
Towards Modular Language Design using
Language Fragments: The Hybrid Systems Case

Study

Sadaf Mustafiz1, Bruno Barroca1, Cl’audio Gomes2, and Hans Vangheluwe1,2

1 McGill University, Montreal, QC, Canada
2 University of Antwerp, Antwerp, Belgium

{sadaf, bbarroca, hv}@cs.mcgill.ca, claudio.gomes@uantwerpen.be

Abstract. Cyber-physical systems can be best represented using hy-
brid models that contain specifications of both continuous and discrete
event abstractions. The syntax and semantics of such hybrid languages
should ideally be defined by reusing the syntax and semantics of each
components’ formalisms. In language composition, semantic adaptation
is needed to ensure correct realization of the concepts that are part of
the intricacies of the hybrid language.
In this paper, we present a technique for the composition of heteroge-
neous languages by explicitly modelling the semantic adaptation between
them. Each modelling language is represented as a language specification
fragment (LSF): a modular representation of the syntax and semantics.
The basis of our technique is to reuse the operational semantics as de-
fined in existing simulators. Our approach is demonstrated by means of
a hybrid language composed of timed finite state machines (TFSA) and
causal block diagrams (CBD).

1 Introduction

A typical cyber-physical system (CPS) exhibits complex behaviour that can only
be best represented using a mix of continuous (i.e., mathematical differential
equations) and discrete (logical computation) models. In particular, to engineer
such systems, we need to first study how existing physical laws and quantities,
co-exist and interact with logical controllers, which themselves are also bound to
the same laws. The engineering of a CPS involves the modelling and simulation
of hybrid models (e.g., combinations of sets of piece-wise continuous functions
alternating with events). Moreover, due to the extreme complexity of the CPS,
it is often the case that we need to break the models into several orthogonal
views, aspects or quantities (e.g., thermal, electric, power), in order to be able
to study the behaviour of each of them over time, and only afterwards study
their integration and interaction.

It is therefore obvious that the success of building such complex CPS can
only be maximized if one first identifies the most appropriate level of abstrac-
tion to break the complexity in each of these orthogonal views, and then uses
the most appropriate formalisms that somehow realize these abstractions, while



bringing to the CPS engineers a valuable engineering toolbox that integrates
several CPS modelling and simulation environments. However, we advocate that
the CPS engineer should (instead of being yet another language engineer) be-
come a language integrator, by reusing and integrating existing languages into
a new language that fits the expressiveness needs of a particular CPS. Unfortu-
nately, the existing techniques for language modularity are still not adequate to
fully realize this objective. From our recent work [12], the need for techniques
to modularize the design of modelling languages has become apparent to us.

In this paper, we underline new techniques for language modularity based on
the concept of Language Specification Fragments (LSF). Such fragments include
the syntax (both abstract and concrete), the semantics, and the user-interface
behaviour, along with the various interleaving of the elements involved. The
LSFs form the basis of reuse and abstraction in language design, and allows the
development of new formalisms by re-using and merging existing fragments, lead-
ing to reduced efforts on the language designers part. For example, an existing
platform-dependent DEVS formalism can be extended by integrating an existing
Neutral Action Language in it to compose a neutral DEVS formalism [2]. Such
compositions become even more useful when integrating UML formalisms, e.g.
Statechart and Class Diagrams with Action Code.

Following the initial ideas of meta-modeling hybrid formalisms [10], we first
observe and meta-model a particular hybrid formalism that combines a language
for Timed Finite State Automata (TFSA) with a language for Causal Block Di-
agrams (CBD). We then perform a conceptual de-construction of the hybrid
formalism into two (reusable) LSFs, while identifying the composition opera-
tions that are required in order to re-construct it back to the original formalism.
Contrasting to the co-simulation domain, where the operational semantics of
each language is considered as a black-box during language composition (oth-
erwise referred to as semantic adaptation) [7], we follow a white-box approach
that allows us to the explicitly model the composition of LSFs by taking into
consideration the concepts that rule each of the languages.

