
Constructing Neural Network-Based Models for Simulating

Dynamical Systems

CHRISTIAN MéLDRUP LEGAARD, Aarhus University, Denmark

THOMAS SCHRANZ and GERALD SCHWEIGER, TU Graz, Austria

JÁN DRGOŇA, Paciic Northwest National Laboratory, USA
BASAK FALAY, AEE-Institute for Sustainable Technologies, Austria
CLÁUDIOGOMES, ALEXANDROS IOSIFIDIS,MAHDI ABKAR, and PETERGORMLARSEN,Aarhus
University, Denmark

Dynamical systems see widespread use in natural sciences like physics, biology, chemistry, as well as engi-

neering disciplines such as circuit analysis, computational luid dynamics, and control. For simple systems, the

diferential equations governing the dynamics can be derived by applying fundamental physical laws. However,

for more complex systems, this approach becomes exceedingly diicult. Data-driven modeling is an alternative

paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true

system. In recent years, there has been an increased interest in applying data-driven modeling techniques

to solve a wide range of problems in physics and engineering. This paper provides a survey of the diferent

ways to construct models of dynamical systems using neural networks. In addition to the basic overview, we

review the related literature and outline the most signiicant challenges from numerical simulations that this

modeling paradigm must overcome. Based on the reviewed literature and identiied challenges, we provide a

discussion on promising research areas.

CCS Concepts: · Computing methodologies→ Neural networks; Continuous simulation; Continuous

models; Supervised learning by regression; · Applied computing→ Physics; Engineering.

Additional Key Words and Phrases: Neural ODEs, Physics-Informed Neural Networks, Physics-based Regular-

ization

1 INTRODUCTION

Mathematical models are fundamental tools for building an understanding of the physical phenom-
ena observed in nature [13]. Not only do these models allow us to predict what the future may
look like, but they also allow us to develop an understanding of what causes the observed behavior.
In engineering, models are used to improve the system design [33, 118], design optimal control
policy [23, 25, 35], simulate faults [84, 94], forecast future behavior [122], or assess the desired
operational performance [51].

The focus of this survey is on the type of models that allow us to predict how a physical system
evolves over time for a given set of conditions. Dynamical systems theory provides an essential set
of tools for formalizing and studying the dynamics of this type of model. However, when studying

Authors’ addresses: Christian Mùldrup Legaard, cml@ece.au.dk, Aarhus University, Aarhus, Denmark; Thomas Schranz,

thomas.schranz@tugraz.at; Gerald Schweiger, gerald.schweiger@tugraz.at, TU Graz, Graz, Austria; Ján Drgoňa, jan.drgona@

pnnl.gov, Paciic Northwest National Laboratory, Richland, USA; Basak Falay, b.falay@aee.at, AEE-Institute for Sustainable

Technologies, Gleisdorf, Austria; Cláudio Gomes, claudio.gomes@ece.au.dk; Alexandros Iosiidis, ai@ece.au.dk; Mahdi

Abkar, abkar@mpe.au.dk; Peter Gorm Larsen, pgl@ece.au.dk, Aarhus University, Aarhus, Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the

full citation on the irst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speciic permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2022/11-ART $15.00

https://doi.org/10.1145/3567591

ACM Comput. Surv.

HTTPS://ORCID.ORG/0000-0002-1914-9863
HTTPS://ORCID.ORG/0000-0002-0778-5774
HTTPS://ORCID.ORG/0000-0003-1223-208X
HTTPS://ORCID.ORG/0000-0003-1565-8262
HTTPS://ORCID.ORG/0000-0003-2692-9742
HTTPS://ORCID.ORG/0000-0003-4807-1345
HTTPS://ORCID.ORG/0000-0002-6220-870X
HTTPS://ORCID.ORG/0000-0002-4589-1500
https://orcid.org/0000-0002-1914-9863
https://orcid.org/0000-0002-0778-5774
https://orcid.org/0000-0003-1223-208X
https://orcid.org/0000-0003-1565-8262
https://orcid.org/0000-0003-2692-9742
https://orcid.org/0000-0003-4807-1345
https://orcid.org/0000-0002-6220-870X
https://orcid.org/0000-0002-6220-870X
https://orcid.org/0000-0002-4589-1500
https://doi.org/10.1145/3567591
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3567591&domain=pdf&date_stamp=2022-11-16

2 Legaard et al.

complex physical phenomena, it becomes increasingly diicult to derive models by hand that
strike an acceptable balance between accuracy and speed. This has led to the development of ields
that are concerned with creating models directly from data such as system identiication [76, 87],
machine learning (ML) [9, 85], and more recently, deep learning (DL) [40].

In recent years, the interest in DL has increased rapidly, as evident from the volume of research
being published on the topic [95]. The exact causes behind the success of neural networks (NNs)
are hard to pinpoint. Some claim that practical factors like the availability of large quantities of
data, user-friendly software frameworks [1, 93], and specialized hardware [82] are the main cause
for its success, while others claim that the success of NNs can be attributed to their structure being
well suited to solving a wide variety of problems [95].

The goal of this survey is to provide a practical guide on how to construct models of dynamical
systems using NNs as primary building blocks. We do this by walking the reader through the most
important classes of models found in the literature; for many of which we provide an example
implementation. We put special emphasis on the process for training the models, since it difers
signiicantly from traditional applications of DL that do not consider evolution over time. More
speciically, we describe how to split the trajectories used during training, and we introduce
optimization criteria suitable for simulation. After training, it is necessary to validate that the
model is a good representation of the true system. Like other data-driven models, we determine
the validity empirically by using a separate set of trajectories for validation. We introduce some of
the most important properties and how they can be veriied.

It should be emphasized that the type of model we wish to construct should allow us to obtain a
simulation of the system. Rather than providing a formal deinition of simulation we refer to ig. 1,
which shows several topics related to simulation that are not covered by this paper.

The source code and instructions for running the experiments can be accessed in the

following repository1.

1.1 Related Surveys

We provide an overview of existing surveys related to our work. Then we compare our work with
these surveys and describe the structure of the remainder of the paper.

Application Domain. The broader topic of using ML in scientiic ields has received widespread
attention within several application domains [11, 12, 19, 108]. These review papers commonly focus
on providing an overview of the prospective use cases of ML within their domains, but put limited
emphasis on how to apply the techniques in practice.

Surrogate Modeling. The ield of surrogate modeling, i.e. the theory and techniques used to
produce faster models, is intimately related to the ield of simulation with NNs. So it is important
that we highlight some surveys in this ield. The work in [61] presents a thorough introduction to
data-driven surrogatemodeling, which encompasses the use of NNs. The authors of [127] summarize
advanced and yet simple statistical tools commonly used in the design automation community: (i)
screening and variable reduction in both the input and the output spaces, (ii) simultaneous use of
multiple surrogates, (iii) sequential sampling and optimization, and (iv) conservative estimators.
Since optimization is an important use case of surrogate modeling, [31] reviewed advances in
surrogate modeling in this ield. Finally, with a focus on applications to water resources and
building simulation, we highlight the work in [105, 135].

Prior Knowledge. One of the major trends to address some challenges arising in NNs based
simulation is to encode prior knowledge such as physical constraints into the network itself or

1https://github.com/clegaard/deep_learning_for_dynamical_systems

ACM Comput. Surv.

https://github.com/clegaard/deep_learning_for_dynamical_systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems 3

Control

Simulation

Quantity of Interest

Classification

Model

Filtering

ModelModel

Model

Discovering equations

ModelC M

Fig. 1. Simulation and related application areas where ML techniques are commonly applied. The focus of
the survey is exclusively on techniques that can generate a simulation based on an initial condition, as shown
on the top let. Although interesting on their own, topics other than simulation are not covered by the survey.
Filtering refers to applications where a sliding window over past observations is used to predict the next
sample or some other quantity of interest. Classification refers to applications where a model takes a sequence
of observations and produces a categorical label, for instance, indicating that the system is in an abnormal
state. Control refers to applications where a NN-based controller is used to drive the system to a desired state.
Discovering Equations refers to techniques based on ML that aim to discover the underlying equations of the
system. uantity of Interest refers to applications where a neural network is used to provide a mapping from
an initial condition to some quantity of interest, for instance the steady-state of the system.

during the training process, ensuring the trained network is physically consistent. The work in [54]
coins this theory-guided data science and provides several examples of how knowledge may be
incorporated in practice. Closely related to this is the work in [100, 128, 129], which proposes a
detailed taxonomy describing the various paths through which knowledge can be incorporated
into a NN model.

Comparison with this survey. Our work complements the above surveys by providing an in-depth
review focused speciically on NNs rather than ML as a whole. The concrete example helps the
reader’s understanding and highlights the similarities and inherent deiciencies of each approach.
We also outline the inherent challenges of simulation and establish a relationship between

numerical simulation challenges and DL-based simulation challenges. The beneit of our approach
is that the reader gets the intuition behind some approaches used to incorporate knowledge into the
NNs. For instance, we relate energy-conserving numerical solvers to Hamiltonian neural networks,
whose goal is to encode energy conservation, and we discuss concepts such as numerical stability
and solver convergence, which are crucial in long-term prediction using NNs.

