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A B S T R A C T   

Transportation electrification has been fueled by recent advancements in the technology and manufacturing of 
battery systems, but the industry yet is facing serious challenges that could be addressed using cutting-edge 
digital technologies. One such novel technology is based on the digital twining of battery systems. Digital 
twins (DTs) of batteries utilize advanced multi-layer models, artificial intelligence, advanced sensing units, 
Internet-of-Things technologies, and cloud computing techniques to provide a virtual live representation of the 
real battery system (the physical twin) to improve the performance, safety, and cost-effectiveness. Furthermore, 
they orchestrate the operation of the entire battery value chain offering great advantages, such as improving the 
economy of manufacturing, re-purposing, and recycling processes. In this context, various studies have been 
carried out discussing the DT applications and use cases from cloud-enabled battery management systems to the 
digitalization of battery testing. This work provides a comprehensive review of different possible use cases, key 
enabling technologies, and requirements for battery DTs. The review inclusively discusses the use cases, 
development/integration platforms, as well as hardware and software requirements for implementation of the 
battery DTs, including electrical topics related to the modeling and algorithmic approaches, software architec-
tures, and digital platforms for DT development and integration. The existing challenges are identified and 
circumstances that will create enough value to justify these challenges, such as the added costs, are discussed.   

1. Introduction 

Transportation electrification is an essential pathway to limiting 
global warming below 1.5 ◦C as set out in the Paris Agreement [1]. 
Electric vehicles (EVs) crucially rely on lithium-ion batteries to store the 
required energy for propulsion. Due to their significance, batteries have 
been an active field in academia, industry, and among policymakers, 
and large investments have been secured to improve them. The ad-
vancements in battery technology cannot be underestimated. However, 
there are still unresolved challenges in the field that have slowed down 
the electric transportation paradigm, for example, long charging times 
and quick degradation, especially under fast charging conditions [2,3]. 
The lithium-ion cells are sensitive to abusive operating conditions such 
as over-charging and elevated operating temperatures. Such conditions 
may on rare occasions initiate unstable chain reactions which could 

cause a thermal runaway leading to the fire or explosion of the battery 
[4,5]. Batteries face challenges not only when they are in use, but also 
across their whole value chain from raw material and supply chain to the 
repurposing and recycling of batteries. Despite the decreasing trend in 
their cost, EVs are still deemed expensive and unaffordable. 

A battery management system (BMS) is usually used to ensure that 
the EV battery is operated within safe limits [6]. However, BMSs often 
use a low-cost microprocessor that hinders the use of best-in-class al-
gorithms for the optimum operation of the batteries. Novel digitalization 
techniques can address the challenges in the battery processes including 
manufacturing, assembling, operating, repurposing, and recycling [7]. 
One such technology is based on the digital twin (DT) concept. The DT of 
a battery is its live digital equivalent with prediction capabilities, which 
is formed by employing multi-scale models, advanced data processing 
techniques based on artificial intelligence, machine learning (ML), and 
internet-of-things (IoT) driven two-way data connectivity between the 
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physical twin (PT) and DT, to allow an accurate replication/prediction 
of the battery behavior [8]. The battery DT technology is advantageous 
in different terms as outlined in the following:  

• Application: It facilitates battery design optimization, improves 
battery operation and maintenance, and makes batteries more effi-
cient and cost-effective.  

• Emissions/Environment: It contributes to mitigating the effects of 
climate change by enabling more widespread use of clean energy and 
reducing emissions from transportation. It also supports the fulfill-
ment of environmental, social, and governance and United Nations 
(UN) sustainable development goals by promoting sustainable en-
ergy systems and reducing greenhouse gas emissions.  

• Policy targets: It supports the fulfillment of policy targets related to 
the energy storage, reduction in emissions, and sustainability, by 
providing a comprehensive understanding of battery behavior and 
performance over the entire lifetime. 

• Regulation/Standards: It catalyzes the process of battery stan-
dardization and regulation in terms of safety and performance.  

• Cost: It improves the life cycle cost (LCC) by improving the economy 
of manufacturing, reducing maintenance costs, helping batteries last 
longer, etc. 

Despite being an active research topic in recent years, the battery DT 
requirements and use cases are still unclear in an industrial setting. In 
addition, the simulation and software platforms that can be used for the 
development and integration of the DTs have not been surveyed before. 
The works on battery DTs have been mostly focused on developing 
advanced BMS functionalities such as advanced modeling and state 
estimation functions for batteries in addition to the works which have 

described some of the DT requirements and frameworks. Several re-
view/survey works have also been published on this topic. Table 1 lists 
these papers, the related publication year, as well as the focus area of 
each paper. 

The existing review/survey works have mostly focused on the 
possible DT applications and the DT conceptualization while some of 
them have referred to existing possible frameworks. These papers have 
addressed DTs only from the electrical perspective. However, battery DT 
requires knowledge of multiple disciplines due to the interdependence 
of the electrical, software, and digital systems. Except in Ref. [12], all 
review works have addressed battery DTs merely within the EV context 
without reviewing DT opportunities across the whole battery value 
chain such as the repurposing and 2nd life applications. 

Unlike other works, this review addresses the battery DT use cases 
across the whole value chain. In addition to discussing the electrical and 
software requirements together, the review provides insight into the 
commercial and open-source DT design, development, and integration 
platforms, as well as their pros and cons. Furthermore, the results of an 
industry questionnaire are interpreted to identify the gaps and reveal 
circumstances where the DT can create real value from a business 
standpoint to justify its costs. The audience of this review is very broad 
including industry and academic experts working across the whole 
battery value chain from EV users, fleet operators, and component in-
tegrators to battery recyclers, as fully depicted in Fig. 1. 

The main objective of this review is to provide a useful indication of 
the scope of the existing research literature including the ongoing trends 
on different aspects of battery DTs including their use cases, re-
quirements, and platforms. The literature search is limited to the English 
language, in Scopus, Science Direct, and IEEE Xplore for publications 
between 2003 to January 2023. Any peer-reviewed article containing 
information about battery DT use cases, requirements, and DT devel-
opment/integration platforms is included in the review. Additionally, 
the DT platforms that are commercially available were found and 
reviewed through an internet search. Some articles in which a review of 
their title and/or abstract disclosed little pertinent to the batteries were 
excluded without further review. Reviewers with a relevant discipline 
were assigned to abstract the information from different articles in the 
reviewed database. Information was collected on the type of DT use 
cases considered and the achieved performance indicators, electrical, 
mechanical, and software requirements, as well as the existing platforms 
used for the design, development, and integration of the DTs and their 
potential in terms of data storage, security, processing power, visuali-
zation, etc. The analysis is fulfilled to provide an adequate level of detail 
about the battery DT potential, trends, and gaps while it also determines 
the value of undertaking a full systematic review of individual use cases, 
technologies, and platforms. 

Abbreviations 

AAS Asset Administration Shell 
AWS Amazon Web Services 
BMS Battery Management System 
CAD Computer-Aided Design 
CAN Controller Area Network 
DT Digital Twin 
DTI Digital Twin Instance 
DTP Digital Twin Prototype 
EMS Energy Management System 
EV Electric Vehicle 
IoT Internet-of-Things 
KF Kalman Filter 
LCC Life Cycle Cost 
MAE Mean Absolute Error 

ML Machine Learning 
NN Neural Network 
PDT Performance Digital Twin 
PF Particle Filter 
PT Physical Twin 
RDF Resource Description Framework 
RUL Remaining Useful Life 
SCADA Supervisory Control and Data Acquisition 
SoC State-of-Charge 
SoH State-of-Health 
SoP State-of-Power 
SotA State-of-the-Art 
SoX State-of-X 
TMS Thermal Management System 
VIT Voltage, Current, and Temperature  

Table 1 
Review/survey papers published on the topic of battery DTs.  

Ref. Year 
published 

Topics covered 

[9] 2022  • Brief review of DT use cases  
• Review of the DT architecture 

[10] 2021  • Review of DTs in EV context including batteries, power 
electronics, advanced driving assistance systems, etc  

• DT use cases focused on BMS algorithms 
[11] 2021  • Review of use cases of battery DTs in EVs 
[12] 2021  • Review of DTs applications in the design, manufacturing, 

operation, and post-operation phases  
• Brief overview of the DT framework 

[13] 2021  • Brief review of the use cases focused on EV operation 
[14] 2020  • Battery models and data processing for digital twining  

• Battery state estimation  
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The presentation of the work is organized as follows: In Section 2, the 
definitions of the DTs are reviewed and the existing challenges in the EV 
battery value chain are outlined. Section 3 provides a review of the state- 
of-the-art (SotA) battery DTs and the relevant use cases to address the 
challenges of the batteries throughout the value chain. Then, in Section 
4, the requirements of the battery DTs from electrical and software 
perspectives are reviewed. Section 5 provides a review of the existing 
commercial and open-source battery DT development and integration 

platforms. The existing gaps, challenges, and opportunities, are dis-
cussed in Section 6, and finally, conclusions are provided in Section 7. 