This paper is structured as follows: Section 2 gives an introduction to the case
study used, Section 3 introduces language specification fragments, and the LSFs
used in our case study. Section 4 describes our language composition technique
by means of the case study, and Section 5 discusses possible means to generalize
and automate the fragmentization and composition process. Finally, Section 6
presents related work and Section 7 concludes with future work.

2 Hybrid Language Case Study

We introduce here the case study, the Hybrid TFSA-CBD language, that is used
throughout this paper to demonstrate the composition of language fragments.

2.1 The Hybrid TFSA-CBD Language

The hybrid case study is essentially the hybrid language case that can effectively
model hybrid systems, i.e., systems that exhibit both discrete and continuous



behaviour in the form of piece-wise continuous interleaved with discrete events.
We have taken a basic language from each of the domains, TFSA (discrete)
and CBD (continuous), to study the interleaving of the behaviour of the two
languages and the two time domains.

Timed Finite State Automata (TFSA) are used for describing behaviour
of reactive systems. A TFSA consists of the following: a set of states including
a start stat ; a set of transitions between the defined states, that include trig-
gers/events (and/or guards) that can be either an event name or an after

indicating some delay in time; and finally, a set of input events tagged in time.

Causal Block Diagrams (CBDs) is a visual modelling language com-
monly used for embedded control design that models systems with differential
equations. CBD is the basic language of Mathworks SimulinkR©. It consists of
blocks and connections between blocks. Each block has (optional) inputs and
one output3, and it can either represent an algebraic mathematical operation
(such as summation, multiplication) or a time sensitive operation (e.g., delay the
input). In our work, we focus on continuous-time models represented as CBDs.
The simulation of such CBDs are however usually carried out in digital com-
puters using a discrete-time approximation (i.e., by discretizing the differential
equations and translating them into difference equations, which are represented
as discrete-time CBDs) [6].

A TFSA-CBD composition is the weaving of a TFSA and CBD together in
possibly different ways: 1) TFSA composed of a CBD; 2) CBD composed of
a TFSA; or 3) a hierarchical composition with a TFSA composed of a CBD
which in turn is composed of a TFSA (TFSA-CBD-TFSA or even CBD-TFSA-
CBD). In this paper, our case study specifically focuses on the first kind of
composition, that is a CBD embedded within a TFSA state where TFSA is the
parent language and CBD is the child language. This is similar in concept to
that of having StateflowR© models within SimulinkR© models.

When simulating dynamical systems modelled as a CBD, the output of the
difference equations (described in the CBD) becomes not only a function of
the input, but also a function of the whole history of inputs and the initial
conditions, due to the use of time sensitive blocks (e.g., delay). The history of
inputs is stored in the form of state variables and so the output is calculated as
a function of the inputs and the state. This not only implies that the detection
of enabled transitions must be done at the end of each simulation step of the
CBDs, but also means that a mechanism must be in place to ensure that after a
transition occurs to a state with a CBD contained, proper initial conditions are
provided to that CBD [13]. The transitions are usually triggered via events or
guards that are usually implemented using if statements. In our case however,
we want to know when the transition occurs as opposed to if the transition has
occurred. For this purpose, monitoring functions need to be defined that allow
for zero-crossing detection. The detection of the exact zero-crossing time is non-
trivial and requires the use of state-event location techniques involving rollbacks

3 Without loss of generality, we assume here that blocks in a CBD only have one
output.



to find the exact point. The syntax and semantics of the hybrid language needs
to address this requirement. Additionally, modellers should also be given support
to create hybrid models with the appropriate syntax to model such situations.

2.2 A Hybrid TFSA-CBD Example

The bouncing ball is a classic example of a hybrid system displaying both con-
tinuous and discrete behaviour. A ball is in free-fall motion when dropped. The
dynamics change when the ball collides with the ground and bounces up again
with reduced energy. An external event, such as a kick, is represented here, for
illustrative purposes, as a constant increment in the velocity of the ball.

Fig. 1 shows the hybrid model of a bouncing ball modelled using our com-
posed TFSA-CBD language. It includes the freefall, collision, and kicked states
with state changes triggered by discrete events. Within each state, the continu-
ous dynamics of the ball (essentially modelled with its height, x, and the velocity,
v) evolves with time. During the free fall, gravity acts on the ball until it collides
with the floor (x0 crosses 0). At that instant, a collision occurs (detected by the
when +- event), and the new v0 is given by v0 = −0.8v. In the same instance,
the ball goes back to free falling again.

