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Abstract. As wind turbines continue to increase in size, hybrid testing is emerging as a key-
enabling solution for experimental assessment of their large mechanical components. Hybrid
testing is conducted using a hybrid model which combines physically tested and numerically
simulated components. In this work, the Kane method is proposed to formulate the equation of
motion for the hybrid model of a wind turbine rotor system where one single blade is physically
tested. The Kane method allows for formulating the equation of motion of multi-body-dynamic
models efficiently and, therefore, it is widely used in state-of-art simulation software. The hybrid
model of the rotor is successfully implemented on a single-degree-of-freedom test bench with a
cantilever steel beam serving as the physical substructure. The performance of the implemented
hybrid model is assessed through a comparison with a pure numerical simulation of the same
system. The main finding of the study emphasizes the efficiency of incorporating physically
measured restoring force as model parameters while formulating the equation of motion of a
hybrid model.

1. Introduction
1.1. Background and motivation
Wind turbines (WT) are complex engineering systems designed to extract energy from the wind
and convert it into electrical energy for the power grid. To reduce the Levelized Cost of Energy,
WT technology is scaling up rapidly, with larger and more efficient components being developed.
Testing of WT is crucial to ensure their optimal performance, efficiency, and reliability. Hansen
summarizes in [1] the recommended practice to estimate the fatigue damage, which includes
monitoring bending moments on blades and tower, yaw and tilt moments on the rotor, axial
thrust, torque on the main shaft, and torsional moment on the tower. WT manufacturers face
major demands as the cost and duration of testing are increasing in parallel with the upscaling
of test benches. Experimental methods that allow for testing large components under realistic
critical loading scenarios are needed.

Hybrid testing (HT), also referred to as hardware-in-the-loop simulation (HiL), is an
experimental method that allows testing a physical substructure (PS) of an engineering system,
while simulating its interaction with the rest of the system in a numerical substructure (NS).
Using simulations and controllers realistic critical loading scenarios can be achieved. This
method is becoming an increasingly attractive testing technique for cost-efficiently investigating
the dynamical response of complex large-scale engineering systems. The concept of HT was



originally introduced in the late 1960s in Japan [2, 3], and has since been applied for mainly
the purpose of seismic testing of civil engineering structures. The interested reader can refer
to Nakashima et al. [?] for a state-of-the-art review, the book of Pan [4] for an overview of the
methodology, and the survey in [5].

In the state of the art of HT applied to WT testing, Bosse et al. [6] propose a design for a 4
MW wind turbine generator test system, capable of testing whole nacelles, while simulating the
rotor system as a NS. Cheon et al. [7] propose applying the methodology for performance tests
of pitch control systems. For HT of structural components, pseudo-dynamic regimes are often
sufficient when the PS has a rate-independent restoring force. However, recent improvements
in actuation performance have facilitated real-time HT of floating WT with realistic loading
conditions. For instance, Sauder et al. [8] propose applying physical hydrodynamic loading on a
physical floater in an ocean basin, while simulating the aerodynamic loading and rotor system.
Additionally, Belloli et al. [9] propose applying physical aerodynamic loading on a rotor system
in a wind tunnel, while simulating the hydrodynamic loads on the floater.

The multi-body-dynamic (MBD) model for simulating the mechanical response of a WT in
a HT is typically formulated using Lagrangian, Hamiltonian, or Newton-Euler methods. A
prominent technique for solving MBD problems was proposed by Kane et al. [10] in 1965. The
Kane method is shown in [11] to outperform other approaches, demonstrating superior efficiency
in deriving equations of motion and simplicity in the final equations. The method has become
the backbone in reference WT simulation codes like OpenFAST [12] and HAWC2 [13], just to
name a few. However, a comprehensive description of how to implement a hybrid MBD model
for a WT using the Kane method is currently unavailable to the best of the author’s knowledge.

1.2. Scope
This work aims to provide a practical example of applying the Kane method to implement HT
for mechanical components of WTs. Specifically, a hybrid MBD model of a simplified 2D WT
rotor is presented, wherein one of the three blades is replaced by a physical experiment.

The article is organized as follows: Section 1 introduces the problem and specifies the scope.
Section 2 formulates a MBD hybrid model of a WT rotor using the Kane method, section 3
demonstrates an implementation of the hybrid model, and section 4 presents the results from
the hybrid test and compares it to a purely numerical simulation of an equivalent system. Finally,
section 5 concludes the work.