2. Background on DTs and battery challenges 

Based on the field of application, the DT is defined and understood in 
different ways. The DT has been referred to as a mega-model, avatar, 
mirrored system, digital shadow, or synchronized virtual prototype 

Fig. 1. Potential stakeholders of the battery DT concept and audience of this review.  

Fig. 2. Difference between battery model, digital shadow, and DT [17].  
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[15]. Therefore, a generally accepted term and definition for DT is still 
lacking. Fig. 2 illustrates how a battery DT can be distinguished from a 
battery digital model and a battery digital shadow [16]. Benchmark 
definitions of the DT are also reviewed in Table 2. 

Depending on the application area and use case, this research pro-
poses the following three kinds of DTs, as illustrated in Fig. 3(a). Each 
DT type addresses specific needs in different life stages of the battery, i. 
e., the digital twin prototype (DTP) addresses the manufacturing of 
batteries while the performance digital twin (PDT) deals with the 
operation of batteries in 1st life and 2nd life. The digital twin instance 
(DTI) is the most complicated type of DT covering the whole lifecycle of 
the batteries from manufacturing to material recycling. Stakeholders’ 
interests in different DT types are shown in Fig. 3(b). 

Generally, the DT has found several applications in the EV context 
including autonomous driving, converters and inverters, digital design 
and manufacturing, health monitoring, advanced driving assistant sys-
tems, and battery systems. The applications cover various EV compo-
nents and subsystems to improve performance and safety. Detailed 
descriptions of the DT use cases in the EV context can be found in 
Ref. [11]. However, this review focuses on the use cases related to 
battery systems only. The use cases are driven by the challenges across 
the whole battery value chain including battery raw material, 
manufacturing of cells, pack assembly, operation phases (EV and 
second-life), and recycling of batteries. Fig. 4 depicts the challenges in 
different stages of cycle life. At the material stage, the challenge is to find 
and use effective and abundant battery materials to ensure sustainabil-
ity. An important challenge in the manufacturing phases (cell and pack) 
is the production quality and quality assurance, which involves exten-
sive design effort, and long and expensive certification processes. In 
addition, the evolving battery materials mean that until the search for an 
ultimate battery is not concluded, new designs and technologies at cell 
and pack levels should be brought forward, which is expensive and 
time-consuming. In EVs, the key challenge is battery durability and 
safety. Batteries require many algorithms to operate them, safely, and 
expensive electronics are needed to achieve this. Likewise, batteries tend 
to degrade fast under harsh operating conditions such as elevated tem-
peratures or high discharge rates. Design of a high-performance yet 
cost-effective BMS to maximize safety and durability is challenging. 
Battery repurposing and recycling phases are challenged mainly by the 
complexity of processes and lack of regulations. A challenge that can be 
attributed to the whole value chain is the lack of interoperability to 

interconnect stakeholders who play roles in different life cycle stages 
and to facilitate harmonization, legislation, and standardization of 
different battery technologies. A universal and transparent framework 
to benchmark battery technologies and validate/track progress toward 
sustainable and resource-efficient battery designs is still missing. In the 
next Section, the DT’s potential to address some of these challenges is 
reviewed. 

3. Review of the use cases and functionalities of the battery DT 

The research on battery DT has sped up in recent years. New features 
and functionalities are being introduced for the battery DT as the 
technologies related to IoT, artificial intelligence, big data, and cloud 
computing are evolving. The DT can be used not only to address the 
challenges in each stage of battery life but also to interconnect different 
life cycle phases of the battery orchestrating its performance and 
resulting in reduced LCC. The following subsections review the existing 
and potential use cases of battery DTs. 

3.1. SoX estimation and cell balancing 

The state-of-X (SoX) variables, i.e., state-of-charge (SoC), state-of- 
health (SoH), and state-of-power (SoP) are very important in the BMS 
context since they are input to many algorithms that are responsible for 
monitoring, controlling, and protecting the battery pack. The SoC is 
equivalent to the fuel gauge in non-electric cars. SoH indicates battery 
health which is commonly characterized by the battery capacity or in-
ternal resistance. The SoP determines the safe battery power boundaries 
during normal EV operation or regenerative braking. Traditionally, 
these algorithms are implemented in the onboard BMS which runs on a 
microprocessor with a capacity of a few hundred Mbytes [24]. Because 
of the CPU and memory limits in the BMS, best-in-class SoX estimation 
algorithms cannot be implemented due to the infeasibility of the 
embedded platforms. This leaves an undesired state estimation error 
leading to potentially poorer battery performance and safety. On the 
other hand, the DT sits on the cloud which offers considerably higher 
computational resources compared to the BMS allowing higher achiev-
able accuracy. 

DT-based SoX estimation has been the subject of several publica-
tions. In Ref. [25], SoC and SoH estimation is fulfilled on the cloud-based 
DT using the adaptive H-infinity filter and particle swarm optimization, 
respectively. As illustrated in Fig. 5, taken from Ref. [25], the VIT data 
(voltage, current, and temperature) are sent from the slave BMS to a 
Raspberry Pi by the controller area network (CAN) protocol. The data is 
then transmitted to the DT using the MQTT protocol. The SoX algorithms 
are validated on a real uninterruptable power supply set-up resulting in 
an SoC estimation mean absolute error (MAE) of 0.49%. Likewise, 
DT-based SoH estimation was reported to achieve MAE of 0.74% and 
1.7% for capacity and resistance estimation, respectively. In Ref. [26], a 
joint H-infinity filter and particle filter (PF) online algorithm has been 
proposed for cloud-based SoC estimation resulting in an MAE of 0.14%. 
An effective approach for SoH estimation has been proposed in 
Ref. [27], where a battery DT based on the long short-term memory is 
developed and used to virtually discharge the battery to estimate its 
capacity. The MAE of SoH estimation is obtained at 2.86%. The 
DT-based SoC and SoH estimation has also been fulfilled in Ref. [28], in 
which different ML techniques based on random forest, light gradient 
boosting, and deep NN were applied resulting in the MAE of 0.549% and 
0.603% for SoC and SoH estimation, respectively. The DT is structured 
to fulfill regular estimation of the battery degradation while retraining 
the SoC mechanisms to reflect the battery aging effect. In Ref. [29], the 
battery DT has been used for SoX estimation and cell balancing control. 
The PF algorithm was used for SoX estimation, which yielded MAE of 
0.3% and 0.5% for SoC and SoH estimations, respectively. Based on the 
predictions of the actual capacity, the DT predicts the time that each cell 
requires to be balanced and accordingly formulates a fast and accurate 

Table 2 
Benchmark definitions of the DT.  

Author/institution Year DT concept/definition 

Michael Grieves [18] 2003 A “virtual digital expression equivalent to 
physical products.” 

NASA [19] 2010 An “integrated multi-physics, multi-scale, 
probabilistic simulation of a vehicle or system 
that uses the best available physical models, 
sensor updates, fleet history, etc., to mirror the 
life of its flying twin.” 

Roland Rosen [20] 2015 A “new wave in modeling, simulation, and 
optimization technology, which provides a big 
set of all digital artifacts.” 

Michael Schluse [21] 2016 A “virtual representation of a real-world subject” 
or a “real-world object.” 

Edward M. Kraft (U.S. 
Air Force) [22] 

2016 A “multidiscipline simulation of a real-world 
product, which uses data and sensor information 
as input to model that mirror and predict the 
states and behavior over the lifespan of the 
physical system.” 

Rikard Soderberg [23] 2017 It “contains geometry representation of the 
assembly, kinematic relations, Finite Element 
Analysis functionality, Monte Carlo simulation, 
material properties and link to inspection 
database.” 

Billy Wu [14] 2020 A “digital replica of a physical entity with a close 
connection between the two.”  
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balancing strategy. The concept of the DT-assisted equalization strategy 
is shown in Fig. 6 [29]. As seen, the BMS boards measure the key vari-
ables of different batteries and this data will be sent to the DT on the 
cloud, where balancing algorithms are placed. The necessary commands 
to control the balancing actuators will be generated by the DT and will 
be sent back to the batteries. Other works have used DT for SoC and SoH 
estimation based on extended Kalman filter-particle swarm optimization 
[30], Kalman filter (KF) combined with least-squares support vector 
machine and PF[31], ML [32,33], etc. 