3 Hybrid TFSA-CBD Language Fragments

3.1 Language Specification Fragments

Language fragments can be defined as reusable components in the language en-
gineering process. The fragments allow both reuse and modular language design.
We define a language specification fragment (LSF) as a description of the spec-
ification of a modelling language in terms of its abstract syntax (AS) , concrete
syntax (CS), operational semantics (OS), and the user-interface (UI) behaviour.
As presented in Fig. 2, such a specification involves the definition of several
models (referred to as m1-m9).
– m1: The AS model (at times referred to as the linguistic type model) describes the
essence of the language (its structure and elements) by means of a meta-model usually
modelled as a class diagram or an entity-relationship model.

– m2: The model instances of the language needs to be defined using some CS: a visual
syntax, a textual syntax, or a combination of both. A single AS may be associated
with one or more CS models.

– m3: The semantic model describes the language OS. In the case of a modelling
and simulation environment, this refers to the simulator semantics defined with an
algorithm outlining the computation steps.

– m4: The mapping model defining the mapping and rendering links between the AS
and one CS.

– m5: The semantic mapping model which specifies how the AS elements are treated
in the OS.

– m6-m8: These models specify the mappings between the UI behaviour of the inter-
active modelling environment and the AS (m6), CS (m7), and OS (m8).

– m9: A glue model that binds together models m1-m8.



Initializing
FreeFall

Collision

[when x+-]

g-9.81

v_0
v∫I

C ∫I
C x

x_0

k
-0.8

v
v_0

v_0

x_0

Kick

v_kick
20

v
v_0

kick

+x

v10

15

Fig. 1: Bouncing Ball Hybrid TFSA-
CBD Model

La
ng

ua
ge

 F
ra

gm
en

t
La

ng
ua

ge
 F

ra
gm

en
t

La
ng

ua
ge

 F
ra

gm
en

t Concrete Syntax

Abstract Syntax

Semantics U
I B

eh
av

io
ur

m2

m1

m3

m4

m5

m7

m8

m6

m9

Fig. 2: Language Specification Frag-
ments (LSF)

This set of models together define one LSF, which in turn describes a part
of the overall semantics of a hybrid language. Our focus here is on the AS and
the semantics (models m1, m3, and m5), and we intend to look at the interfaces
and a composition mechanism to compose the AS as well as the OS.

3.2 TFSA and CBD Fragments

We present here the TFSA and CBD LSFs. Fig. 3 presents the AS model of the
TFSA language as a class diagram. Algorithm 1 outlines the behaviour for the
FSA simulator. Besides the traditional notions of states and transitions, where
on each transition we have the event triggers, it also includes the after construct
that is implemented with the implicit notion of elapsed time.

Fig. 4 presents the AS model of the CBD language as a class diagram. Al-
gorithm 2 outlines the behaviour of the CBD simulator in the main loop of the
algorithm. For now, we are assuming fixed time-step simulation. This simplifies
the zero-crossing detection without compromising the strength of our contribu-
tion because we are interested in coming up with the possible weavings assuming
a fixed set of capabilities in the simulators.

Fig. 3: TFSA Abstract Syntax Model Fig. 4: CBD Abstract Syntax Model

4 Hybrid TFSA-CBD Language Composition

In this section, we describe the composition of the hybrid TFSA-CBD language
with regards to the abstract syntax and the semantics. In our case study, the
hybrid system requirement is to model the continuous dynamics of a system
when the system is in certain states. This entails TFSA states to be embedded
with CBDs. Hence, a single state in a TFSA can be a simple state or a CBD.