ACM Comput. Surv.

4 Legaard et al.

Survey
StructureBackground

(Sec. 2)

Differential Equations
(Sec. 2.1)

Neural Networks
(Sec. 2.2)

Direct-Solution
Models
(Sec. 3)

Hidden Physics
Networks

(Sec. 3.5)

Time-Stepper
Models
(Sec. 4)

Physics Informed
Neural Networks

(Sec. 3.1-4) Integration Schemes
(Sec. 4.2)

Neural ODEs
(Sec. 4.2.1-4.2.4)

Network Architecture
(Sec. 4.4)

External Input
(Sec. 4.3)

Neural State-
Space Models

(Sec. 4.3.1)

Neural ODEs
with input
(Sec. 4.3.2-3)

Graph Neural
Networks
(Sec. 4.4.3)

Hamiltonian/
Lagrangian NN

(Sec 4.4.1)

Deep Potential
NNs

(Sec. 4.4.2)

Uncertainty
(Sec. 4.5)

Deep Markov
Models

(Sec. 4.5.1)

Baysian
Neural ODEs
(Sec. 4.5.3)

Neural
SDEs

(Sec. 4.5.4)
Model Taxonomy

(Sec. 2.3) Latent Neural
ODEs

(Sec. 4.5.2)

Fig. 2. A mind map of the topics and model types covered in the survey.

1.2 Survey Structure

The remainder of the paper is structured according to the mind-map shown in ig. 2. First, section 2
introduces the central concepts of dynamical systems, numerical solvers, neural networks. Addi-
tionally, the section proposes a taxonomy describing the fundamental diferences of how models
can be constructed using NNs. The following two sections are dedicated to describing the two
classes of models identiied in the taxonomy: direct-solution models and time-stepper models in
section 3 and section 4, respectively. For each of the two categories, we describe:

• The structure of the model and the mechanism used to produce simulations of a system
• How the parameters are tuned to match the behavior of the true system
• Key challenges and extensions of the model designed to address them

Following this, section 5 discusses the advantages and limitations of the two distinct model types and
outlines future research directions. Finally, section 6 provides a brief summary of the contributions
of the paper and the outlined research directions.

2 BACKGROUND

Models are an integral tool in natural sciences and engineering that allow us to deepen our under-
standing of nature or improve the design of engineered systems. One way to categorize models is by
the modeling technique used to derive the model: First Principles models derived using fundamental
physical laws, and Data Driven models created based on experimental data.

First, in section 2.1, a running example is introduced, wherewe describe how diferential equations
can be used to model a simple mechanical system and how a solver is used to obtain a simulation.
Then section 2.2 introduces the diferent ways NN-based models of the system can be constructed
and trained. Finally, section 2.3 introduces a taxonomy of the diferent ways NNs can be used to
construct models of dynamical systems.

2.1 Diferential Equations

An ideal pendulum, shown in ig. 3, refers to a mathematical model of a pendulum that, unlike
its physical counterpart, neglects the inluence of factors such as friction in the pivot or bending

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 5

Fig. 3. The ideal pendulum system used as a case study throughout the paper. The pendulum is characterized
by an angle, � , and an angular velocity, � .

of the pendulum arm. The state of this system can be represented by two variables: its angle �
(expressed in radians), and its angular velocity � . These variables correspond to a mathematical
description of the system’s state and are referred to as state variables. The way that a given point
in the state-space evolves over time can be described using diferential equations. Speciically, for
the ideal pendulum, we may use the following ordinary diferential equation (ODE):

�2�

��2
+
�

�
sin� = 0, (1)

where � is the gravitational acceleration, and � is the length of the pendulum arm. The ideal
pendulum eq. (1) falls into the category of autonomous and time-invariant-systems, since the system
is not inluenced by external stimulus and the dynamics, do not change over time. While this
simpliies the notation and the way in which models can be constructed, it is not the general case.
We discuss the implication of these issues in section 4.3.1.

The equation can be rewritten as two irst-order diferential equations and expressed compactly
using vector notation as follows:

� (�) =

[

��
��
��
��

]

=

[

−
�

�
sin�
�

]

. (2)

where � is a vector of the system’s state variables. In the context of this paper, we refer to � (�) as
the derivative function or as the derivative of the system.

While the diferential equations describe how each state variable will evolve over the next time
instance, they do not provide any way of determining the solution � (�) on their own. Obtaining
the solution of an ODE � (�) given some initial conditions �0 is referred to as an initial value

problem (IVP) and can be formalized as:

�

��
� (�) = � (� (�)), (3)

� (�0) = �0 (4)

where � (·) is called the solution, � : R→ R� and � ∈ N is the dimension of the system’s state space.
The result of solving the IVP corresponding to the pendulum can be seen in ig. 4b which shows

how the two state variables � and � evolve from their initial state. An alternative view of this can
be seen in the phase portrait in ig. 4a.

Inmany cases, it is impossible to ind an exact analytical solution to the IVP, and instead numerical
methods are used to approximate the solution. Numerical solvers are algorithms that approximate

ACM Comput. Surv.

6 Legaard et al.

3 2 1 0 1 2 3
3

2

1

0

1

2

3 y0

0

2

4

6

8

10

12

(a) Phase portrait of the ideal pendulum with a single
trajectory drawn onto the phase space. The color de-
notes time.

0.5

0.0

0.5

(t)

0 2 4 6 8 10 12
t

0.5

0.0

0.5

(t)

(b) Solution of eq. (3) for the initial conditionmarked
with a star in fig. 4a.

Fig. 4. Diagram of pendulum system and example of the trajectory generated when solving the equation
using a numerical solver.

a continuous IVP, as the one in eq. (2), into a discrete time dynamical system. These systems are
often modeled with diference equations:

��+1 = � (��), (5)

where �� represents the state vector at the �-th time point, ��+1 represents the next state vector, and
� : R� → R� models the system behavior. Just as with ODEs, the initial state can be represented by
a constraint on �0, and the solution to eq. (5) with an initial value deined by such constraint is a
function �� deined for all � ≥ 0. In eq. (5), time is implicitly deined as a discrete set.
We start by introducing the simplest and most intuitive numerical solver because it highlights

the main challenges well. There are many numerical solvers, each presenting unique trade-ofs. The
reader is referred to [14] for an introduction to this topic, to [44, 133] for more detailed expositions
on the numerical solution of ODEs and diferential-algebraic system of equations (DAEs), to [69]
for the numerical solution to partial diferential equations (PDEs), to [78] for an overview of more
advanced numerical schemes, and to [60] for an introduction to quantized state solvers.

Given an IVP ś eq. (3) ś and a simulation step sizeℎ > 0, the Forward Euler (FE) method computes
a sequence in time of points �̃� , where �̃� is the approximation of the solution to the IVP at time ℎ� :
�̃� ≈ �� = � (ℎ�). It starts from the given initial value �̃0 = � (0) and then computes iteratively:

�̃�+1 = �̃� + ℎ� (�� , �̃�), (6)

where � : R × R� → R� is the ODE right-hand side in eq. (2) and �� = ℎ� .
A graphical representation of the solutions IVP starting from diferent initial conditions can be

seen in ig. 4a. For a speciic point, the solver evaluates the derivative (depicted as curved arrows in
the plot) and takes a small step in this direction. Applying this process iteratively results in the full
trajectory, which for the pendulum corresponds to the circle in the phase space. The circle in the
phase space implies that the solution is repeating itself, i.e. corresponds to an oscillation in time as
seen in ig. 4b.
The ideal pendulum is an example of a well-studied dynamical system for which the dynamics

can be described using simple ODEs that can be solved using standard solvers. Unfortunately, the

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 7

simplicity of the idealized model comes at the cost of neglecting several factors which are present
in a real pendulum. For example, the arm of the real pendulum may bend and energy may be lost
in the pivot due to friction. The idealized model can be extended to account for these factors by
incorporating models of friction and bending. However, this is time-consuming, leads to a model
that is harder to interpret, and it does not guarantee that all factors are accounted for.

2.2 Neural Networks

Today, the term neural network has come to encompass a whole family of models, which collectively
have proven to be efective building blocks for solving a wide range of problems. In this paper, we
focus on a single class of networks, the fully-connected (FC) NNs, due to their simplicity and the
fact that they will be used to construct the models introduced in later sections. We refer the reader
to [40] for a general introduction to the ield of DL.

Like other data-driven models, NNs are generic structures that have no behavior speciic to the
problem they are being applied to before training. For this reason, it is essential to consider not
only how the network produces its outputs, but also how the network’s parameters are tuned to
solve the problem. For instance, we may consider using a FC NN to perform regression from a
scalar input, � , to a scalar output, �, as shown in ig. 5a.

hidden layer(s)input layer output layer

(a)

1 �̃ = N(x)

(b) Inference.

1 �̃ = N(x)

2 loss = L(�̃, �)

3 optimizer.step(loss)

(c) Training. This step is typically repeated many
times for diferent inputs and desired output val-
ues.