The battery algorithms can also be implemented within the cloud 

BMS concept proposed in Ref. [34]. The differences between the battery 
DT and the cloud BMS depend on the implementation philosophy and 
the DT definition. In cases where the cloud BMS is defined as a PDT of 
the battery, the terms can be used, interchangeably. 

3.2. Fault diagnosis and prognosis 

Onboard BMS uses classic fault detection and protection methods 
against the battery faults such as over-discharge, over-charge, short- 
circuit, etc. The fault diagnosis is usually fulfilled using single-variate 

Fig. 3. (a) Different types of battery DTs (b) Relevance of the DT type to stakeholders.  
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Fig. 4. Battery challenges throughout the value chain.  

Fig. 5. Cloud-based DT is used for SoX estimation. SoC is estimated continuously while SoH is updated from time to time and is provided as input to the SoC 
estimation algorithm [25]. 
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techniques by comparing VIT variables to fixed threshold values dis-
regarding the historical usage data. In the battery DT, the availability of 
large computational resources and historical battery usage data offer the 
possibility to explore more advanced fault diagnosis techniques. The 
abundance of sensory data enables the use of advanced multi-variate 
condition monitoring techniques to improve accuracy in detecting and 
locating faults. Fault prognosis is another interesting topic that can be 
explored in a DT context. Thanks to DT computation, advanced multi- 
scale and physics-based models can be run online to detect or predict 
faults, an option that is conventionally beyond the BMS capability due to 
the lack of resources. DT-enabled physics-based battery models can 
monitor the mechanisms and processes that eventually may trigger the 
faults. Examples of such model-based methods are presented in Refs. 
[35,36], wherein the DT is created by combining the electrical, thermal, 
and degradation models of the battery, reduced order models, or using 
the dynamic mode decomposition-based data-driven model. Intelligent 
monitoring of batteries using DT has been discussed in Ref. [37]. This 
use case of the DT has also been studied in other fields, e.g. monitoring of 
steam turbines [8]. This type of DT falls under the category of PDTs. 

3.3. RUL estimation 

RUL gives information about the durability of the battery pack before 
it reaches its end-of-life. Unlike the SoH which shows the battery status 
at present time, the RUL is an indicator that predicts future battery 
degradation trends. Normally, the RUL is estimated in terms of the 

number of cycles that have remained before reaching the end-of-life. 
Despite significant work that has been fulfilled in academia to perform 
battery RUL estimation, none of the existing commercial BMSs have the 
RUL estimation function up to now. However, RUL estimation on the DT 
and cloud offer several advantages as listed in Fig. 7. 

A large number of algorithms have been proposed to estimate the 
RUL which rely on the model of the battery, data, or a combination of 
both. A detailed review of RUL estimation algorithms can be found in 
Ref. [38]. 

3.4. Predictive maintenance 

EVs need regular service and maintenance. The conventional main-
tenance schemes are inefficient and economically inviable since they are 
normally applied either too soon, e.g. when the battery pack does not 
need maintenance, or too late when a defect or expensive damage shows 
up. With the battery DT, the RUL can be monitored in real-time, and 
thus, the maintenance can be scheduled only in case a repair or service is 
deemed necessary resulting in cost savings, improved battery lifetime 
and durability, and avoiding unwanted shut-downs [39]. Likewise, the 
manual battery check-up can be automated which saves time and money 
for EV owners. The predictive maintenance use case for the battery DT 
using the Bayesian-based adaptive evolution method has been studied in 
Ref. [40] wherein the lifetime prediction and reliability evaluation al-
gorithms have been developed to estimate the RUL. It was concluded 
that the battery maintenance costs can be reduced by up to 62% when 

Fig. 6. DT-based equalization of the batteries [29].  

Fig. 7. Use cases of the RUL estimation on the cloud-located DT.  
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the predictive maintenance strategy was used. 

3.5. Battery repurposing, second-life, and recycling 

The repurposing process from an EV battery to a second-use appli-
cation (e.g., stationary energy storage systems) is costly and time- 
consuming due to the need for disassembly and manual lifetime 
testing at the module or cell levels. With the DT concept, the SoH of the 
batteries can be continuously estimated, stored in the DT database, and 
interpreted when needed, while this data can also be shared with 
second-life stakeholders such as battery manufacturers for operational 
planning, e.g., to forecast the availability of batteries exiting from first 
life. Likewise, the economic value for different second-use applications 
can be assessed, e.g., the energy and power capabilities of the batteries 
can be accurately mapped to obtain the most viable application for the 
second-life. Batteries with more power capability can be used for grid 
ancillary services (power conditioning, frequency support, etc.) while 
batteries with more energy potential can be used in uninterruptable 
power supply systems. This use case has been considered in Ref. [41], 
wherein DT was used for battery residual value estimation as depicted in 
Fig. 8. 

3.6. Sharing (swapping) services 

Battery sharing use case has been studied in Ref. [42], where a DT 
was used to grasp the status of the shared batteries to facilitate their 
replacement. This allows swapping stations to understand the status of 
the battery, how it was operated, and to what extent it was degraded 
when it was being used by a distinct EV. Likewise, EV owners can swap 
batteries without being worried about the true health state of the bat-
tery. Battery DT also creates opportunities for financial services and 
insurance companies since they know the reliability and degradation of 
batteries and they can adjust fees and financial strategies, accordingly. 
Stakeholders can develop more viable guarantee/warrantee plans when 
detailed conditions of the EV batteries are available online. The same 
DT-based concept can be used in the case of EV rental and leasing 
companies. An example of this use case is presented in Ref. [42], 
wherein the SoC, SoH, and running distance of the EVs are estimated and 

stored on the DT to facilitate the sharing services. 

3.7. Design and production optimization 

The battery DT (DTP type) can be used to improve the manufacturing 
processes of batteries. Conventional methods for quality assurance, such 
as those based on the house-of-quality or Pareto chart require significant 
resources by multi-disciplined teams to address a specific problem or 
defect related to the product, which can take several weeks to months. 
However, with a DT, it is easier to find the root cause of the defects in the 
manufacturing process and the quality assurance can be fulfilled within 
a few days [23]. Likewise, with the battery DT, the information from the 
manufacturing level can be supplied to the EV operational stage, for 
instance, to calibrate some models and algorithms. Vice versa, the 
operational data of the battery can be used as feedback to adjust the 
design and optimization processes. Through providing this cross-stage 
exchange of data and information, the DT will create flexibility to 
improve performance in different state-of-life of the battery. This 
application falls under the DTI category. 

The application of DT in battery manufacturing has been considered 
in several publications. In Ref. [43], an efficient 3D discrete calendaring 
element model has been proposed for the DT of the battery electrode, 
which is the core of the battery manufacturing process. In Ref. [44], a 3D 
resolved electrochemical model of electrodes was established to eval-
uate the effect of manufacturing parameters such as slurry formulation 
on the electrode microstructure and battery performance. Other works 
include digital twining to consider 3D shapes of active material particles 
[45], the dying model of electrodes [46], and carbon-binder spatial 
location [47]. To accelerate and ramp up the manufacturing processes, 
in Refs. [48,49], DT has been used for fast and economic battery module 
assembly and for flexible pouch cell stack formation to enable virtual 
testing and evaluation of different solutions before real manufacturing. 
In Ref. [50], a DT environment has been developed to automate the test 
and evaluation of the batteries to speed up the manufacturing process. In 
Ref. [51], a DT has been developed for all-solid-state batteries to esti-
mate experimentally inaccessible and difficult to obtain information 
such as dead particles, specific contact area, and charge distribution in 
3D domain, which will help to map design and performance parameters 

Fig. 8. Schematic of the cloud-based DT for battery repurposing and 2nd life decision-making [41].  
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for battery design optimization. The digitalization of battery testing will 
also reduce the time and cost associated with the experiments for battery 
characterization. Design optimization of the battery thermal manage-
ment system (TMS) using the DT has also been considered in Ref. [52]. 
Most of the reviewed works fall under the category of DTPs targeting 
manufacturing processes. 