Weaving the language descriptions defined as fragments as per our require-
ments gives us a new language definition (which can then again be referred to as a



Algorithm 1 TFSA Operational Semantics
logicalT ime, elapsedTime← 0; currentState← initialState
while not endCondition do

E ← getInputEventAt(logicalT ime)
if out-transition T from currentState has E then

currentState← currentState.T.destination;
removeInputEventFromInputList(); elapsedTime← 0

end if
if out-transition T from currentState has after(time) & time ≤ elapsedTime then

currentState← currentState.T.destination; elapsedTime← 0
end if . ∆t is a parameter to this algorithm

logicalT ime← logicalT ime+∆t; elapsedTime← elapsedTime+∆t
end while

Algorithm 2 CBD Operational Semantics (Adapted from [17])

logicalT ime← 0
while not end condition do

schedule← LOOPDETECT (DEPGRAPH(cbd))
for gblock in schedule do

COMPUTE(gblock)
end for
logicalT ime← logicalT ime+∆t . ∆t is a parameter to this algorithm

end while

re-usable fragment) with a new AS model (class diagram) and a new automaton
with new action code and a bigger store.

4.1 Composition of the Abstract Syntax Models

The AS models (or meta-models) modelled as class diagrams (shown in Fig. 3
and Fig. 4) are composed, resulting in the AS model of the hybrid language. The
composition process involves the use of rule-based graph transformations that
matches the pre-defined parent and child classes and joins them in a containment
relationship within the class diagram. Due to space reasons, Fig. 5 only presents
part of the composed class diagram - the complete details of the Block class
and Expression class are shown in the original class diagrams. The Transition
in the hybrid AS model is adapted to include a special kind of guard, specified
(in the concrete syntax) as [when +-] to define an event for the zero-crossing
detection in the source state dynamics. The when condition (both [when +-]

and [when -+]) is added as a specialization of Expression.
Composing the AS models along with the CS models in our meta-modelling

and model transformation tool, AToMPM (A Tool for Multi-Paradigm Mod-
elling) [16], allows us to generate a working visual editor for the hybrid lan-
guage. The AS data structures are also composed at the textual model level
using SCCDs (described in the next subsection).

4.2 Composition of the Operational Semantics Models

Semantic adaptation involves the composition of time bases, and the interleaving
of the control flow and data flow [7]. Fig. 6 shows how the semantics of the two
languages, TFSA and CBD, are joined and adapted using operations to allow



the two simulators to work in conjunction. The semantics behind the transitions
labelled 1 to 6 are discussed below.
– Time adaptation: This entails computing the new hybrid time step based
on the outcome of a maximal common divisor (MCD) of the original time steps
(see label 1). The CBD clock is initialized to zero at every simulation step when
processing control is handed over to the CBD from the FSA (see label 5). The
TFSA-CBD clock is incremented when all enabled transitions are processed
and the FSA is ready to advance to the next state (see label 4).

– Control adaptation: The parent language, TFSA, has initial control. When
a CBD is detected inside a FSA state, control is passed on to the CBD (see
label 2). Following the execution of a CBD step, the simulator checks for zero-
crossings and for any external events in the TFSA (see label 3). If a zero-crossing
is detected, the CBD is reinitialized and execution continues (see label 2). An
external event being triggered might involve a change in state and possibly the
execution of a new embedded CBD. It should be noted that the switching of
control is rather conceptual in our case, since our hybrid simulator is one com-
bined simulator and does not require the passing of control from one simulator
to another.

– Data adaptation: The global state of the model is updated at every iteration
at the child level and at the parent level (see labels 2 and 3).

The OS in algorithm form (presented in Section 3) is mapped to an au-
tomaton (SCCD model) with details in action code for each fragment involved.
SCCD is a formalism that combines Class diagrams and Statecharts to define
classes, their behaviour and interactions. The weaving of the simulation algo-
rithm automatons (SCCDs) is based on a syntactic and semantic glue model,
similar to the model shown in Fig. 6. The use of the SCCD language allows us to
generate SCCD XML or SCCD HUTN (human-usable textual notation) from a
complete behavioural model of a simulator instead of hard coding the simulator
and carrying out the adaptation within wrappers at the code level.

The SCCD models describing the OS of the TFSA and the CBD languages
are shown as part of Fig. 7, which presents the composed SCCD model for hybrid
TFSA-CBD. In the figure, the TFSA and CBD composite states represent the
SCCD models of the TFSA and CBD simulators respectively. For space reasons,
the internal details of the simulator classes are not presented. These classes
include the definition of the data structures, runtime variables, and methods used
in the Statechart part of the SCCD model. The visual SCCD is first transformed
to a SCCD HUTN model which is then compiled to Python source. This results
in a fully automatically generated simulator from our description of the OS.