Fig. 5. A Fully-connected neural network is used to perform regression from an input � to�, where �̃ represents
the approximation provided by the NN. Each layer of the network is characterized by a set of weights that are
tuned during training to produce the desired output for a given input. During training, the loss function L is
used to measure the divergence between the output produced by the network, �̃, and the desired output �.

We will refer to the process of producing predictions as inference and the process of tuning the
network’s weights to produce the desired results as training. There can be quite drastic diferences
in the complexity of the two phases, the training phase typically being the most complex and
computationally intensive. During training, a loss function deines a mapping from the predicted
quantity to a scalar that is a measure of how close the prediction is to the true trajectory. Diferen-
tiating the loss function with respect to the parameters of the NN allows us to update them in a
way such that the loss is minimized.

Batching and Notation. During the training of a NN we often wish to perform the forward pass
individually for multiple inputs grouped in a batch. By convention, many DL frameworks treat
any leading dimensions as being batches of samples. We adopt this convention as well to simplify
notation. Thus N(�) ∈ R∗×� when N : R� → R

� and � ∈ R∗×� (’∗’ indicating any number of
leading dimensions).

ACM Comput. Surv.

8 Legaard et al.

Table 1. Comparison of direct-solution models.

Name ���� ����� ����� Uses Equations

Vanilla Direct-Solution � �, �

Automatic Diferentiation Direct-Solution � � �

Physics-Informed Neural Network � � �, �� ✓

Hidden Physics Neural Network � �, � �, �� ✓

2.3 Model Taxonomy

A challenge of studying any fast-evolving research ield such as DL, is that the terminology used
to describe important concepts and ideas may not always have converged. This is especially true
in the intersection between DL, numerical simulation, and physics, due to the inlux of ideas
and terminology from the diferent ields. In the literature, there is also a tendency to focus on
the success of a particular technique in a speciic application, with little emphasis on explaining
the inner workings and limitations of the technique. A consequence of this is that important
contributions to the ield become lost due to the papers being hard to digest.
In an attempt to alleviate this, we propose a simple taxonomy describing how models can be

constructed consisting of two categories: direct-solution models and time-stepper models, as shown
in ig. 6. Direct-solution models, described in section 3, do not employ integration; but rather
produce an estimate of the state at a particular time by feeding in the time as an input to the
network. Time-stepper models, found in section 4, can be characterized by using a similar approach
to numerical solvers, where the current state is used to calculate the state at some time into the
future. The diference between the time-stepper and continuous models has signiicant implications

(a) Direct-solution model. A NN is used to parameterize
a mapping from a time instance to the solution corre-
sponding to that time instance.

... ...

(b) Time-stepper model. The network,N , provides
the derivative of the system at various points in
state-space, which is then integrated by a numer-
ical solver, here depicted as

∫

.

Fig. 6. Overview of two distinct model types. Direct-solution models are trained to produce a simulation
without performing numerical integration explicitly. Conversely, time-stepper models use the same techniques
known from numerical simulation to produce a simulation of the system.

for how the model deals with varying initial conditions and inputs. Per design, the time-stepper
models handle diferent initial conditions and inputs, whereas direct-solution models have to be
re-trained. In other words, the time-stepper models learn the dynamics while the direct-solution
models learn a solution to an IVP for a given initial state and set of inputs.

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 9

3 DIRECT-SOLUTION MODELS

One approach to obtaining the trace of a system is to construct a model that maps a set of time
instances � ∈ R� , to the solution �̃ ∈ R�×� . We refer to this type of model as a direct-solution
model.

To construct the model, a NN is trained to provide an exact solution for a set of collocation points
which are sampled from the true system. Another way to view this is that the NN acts as a trainable
interpolation engine, which allows the solution to be evaluated at arbitrary points in time, not only
those of the collocation points. An important limitation of this approach is that a trained model is
ixed for a speciic set of initial conditions. To evaluate the solution for diferent initial conditions,
a new model would have to be trained on new data.
In the literature, this type of model is often applied to learn the dynamics of systems governed

by PDEs and less frequently for systems governed by ODEs. Several factors are likely to inluence
this pattern of use. Firstly, PDEs are generally harder and more computationally expensive to solve
than ODEs, which provides a stronger motivation for applying NNs as a means to obtain a solution.
Secondly, many practical uses of ODEs require that they can easily be evaluated for diferent initial
conditions, which is not the case for direct-solution models.
While the motivation for applying direct-solution networks may be strongest for PDEs, they

can also be applied to model ODEs. The main diference is that a network to model an ODE takes
time as the only input, whereas the network used to model a PDE would take both time and spatial
coordinates.
A key challenge in training direct-solution NNs is the amount of data required to reach an

acceptable level of accuracy and generalization. A vanilla approach that does not leverage prior
knowledge, like the one described in section 3.2, is likely to it the collocation points very well
but fails to reproduce the underlying trend. A recent trend popularized by physics-informed neural

networks (PINNs) [101] is to apply automatic diferentiation and to use equations encoding prior
knowledge to improve the generalization of the model.
The remaining part of this section describes how the diferent types of direct-solution models,

shown in table 1, can be applied to simulate the ideal pendulum system for a speciic initial condition.
First, the architecture of the NNs used for the experiments is introduced in section 3.1. Next, the
simplest approach is introduced in section 3.2, before progressively building up to a model type
that incorporates features from all prior models in section 3.5.

3.1 Methodology

The examples of direct-solution models shown in this section use a fully-connected NN with 3
hidden layers consisting of 32 neurons each. The output of each hidden layer is followed by a
softplus activation function.

Each model is trained on a trajectory corresponding to the simulation for a single initial condition,
which is sampled to obtain a set of collocation points as shown in ig. 7b. The goal is to obtain
a model that can predict the solution at any point in time, not only those coinciding with the
collocation points.

3.2 Vanilla Direct-Solution

Direct-solution models produce an estimate of the system’s state at a given time, �� , by introducing
it as an input to a NN.

To model the pendulum we use a feed-forward network with a single input � and two outputs �̃
and �̃ , as depicted in ig. 7a. To obtain the solution for multiple time instances, the network can

ACM Comput. Surv.

10 Legaard et al.

(a) Network structure.

0.5

0.0

0.5

(t)

0 2 4 6 8 10 12
t

1.0

0.5

0.0

0.5

(t)

true
predicted
numerical
collocation point

(b) Predictions.

1 �̃ ,�̃ = N(t)

2 loss = L� ((�̃ , �̃), (� , �))

3 optimizer.step(loss)

(c) Training.

1 �̃ ,�̃ = N(t)

(d) Inference.

Fig. 7. Vanilla direct-solution model. The network N : R→ R2 maps time instances � to the solution �̃ , �̃ .
Black dots indicate the collocation points, i.e. the points in which the loss function is minimized. The network
fits all collocation points well, but fails to generalize in the interval between points. Additionally, �̃ is very
diferent from the approximation obtained using numerical diferentiation of �̃ .

simply be evaluated multiple times. There are no dependencies between the estimates of multiple
states, allowing us to evaluate all of these in parallel.

The network is trained by minimizing the diference between the predicted and the true trajectory
in the collocation points shown in ig. 7b using a distance metric such as MSE deined by eq. (7).

L� (�̃, �) =
1

��

�−1︁

�=0

�−1︁

�=0

(�̃� � − �� �)
2 (7)

where � is the length of the trajectory, � is the dimension of the system’s state-space, and �� �
denotes the value of the �-th state at the �-th point of time of the trajectory.

It is important to emphasize that the models learn a sequence of system states characterized by a
speciic set of initial conditions, i.e. the initial conditions are encoded into the trainable parameters
of the network during training and cannot be modiied during inference.

Direct-solution models are sensitive to the quality of training data. NNs are used to ind mappings
between sparse sets of input data and the output. Even a simple example in the data-sampling
strategy can inluence their generalization performance. Consider the trajectory in ig. 7b; while
the NN trained on the collocation points can produce a prediction that matches the points perfectly,
while its generalization performance is poor, i.e. between the collocation points the predicted
trajectory does not match the true development.
It is worth noting that there are many ways that this can go wrong, i.e., given a suiciently

sparse sampling, it is not just one speciic choice of training points that makes it impossible for
the network to learn the true mapping. The obvious way to mitigate the issue is to obtain more
data by sampling at a higher rate. However, there are cases where data acquisition is expensive,
impractical, or where it is simply impossible to change the sampling frequency.

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 11

Consider a system where one state variable is the derivative of the other, a setting that is quite
common in systems that can be described by diferential equations. A vanilla direct-solution model
cannot guarantee that the relationship between the predicted state variables respects this property.
Fig. 7b provides a graphical representation of the issue. While the model predicts both system state
variables correctly in the collocation points, it can clearly be seen that the estimate for � is neither

the derivative of �̃ nor does it come close to the true trajectory.

3.3 Automatic Diferentiation Direct-Solution

One way to leverage known relations is to calculate derivatives of state variables using automatic
diferentiation instead of having the network predict them as explicit outputs. In the case of the

pendulum, this means using the network to predict �̃ and then obtaining �̃ by calculating the

irst-order derivative of �̃ with respect to time, as described in ig. 8c and 8d. Fig. 8b shows how
much closer the predicted trajectories are to the true ones when using this approach.