3.8. Energy optimization 

The performance of the energy management system (EMS) de-
termines the EV driving range, lifetime of batteries, EV acceleration, etc. 
EMS is normally realized onboard the EVs and due to the limited pro-
cessing power, embedding advanced EMS strategies which are based on 
sophisticated global and online optimization methods, stochastic algo-
rithms, ML, etc. Is difficult. On the other hand, the DT offers sufficient 
computational power which can be used to run best-in-class EMS algo-
rithms improving the EV performance under different driving condi-
tions, e.g., to decide the optimum power limits during the acceleration 
and regenerative braking. Examples of such advanced EMS strategies 
can be found in Refs. [53,54]. Detailed analysis of these algorithms is 
beyond the scope of this review. 

3.9. Thermal management system 

The TMS is responsible to control the heating/cooling apparatus to 
maintain the battery temperature within a specific temperature range 
and reduce the temperature gradients and temperature inhomogeneous 
across the pack. Conventionally, the TMS is implemented onboard. 
However, the DT makes it possible to implement advanced predictive 
and intelligent control strategies to improve the overall TMS perfor-
mance and battery lifetime. One such example has lately been proposed 
by Bosch™ Mobility Solutions. The so-called “Battery in the Cloud” 
concept receives data from the battery and fleet and takes predictive 
actions to improve the battery’s performance. For example, the TMS 
starts to adjust the battery temperature a few minutes before the EV 
reaches a charge station that is already booked. This not only reduces the 
charging time (by preparing the battery to accept higher charge cur-
rents) but also results in less battery degradation under fast charging 
conditions. 

3.10. Battery passport 

A battery DT can be used to manage a so-called battery passport to 
monitor, collect, and integrate battery data and metadata starting at the 
cradle (manufacturing) toward the end-of-life gate (recycling) [55]. The 
battery passport is defined as a digital entity that conveys the social, 
governance, and environmental requirements to guarantee compliance 

with the regulations [56]. Through effective life cycle management with 
the battery passport concept, second-life services can save money and 
time by not testing batteries for a second time and recyclers can better 
set the requirements for the recycling processes as detailed in Ref. [55]. 
Fig. 9 shows the schematic of a Battery Identity Global Passport pro-
posed in Ref. [55]. It is noteworthy that the Global Battery Alliance has 
recently called for prompt actions to exchange battery data through the 
battery passport concept [56]. 

The realization of the battery passport concept requires a framework 
that connects all operational phases. In this regard, an effective DT 
framework has been proposed in Ref. [12] to interconnect the research 
and design phase, manufacturing phase, after-sale phase, and 
post-operation phase based on the cloud space and 5G communication. 
Another DT framework for lifecycle management of the EV battery packs 
has been proposed in Ref. [57], wherein the design phase, 
manufacturing phase, and operations phase (including the second-life) 
are equipped with their battery DTs (research and development DT, 
manufacturing DT, battery DT, and DTs of other assets) while all DTs 
share information through centralized cloud storage in IT system. In 
Refs. [58,59], the importance of blockchain technology to empower 
sustainable manufacturing and lifecycle management in industry 4.0 is 
highlighted. Likewise, the challenges and future of DTs in the manage-
ment of the product lifecycle are reviewed in Ref. [60]. 

3.11. Battery charging and vehicle-to-grid (V2G) operation 

Different protocols can be used for battery charging including Con-
stant Current (CC), Constant Voltage (CV), CC-CV, pulse charging, etc. 
The charging protocol affects the charging performance in terms of ef-
ficiency, battery degradation, charging time, and cost [61]. In this re-
gard, an effective use case for DT is the health-aware charging of 
batteries [62]. In the DT, the charging problem can be formulated into a 
multi-objective optimization problem with a cost function that can 
consider degradation, charging cost, efficiency, and time, and decides 
the optimized protocol and charging parameters such as frequency and 
width of charging pulses during pulse charging. The cost function can be 
optimized, for example, to maximize the lifetime of the battery pack (by 
reducing the temperature gradients, preventing lithium plating, etc.) 
while reducing the charging time to the extent possible. In addition, 
constraints such as the maximum permissible charging power can be 
introduced to the charging optimization problem. An example of the use 
case is the convex multiperiod optimization strategy proposed in 
Ref. [63] to coordinate the battery charging while accounting for 
maximum charging power and voltage rise. Similarly, the application of 
artificial intelligence based on deep reinforcement learning for opti-
mized fast charging of batteries has been reported in Ref. [64]. In this 
work, fast charging is realized through a multiphysics-constrained 

Fig. 9. Schematic of the Battery Identity Global Passport proposed in [55].  

F. Naseri et al.                                                                                                                                                                                                                                   



Renewable and Sustainable Energy Reviews 179 (2023) 113280

10

strategy with the consciousness of thermal safety and battery aging, and 
an extension of the battery life by about 15% at an equivalent charging 
speed is reported. Thanks to the large computational resource available 
on the cloud, the DT makes it possible to use advanced algorithms for 
solving large optimization problems like this. 

Batteries also offer the possibility of V2G operation to support the 
electric grid when needed, e.g. to contribute to grid stabilization, peak- 
shaving, providing backup power, etc. [65,66]. Similar to battery 
charging, a cost function can be formulated to optimize the V2G oper-
ation using the DT, e.g. minimize the battery degradation when oper-
ating in V2G mode, increase the revenue, etc. Likewise, the usage profile 
and data of the EVs, batteries, charge stations, and grid can be stored on 
the DT and this data can be used for the optimization of charging 
stations. 

Table 3 summarizes the reported use cases of the battery DT. Fig. 10 
shows that the battery digital twining is moving quickly and the number 
of applications and use cases reported has steadily increased in recent 
years. 

4. Key enablers and requirements 

The technologies, components, and requirements of the battery DTs 
depend on the DT type, application area, and the considered use cases. 
The elements are listed in Fig. 11 and key technologies are discussed in 
the following subsections. 

4.1. Measurement of the key battery variables 

Several sensors are usually integrated into the battery PT to measure 
the key variables including the VIT data. Voltage is normally measured 
for every cell while current is measured at pack level using current 
shunts or hall effect-based sensors. Temperature is normally measured 
for every other cell. Advanced battery packs also include multi-sensing 
units to measure additional variables such as gas, pressure, and strain 
to detect hazardous situations. The sensory measurements are the input 
to the DT models and algorithms. These data should thus be communi-
cated to the cloud-located DT with proper sampling rates. Sample rates 
depend on the use cases. However, the common practice is 10HZ for 
voltage and current and 1 Hz for temperatures. The IoT gateway can 
listen to the vehicle CAN bus to read the data and pass them to the 
battery DT. Alternatively, the IoT gateway can directly listen to the BMS 
communication interfaces conditional on compatibility with the IoT 
gateway. The DT uses this data to update the models, perform data 
analysis, and operate algorithms for monitoring, optimization, SoX/RUL 
estimation, etc. 

4.2. Battery models 

Models serve several services and tasks related to battery operation 
[67]. Generally, the DT considers different modeling levels from mate-
rial and cell components to the pack. Lithium-ion transport in the active 
material and between the electrodes takes place on the nanometer and 
micrometer scales whereas, at the cell level, behavior is described on the 
millimeter scale such as in heat transport [68]. Therefore, multi-scale 
modeling is required to involve different time scales. In this regard, 
3D models are the most complicated type incorporating cell 
multi-physics to model the electrode porosity and inhomogeneous cell 
behavior along the 3D coordinates. The 3D models are very accurate and 
robust, but they contain nonlinear coupled partial differential equations 
that are too heavy to be solved in real-time. Thus, the key challenge has 
been about finding effective model order reduction techniques that can 
reduce the complexity of the models while maintaining fidelity. Various 
models have accordingly been developed. The electrochemical model 
based on the so-called Newman or P2D assumes homogeneous electrode 
particles of the same size and predicts the behavior in axial coordinates. 
Several model order reduction methods for discretizing and approxi-
mating the P2D model based on the finite-difference method, Pade 
approximation, etc. Have been proposed resulting in several 
electrochemical-thermal model combinations with different scales, e.g., 
P2D+0D, P2D+1D (also known as P3D), and P2D+2D/3D. In the 
simplest case, spatial lumping has been proposed to form the so-called 
single particle model wherein each electrode will be modeled only 
using one spherical particle and the electrolyte dynamics will be 
neglected. The model assumes a uniform temperature distribution 
within the cell. However, simplified models fall short in certain oper-
ating regimes such as C-rates typically higher than 3C. As shown in 
Ref. [69], the reduced version of the P2D model with thermal dynamics, 
also named P2D-T, can be extended to capture the degradation mecha-
nisms such as the loss of lithium inventory. The model is then discretized 
and applied for the estimation of battery SoC using the singular 

Table 3 
Review of the DT use cases.  