Fig. 5: TFSA-CBD Composed Abstract Syntax Model (Partial Model)



Fig. 6: Hybrid TFSA-CBD Semantic Adaptation

Fig. 7: Hybrid TFSA-CBD Operational Semantics

4.3 Simulation using the Composed Simulator

The bouncing ball model (shown in Fig. 1) was simulated using our woven sim-
ulator. Figure 8 presents five graphs all plotted against the time of the parent
formalism, TFSA in this case. The simulation results shows the zeno behaviour
of the bouncing ball. It also shows how the nested child (CBD) clock advances
with the hybrid (parent) clock.

5 Modular Language Design of Hybrid Languages

Based on the insights gained from the hybrid case study, we are looking more
deeply into the fragmentization and composition process. Ongoing work is dis-
cussed here.



when(x +−)

kick

0 20 40 60

Time (s)

E
ve

nt

Initial

FreeFall

Collision

Kicked

0 20 40 60

Time (s)

S
ta

te

0

10

20

30

40

0 20 40 60

Time (s)

H
ei

gh
t (

m
)

−30

−20

−10

0

10

20

30

0 20 40 60

Time (s)

V
el

oc
ity

 (
m

/s
)

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0

FSA Time (s)

C
B

D
 T

im
e 

(s
)

Fig. 8: Bouncing Ball Hybrid Model Simulation Results

5.1 Fragmentization

We propose using a network language (with input/output ports) as a way to
package each LSF to enable interleavings with other LSFs via pre-defined ports
(similar to what is shown in Fig. 6). The network language provides an interface
for each fragment SCCD which can be used to define explicit communication
between the LSFs involved and to carry out semantic adaptation. This model
can then be automatically transformed to the woven SCCD for the new language.
These LSFs ultimately can be used to build a library of reusable fragments.

In this paper, we have defined LSFs to be complete and meaningful languages.
This constraint can be further relaxed to allow LSFs to be underspecified or
to include holes. These model elements or holes can then be referenced and
linked with special ports in the network language, which can then be replaced or
extended with another complex model (defined as a LSF) in any part of the AS
or OS model. For instance, a statement can be replaced by a block of statements
or an association replaced by an entire meta-model. The nested LSF can itself
have holes leading to a composed language that can further be replaced. These
holes must be identified and replaced in order to build valid and meaningful
languages. At the moment, we are looking into techniques to allow automatic
checking for inconsistencies and incompleteness in LSFs.

5.2 Composition

Based on the studies carried out, we propose five patterns for language compo-
sition: embed, weave, build, replace, extend, and slice. Fig. 9 gives an example of
each pattern. In the hybrid TFSA-CBD case study, we implicitly used the em-
bed pattern to compose the two languages. Embedding leads to a parent-child
structure which needs to be addressed in a specific manner in the weaving. The
addition of the when construct was implicitly done using the extend pattern.
Having a model transformation defined for each pattern would allow modellers
to set the initial parameters for the composition and select the required pattern
to build a composed syntax or semantics model. A higher-order transformation
could identify the holes in the language(s) and define the order in which each
pattern should be applied, leading to an automated weaving process. AToMPM
will be used to build and compose the AS models using graph transformations.