(a) Network structure.

0.5

0.0

0.5

(t)

0 2 4 6 8 10 12
t

0.5

0.0

0.5

(t)

true
predicted
numerical
collocation point

(b) Predictions

1 �̃ = N(t)

2 �̃ = gradient(�̃ , t)

3 loss = L� ((�̃ , �̃), (� , �))

4 optimizer.step(loss)

(c) Training.

1 �̃ = N(t)

2 �̃ = gradient(�̃ , t)

(d) Inference.

Fig. 8. Automatic diferentiation in the direct-solution model. The network N : R → R maps the time
instances � to the pendulum’s angle �̃ . The angular velocity �̃ is obtained by diferentiating �̃ with respect to
time using automatic diferentiation. This approach ensures that an output, representing the derivative of
another output, acts like a true derivative. As a result, the network generalizes significantly beter across both
state variables.

A drawback of obtaining � using automatic diferentiation (AD) is an increased computation cost
and memory consumption depending on which mode of automatic diferentiation is used. Using
reverse mode AD (backpropagation) as depicted in ig. 8a requires another pass of the computation
graph, as indicated by the arrow going from output � to input � . For training, this is not problematic
since the computations carried out during backpropagation are necessary to update the weights
of the network as well. However, using backpropagation during inference is not ideal because it
introduces unnecessary memory and computation cost. An alternative is to use forward AD where
the derivatives are computed during the forward pass, thus dispensing of the separate backward
pass. Unfortunately, not all DL frameworks provide support for forward mode AD [5][table 5]. A

ACM Comput. Surv.

12 Legaard et al.

(a) Network structure.

0.5

0.0

0.5

(t)

0 2 4 6 8 10 12
t

0.5

0.0

0.5

(t)

true
predicted
numerical
collocation point

(b) Predictions.

1 �̃ = N(t)

2 �̃ = gradient(�̃ , t)

3 ��̃ = gradient(�̃, t)

4 loss = L� ((�̃ ,�̃),(� ,�))+L��(�̃ ,��̃)

5 optimizer.step(loss)

(c) Training.

1 �̃ = N(t)

2 �̃ = gradient(�̃ , t)

(d) Inference.

Fig. 9. Physics-informed neural network. The networkN : R→ Rmaps the time instances � to the pendulum’s
angle �̃ . The angular velocity �̃ and its derivative are obtained using automatic diferentiation. The network
is trained by minimizing eq. (8).

likely explanation is that the typical task of evaluating the derivative of the loss with respect to the
network’s weights is more eicient using reverse-mode AD (backpropagation).

3.4 Physics-Informed Neural Networks

In modeling scenarios where the equations describing the dynamics of the system are known, we
can use them to train the model as another way of addressing the data-sampling issue. In what is
known as physics-informed neural networks [101], knowledge about the physical laws governing
the system is used to impose structure on the NN model. This can be accomplished by extending
the loss function with an equation loss term that ensures the solution obeys the dynamics described
by the governing equations. While this technique was originally proposed for solving PDEs, it can
also be applied to solve ODEs. For instance, to model the ideal pendulum using a PINN, we could

integrate the expression of ��̃
��

from eq. (1) to formulate the loss as

L�� (�̃ ,
��̃

��
,
��̃

��
) = L� (�̃ ,

��̃

��
) + L�� (�̃ ,

��̃

��
) (8)

L�� (�̃ ,
��̃

��
) =

1

�

�−1︁

�=0

(

��̃�

��
−
�

�
sin �̃�

)2

Again, we can use automatic diferentiation to obtain ��̃
��

by diferentiating �̃ twice, depicted in
the computation graph shown in ig. 9a. As shown in ig. 9c, this requires only a few lines of code
when using AD.

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 13

A motivation for incorporating the equation loss term is to constrain the search space of the
optimizer to parameters that yield physically consistent solutions. It should be noted that both
the loss term penalizing the prediction error and the equation error are necessary to constrain
the predictions of the network. On its own, the equation error guarantees that the predicted state
satisies the ODE, but not necessarily that it is the solution at a particular time. Introducing the
prediction error ensures that the predictions are not only valid but also the correct solutions for
the particular points used to calculate the prediction error. Additionally, it should be noted that the
collocation and equation loss terms may be evaluated for a diferent set of times. For instance, the
equation-based loss term may be evaluated for an arbitrary number of time instances, since the
term does rely on accessing the true solution for particular time instances.

In addition to proposing the introduction of the equation loss, PINNs also apply the idea of using
backpropagation to calculate the derivatives of the state variables, rather than adding them as
outputs to the network, as depicted in ig. 9a. Being able to obtain the n-th order derivatives is
very useful for PINNs as they often appear in diferential equations on which the equation loss is

based. For the ideal pendulum, this technique can be used to obtain �2�
��2

(�) from a single output of
the network � , which can then be plugged into eq. (2) to check that the prediction is consistent. A
beneit of using backpropagation compared to adding state variables as outputs of the network is
that this structurally ensures that the derivatives are in fact partial-derivatives of the state variables.

Training PINNs using gradient descent requires careful tuning of the learning rate. Speciically, it
has been observed that the boundary conditions and the physics regularization terms may converge
at diferent rates. In some cases, this manifests itself as a large misit speciically at the boundary
points. The authors of [131, 132] propose a strategy for weighing the diferent terms of the loss
function to ensure consistent minimization across all terms.

3.5 Hidden Physics Networks

Hidden physics neural networks (HNNs) [103] can be seen as an extension of PINNs that use
governing equations to extract features of the data that are not present in the original training data.
We refer to the unobserved variable of interest as a hidden variable. This technique is useful in
cases where the hidden variable is diicult to measure compared to the known variables or simply
impossible to measure since no sensor exists that can reliably measure it.

For the sake of demonstration, we may suppose that the length of the pendulum arm is unknown
and that it varies with time, as shown in ig. 10b. For the training, this is problematic since � is

required to calculate the equation loss. A solution to this is to add an output �̃ to the network that
serves as an approximation of the true length � , as depicted in ig. 10a. We modify eq. (8) to deine a

new loss function that takes the estimate of �̃ into account

L�� (�̃ ,
��̃

��
,
��̃

��
, �̃) = L� (�̃ ,

��̃

��
) + L′

�� (�̃ ,
��̃

��
, �̃) (9)

L′
�� (�̃ ,

��̃

��
, �̃) =

1

�

�−1︁

�=0

(

��̃�

��
−
�

�̃�
sin �̃�

)2

It should be emphasized that �̃ is not part of the collocation loss term, since the true value � is
not known. It is only as a result of the equation loss that the network is constrained to produce
estimates of � satisies the system’s dynamics.

The authors of [103] use this technique to extract pressure and velocity ields based on measured
dye concentrations. In this particular case, the dye concentration can be measured by a camera,
since the opacity of the luid is proportional to the dye concentration. They show that this technique

ACM Comput. Surv.

14 Legaard et al.

(a) Network structure.

0.5
0.0
0.5

(t)

0.5

0.0

0.5

(t) true
predicted
collocation point

0 2 4 6 8 10 12
t

1

2

3

l(t
)

(b) Predictions.

1 �̃ , �̃ = N(t)

2 �̃ = gradient(�̃ , t)

3 ��̃ = gradient(�̃, t)

4 loss = L� ((�̃ ,�̃),(� ,�))+L′
��(�̃ , ��̃, �̃)

5 optimizer.step(loss)

(c) Training.

1 �̃ , �̃ = N(t)

2 �̃ = gradient(�̃ , t)

(d) Inference.

Fig. 10. Hidden-physics network. This network N : R→ R2 is an extension of the PINN and maps the time
instances � to the pendulum’s angle �̃ and the length of the pendulum �̃ which is set to vary in time for the
sake of demonstration. Note that �̃ is not part of L� since there is no training data for it; instead, it is part of
the equation loss L′

�� .

also works well even in cases where the dye concentration is sampled at only a few points in time
and in space. Like PINNs, HNNs are easily applied to PDEs, but at the cost of the initial conditions
being encoded in the network during training.

The diference between PINNs and HNNs is very subtle; both utilize similar network architectures
and use loss functions that penalize any incorrect prediction violations of governing equations. A
distinguishing factor is that, in HNNs, the hidden variable is inferred based on physical laws that
relate the hidden variable to the observed variables. Since the hidden variables are not part of the
training data, they can only be enforced through equations.

4 TIME-STEPPER MODELS

Consider the approach used to model an ideal pendulum, described in section 2. First, a set of
diferential equations, eq. (2), was used to model the derivative function of the system. Next, using
the function, a numerical solver was used to obtain a simulation of the system for a particular initial
condition. The challenge of this approach is that identifying the derivative function analytically is
diicult for complex systems.
An alternative approach is to train a NN to approximate the derivative function of the system,

allowing the network to be used in place of the hand-derived function, as depicted in ig. 11. We
refer to this type of model as a time-stepper model since it produces a simulation by taking multiple
steps in time, like a numerical solver. An advantage of this is that it allows well-studied numerical
solvers to be integrated into a model with relative ease.
The main diferences between two given models can be attributed to (i) how the derivatives

are produced by the network and (ii) what sort of integration scheme is applied. For instance, the
diference between the direct (section 4.2.1) and Euler time-stepper models (section 4.2.2) is that
the former does not employ any integration scheme, whereas the latter is similar to the Forward

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 15

... ...