Use case Ref. Description 

SoX estimation [25] Cloud BMS with H-infinity filter-based SoC 
estimation algorithm and SoH estimation based 
on particle swarm optimization 

[26] DT-based BMS with combined H-infinity and PF- 
based SoC estimation 

[27] Battery DT was used to virtually apply a complete 
discharge cycle to measure SoH (discharge 
capacity) 

[29] DT-assisted SoC, SoH, and SoP estimation using 
PF algorithm 

[30] DT-based BMS for extended Kalman filter-based 
SoC estimation and particle swarm optimization- 
based SoH estimation 

[31] DT-based BMS with KF-least-squares support 
vector machine SoC estimation and AR-PF SOH 
estimation 

[32] Cloud-enabled DT for SoC and SoH estimation of 
batteries 

[28] DT-based SoC and SoH estimation using data- 
driven methods based on random forest, light 
gradient boosting, and deep NN 

[33] Cloud-enabled DT for SoC and SoH estimation 
using ML 

Battery cell 
equalization 

[29] DT-assisted balancing control of the cells 

Battery Monitoring [35] Module-level modeling of batteries based on 
cloud-enabled DT for monitoring of the batteries 

[37] Intelligent monitoring based on battery DT 
[36] Dynamic mode decomposition-based data-driven 

model for battery DT 
Battery sharing services [42] Battery DT was developed to enable services that 

facilitate battery sharing, e.g., running distance 
calculation 

Battery design and 
manufacturing 

[43] Battery DT model based on discrete element 
method for manufacturing optimization 

[48] DT development for flexible cell stack formation 
of pouch battery cells 

[49] DT was proposed to develop robotic workcells for 
fast and economic battery module assembly 

[51] DT-driven battery model developed for design 
optimization and to reveal experimentally 
inaccessible information 

[50] Battery DT was used to speed up development 
and manufacturing phases by eliminating actual 
system tests 

[52] GPR-based battery virtual DT developed for 
design optimization of the TMS 

Repurposing and 
second-life 

[41] Cloud-enabled battery DT to facilitate second-life 
decision-making process via DT-based aging 
prediction 

Predictive Maintenance [39] Semi-analytical DT model of battery pack 
developed for real-time temperature monitoring 
and predictive maintenance 

[40] DT was used to fulfill life prediction and 
reliability evaluation for predictive maintenance 
implementation  
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evolutive interpolated KF algorithm. In Ref. [70], distributed fiber op-
tical sensors have been embedded in the battery and the data has been 
used to build a one-state thermal model for co-estimation of thermal 

parameters, heat generation rate, SoC, and maximum capacity. A more 
detailed review of thermal models can be found in Ref. [71]. Data-driven 
models such as those based on neural networks (NNs) or hybrid models 

Fig. 10. (a) Publications per year on the battery DT concept (b) Share of battery DT use cases.  

Fig. 11. Key elements of the battery DTs.  
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(model-based combined with data-driven) can improve the DT gener-
alization capability and overcome some of the limitations of reduced 
models. The availability of large quantities of data on the DT, 
user-friendly software frameworks [72,73], and specialized hardware 
[74] have made it simpler to apply NNs to the task of predicting the 
behavior of batteries. A good example of such data-driven modeling is 
the hybrid lumped-thermal-NN model proposed in Ref. [75], in which a 
mechanism-driven distributed lump thermal model is combined with an 
ML-based axial thermal gradient compensation segment. See Refs. 
[76–78] for an overview of NN architectures in use for the simulation of 
dynamical systems. 

The model structures are designed such that some parameters affect 
the model behavior if certain inputs are given, i.e., it could be the case 
that some parameters are never found by calibration. In these cases, 
noise filtering techniques [79] and the design of experiments [80] have 
been demonstrated to be useful. Another challenge is the time-varying 
model behaviour which results in variations of the model parameters 
in different conditions such as different temperatures, SoC, C-rates, and 
degradation levels. Various real-time model parameterization algo-
rithms have been proposed to address this challenge. Most popular 
methods are based on recursive filtering techniques such as the 
least-squares family [81] and more recently, the application of ML for 
battery model parametrization has also been explored [82]. 

The equivalent circuit models capture the battery behavior using the 
electrical circuit components. Despite relatively higher computational 
efficiency, the equivalent circuit models cannot represent the physio- 
chemical attributes of the cells. However, they are found to be effec-
tive for specific tasks such as SoX estimation and fault diagnosis. As an 
example, in Ref. [83], an equivalent circuit model based on Thevenin’s 
structure has been used to develop a model-based internal short-circuit 
detection technique, which features robustness against degradation and 
noise effects. Stochastic battery models have also been proposed to 
predict aging behavior due to the randomness of different operating 
conditions and aging mechanisms [84]. A detailed review of battery 
models is beyond the scope but some good review papers merely dedi-
cated to the modeling topic have already been published [85–87]. 
Fig. 12 shows the advantages and disadvantages of each model type. 

The cell model is the building block but in practice, the DT can be the 

union of different models related to other systems, subsystems, and 
processes. For example, the cell models can be combined to build 
module and pack models while the pack model could in addition contain 
the models of the BMS and TMS. This is conceptually shown in Fig. 13. In 
this regard, one should highlight the effective model development/ 
improvement toolbox proposed in Ref. [88] wherein all DT modeling 
requirements such as cross-integration of multiple cell models, execu-
tion of models in “what-if” scenarios, and model update calculation are 
well considered. 

4.3. DT architecture 

The common feature of DT frameworks is the use of services that can 
be integrated into the platform [89,90]. Hao et al. argued in Ref. [91] 
that the most important services for DT are state estimation (also known 
as inverse modeling or sensor fusion), predictive maintenance, fault 
diagnosis, decision-making support, and self-adaptation. The architec-
ture of the DT can therefore be represented by layers, where the lower 
layer enables connectivity and data exchange between the DT and the PT 
(effectively working as an IoT framework), and the upper layer provides 
more sophisticated services. To denote these layers [92], introduced the 
term 3D DT, to denote DTs that only have the lower layer. 

The term 5D DT, introduced in Ref. [93], extends the 3D DT by the 
data and service dimensions. The 5D DT then provides a central storage 
location connected to the physical, virtual, and service space, and a 
service system for implementing data-driven services. The need for 5D 
DT appeared after applying the 3D DT in the industry, where the new 
services allow new functionality with a higher value. 

Fig. 14 illustrates a basic architecture for a DT implemented in 
Ref. [94]. It uses a RabbitMQ server as a broker for communication 
between different services and InfluxDB as a database to store, access, 
and retrieve data. The middle three blocks in the DT represent the 
services. 

All components communicate via the RabbitMQ message exchange, 
and the data is stored in a time series database (InfluxDB). In Ref. [95], a 
DT architecture has been proposed which consists of three different 
layers as shown in Fig. 15(a). The hardware and connectivity layer is 
responsible to collect all sensory data and fulfilling edge-processing to 

Figiure 12. Potential of different battery models for use in the DT.  
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remove the outliers. Battery simulations, models, and algorithms oper-
ate in the DT layer which also includes the databases. High-level services 
and aggregation operate in the service layer. The database in the twin 
layer considers four types of data, i.e., the master data (such as cell 
metadata), transaction data (such as VIT data), state data (processed 
data at the twin layer), and link data as illustrated in Fig. 15(b). 

The DT functional architecture proposed in Ref. [96] consists of five 
different layers as shown in Fig. 16. The architecture is similar to 
Ref. [95] except that two additional layers are introduced for the 
database and connectivity. In Ref. [97], a new framework for 
DT-assisted enterprise resource planning of battery manufacturing sys-
tems has been proposed. The framework enables real-time access to 

Fig. 13. Physical battery architecture and DT battery models for cell#1 to cell#N. All BMS/TMS algorithms are replicated on battery DT.  

Fig. 14. Exemplary communication of incubator DT in relation to a self-adaptation service (from Ref. [94]).  
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multiple data types such as battery real-time operational data, produc-
tion line data, and customer feedback data, which will help to optimize 
the production chain in manufacturing and to accelerate the 
decision-making processes. 

A seven-layer DT architecture has also been proposed in Ref. [88] as 
shown in Fig. 17. The layered structure shown in Fig. 17 is similar to the 
one presented by Ref. [96] except that an additional layer for the se-
curity of the DT is foreseen. 