Class Subclassembed
Subclassweave(attr)Attribute: Type

Class Name

Class build
State CBDembed State build

ActionCodeweave(action)event: String
action: String

Transition

FSA-CBD Example PN-AC Example FSA-FSA Example

Class Classreplace
Class SubclasssliceClass Subclassextend

Function ACreplace

Textual DEVS-AC Example

Statechart FSAsliceFSA Statechartextend

Statechart-FSA ExampleFSA-Statechart Example

Fig. 9: Language Composition Patterns



5.3 Automating the Semantic Adaption Process

As part of the fragmentization and composition process, the definition and com-
position of the SCCD models need to be developed further. We begin by gen-
eralizing the OS specification by defining a fixed structure that every simulator
design has to adhere to. We propose adapting the simulator design to the form
of a Statechart (as part of the SCCD) where every simulator has the following
(basic or composite) states: Start, Prepare, Process, CheckTermination, EndSim-
ulation, and a history state. The execution follows in sequence with a loop that
returns to Prepare following CheckTermination to continue with the remaining
iterations. To make the simulator a reusable LSF, we next instrument the Stat-
echart with a ProcessChild (which now acts as a hole) state with transitions to
and from Process. The ProcessChild is then connected to a network port which
allows it to be referenced by other LSFs. Once we have a generic structure for all
simulators, we can easily use graph transformations to compose the simulators.
The semantic adaptation can be carried out by defining interleavings and adding
special constructs with the aid of the patterns discussed above.

We envision having a composition process that is closed-under-composition:
the woven simulator is a LSF that can be composed again with other languages,
to provide arbitrarily complex modelling languages for the development of ever
more complex CPS.

6 Related Work

In modular language engineering, the disparate models of computation employed
in the semantics of domain-specific modelling languages bring about many chal-
lenges in what matters to their reuse. Reuse is the main focus of CORE [15],
which allows specification of reusable aspects as concerns and provides support
for automated weaving of requirements models. In [1], structural models ex-
pressed as instances of UML class diagrams, can be seen as graphs and therefore
reused across languages. The reuse mechanism is expressed and ruled by the
notion of fragments, which are reusable and composable as new fragments.

Some existing approaches focus on reusing models of modelling languages to
build new modelling languages, and on trying to identify the most convenient ab-
stractions to convey the reuse of such kinds of models of languages. In [4], several
composition operations such as merge, aggregation, and deletion are introduced
to allow new languages to be built from more simpler ones. The concepts for lan-
guage reuse were further developed and studied in language workbenches, such
as Spoofax [8] and MPS [18]. Moreover, the problem of language composition
from other language components was extensively explored in [9].

In [19], the structure of languages (i.e., abstract syntax and semantics) is
taken into account as different roles, in the composition of languages here con-
sidered as language components that can be reused. Similar to [19] and [1], the
work in [20] introduces a language for the definition of language fragments, which
treats languages as components that can be reused and composed.



The reuse of the language semantics mostly remains unaddressed in the cur-
rent state of the art, and is seen as one of the main challenges in modular
language engineering. If we approach this problem by considering only the se-
mantics that are given by translations, then it might be solved using parameter-
ization [14]. This solution though only glosses over the problem of reusing the
semantics of languages, and the meaning and behaviour of the translated mod-
els in the target language with regards to composability and compatibility are
not addressed. However, the work in [5] does tackle semantics composition by
means of aspect-oriented concepts, but can be considered to be a code-level solu-
tion. A framework for composing semantics for the purpose of simulating multi-
formalism models is proposed in ModHelX [3], which involves an explicit repre-
sentation of the model of computation used in each of the languages. In [11][7],
hybrid formalisms are created as the result of composing OS by assuming a com-
mon interface abided by black-boxed simulators. The interface ensures that they
can be composed while preserving important semantic properties such as a com-
mon time-base thereby ensuring that the composition of the language semantics
is meaningful.

7 Conclusion

This paper presents a language composition technique for hybrid systems, demon-
strated using the hybrid TFSA-CBD case study. We introduce language specifi-
cation fragments (LSF) to model the specification of languages as a set of syntax
and semantics models. The composition technique focuses on fragmentization
and composition of the LSFs (specifically, the AS and the OS). The semantics
(i.e., the behaviour of the simulators) are explicitly modelled as SCCDs (Stat-
echart+Class Diagram), which are then woven together by applying semantic
adaptations which address the problems that arises in hybrid languages (such
as, the need for zero-crossing detection). From the composed semantics model,
we are able to generate a fully functional hybrid simulator for the TFSA-CBD
language. We plan on working on several case studies involving compositions
of discrete-discrete and continuous-continuous formalisms, in addition to other
discrete-continuous formalisms to further validate our claims.

As future work, we also intend to adapt the composition technique to include
the interleaving of the concrete syntax (along with the UI behaviour) in the LSFs.

8 Acknowledgments

This work was partly funded by the Automotive Partnership Canada (APC) in
the NECSIS project as well as by Flanders Make.