Fig. 11. Time-stepper model. Starting from a given initial condition �0, the next state of the system �̃�+1,
is obtained by feeding the current state �̃� into the derivative network N , producing a derivative that is
integrated using an integration scheme

∫

. The loss L is evaluated by comparing the predicted with the
training trajectory. The process can be repeated for multiple trajectories to improve the generalization of the
derivative network.

Euler (recall eq. (6)), leading to a signiicant diference in predictive ability. Other networks, such
as the Lagrangian time-stepper, section 4.4.1, distinguish themselves by the way the NN produces
the derivatives. Speciically, this approach does not obtain �� and �� as outputs from a network
but instead uses AD in an approach similar to section 3.3. Similar to how an ODE can be solved
with diferent numerical solvers, the Lagrangian time-stepper could be modiied to use a diferent
integration scheme than FE.
Given the independent relationship between the choice of NN and the numerical solver used,

the models introduced in the sections should not be viewed as an exhaustive list of combinations.
Rather, the aim is to describe and compare the models commonly encountered in the literature.

4.1 Methodology

A time-stepper must be able to produce accurate simulations for diferent initial conditions. It
would be possible to train a time-stepper using a single trajectory, however this is unlikely to
generalize well to diferent initial conditions. Another approach is to use multiple, potentially
shorter trajectories as training data. We can extend eq. (7) to take the mean error over � trajectories:

L�� (�̃ , �) =
1

�

�−1︁

�=0

L� (�̃� , ��) (10)

where � ∈ ��×�×� are the training trajectories and �̃ ∈ ��×�×� are the predicted trajectories.
Each time-stepper model is trained on 100 trajectories, each consisting of two samples; the initial

state and the state one step into the future. The initial states are sampled in the interval � : (−1, 1)
and � : (−1, 1) using Latin hyper-cube sampling, see ig. 11. Each model uses a fully connected
network consisting of 8 hidden layers with 32 neurons each. Each layer of the network applies a
softplus activation function. The number of inputs and outputs is determined by the number of
states characterizing the system, which is 2 for the ideal pendulum. Exceptions to this are networks
such as the Lagrangian network described in section 4.4.1, for which the derivatives are obtained
using automatic diferentiation rather than as outputs of a network.

To validate the performance of each model, 100 new initial conditions are sampled in a grid. For
each initial condition in the validation set, the system is simulated for 4� seconds using the original
ODE and compared with the corresponding prediction made by the trained model. For simplicity,
we show only the trajectory corresponding to a single initial condition, like the one on ig. 12b.

ACM Comput. Surv.

16 Legaard et al.

4.2 Integration Schemes

An important characteristic of a time-stepper model is how the derivatives are evaluated and
integrated to obtain a simulation of the system. Again, it should be emphasized that the choice
of the numerical solver is independent of the architecture of the NN used to approximate the
derivative function. In other words, for a given choice of NN architecture, the performance of the
trained model may depend on the choice of solver.
The choice of numerical solver not only determines how the model produces a simulation of

the system but also inluences how the model must be trained. Speciically, when minimizing any
criterion that is a function of the integrated state, the choice of solver determines how the state is
produced.
In the following subsection, we demonstrate how various numerical solvers can be used and

evaluate their impacts on the performance of the models.

4.2.1 Direct Time-Stepper. The simplest approach to obtaining the next state is to use the prediction
produced by the network directly, as summarized in ig. 12a:

�̃�+1 = N(�̃�),

where � represents a generic neural network with arbitrary architecture and �̃0 = �0.
The network is trained to produce an estimate of the next state, �̃�+1, from the current state, �� .

During training, this operation can be vectorized such that every state at every timestamp, omitting
the last, is mapped one step into the future using a single invocation of the network, as shown in
ig. 12c. The reason for leaving out the last sample in when invoking the NN is that this would
produce a prediction, ��+1, for which there does not exist a sample in the training set.
At inference time, only the initial state �0 is known. The full trace of the system is obtained by

repeatedly introducing the current state into the network, as depicted in ig. 12d. Note that the
inference phase cannot be parallelized in time, since predictions for time � +1 depend on predictions
for time � . However, it is possible to simulate the system for multiple initial states in parallel, as
they are independent of each other.
The simulation for a single initial condition can be seen in ig. 12b. While the simulation is

accurate for the irst few steps, it quickly diverges from the true dynamics.

4.2.2 Residual Time-Stepper. A network can be trained to predict a derivative-like quantity which
can then be added to the current state to yield the next as shown in ig. 13a:

�̃�+1 = �̃� + N(�̃�).

DL practitioners may recognize this as a residual block that forms the basis for residual net-
works (ResNets)[45] which are used with great success in applications spanning from image
classiication to natural language processing. Readers familiar with numerical simulation will likely
notice that the previous equation closely resembles the accumulated term in the forward Euler
integrator (recall eq. (6)), but without the term that accounts for the step size. If the data is sampled
at equidistant time steps, the network scales the derivative to adapt the step size.

The central motivation for using a residual network is that it may be easier to train a network to
predict how the system will change, rather than a direct mapping between the current and next
state.

4.2.3 Euler Time-Stepper. Alternatively, the step-size can be encoded in the model by scaling the
contribution of the derivative by the step size ℎ� as shown in ig. 14a:

�̃�+1 = �̃� + ℎ� ∗ N (�̃�). (11)

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 17

...

(a) Network structure.

1.0

0.5

0.0

0.5

(t)

0 2 4 6 8 10 12
t

1.0

0.5

0.0

0.5

(t)

true
predicted

(b) Predictions.

1 �̃ [:,0,:] = ��0

2 for i in 0...m-1

3 �̃ [:,i+1,:] = N(�̃ [:,i,:])

4 loss = L�� (� ,�̃)

5 optimizer.step(loss)

(c) Training.

1 �̃ [0,:] = ��0
2 for i in 0...m-1

3 �̃[i+1,:] = N(�̃[i,:])

(d) Inference.

Fig. 12. Direct time-stepper. The output of the network N : R2 → R2 is used as the prediction for the next
step without any form of numerical integration. An issue of this type of model is that it fails to generalize
beyond the exact points in state space that it has been trained for. Over several steps, the error compounds,
which leads to an inaccurate simulation.

This resemblance has been noted several times [97] and has resulted in work that interprets residual
networks as ODEs allowing classical stability analysis to be used [15, 110, 111].

The forward Euler (FE) integrator shown in eq. (11) is simple to implement. However, it accumu-
lates a higher error than more advanced methods, such as the Midpoint, for a given step size. This
issue has motivated the integration of more sophisticated numerical solvers in time-stepper models.
For example, linear multistep (LMS) methods are used in [102]. LMS uses several past states and
their derivatives to predict the next state, resulting in a smaller error compared to FE. Like FE, LMS
only requires a single function evaluation per step, making it a very eicient method. But if the
system is not continuous, this method needs to be re-initialized after a discontinuity occurs [36].

4.2.4 Neural Ordinary Diferential Equations. Neural ordinary diferential equations (NODEs) [18] is
a method used to construct models by combining a numerical solver with a NN that approximates
the derivative of the system. Unlike the previously introduced models, the term NODEs is not used
to refer to models using a speciic integration scheme, but rather to the idea of treating an ML
problem as a dynamical system that can be solved using a numerical solver.

Some confusion may arise from the fact that NODEs are frequently used for image classiication
throughout the literature, which may seem completely unrelated to numerical simulations. The
underlying idea is that an image can be represented as a point in state-space that moves on a
trajectory deined by an ODE, as shown in ig. 15. The goal of this is to ind an ODE that results
in images of the same class converging to a cluster that is easily separable from that of unrelated
classes. For single inference, e.g. in image classiication, intermediate predictions have no inherent
meaning, i.e. they typically do not correspond to any measurable quantity of the system; we are

ACM Comput. Surv.

18 Legaard et al.

...

(a) Network structure.

0.50

0.25

0.00

0.25

0.50

(t)

0 2 4 6 8 10 12
t

0.50

0.25

0.00

0.25

0.50

(t)

true
predicted

(b) Predictions.

1 �̃ [:,0,:] = �0

2 for i in 0...m-1

3 Δ� = N(�̃ [:,i,:])

4 �̃ [:,i+1,:] = �̃ [:,i,:] + Δ�

5 loss = L�� (� ,�̃)

6 optimizer.step(loss)

(c) Training.

1 �̃ [0,:] = �0
2 for i in 0...m-1

3 Δ� = N(�̃[i,:])

4 �̃[i+1,:] = �̃[i,:] + Δ�

(d) Inference.