2. Formulation of MBD hybrid model
A MBD hybrid model is formulated based on the Kane method, for a simplified structural WT
rotor system inspired by Hansen [1], as presented in Figure 1. The system consists of a 4-degree-
of-freedom (dof) 2D rotor with 3 blades connected to a generator. Each blade is represented
by a prematurely linearized cantilever beam, whereas axial deformation is neglected. As a
simplification, the mass of each blade is lumped on its tip. The generator is represented by
a linear dash-pot. The configuration of the model is thus completely characterized by four
generalized coordinates q1 − q4. The bending deformation for each blade is described by q1, q2,
and q3, while q4 describes the rotational deformation of the hub. The remaining parameters of
the models are defined in Table 1.



Figure 1: Simplified structural wind turbine rotor system in 2D, inspired by Hansen [1]. The red

dashed line represents the physical substructure in the hybrid model. n̂z and b̂iz point outward
from the figure.

Table 1: Model parameters for the simplified wind turbine rotor system.

Description Symbol Value Unit
Blade length lb 0.5 m
Blade mass mb 1.96 kg
Blade mass proportional damping ζb 1 1/s
Blade stiffness kb 7.2× 103 N/m
Wind load fw 100 N
Geartrain mass of inertia Ig 0.1 kgm2

Geartrain damping dg 100 Nms
Gravity g 9.82 m/s2

Ramping time instance t0 0.5 s

Following the procedure for the Kane method from the books of Banerjee [14] and Roithmayr
et al. [15], a hybrid model is formulated. To clarify the formulation, instead of presenting the
Kane method generically, this section illustrates, in a step-wise fashion, how it is applied to
assemble a hybrid model for the outlined simplified WT rotor system.

(i) Initially, reference frames are established. N denotes the Newtonian frame, characterized
by three unit vectors n̂x, n̂y, and n̂z. Additionally, Bi represents a frame attached to the

ith blade, similarly characterized by b̂ix, b̂iy, and b̂iz. Notably, in this method only frame
orientations are relevant, disregarding frame positions. The relations between the reference
frames are defined using generalized coordinates, revealing a significant connection between
frame projections and the directional cosine matrix,



NCBi =

n̂x · b̂ix n̂x · b̂iy n̂x · b̂iz

n̂y · b̂ix n̂y · b̂iy n̂y · b̂iz

n̂z · b̂ix n̂z · b̂iy n̂z · b̂iz

 =

 cos (q4 +Ψi) sin (q4 +Ψi) 0
− sin (q4 +Ψi) cos (q4 +Ψi) 0

0 0 1

 , (i = 1, 2, 3)

(1)
where NCBi is the directional cosine matrix for frame Bi with respect to frame N , and
Ψ1 = 0, Ψ2 = 2π/3 and Ψ3 = 4π/3 are the initial azimuth angles of the three blades.

(ii) From the definition of reference frame orientations, angular velocities and accelerations are
derived. Géradin et al. [16] proves that time-derivatives in the Newtonian frame, denoted

as
Nd

dt
, to an arbitrary unit vector b̂ik can be expressed as,

Nd

dt
b̂ik =

Nd

dt
BiCNNCBib̂ik, (i = 1, 2, 3) (k = x, y, z) (2)

which, due to the skew symmetric nature of
Nd

dt
BiCNNCBi , is the matrix analog to the

vector relationship,

Nd

dt
b̂ik = NωBi × b̂ik, (i = 1, 2, 3) (k = x, y, z) (3)

where × denotes the cross product, and NωBi is the angular velocity of frame Bi with
respect to frame N . The model-specific angular velocities NωBi and accelerations NαBi

read respectively,

NωBi = q̇4n̂z,
NαBi =

Nd

dt
NωBi = q̈4n̂z, (i = 1, 2, 3) (4)

where q̇4 and q̈4 are respectively the first and second time-derivative to the generalized
coordinate q4.