References

1. N. Amalio, J. de Lara, and E. Guerra. FRAGMENTA: A theory of fragmentation
for MDE. In MODELS, pages 106–115. IEEE, 2015.



2. B. Barroca, S. Mustafiz, S. V. Mierlo, and H. Vangheluwe. Integrating a neutral
action language in a DEVS modelling environment. In SIMUTOOLS, pages 19–28.
ACM, 2015.

3. F. Boulanger, C. Hardebolle, C. Jacquet, and D. Marcadet. Semantic adaptation
for models of computations. In Application of Concurrency to System Design,
pages 153–162. IEEE, 2011.

4. J. de Lara, E. Guerra, and J. Snchez-Cuadrado. Abstracting modelling languages:
A reutilization approach. In Advanced Information Systems Engineering, volume
7328 of LNCS, pages 127–143. Springer, 2012.

5. T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M. Jézéquel. Melange: A
meta-language for modular and reusable development of DSLs. In SLE ’15, pages
25–36. ACM, 2015.

6. B. Denckla and P. Mosterman. Formalizing causal block diagrams for modeling a
class of hybrid dynamic systems. In CDC-ECC ’05, pages 4193–4198, 2005.

7. J. Denil, B. Meyers, P. De Meuleneare, and H. Vangheluwe. Explicit semantic
adaptation of hybrid formalisms for FMI co-simulation. In TMS/DEVS ’15, pages
852–859. SCS International, 2015.

8. L. C. Kats and E. Visser. The spoofax language workbench: Rules for declarative
specification of languages and ides. SIGPLAN Not., 45(10):444–463, Oct. 2010.

9. H. Krahn, B. Rumpe, and S. Vlkel. Monticore: a framework for compositional de-
velopment of domain specific languages. Journal on Software Tools for Technology
Transfer, 12(5):353–372, 2010.

10. S. Lacoste-Julien, H. Vangheluwe, J. D. Lara, and P. J. Mosterman. Meta-
modelling hybrid formalisms. In ComputerAided Control System Design, pages
65–70. IEEE, 2004.

11. B. Meyers, J. Denil, F. Boulanger, C. Hardebolle, C. Jacquet, and H. Vangheluwe.
A DSL for explicit semantic adaptation. In 7th Workshop on Multi-Paradigm
Modelling, MoDELS ’13, pages 47–56, 2013.

12. S. V. Mierlo, B. Barroca, H. Vangheluwe, E. Syriani, and T. Kühne. Multi-level
modelling in the modelverse. In Workshop on Multi-Level Modelling, MoDELS,
pages 83–92, 2014.

13. P. J. Mosterman. An overview of hybrid simulation phenomena and their support
by simulation packages. In Hybrid Systems: Computation and Control, volume
1569 of LNCS, pages 165–177. Springer, 1999.

14. L. Pedro, V. Amaral, and D. Buchs. Foundations for a Domain Specific Modeling
Language Prototyping Environment: A compositional approach. In 8th OOPSLA
Workshop on Domain-Specific Modeling (DSM), Oct. 2008.

15. M. Schöttle, O. Alam, A. Ayed, and J. Kienzle. Concern-oriented software design
with TouchRAM. In MODELS ’13, pages 51–55, 2013.

16. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin.
AToMPM: A web-based modeling environment. In MODELS’13 Demonstrations,
2013.

17. H. Vangheluwe, J. Denil, S. Mustafiz, D. Riegelhaupt, and S. Van Mierlo. Explicit
modelling of a CBD experimentation environment. In TMS/DEVS ’14, pages
13:1–13:8. SCS International, 2014.

18. M. Völter and E. Visser. Language extension and composition with language
workbenches. In OOPSLA ’10 Companion, pages 301–304. ACM, 2010.

19. C. Wende, N. Thieme, and S. Zschaler. A role-based approach towards modular
language engineering. In SLE ’10, pages 254–273. Springer, 2010.

20. S. Ẑivković and D. Karagiannis. Towards metamodelling-in-the-large: Interface-
based composition for modular metamodel development. In Enterprise, Business-
Process and Information Systems Modeling, pages 413–428. Springer, 2015.