Fig. 13. Residual time-stepper. The output of the network is added to the current state to form a prediction of
the next state. Compared to the direct time-stepper, this method produces simulations that are much closer
to the true system.

only interested in the inal estimate �̂� . Due to the lack of training samples corresponding to
intermediate steps, it is impossible to minimize the single-step error.
The authors of [18] motivate the use of an adaptive-step size solver by its ability to adjust the

step size to match the desired balance between numerical error and performance. An alternative
way to view NODEs is as a continuous-depth model where the number of layers is a result of the
step size chosen by the solver.
From this perspective, the stability of NODEs is closely related to the stability of integration

schemes of classical ODEs. To address the convergence issues during training, some authors
propose NODEs with stability guarantees by exploiting Lyapunov stability theory [79] and spectral
projections [99]. Another standing issue of NODEs is their large computational overhead during
training compared to classical NNs. Authors in [28] demonstrated that stability regularization
may improve convergence and reduce the training times of NODEs. [96] proposes graph NODEs
resulting in training speedups, as well as improved performance due to incorporation of prior
knowledge.
To improve the performance, others have introduced various inductive biases such as Hamil-

tonian NODE architecture [142], or penalizing higher order derivatives of the NODEs in the
loss function [55]. To account for the noise and uncertainties, some authors proposed stochastic
NODEs [42, 48, 70, 74] as generalizations of deterministic NODEs.

A fundamental issue of interpreting trained NODEs as proper ODEs is that they may have trajec-
tory crossings, and their performance can be sensitive to the step size used during inference [92].
Contrary to this, the solutions of ODEs with unique solutions would never have intersecting
trajectories as this would imply that, for a given state (the point of intersection), the system could
evolve in two diferent ways. Some authors have noted that there seems to be a critical step size

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 19

...

...

(a) Network structure.

0.50

0.25

0.00

0.25

0.50

(t)

0 2 4 6 8 10 12
t

0.50

0.25

0.00

0.25

0.50

(t)

true
predicted

(b) Predictions.

1 �̃ [:,0,:] = �0

2 for i in 0...m-1

3 Δ� = N(�̃ [:,i,:])

4 �̃ [:,i+1,:] = �̃ [:,i,:] + ℎ[i]*Δ�

5 loss = L�� (� ,�̃)

6 optimizer.step(loss)

(c) Training.

1 �̃ [0,:] = �0
2 for i in 0...m-1

3 Δ� = N(�̃[i,:])

4 �̃[i+1,:] = �̃[i,:] + ℎ[i]*Δ�

(d) Inference.

Fig. 14. Euler time-stepper. The output of the network is multiplied by the step-size and is added to the
current state to form a prediction for the next state. In this case accounting for the step-size leads to minimal
improvements, if any, compared to the residual time-stepper. This is likely due to the fact that the step-size
used during training is the same as the one used to plot the trajectory in fig. 14b.

ClassificationSimulation

x
x
x

oo o

Fig. 15. Diferent applications of NODEs. NODEs can be used to simulate a dynamical system with the goal
of obtaining a trajectory corresponding to an initial condition. In this case, the goal is to train the network to
produce a derivative that provides a good estimate of the true state at every step of the trajectory. Another
use is for classification by treating each input sample as a point in state space, which evolves according to
the derivative produced by the network. In this case, the goal is to train the network to learn dynamics that
leads to samples belonging to each class ending in distinct clusters that are easily separable.

for which the trained network starts behaving like a proper ODE [92]. That is, if trained with a
particular step size, the network will perform equally well or better if used with a smaller step
size during inference. Another approach is to use regularization to constrain the parameters of the
network to ensure that solutions are unique. For ResNets this can be achieved by ensuring that the
Lipschitz constant of the network is less than 1 for any point in the state-space, which guarantees
a unique solution [7].

ACM Comput. Surv.

20 Legaard et al.

...

Solver

initial condition
solver method
step size
...
error tolerance

(a) Network Structure.

0.50

0.25

0.00

0.25

0.50

(t)

0 2 4 6 8 10 12
t

0.50

0.25

0.00

0.25

0.50

(t)

true
predicted

(b) Predictions.

1 �̃ = odeint(N,�0,������ ,���� ,"rk4")

2 loss = L�� (� ,�̃)

3 optimizer.step(loss)

(c) Training.

1 �̃ = odeint(N,�0,������ ,���� ,"rk4")

(d) Inference.

Fig. 16. Neural ordinary diferential equations. Neural ODEs generally refer to models that are constructed to
use a numerical solver to integrate the derivatives through time. Unlike the previously introduced integration
schemes which mapped to concrete architectures, neural ODEs refer to the idea of using well-established
numerical solvers inside a model. Part of neural ODEs popularity is due to the fact that it mimics the
programming APIs of traditional numerical solvers, which makes it easy to switch between diferent types of
solvers.

...

...

(a) State and input stacked and fed
into the same network.

...

...

+

(b) State and input fed into separate
networks.

Fig. 17. Incorporation of inputs in time stepping model.

To deal with external inputs in NODEs, the authors of [27, 88] propose lifting the state space via
additional augmented variables. A more general way of explicitly modeling the input dynamics via
additional NNs is proposed by [80].

4.3 External Input

So far, we have only considered how to apply time-stepper models to systems where the derivative
function is determined exclusively by the system’s state. In practice, many systems encountered
are inluenced by an external stimulus that is independent of the dynamics, such as external forces
acting on the system or actuation signals of a controller. To avoid confusion, we refer to these
external inluences as external input to distinguish them from the general concept of a NN’s inputs.

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 21

The structure of a time-stepper model lends itself well to introducing external inputs at every
evaluation of the derivative function. As a result, it is possible to integrate external inputs in
time-stepper models in many ways.

4.3.1 Neural State-Space Models. Inputs can be added to the time-stepper models in a couple of
ways. One way is to concatenate the inputs with the states, as illustrated in ig. 17a:

�̃�+1 = N([�� , ��]), (12)

where �̃� and �� represent states and inputs at time �� , respectively. The evolution of the future
state ��+1 is fully determined by the derivative networkN . A possible rationale for lumping system
states and inputs are parameter-varying systems, where the inputs inluence the system diferently
depending on the current state. This approach does not impose any structure on how the state
and input information are aggregated in the network, since the layers of the network make no
distinction between the two.
Alternatively, two separate networks A and B can be used to model contributions of the

autonomous and forced parts of the dynamics, respectively, as seen in ig. 17b. This information
can then be aggregated by taking the sum of the two terms:

�̃�+1 = A(�̃�) + B(��). (13)

This approach is suitable for systems where the inluence of the inputs is known to be independent
of the state of the system since it structurally enforces models that are independent.
In system identiication and control theory, both variants (12) and (13) are referred to as state-

space models (SSM) [56, 66, 116, 117]. More recently, researchers [43, 64, 104, 123] proposed to
model non-linear SSMs by using NNs, which we refer to a neural state-space models (NSSM).

Some works proposed to combine neural approximations with classical approaches with linear
state transition dynamics A, resulting in Hammerstein [91], and Hammerstein-Wiener architec-
tures [47], or using linear operators representing transfer function as layers in deep NNs [30].
While, others leverage encoder-decoder neural architectures to handle partially observable dy-
namics [37, 81]. Authors in [26, 120, 121] applied principles of gray-box modeling by imposing
physics-informed constraints on learned neural SSM. The authors of [90] analyzed the efect of
diferent neural architectures on the system identiication performance of non-linear systems and
concluded that, compared to classical non-linear regressive models, deep neural networks scale
better and are easier to train.

4.3.2 Neural ODEs with External Input. The challenge of introducing external input to NODEs is
that the numerical solver may try to evaluate the derivative function at time instances that align
with the sampled values of the external input. For instance, an adaptive step-size solver may choose
its own internal step size based on how rapidly the derivative function changes in the neighborhood
of the current state. The issue can be solved using interpolation to obtain values of external inputs
for time instances that do not coincide with the sampling.

External input can also be used to represent static parameter values that remain constant through
a simulation. In the context of the ideal pendulum system, we could imagine that the length of the
pendulum could be made a parameter of the model, allowing the model to simulate the system
under diferent conditions. The authors of [67] call this approach parameterized NODEs, and use
this mechanism to train models that can solve PDEs for diferent parameter values.

Another approach is neural controlled diferential equations (NCDEs) [57]. The term "controlled"
should not be confused with the ield of control theory, but rather the mathematical concept of
controlled diferential equations from the ield of rough analysis. The core idea of NCDEs is to treat
the progression of time and the external inputs as a signal that drives the evolution of the system’s

ACM Comput. Surv.

22 Legaard et al.

state over time. The way that a speciic system responds to this signal is approximated using a NN.
A beneit of this approach is that it generalizes how a system’s autonomous and forced dynamics
are modeled. Speciically, it allows NCDEs to be applied to systems where NODEs would be applied,
as well as systems where the output is purely driven by the external input to the system.

4.4 Network Architecture

Part of the success of NNs can be attributed to the ease of integrating specialized architectures into
a model. In this section, we introduce a few examples of how to integrate domain-speciic NNs into
a time-stepper model.