As summarized, most DT architectures follow the layered architec-
tural style combined with service-oriented architecture. The upcoming 
subsections detail the different steps and most common services 
required to form a DT. 

4.4. IoT and connectivity 

The communication framework is an integral part of the DT. It needs 
to support point-to-point communication, wildly different message 

sizes, message routing, handle packet dropout, and minimize commu-
nication delays while being resource efficient. Some communication 
technologies like RabbitMQ even enable load balancing and therefore 
increased resilience. Failures in communication typically can lead to 
disastrous consequences in a real-time battery monitoring scenario, such 
as overcharge, over-discharge, and thermal runaway. 

Fortunately, there are many mature communication techniques in 
place: RabbitMQ and Apache Kafka, to name a few. On the research side, 
a wide review of IoT related to energy systems is carried out in Ref. [98], 
wherein the role, impact, challenges, and constraints in different sce-
narios and subdomains are described. They also listed some IoT pro-
tocols and technologies that can be used in different applications, 
including 6lowPAN, Power Line Carrier, ZigBee, among others. Refer-
ence [99] also highlights the capabilities of 5G-IoT and its comparison to 
other technologies, such as LoRa, Wi-Fi, ZigBee, and Bluetooth. NB-IoT 
and the 3 GPP low power wide area technologies offer a different 
promising alternative for IoT communication in smart grid and 

Fig. 15. (a) DT architecture proposed in Ref. [95] (b) Overview of data types in the DT architecture.  

Fig. 16. The DT functional architecture proposed in [96].  
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Vehicle-to-Grid applications [99]. Reference [100] presents an orches-
tration of different IoT protocols in the electrical industry and a mapping 
of the protocols HTTP, MQTT, OPC UA, and LoRaWAN to use cases in 
different scenarios. 

4.5. Data storage 

The most appropriate technology to store data from battery PT is the 
time series databases since these are optimized for querying time series 
data [101,102]. Other types of data storage methods that are suitable for 
DTs can be based on the semantics that is normally used along with data 
models. A common technology for this is the resource description 
framework (RDF), which allows the storage of data using ontological or 
relational models as the scheme of the databases. This way, data can be 
stored and maintained on top of semantic models [103]. Description 
documents and metadata of DTs also need to be considered in large-scale 
DT setups and managing them in Git repositories with web servers for 
the DT Web, similar to the one proposed in Ref. [104]. Metadata and 
description files of the DT Web can also be mapped to RDF structures, 
enabling a bridge between static and dynamic data storage and querying 
using SPARQL, and even reasoning, such as presented in Ref. [105]. 

4.6. Visualization 

Visualization tools have matured over recent years. Currently, it is 
possible to produce 3D interactive animations using tools such as Unity 
(https://unity.com), Qt (https://www.qt.io), iTwin (https://www.it 
winjs.org), Gazebo, and dashboard interfaces with Grafana, Dash, to 
name a few. 

The challenge remaining is the ability to create such interfaces 
quickly from CAD and semantic models of the battery. For example, it 
should be possible to, use such interfaces; selectively visualize the 3D 

battery PT and its environment; spawn new what-if simulations from 
current and historical data; replay past states; and display predictive 
maintenance results. 

It can be challenging to strike the right balance in detail, as data 
visualization needs to promote real-time, perceptual, and scalability 
[106]. For more details, the reader can refer to Ref. [107]. 

4.7. State estimation 

Key battery state variables include SoC, SoH, and SoP. Other states 
such as state-of-safety, state-of-temperature, state-of-energy, and state- 
of-function can be of interest in some use cases. Battery state variables 
are highly correlated and vary with time. State estimation combines the 
available sensory data and battery models to indirectly elicit these state 
variables. State estimation methods are very diverse and can be gener-
ally categorized into model-based, data-driven, and hybrid methods. 
The model-based methods can be based on stochastic techniques such as 
KF and its variations (extended Kalman filter, Unscented KF, etc.), PF, H- 
infinity filter, etc., or deterministic techniques such as state observers. 
Many data-driven methods have been proposed for battery state 
estimation-NNs, long short-term memory networks, and SVM to name a 
few. Model-based methods fall short in certain operating conditions due 
to low fidelity, e.g., during the fast charging of the battery. On the other 
hand, the data-driven methods have better generalization capability, but 
they rely on an extensive amount of experimental data to be trained. 
Obtaining the data requires time-consuming and expensive laboratory 
tests. Hybrid methods combine the advantages of the other two ap-
proaches. An Example of the hybrid method is presented [108] which 
combines PFs and NNs to predict the battery SoH. A detailed review of 
the battery state estimation can be found in Ref. [109]. 

Fig. 17. The DT architecture proposed in [88].  
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4.8. Monitoring and anomaly detection 

Monitoring is crucial for the evaluation of the PT’s behavior and for 
checking whether the original assumptions about the environment in 
which the PT operates still hold [110]. In the SotA [111,112], one can 
distinguish between online and offline monitoring techniques. Online 
monitoring is done as each new data sample arrives, whereas offline 
monitoring is suitable for use cases where an added delay is tolerated. In 
offline monitoring, a time series database stores all data from the PT and 
is consulted at leisure by the monitor. Monitors can also attempt to 
identify the cause of problematic behavior by replaying the historical 
data through models of the system, while artificially injecting faults in 
the system until they find a potential explanation for the problematic 
behavior observer [113]. Monitors are not limited to checking for un-
desirable situations. They can also check for expected and desirable 
behavior of the DT services themselves, and not just the PT. For example, 
concerning the safety of the battery PT, it can be very valuable to be able 
to monitor when the discrepancy between the monitored and predicted 
behaviors starts and thereby enable anomaly detection. The reader can 
refer to the SotA in run-time monitoring [111,112] and advanced bat-
tery monitoring strategies [114]. 

4.9. What-if (Co-)simulation 

A DT foundation as a decision support system is the ability to run 
simulations using hypothetical scenarios reproduced from historical 
data or containing predictions of the future environment of the PT. For 
instance, after an anomaly is detected, many simulations can be run to 
investigate what the probable cause is. Naturally this forces such sim-
ulations to be faster than real-time, so as to find a solution and intervene 
before the anomaly becomes a fault. In cases where the system is rep-
resented by coupled sub-models that have been produced by different 
tools, then co-simulation [115] can be used to realize the coupling. 
What-if simulations can also be used to optimize the battery configu-
rations as the battery operates in new conditions or environments. 
However, one of the challenges is to quantify and manage the uncer-
tainty inherent in these simulations and subsequence choices based on 
them. 

4.10. Self-adaptation 

Self-adaptation can be denoted to the process of optimizing the PT 
configuration as a response to changes in its environment, as proposed 
earlier in autonomic computing, thereby increasing its resilience. DTs 
are perfect candidates to deploy self-adaptation loops. However, 
designing these loops requires domain experts who, incidentally, do not 
usually possess the software engineering background to deploy these 
loops. In this regard, complex event processing frameworks [116] which 
provide a useable interface to encode behavioural rules can be of help. 
Domain specific language engineering provides the tools to quickly 
create such code-free development environments that can be used by 
domain experts [113]. 

After a new configuration for the PT has been found, it is necessary to 
make sure not only that it is safe, but also that the act of changing the PT 
from its current configuration to the new one, is safe. Here formal 
methods [117,118] and reachability analysis [119–121] can play a role. 

As for the main steps in any self-adaptation loop, the reader can refer 
to the MAPE-K Loop, proposed in Ref. [122] and detailed in Ref. [123], 
as a reference architecture for designing self-adaptive loops. The work in 
Ref. [94] adapts the MAPE-K loop to the context of DT. 

4.11. Privacy and security 

This aspect of battery DTs is especially important for industrial use 
because compromised security could lead to dangerous situations such 
as unstable operation of the battery, physical and economic damages, 

and accidents leading to injury or death [124]. To this end, the battery 
DT can be perceived as a prime target for potential attackers, similarly to 
supervisory control and data acquisition (SCADA) systems [112,125, 
126]. Several ways of preventing attacks at industrial and specifically 
CPSs have been proposed, such as among others, the use of formal 
methods to create secure architectures [127], integration of different 
security controls [128], or the use of state estimators [129,130], where 
attack resilient state estimators have been proposed [131]. Securing DTs 
consequently requires not only considering access control, network se-
curity, and transmitted data integrity but also the integrity of the model 
itself. 