(iii) Position vectors from the origin O to each point in the model are oriented with unit vectors
of the reference frames and scaled with generalized coordinates. In the context of this
model, for point Pi on the tip of each blade, a specific position vector pOPi is defined,

pOPi = lbb̂ix + qib̂iy, (i = 1, 2, 3) (5)

(iv) Translational velocities and accelerations are derived for each point by the time-derivative
in the N frame to the position vectors in (5). By making use of (3) the generic one-point
theorem from [17] appears. Accordingly, the specific velocity NvPi and acceleration NaPi

of each blade read,

NvPi =
Nd

dt
pOPi = NvO + NωBi × pOPi + BivPi

= q̇4(lbb̂iy − qib̂ix) + q̇ib̂iy, (i = 1, 2, 3)

(6)

NaPi =
Nd

dt
NvPi = NaO + NαBi × pOPi + NωBi × (NωBi × pOPi)

+ 2NωBi × NvPi + BiaPi

= q̈4(lbb̂iy − qib̂ix) + q̇24(−lbb̂ix − qib̂iy)− 2q̇4q̇ib̂ix + q̈ib̂ix, (i = 1, 2, 3)

(7)



(v) Generalized speeds are chosen as linear combinations of generalized coordinate derivatives,
in what Kane specifies as the kinematical differential equations. For this specific model,
generalized speeds are chosen as,

u1
u2
u3
u4

 =


B1vP1 · b̂1y
B2vP2 · b̂2y
B3vP3 · b̂3y
NωB1 · b̂1z

 =


q̇1
q̇2
q̇3
q̇4

 (8)

In this specific model, as opposed to 3D models, the generalized speeds ui directly
coincide with the generalized coordinate derivatives q̇i, which are replaced in the kinematic
expressions of (4), (6) and (7).

(vi) Active forces and torques acting on the points are defined based on the unit vectors from the
reference frames. Here the internal forces ri from the stiffness and damping of the blades
are revealed by splitting the blade model in Figure 2 into separate free body diagrams in
Figure 3.

Figure 2: Blade model cut in free body diagrams.

(a) (b) (c)

Figure 3: Free body diagram for a) hub in frame B1 with center of mass in origin O, b) cantilever
beam with tip displacement qi and velocity ui, and c) point Pi on blade tip.

In addition to restoring internal forces from the free body diagram, the active forces fPi

and torque tB1 are gathered from gearbox damping, gravity, and wind loads. Here, it
is important to note that there are three points Pi, yet only one body B1 is present.
Accordingly,

fPi = −rib̂iy +mbG(t)n̂x + Fw(t)b̂iy, (i = 1, 2, 3) (9)

tB1 = −dgu4b̂1z +

3∑
i=1

rilbb̂iz (10)



The restoring forces combine the impacts of blade stiffness and damping,

ri = rsi + ζbmbui, (i = 1, 2, 3) (11)

where rsi denotes the static restoring forces arising from the bending stiffness of the blades.
The inclusion of these static restoring forces as additional unknowns is pivotal in the
transition from a pure numerical model to a hybrid model. Additionally, to prevent the
simulation from showing the typical oscillation pattern of a step-response, the gravitational
force G(t) and wind loads Fw(t) are ramped to their nominal value using exponential time-
modulating functions,

G(t) = (1− e−t/t0)g, Fw(t) = (1− e−t/t0)fw (12)

(vii) Inertia forces are defined for the lumped masses on the blade tips following the Newton
formulation, and an inertia torque is defined for the body of the geartrain following the
Euler formulation. Notably, both accelerations from (7) and angular accelerations from (4)
are defined in the Newtonian frame N . Accordingly,

f∗Pi = −mb
NaPi , (i = 1, 2, 3) (13)

t∗B1 = −IB1 · NαB1 − NωB1 ×
(
IB1 · NωB1

)
, IB1 = Igb̂1z ⊗ b̂1z (14)

where IB1 is the inertia dyadic of the body attached to frame B1 around the origin O as
seen from the frame itself.

(viii) Partial velocities and angular velocities are derived based on (4) and (6),

NvPi
j =

∂NvPi

∂uj
,NωB1

j =
∂NωB1

∂uj
, (j = 1, 2, 3, 4)(i = 1, 2, 3) (15)

(ix) The equation of motion is next formulated based on the Kane method, projecting the active
and inertia forces and torques from (9), (10), (13) and (14), onto the partial velocities from
(15).