First, section 4.4.1 describes how energy-conserving dynamics can be enforced by encoding the
problem using Hamiltonian or Lagrangian mechanics. Next, section 4.4.2 demonstrates another
way of enforcing energy conservation, which is often encountered in molecular dynamics. Finally,
section 4.4.3 describes how graphs can be integrated with a time-stepper to solve problems that
can naturally be represented as graphs.

... ...

Fig. 18. Lagrangian time-stepper. The Lagrangian,
L (not to be confused with the loss function), is
diferentiated using AD to obtain the derivative
of the state.

4.4.1 Hamiltonian and Lagrangian Networks. Recall
that the movement in some physical systems hap-
pens as a result of energy transfers within the sys-
tem, as opposed to systems where energy is trans-
ferred to/from the system. The former is called an
energy conservative system. For instance, if the pen-
dulum introduced in ig. 3 had no friction and no
external forces acting on it, it would oscillate forever,
with its kinetic and potential energy oscillating with-
out a change in its total energy. In physics, a special
class of closely related functions, called Hamiltonian
and Lagrangian functions, has been developed for
describing the total energy of a system. Both Hamil-
tonianH and Lagrangian L are deined as a sum of
total kinetic � and potential energy� of the system.
We start with the Hamiltonian deined as

H(�) = � (�) −� (�), (14)

where � = [�, �] represents the concatenated state vector of generalized coordinates � and general-
ized momenta � . By taking the gradients of the energy function (14), we can derive a corresponding
diferential ¤� = � (�) equation as

¤� = �∇H(�), (15)

where � is a symplectic matrix. Please note that the diference between H and L is their corre-
sponding coordinate system: for the Lagrangian, instead of � = [�, �], we consider � = [�, ¤�], where
¤� = � (�) ¤�, with� (�) being a generalized mass matrix.
Despite their mathematical elegance, deriving analytical Hamiltonian and Lagrangian functions

for complex dynamical systems is a grueling task. In recent years, the research community turned
its attention to deriving these types of scalar-valued energy functions by means of data-driven
methods [41, 77, 142]. Speciically, the goal is to train a neural network to approximate the Hamil-
tonian/Lagrangian of the system, as shown in ig. 18. A key aspect of this approach is that the
derivatives of the states are not outputs of the network, but are instead obtained by diferenti-
ating the output of the network L, with respect to the state variables [�, �] and plugging the
results into eq. (14). The main advantage of Hamiltonian [41, 124] NNs and the closely related

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 23

... ...

Fig. 19. A simplified view of a graph time-stepper. During each step of the simulation, the current state is
encoded as a graph (Enc) which is then used to compute the change in state variable between the current
and next time step (Proc). Finally, the change in state is decoded to the original state space to update the
state of the system (Dec).

Lagrangian [21, 77] NNs, is that they naturally incorporate the preservation of energy into the
network structure itself. Research into the simulation of energy preserving systems has yielded a
special class of solvers, called symplectic solvers. The authors of [52] propose a new specialized
network architecture, referred to as symplectic networks, to ensure that the dynamics of the model
are energy conserving. Similarly, the authors of [29] propose extensions for including explicit
constraints via Lagrange multipliers for improved training eiciency and accuracy.

4.4.2 Deep Potential Energy Networks. A similar concept to that of Hamiltonian and Lagrangian

neural networks involves learning neural surrogates for potential energy functions � (�) of a
dynamical system, where the primary diference with Hamiltonians and Lagrangians is that the
kinetic terms are encoded explicitly in the time stepper by considering classical Newtonian laws of
motion:

�̃�+1 = �̃� + �̃� , (16a)

�̃�+1 = �̃� −
∇V(�)

�
, (16b)

where �� , and �� are positional and velocity vectors of the system. The gradients of the potential
function are equal to the interaction forces � = −∇V(�), while� being a vector of łmassesž.
This approach is extensively used, mainly in the domain of molecular dynamics (MD) simula-

tions [6, 50, 125, 126, 130, 139]. Inmodern data-drivenMD, the learned neural potentials� (�) replace
expensive quantum chemistry calculations based, e.g., on density functional theory (DFT). The
advantage of this approach for large-scale systems, compared to directly learning high-dimensional
maps of the time steppers, is that the learning of the scalar-valued potential function� (�) : R� → R

represents a much simpler regression problem. Furthermore, this approach allows prior information
to be encoded in the architecture of the deep potential functions � (�), such as considering only
local interactions between atoms [119], and encoding spatial symmetries [34, 140]. As a result, these
methods are allowing researchers in MD to achieve unprecedented scalability, allowing simulation
of up to 100M atoms on supercomputers [49]. In contrast, training a single naive time stepper for
such a model would require learning a 300M dimensional mapping.

4.4.3 Graph Time-Steppers. Many complex real-world systems from social networks, andmolecules,
to power grid systems, can be represented as graph structures describing the interactions between
individual subsystems. Recent research in graph neural networks (GNNs) embraces this idea by
embedding or learning the underlying graph structure from data. There exists a large body of work
on GNNs, but covering this is outside the scope of this survey. We refer the interested reader to

ACM Comput. Surv.

24 Legaard et al.

overview papers [3, 10, 115, 137, 141, 143]. For the purposes of this section, we focus solely on
GNN-based time stepper models applied to model dynamical systems [58, 71].

The core idea of using GNNs inside time-steppers is to use a GNN-based pipeline to estimate the
derivatives of the system, as shown in ig. 19. Generally, the pipeline can be split into 3 steps; irst,
the current state of the system is encoded as a graph, next the graph is processed to produce an
update of the system’s state, and inally, the update is decoded and used to update the state of the
system.
One of the early works includes interaction networks [4] or neural physics engine (NPE) [16]

demonstrating the ability to learn the dynamics in various physical domains in smaller scale
dimensions, such as n-body problems, rigid-body collision, and non-rigid dynamics. Since then,
the use of GNNs rapidly expanded, inding its use in neural ODE time steppers [112] including
control inputs [72, 114], dynamic graphs [109], or considering feature encoders enabling learning
dynamics directly from the visual signals [134]. Modern GNNs are trained using message passing
(MP) algorithms introduced in the context of quantum chemistry application [39]. In GNNs, each
node has associated latent variables representing values of physical quantities such as positions,
charges, or velocities, then in the MP step, the aggregated values of the latent states are passed
through the edges to update the values of the neighboring nodes. This abstraction eiciently
encodes local structure-preserving interactions that commonly occur in the natural world. While
early implementations of GNN-based time steppers sufered from larger computational complexity,
more recent works [113] have demonstrated their scalability to ever larger dynamical systems with
thousands of state variables over long prediction horizons. Due to their expressiveness and generic
nature, GNNs could in principle be applied in all the time-stepper variants summarized in this
manuscript, some of which would represent novel architectures up to date.

4.5 Uncertainty

So far, we have considered only the cases of modeling systems where noise-free trajectories
were available for training. In reality, it is likely that the data captured from the system does not
represent the true state of the system, � , but rather a noisy version of the original signal perturbed
by measurement noise. Another source of uncertainty is that the dynamics of the system itself
may exhibit some degree of randomness. One cause of this would be unidentiied external forces
acting on the system. For instance, the dynamics of a physical pendulum may be inluenced by
vibrations from its environment. The following subsections introduce several models that explicitly
incorporate uncertainty in their predictions.

4.5.1 Deep Markov Models. A deep Markov model (DMM) [2, 32, 65, 73, 86] is a probabilistic model
that combines the formalism of Markov chains with the use of NN for approximating unknown
probability density functions. A Markov chain is a latent variable model, which assumes that the
values we observe from the system are determined by an underlying latent variable, which can
not be observed directly. This idea is very similar to an SSM, the diference being that a Markov
chain assumes that the mapping from the latent to the observed variable is probabilistic and that
evolution of the latent variable is not fully deterministic.
The relationship between the observed and latent variables of a DMM, can be speciied as:

��+1 ∼ Z(�� (��)) (Transition) (17a)

�� ∼ X(�� (��)) (Emission) (17b)

where �� represents the latent state vector, and �� is the output vector. Here,Z and X represent
probability distributions, commonly Gaussian distributions, modeled by maps �� (z�) or �� (z�),
respectively.

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 25

...
x

xx

Fig. 20. Deep Markov model with inference network. The value of �0 is estimated by an inference network ��

based on several samples of the observed variable. The transmission function, approximated by the network
�� , maps the current value of � to a distribution over � one step ahead in time. The emission function,
approximated by �� , maps each predicted latent variable to a distribution of the corresponding � value in
the original observed space. Note that the output of each network is the parameters of a distribution, which
is then sampled to obtain a value that can be fed into the next stage of the model.

...

x x

Fig. 21. Latent neural ODEs. An encoder network is used to obtain a latent representation of the system’s
initial state, �0, by aggregating information from several observations of the systems [�̂� , �̂�−1, ..., �̂0]. The
system is simulated for multiple steps to obtain [�0, �1, ..., ��]. Finally, the latent variables are mapped back
to the original state space by a decoder network.

