with cycles, and edges were randomly assigned discrete
weights uniformly sampled between zero and nine (inclusive).

For each graph, a brute-force search for the optimal trigger sequence is first
performed to set a baseline of the performance and optimal cost. Then, the
directed search (from Sect. 5.4) is calculated to determine the speedup given.
Finally, each greedy algorithm from Sect. 6 is ran to determine the (potential)
speedup and cost provided. The calculation effort is given in seconds, as deter-
mined by a Python 3.7.3 script running on Xubuntu 19.10 with a Intel i7-8850H
CPU at 2.60 GHz.

7.2 Results and Discussion

Figure 8 provides an overview of the algorithm evaluations. Figure 8a presents
the average of calculation time (in a log scale) for each algorithm over all graphs
of a certain size. Figure 8b presents the relative error of each algorithm versus
the optimal given by the brute-force approach. The relative error is calculated
by taking the difference between the cost and the optimal cost, then dividing by
the optimal cost. A relative error of 0.10 therefore means the cost is 10% worse
than the optimal. Figure 9 provides more details by presenting boxplots for each
algorithm’s relative error.

Concerning computation time, it was expected that the directed search algo-
rithm would be less expensive than the brute-force search. However, the results
in Fig. 8a show that the improvement is not as great as expected. The high cost
of the Edge Avoidance algorithm was also unanticipated, as it is similar in cost
to the directed search, but is not likely to always produce an optimal result.
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(a) Calculation effort of each algorithm. (b) Relative error versus the brute-force search.

Fig. 8. Evaluation of the algorithms for both effort and relative error.

However, the other three algorithms show a definite cost improvement over the
brute-force and Directed Search approaches.

The relative error of the algorithms versus the brute-force search shown in
Fig. 8b and Fig. 9 provide interesting insights. The four greedy algorithms show
promising results in terms of relative error. For each, the mean relative error
is around 10%, the upper quartile falls around 25%, and values are rarely seen
above 30%. As reference, a Random Sequence algorithm was also developed
which simply makes a random decision which node to take next. For this algo-
rithm, the mean relative error was around 40%, with the lower quartile at around
25%, and upper quartile at around 50%.

From the results, two algorithms are clearly superior. First, the Directed
Search algorithm should be chosen if the optimal solution is desired and com-
putational resources are sufficient. If a greedy approach is desired, then the
Dynamic Benefit Ratio algorithm provides a low relative error at a low perfor-
mance cost.

8 Related Work

The problem of adequately configuring a co-simulation is not new. We can clas-
sify the approaches according to when and which information is used to configure
the co-simulation: static and adaptive.

An adaptive configuration approach monitors the co-simulation results and
adjusts the co-simulation algorithm parameters accordingly. A static config-
uration approach sets the parameters without running the co-simulation. An
overview of the adaptive configuration approaches is given in [18].

In the static configuration category, the following works have the same goal
as our work. Rather than starting from a co-simulation scenario, the works in
[5,22,27] use a system architecture model to generate a co-simulation scenario
and a master algorithm that is consistent with that architecture. The work
in [5] uses the input/output feed-through and the kind of model underlying
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(a) Lowest Incoming. (b) Edge Avoidance.

(c) Static Benefit Ratio. (d) Dynamic Benefit Ratio.

Fig. 9. Detailed relative error of each algorithm.

the co-simulation unit (e.g., ODE, DAE, . . . ) to correctly configure the input
approximations used. The authors in [27] go even further and use the eCl@ass
classification system to automatically link the units.

We complement these works by showing other examples of information that
are useful to configure the co-simulation, and generating multiple master algo-
rithms, instead of a single one. This is due to the fact that there might not be
enough information available to fully specify a single master algorithm.

In the domain of scheduling co-simulations, the authors of [11] provide a
sequence calculation concept, which is analogous to our trigger sequence. Their
work defines an optimization problem minimizing the communication delays
between the co-simulation units in the sequence, while taking into account
input/output dependencies. The optimization algorithm provides an almost opti-
mal solution over a co-simulation scenario with 14 units. Our work instead
focuses on the issue of breaking algebraic loops in the co-simulation scenario,
and determining optimal and heuristic algorithms for scheduling.

The current work is based off of the approach by Holzinger and Benedikt [19]
which examines the Travelling Salesman Problem (TSP) approach to scheduling
co-simulations with algebraic loops. We extend that work by presenting further
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discussion about approaches to the scheduling problem, including a counter-
example for the TSP approach. The current work also provides optimal and
heuristic-based algorithms with a lower performance cost than the brute-force
algorithm found in [19].

9 Conclusion

Configuration of co-simulation scenarios can be complicated due to its black-
box nature, required knowledge of numerical techniques, and lack of a reference
solution. In this paper, we have summarized our HintCO technique for (semi-)
automatically configuring co-simulations based on user intuitions about the sys-
tem, as expressed through hints.

This work has also presented our advancements in understanding the schedul-
ing problem for co-simulations with algebraic loops. The formalization of the
problem suggests that the problem is in or around NP-complexity and that it
will be difficult or impossible to arrive at a polynomial-time algorithm. Second,
we have determined that typical graph-based algorithms to visit all nodes such
as the Travelling Salesman Problem and Minimum Spanning Trees do not suffi-
ciently deal with the issue that node ordering changes the cost function during
visitation. As a concrete contribution, we have determined that a directed search
(presented in Sect. 5.4) can find an optimal solution, given enough time. We have
also presented heuristic algorithms to solve this problem along with results which
indicate their performance and a measure of optimality.

This work is being integrated as scheduling improvements in our HintCO
tool [13]. In particular, hints can now be added to co-simulation scenario con-
nections to indicate their weight in a scenario graph. If an algebraic loop is
detected in a scenario then HintCO performs the directed search for the optimal
trigger sequence, then transforms it back to a dependency graph to be executed.
This search and transformation is performed ‘behind-the-scenes’, so that the
user is shielded from the complexity of co-simulation scheduling.

9.1 Future Work

One important direction for our future work is to determine whether there is
an algorithm which is less computationally expensive than the directed search
approach (Sect. 5.4) but which still guarantees optimality. We suspect that the
co-simulation scheduling problem to be in the NP class, but a proof is required.

As well, we are investigating integrating additional hints into HintCO to
support other scheduling problems. For example, co-simulation can be performed
over a network as in [23], where co-simulation units are distributed geographically
or within a network. One problem which arises could be the partitioning of co-
simulation units to each network node, depending on their dependence on other
nodes. This problem has been considered in a slightly different context in [20].
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