3∑
i=1

NvPi
j · (f

Pi + f∗Pi) + NωB1
j · (t

B1 + t∗B1) = 0, (j = 1, 2, 3, 4) (16)

(x) Finally, the EoMs from (16) are recasted in state-space form by combining them with the
kinematical equations of (8). Accordingly,

f(t, ẋ,x, rs1, r
s
2, r

s
3) =



q̇1 − u1
...

q̇4 − u4∑3
i=1

NvPi
1 · (fPi + f∗Pi) + NωB1

1 · (tB1 + t∗B1)
...∑3

i=1
NvPi

4 · (fPi + f∗Pi) + NωB1
4 · (tB1 + t∗B1)


= 0 (17)

By constructing a generalized parameter vector with generalized coordinates and speeds,
(16) is reconstructed to the generic form of first-order ordinary differential equations,



x =



q1
...
q4
u1
...
u4


, M(x)ẋ+ g(t,x, rs1, r

s
2, r

s
3) = 0 (18)

where M(x) is the mass matrix with a dependency on the generalized parameter vector x,

M(x) =
∂f(t, ẋ,x, rs1, r

s
2, r

s
3)

∂ẋ

=


[I]4×4 [0]4×4

[0]4×4


−mb 0 0 −lbmb

0 −mb 0 −lbmb

0 0 −mb −lbmb

−lbmb −lbmb −lbmb −Ig −
∑3

i=1mb(l
2
b + q2i )




(19)

and g(t,x, rs1, r
s
2, r

s
3) represents the vector of Coriolis, centrifugal and generalized active

forces dependent on time t, generalized parameter vector x, and crucially the static restoring
forces rs1, r

s
2 and rs3. Accordingly,

g(t,x, rs1, r
s
2, r

s
3) = f(t, ẋ,x, rs1, r

s
2, r

s
3)−M(x)ẋ

=



−u1
...
−u4

(1− e−t/t0)(fw − gmb sin (q4 +Ψ1))− rs1 −mbζbu1 +mbq1u
2
4

(1− e−t/t0)(fw − gmb sin (q4 +Ψ2))− rs2 −mbζbu2 +mbq2u
2
4

(1− e−t/t0)(fw − gmb sin (q4 +Ψ3))− rs3 −mbζbu3 +mbq3u
2
4∑3

i=1

(
(1− e−t/t0)(fwlb − gmbqi cos (q4 +Ψi)) + 2mbqiuiu4

)
− dgu4


(20)

Lastly, the state-space formulation for the hybrid model is attained from solving for ẋ in
(18),

ẋ = −M(x)−1g(t,x, rs1, r
s
2, r

s
3)︸ ︷︷ ︸

frhs(t,x,rs1,r
s
2,r

s
3)

(21)

where the right-hand-side function of the formulation is defined as f rhs(t,x, rs1, r
s
2, r

s
3).

The hybrid model has been derived in SymPy, which is a Python module for symbolic calculus.
It provides a specific library for analytical mechanics based on the Kane method. The lecture
notes on MBD by Prof. Moore [17] and the SymPy module [18] are extremely helpful to get
quickly proficient with using the Python module.

3. Implementation of the hybrid model
A physical experiment was implemented based on the developed hybrid model, using a newly
installed setup for HT at Dynamisk LAB of Aarhus University. In the hybrid test, one of the
blades is represented by a PS, while the rest of the model is simulated within a NS. Specifically,



the static restoring force rs1 is physically measured from a 500 × 100 × 5 mm cantilever steel
beam. The tip of the cantilever beam receives a displacement q1 from the NS through an
electromechanical actuator. Subsequently, a force transducer, positioned between the actuator
and the PS, measures the restoring force. The actuator is characterized by 300 mm stroke and
10 kN force capacity, coinciding with the force transducer admissible load. Figure 4 provides an
overview of the experimental setup.

Figure 4: Single-degree-of-freedom testbench for hybrid testing at Dynamisk LAB of Aarhus
University. The physical substructure of the rotor blade is represented by a cantilever beam.

The experimental setup was operated from a Beckhoff RT-industrial PC, using the EtherCAT
protocol for communication with the actuator controller and force transducer. This facilitated
a real-time processing-on-the-fly approach, incorporating a Python environment for sending
actuator positions through an API control system and retrieving associated restoring force data.
In Figure 5 the real-time system is visualized.

Figure 5: Schematic overview of a real-time system for hybrid testing.



The equation of motion from the hybrid model was solved using a 2nd order Runge-Kutta time
integration scheme with a fixed time step of h = 10 ms. The procedure for solving the equation
of motion is provided below in the form of a pseudocode.