As examples of a DT as a security tool, one has [132,133] both 
proposing using the DTs assets in the design of the security aspects and 
attack modeling and mitigation. In Ref. [132], the authors propose a 
framework to generate DTs from specifications for SCADA systems. In 
addition to being a security tool, the work of [133] proposes to use the 
DT in training and simulation, testing exercises for security engineers. 
Further information on this topic can be found in Refs. [134–136]. 

Relevant standards that apply to the DT domain in terms of security 
and privacy include IEC 27400–2022 entitled “Cybersecurity — IoT 
security and privacy — Guidelines” and IEC 62443 which defines 
cybersecurity for industrial automation networks. 

5. Review of the existing DT platforms 

The implementation process of the battery DTs is twofold: develop-
ment and integration. For each phase, several commercial and open- 
source tools and platforms are available, which are reviewed in the 
following subsections. 

5.1. Development platforms 

The development of DTs includes the design and establishment of the 
appropriate battery models which could replicate the real battery 
behavior to the desired purpose. Several tools can be used for battery DT 
development, which are reviewed in the following. 

5.1.1. ANSYS Twin Builder 
ANSYS Twin Builder offers multiphysics system solvers which 

involve applications in 1D and 3D space with easy and fast system setup. 
It makes simulation models closer to the real batteries by combining 3D 
physics solvers and the reduced order models and thus, the electrical, 
thermal, and mechanical models can be coupled and tested in synergy. 
ANSYS heating/cooling library offers a wide range of models for TMS 
components such as heat exchangers, turbomachinery, valves, etc. It is 
also possible to model two-phase flows which are needed to model the 
TMS’s refrigeration cycles. ANSYS Fluent and ANSYS Twin Builder have 
been applied by Electronic Cooling Solutions Inc. For thermal prediction 
and optimization [137]. 

A typical battery DT developed in Ansys is shown in Fig. 18 [138]. 
The battery DT simulation steps are shown in Fig. 19. 

Fig. 20 shows how the PT and DT can be connected using ANSYS 
Twin Builder. The real-time data measured by sensors are transmitted to 
the battery DT using IoT. The DT perceives the data as input, performs 
all the simulations, and sends feedback to the battery PT. 

5.1.2. COMSOL Multiphysics® 
COMSOL Multiphysics® is a commercial Finite Element software 

with strong tools for battery DT development. The battery’s electrical, 
thermal, and mechanical aspects can be numerically investigated in 
synergy. Similar to ANSYS, the COMSOL DT incorporates lightweight 
models such as reduced order models and lumped models to improve 
computational efficiency. The concept of COMSOL’s battery DT is shown 
in Fig. 21. To link the battery with its DT, COMSOL offers an application 
programming interface communication tool powered by Java. The web 
service transfers the measured battery data to the DT. Upon stimulation 
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of the scenarios, the control parameters and reports are sent back to the 
battery. Additionally, COMSOL Multiphysics comes with a dedicated 
and effective Battery Design Module, which can be used to develop a 
range of models for battery DTs at different scales from cell level to pack 
level. The DT models can be easily structured and calibrated to cover the 
right modeling and simulation needs, e.g. modeling of different aging 
phenomena, thermal runaway, etc. 

5.1.3. Siemens Simcenter Amesim and digital twin 
Simcenter Amesim software is an integrated, scalable mechanical 

system simulation platform that enables design engineers to virtually 
evaluate and optimize system performance. This will increase the evo-
lution of systems engineering, from producing more realistic simulations 
at earlier design stages to final performance verification and control 
calibration. The software seamlessly combines system simulation and 
testing, helping to predict performance on critical features ahead of time 
and throughout its entire lifecycle. Simcenter Amesim allows you to 
practically build models and perform realistic analysis by combining 

ready-made multi-physics libraries with applications and solutions that 
enable accurate analysis supported by powerful platform features. 
Simcenter can be easily integrated into computer-aided design, 
computer-aided engineering, and control software packages [47]. 

A brief comparison of the battery DT development platforms is 
provided in Table 4. 

5.2. Integration platforms for battery DTs 

Since DT technology has been a trending topic in recent years for 
both industry and academia, the necessity for ready-to-use DT platforms 
has increased. The backbone of these platforms lies in the IoT infra-
structure for the connectivity layers with additional modeling, simula-
tion, and visualization layers. The available options vary from 
commercial to open-source solutions and can be also combined with 
other toolsets for DTs, such as [140,141]. There is also the ISO standard 
ISO 23247:2021 [142], which proposes a set of consensual terms for DTs 
and common criteria for DT frameworks. According to the standard, a 

Fig. 18. (a) A battery pack example with 28 cells, (b) battery pack configuration with connections of 4 modules, (c) Visualization of results.  

Fig. 19. System simulation steps of battery DT in the Ansys Digital Twin Builder [138].  
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DT framework requires accuracy to describe at an appropriate level of 
fidelity, communication that enables synchronization, data acquisition 
with local or remote sensors, built-in data analysis, data integrity to 
correctly describe the state of the PT, compatibility to a range of ap-
plications, granularity for different levels of detail, identification of the 
data to a unique PT, management for resource optimization, coverage of 
different product life-cycle phases, security to communicate only with 
authorized agents, built-in simulation, synchronization (data, state 
estimation, etc.) between DT and PT, dynamic viewpoint according to 
objectives, and support hierarchical modeling to fit in a defined 
hierarchy. 

Regarding the available frameworks [143], reviewed and analyzed 
Amazon web services (AWS) IoT Greengrass, Microsoft Azure DTs, and 
Eclipse Ditto in conjunction with Eclipse Hono and Eclipse Vorto in 
seven dimensions, covering 13 requirements in total. The frameworks 
are assessed regarding overall functionality, the performance of resource 

usage, compatibility to exchange information with other systems, us-
ability to effectively achieve user goals, security of the connection, 
maintainability to adapt the software product, and portability of soft-
ware and hardware artifacts. 

The asset administration shell (AAS) is a German industrial frame-
work initiative for DTs [144], which has several open-source imple-
mentations, including Eclipse BaSyx, SAP I4.0 AAS, NOVAAS, and AASX 
Package Explorer. AAS intends to provide a consensual metamodel for 
DTs hand to hand with industrial standards. 

iTwin and Unity offer a toolkit for 3D-enabled DTs. The former is 
open-source while the latter is commercial that has free licenses for 
students. 

Going to a different domain, TerriaJS and digital twin cities centre 
platform, both open-source, provide a foundational geospatial data DT 
framework, where the data associated with the PT can be mapped to 
identify patterns in the geospatial context. 

Fig. 20. Connectivity of battery and DT in ANSYS Digital Twin Builder [138].  

Fig. 21. Battery DT concept in COMSOL Multiphysics® [139].  
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When analyzing the requirements for DT frameworks with the 
reviewed platforms, it is possible to identify the strengths and weak-
nesses of each one in the following dimensions. 

DT development process: The DT development process is not trivial 
with the currently available DT frameworks. This is mainly because DT 
engineering is a complex task that requires several components. Inte-
grating the models into the connectivity layers and visualizations re-
quires time and handwork to set it up. Although, modular 
implementations, such as commercial platforms, facilitate this by 
providing user-friendly components that can reduce the complexity 
considerably. 

Connectivity: Since most of the DT frameworks are built upon IoT 
infrastructure, the connectivity is usually good and flexible. The 
frameworks integrate IP-based communication protocols, such as 
MQTT, AMQP, HTTP, and WebSockets, which enable communication 
within the system and with third parties. However, some frameworks 
are not built upon and oriented to connectivity and their communication 
capabilities make them less prone to external integrations and less 
flexible regarding interoperability and synchronization. 

Security: Common security aspects rely on the security of the con-
nectivity layer, such as authorization, authentication, and encryption. 
However, other security aspects regarding access control, security self- 
aware DTs, and similar are not covered by the existing frameworks. 

Processing power, performance, and scalability: Depending on 
the scope of the framework, the processing power, performance, and 
scalability of DT platforms can be different. Frameworks, such as iTwin, 
which is oriented to 3D scenarios, require more processing power than 
IoT-based DT frameworks, such as Ditto. The same happens with the 
scalability; the more processing power a framework requires, the fewer 
instances of DT - PT pairs it can run at the same time. On the other hand, 

the overall performance depends on several aspects because the DT 
application is composed of different components, such as communica-
tion, modeling, data analysis, data storage, and so on. 