Algorithm 1 Runge-Kutta scheme for pseudo-dynamic Hybrid Testing.

Initialize n← 1
Initialize xn ← x0

while n < Nsteps do
Initialize i← 1
while i < s do

Compute state xi
n = xn + h

∑i−1
j=1 ai,jkj

Extract blade displacements q1 = xi
n(1), q2 = xi

n(2) and q3 = xi
n(3)

Send actuator position command q1 + p0
Retrieve restoring force feedback rs1 from PS
Compute restoring force rs2 = kbq2 from NS
Compute restoring force rs3 = kbq3 from NS

Compute ki = f rhs(tn + cih,xn + h
∑i−1

j=1 ai,jkj , r
s
1, r

s
2, r

s
3)

Update i← i+ 1
end while
Update xn+1 ← xn + h

∑s
i=1 biki

Update tn+1 ← tn + h
Update n← n+ 1

end while

where aij , bi and ci are coefficients of the Runge-Kutta method extracted from a Butcher Table
(e.g., from [19]), p0 is the initial position of the actuator, which corresponds to a zero restoring
force, and Nsteps is the number of steps. The main advantage of using an explicit Runge-
Kutta scheme is that the Jacobian of f rhs(t,x, rs1, r

s
2, r

s
3) w.r.t. the hybrid model state vector

x is not computed and the solution algorithm does not require iterations to converge. This
is a particularly important feature for MBD hybrid models given that also the mass matrix is
nonlinear and an operator-splitting-like approach [20] might not be sufficiently accurate.

4. Results and discussion
To verify the hybrid model implementation, a dummy HT was conducted, where the PS was
temporally substituted by a NS. When the results perfectly matched with a reference response
history analysis, the static restoring force rs1 was linked to the force transducer measurement. A
HT was thereby successfully conducted by implementing the hybrid model through the proposed
algorithm. The dynamic behavior was simulated for the WT rotor within a 10 s duration using
a time step of 0.001 s. The hybrid test lasted 6 hours and 16 minutes, that is, about 2260 slower
than real-time (pseudo-dynamic regime). Results from the generalized coordinates, q1, q2 and
q3 dictating the displacement of the blades are presented in Figure 6a, and the generalized speed
u4 representing the angular velocity of the hub is presented in Figure 6b. In Figure 7 the results
from a pure numerical simulation of the same simplified WT rotor system are presented.



0 2 4 6 8 10
Time [s]

0

4

8

12

16

20

D
is

pl
ac

em
en

t [
m

m
]

q1
q2
q3

(a)

0 2 4 6 8 10
Time[s]

0.0

0.4

0.8

1.2

1.6

An
gu

la
r 

ve
lo

ci
ty

 [r
ad

/s
]

u4

(b)

Figure 6: Hybrid test results of a) generalized coordinates q1, q2 and q3 representing the blade-
tip displacements, where the red line indicates the displacement from the PS, and b) generalized
speed u4 representing the angular velocity of the hub.
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Figure 7: Numerical simulation results of a) generalized coordinates q1, q2 and q3 representing
the blade-tip displacements and b) generalized speed u4 representing the angular velocity of the
hub.

The displacement history of the three blades, shown in Figure 6a, differs from the displacement
of the same blades in the purely numerical simulation shown in Figure 7a. The motion history q1
of the PS blade exhibits a larger amplitude and average displacement compared to the numerical
simulation. This suggests a lower stiffness for the blade in the PS than those in the NS. As seen
by a small oscillation in the HT in Figure 6b, when compared to the numerical simulation in
7b, the derivation in blade displacement has a small influence on the angular velocity. As one
can note, after the initial transient, the response of the blades is periodic, which indicates that
the numerical integration scheme produces stable results.

5. Conclusion
This study provided a practical demonstration of the Kane method’s efficiency in implementing
hybrid testing for wind turbine mechanical components. The introduction of static restoring
forces as additional variables in the multi-body-dynamic hybrid model formulation proved to be
very efficient. Such variables can be efficiently linked to physical measurements while running
a hybrid test by substituting with analytical expression in the test verification phase. The
implementation on a 1-degree-of-freedom test bench using an explicit Runge-Kutta scheme
demonstrated that a stable experiment can be performed in the pseudo-dynamic regime.
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