Data storage: The current DT frameworks are built upon IoT 
frameworks, which means that they already implement a data storage 
layer as part of the system, which is an advantage. Additionally, they can 
provide different data storage methods, such as SQL and No-SQL data-
bases, but also plain text and structured files, such as CSV and JSON, 
respectively. Metadata is also relevant to be stored because the seman-
tics of data and systems can be strategically used for extracting valuable 
inferences and learning from data, systems, and their composition. Here, 
structured data with common schemes, standardized meta-structures, 
and RDF structures can be used within aware systems and entities. 

Visualization: Visualization applies to both 2D and 3D visualiza-
tions, which can be required in different contexts, depending on the 
purposes and scope of the DT use case. If the requirement is regarding 3D 
aspects or the PT requires a 3D representation, DT frameworks like 
iTwin and Unity can supply this aspect. In case geospatial 2D graphs are 
required, TerriaJS can be a better option. It can also be the case that 2D 
visualizations are needed for monitoring. For these cases, any of the 
frameworks can be integrated with dashboards to obtain built-in 2D 
visualizations. 

Modeling and simulation: This aspect is not completely covered by 
the current available DT frameworks. Modeling categories that are 
covered by the frameworks include data models, 3D models, or ML 
models. Simulation, on the other hand, relies on high-fidelity physical 
models, which are not offered as built-in modules so far. Development 
platforms described in subsection 5.1 can be useful here. 

An empirical analysis of the frameworks is shown in Table 5 [143]. 

Table 4 
Comparison of well-known software packages for DT development ( = High-perfor-
mance, = Mid-performance, = Low-performance). 

Table 5 
Qualitative comparison of different DT integration platforms ( = High-performance, = Mid-performance, 

= Low-performance). 
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6. Discussions on challenges, gaps, and opportunities 

The challenges and gaps of the battery DTs are discussed as follows:  

• Lack of Standards and legislation: There is no standard or consensus 
about the definition, architecture, functional requirements, manda-
tory or nice-to-have features of the battery DTs. The transparency of 
battery data throughout its value chain will expose the technical and 
trade secrets of manufacturers, recyclers, etc. Therefore, proper 
legislation concerning the privacy and transparency level of the data 
is required.  

• Cybersecurity of battery DTs: There is a certain risk that the 
communication channels between the battery DT and PT can be 
compromised and manipulated by adversaries. Manipulation of the 
sensory data or DT feedback misleads the battery control and pro-
tection algorithms which can lead to risks of battery fires and acci-
dents. Therefore, research should focus to identify the DT security 
gaps and potential hazards that may arise and their effect on the PT 
operation and accordingly devise appropriate countermeasures to 
maintain the cybersecurity and integrity of the DT.  

• Complexity and cost of implementation: Battery DT development 
requires significant design effort to develop multi-disciplinary sys-
tem designs and frameworks and relies on expensive infrastructures 
such as gateways, cloud servers, super-processors, and potentially 
additional sensor units. Despite that the additional cost and 
complexity can be justified in the medium-term due to the benefits 
for a wide spectrum of stakeholders, this still poses a challenge to the 
initial investment and development of the pilot set-ups or full-scale 
development at higher technology readiness levels.  

• Technical barriers: The VIT data of the cells and heterogeneous data 
from other sensor units (e.g. gas or pressure sensors) should be 
collected and communicated to the cloud at a relatively high rate. 
The EV battery pack may include thousands of cells which means 
millions of real-time data will limit the communication bandwidth. 
This necessitates using advanced communication technologies to 
facilitate real-time data connectivity. The use of new generation 
communication interfaces such as 5G technology is thus needed for 
the implementation of the battery DTs. In addition, processing a huge 
amount of data on the cloud requires strong processors and deep 
fusion via advanced signal processing algorithms to achieve precise 
mapping and a fast flow of data, and sharp responsiveness of the DT. 

Taking these challenges into account, it is very important to consider 
more targeted DT applications and use cases to avoid excessive resources 
on tasks that do not provide too much value. To investigate the indus-
trial potential of the DT, a technical questionnaire was recently devel-
oped as part of the European Project HELIOS and a few partner 
companies in the BMS/EV sector were asked to complete it. The feed-
back revealed that a major bottleneck is related to the DT cost which 
hardly can be justified for some use cases such as SoC estimation since 
the achievable results on BMS are already good. Concerning the SoC 
estimation, another bottleneck is the real-time performance which is 
difficult to realize due to the high sample rates required, communication 
delays, and computational burden related to cell-level SoC estimations. 
The use of DT for SoH estimation could make more sense as the required 
update intervals are much longer. The advanced life extension algo-
rithms operated by DT could improve the lifetime and thus reduce the 
life cycle cost of batteries. It would also be worthwhile to consider DT 
use cases that provide value for a fleet and not individual EVs. Con-
cerning this, use cases related to fleet management, repurposing of 
batteries, and battery passports can be very promising. 

7. Concluding remarks 

This work provides a comprehensive review of the battery DTs. 
Different existing and potential use cases of the DTs are discussed and 

the SotA related to each use case is reviewed. The number of published 
research papers on the battery DT topic has increased by about 200% 
since 2020, which demonstrates the increasing interest in the concept. 
Among these research works, the majority have focused on using battery 
DT for SoX estimation, design optimization, manufacturing, and moni-
toring of batteries. More recently, the application of battery DTs for 
predictive maintenance and 2nd life applications has also gained inter-
est. The potential use cases that can be developed within the battery DT 
framework such as energy optimization, optimized battery charging, 
lifecycle management, and battery passport are also introduced. The 
reports show promising results for battery DT application, e.g. 60% 
reduction in maintenance costs, a 15% improvement in the lifetime 
using optimized charging protocols, and a DT-based SoC estimation 
MAE of 0.14%. 

The multi-disciplinary elements and requirements of the battery DTs 
are categorized into three groups, namely software, hardware, and IoT. 
Each group is then reviewed and the corresponding technical aspects are 
discussed in detail. Possible sensor networks to measure the key battery 
information such as VIT sensors, gas sensors, and GPS data, and IoT/ 
connectivity options such as 5G to transmit the data to the cloud-located 
DT and vice-versa are reviewed. In terms of software requirements, 
several key topics are covered including the co-simulation of multi-scale 
models, cyber-security, review of databases suitable for time-series data, 
and so on. The battery DT architectures are also reviewed. The three 
main layers in the DT architecture are the connectivity layer to receive 
and pre-process various types of data, the twin layer to operate the 
battery multi-scale models and algorithms, and the service layer which 
provides higher-level services such as visualization, user interfaces, 
application programming interface, etc. It is worthwhile in the DT ar-
chitecture to include the metadata and metamodels related to different 
types of data (such as master data, transactions data, etc.) and models 
(cell models, module models, BMS, TMS, etc.), which will improve the 
findability and interoperability of the data and models on the battery 
DT. 

The study also contributes to the review of the existing DT devel-
opment platforms including ANSYS Digital Twin Builder and COMSOL 
Multiphysics. The commercial integration platforms such as Microsoft 
Azure and AWS and open-source integration platforms such as AAS and 
its different implementations such as NOVAAS and AASX are reviewed 
and compared in terms of their security and capabilities in modeling, 
processing, visualization, connectivity, and storage of the DT data. The 
comparison provides valuable information to decide the best develop-
ment/integration platform depending on the requirements of the 
implemented use case(s) and the specific modeling/simulation needs. 

Finally, the existing challenges in front of the battery DT technology 
are reviewed. The strategic challenge is the lack of standards and 
legislation, which complicates the transparency of data across the bat-
tery value chain. The economic challenge is related to the large invest-
ment costs due to the need for additional sensor networks, cloud 
services, etc. Concerning the technical barrier, the complicated 
modeling and algorithmic processes can be pointed out. In addition, 
communication and online processing of a massive amount of real-time 
data related to a large number of cells is a challenging task. The review 
also summarizes the results of an industry survey about the effectiveness 
of the existing battery DT use cases. Companies believe that the addi-
tional costs associated with the battery DT must be carefully justified 
considering the use cases. In this regard, SoC estimation on the DT is 
considered to be less effective because the achievable results on the BMS 
are already good. Use cases such as health estimation, battery passport, 
and predictive maintenance that will benefit a larger number of stake-
holders such as EV users, fleet operators, leasing and car-sharing com-
panies, etc. Are deemed to be more promising. 

While the use cases are comprehensively outlined, a detailed review 
of each use case was not included due to space limitations. However, the 
work can be used to judge if it would be worthwhile to do a full sys-
tematic review of each use case. In terms of open-source DT platforms, 
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only the most known ones are considered in the review. Therefore, 
future work can evaluate a wider range of DT platforms and assess the 
possibility of applying them in the battery context. 
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