A natural question to ask is how the observed and latent variables are represented, given that
they are probability density functions and not numerical values. A solution to pick distributions
that can be represented in terms of a few characteristic parameters. For instance, a Gaussian can
be represented by its mean and covariance. The process of performing inference using a DMM is
shown in ig. 20.

An obstacle to training DMMs using supervised learning is that the training data only contains
targets for the observed variables � , not the latent variables �. A popular approach for training
DMMs is using variational inference (VI). It should be noted that VI is a general method for itting
the parameters of statistical models to data. In this special case, we happen to be applying it in a
case where there is a dependence between samples in time. For a concrete example of a training
algorithm based on VI that is suitable for training DMM, we refer to [65].

While probability distributions in classical DMMs are assumed to be Gaussian, recent extensions
proposed the use of more expressive but also more computationally expensive deep normalizing
lows [38, 106]. Another variant of DMM includes additional graph structure for possible encoding
of useful inductive biases [98]. DMMs are typically trained using the stochastic counterpart of the
backpropagation algorithm [107], which is part of popular open-source libraries such as Pytorch-
based Pyro [8] or TensorFlow Probability [24]. Applications in dynamical systems modeling span
from climate forecasting [17], molecular dynamics [136], or generic time series modeling with
uncertainty quantiication [83].

4.5.2 Latent Neural ODEs. Latent neural ordinary diferential equations (latent NODEs) [18] is
an extension of NODEs which introduces an encoder and decoder NN to the model as shown in

ACM Comput. Surv.

26 Legaard et al.

ig. 21. The core of the idea is that information from multiple observations can be aggregated by
the encoder network ���� to obtain a latent state �0, which characterizes the speciic trajectory. A
convenient choice of encoder network for time series is an RNN because it can handle a variable
number of observations. The system can then be simulated using the same approach as NODEs to
produce a solution in the latent space. Finally, a decoder network maps each point of the latent
solution to the observable space to obtain the inal solution.
Separating the measurement, x� , from the latent system dynamics, z� , allows us to exploit the

modeling lexibility of wider NNs capable of generating more complex latent trajectories. However,
by doing so it creates an inference problem of estimating unknown initial conditions of the hidden
states for both deterministic [68, 121] and stochastic time-steppers [20, 62, 63, 68].
A diference between latent NODEs and DMMs is that the former treats the state variable as

a continuous-time variable and the latter treats it as discrete-time. Additionally, latent NODEs
assume that the dynamics are deterministic.

Fig. 22. Bayesian Neural Ordinary Diferential Equations. The parameters of the network are characterized
by a probability distribution. The parameter distributions are sampled multiple times and used to simulate
the system, producing multiple trajectories as shown to the right. To get a single prediction, the predictions
can be averaged.

4.5.3 Bayesian Neural Ordinary Diferential Equations. Bayesian neural ordinary diferential equa-

tions (BNODEs) [22] combine the concept of a NODE with the stochastic nature of Bayesian neural

networks (BNN) [53]. In the context of a BNN, the term Bayesian refers to the fact that the parameters
of the network are characterized by a probability density function rather than an exact value. For
instance, the weights of the networks may be assumed to be approximately distributed according
to a multivariate Gaussian.
A possible motivation for applying this formalism is that the uncertainty of the model’s pre-

dictions can be quantiied, which would otherwise not be possible. To obtain an estimate of the
uncertainty, the model can be simulated several times using diferent realizations of the model’s
parameters, resulting in several trajectories as shown in ig. 22. The ensemble of trajectories can
then be used to infer conidence bounds and to obtain the mean value of the trajectories.
A drawback of using BNNs and extensions like BNODEs is that they use specialized training

algorithms that generally do not scale well to large network architectures. An alternative approach
is to introduce sources of stochasticity during the training and inference, for instance by using
dropout. A categorization of ways to introduce stochasticity that do not require specialized training
algorithms is provided in [53, Sec 8].

4.5.4 Neural Stochastic Diferential Equations. Neural stochastic diferential equations (NSDEs) [75]
can be viewed as a generalization of an ODE that includes one or more stochastic terms in addition
to the deterministic dynamics. Like the DTMC, a SDE often includes a deterministic drift term and
a stochastic difusion term, such asWiener process:

�� = � (� (�))�� + �(� (�))��� . (18)

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 27

multiple simulations

Fig. 23. Neural stochastic diferential equations. The network N is used to approximate the deterministic
drit term of the SDE and the difusion term is a Wiener process. Multiple trajectories are produced by solving
the SDE multiple times, corresponding to diferent realizations of the Wiener process.

Conventionally, SDEs are expressed in diferential form unlike the derivative form of an ODE. The
reason for this is that many stochastic processes are continuous but cannot be diferentiated. The
meaning of eq. (18) is per deinition the integral equation:

� (�) = �0 +

∫ �

0
� (� (�))�� +

∫ �

0
�(� (�))��� . (19)

As is the case for ODEs, most SDEs must be solved numerically, since only very few SDEs have
analytical solutions. Solving SDEs requires the use of algorithms that are diferent from those used
to solve deterministic ODEs. Covering the solvers is outside the scope of this paper, instead, we
refer to [59, Chapter 9] for an in-depth coverage. However, in the context of NSDEs we can simply
think of the solver as a means to simulate systems with stochastic dynamics.

There are several choices for how to incorporate the use of NNs for modelling SDEs. For instance,
if the stochastic difusion term is known, a NN can be trained to approximate the deterministic
drift term in eq. (18) as in the case of [75, 89]. Another approach is to use NNs to parameterize
both the drift and difusion terms [46]. Additionally, there are approaches such as [138], which
incorporate the idea from both NSDEs and BNNs, by modeling both evolution of the state variables
and network parameters as SDEs.

While NSDEs provide a strong theoretical framework for modeling uncertainty, they are complex
compared to their deterministic counterparts. One way to address this is to examine if simpler and
computationally eicient mechanisms like injecting noise or using dropout can achieve some of
the same efects as adopting a fully SDE-based framework.

5 DISCUSSION

An important question is how to pick the right type of model for a given application. The two
fundamentally diferent approaches for simulating a system are: i) having a NN approximate the
solution of the problem, as described in section 3, or ii) having a NN approximate the dynamics
of the system, as described in section 4. Each approach has inherent advantages and limitations,
that can be derived by looking at what the NN is used for within the respective type of model. A
comparison between the two types of models can be seen in table 2.

In this survey, we described several variants of direct-solution and time-stepper models. The way
that these are presented in the literature, often gives the impression that they are fundamentally
diferent. However, applying them to the ideal pendulum system makes it clear that many models
are closely related; set apart only by a small extension of the original idea. In the case of the
direct-solution models, we observed that the diferences between the vanilla direct-solution and the
PINN is the application of physics based regularization and use of AD for obtaining the velocity. In
the case of time-stepper models, the main diferences boil down to the architecture of the NN and
the numerical integration scheme being applied. The ability to pick a NN architecture for a speciic

ACM Comput. Surv.

28 Legaard et al.

Table 2. Comparison of direct-solution and time-stepper models.

Name Advantages Limitations

Direct-solution

+ Easy to apply to PDEs
+ No discretization of time and spatial coordinates
+ No accumulation of error during simulation
+ Parallel evaluation of simulation

- Fixed Initial condition
- Fixed temporal and spatial domain
- Diicult to incorporate inputs

Time-stepper
+ Initial condition not ixed
+ Easy to incorporate inputs
+ Leverage knowledge from numerical simulation

- Not trivial to apply to PDEs
- Accumulation of error during simulation
- No parallel evaluation of simulation

application makes it possible to model a wide range of physical phenomena. Additionally, the ideas
of one model can easily be transferred to another, allowing for the creation of novel architectures.
This inherent variability makes it diicult to deine concrete guidelines for picking a type of model
for a certain application. Instead, we urge the reader to consider what capabilities are needed for
the application and how knowledge of the physics incorporated. The topics described by ig. 2 may
serve as a starting point for this.

Evaluating the performance of diferent models on a benchmark dataset consisting of data from
various dynamical systems would be very useful. This dataset should be representative of the
systems which are encountered in disciplines such as physics, chemistry and engineering. This
would allow us to identify general trends and heuristics, which would serve as a starting point
for new practitioners and future applications. Drawing inspiration from other applications of DL,
such as image classiication, we see that large image databases have contributed greatly towards
developing better NN architectures. A standardized benchmark dataset is an essential step towards
gaining more insight into which types of models work well. Not only would it allow for a fair
comparison between the NN-based models, but it would also allow us to answer the question of
how well these models work compared to traditional models originating from various ields.
Another valuable contribution, would be to deine a procedure for evaluating a model’s ability

to approximate a dynamical system. We are interested in verifying that the model can produce
accurate simulations for the initial conditions we would encounter when using the model. Given the
diverse nature of these dynamical systems, some may be more diicult for a NN to approximate than
others. For instance, a small approximation error in a chaotic system may result in the accumulation
of a large error over time. An interesting research topic is determining metrics that allow a fair
comparison across multiple dynamical systems.

Another valuable contribution would be to develop concrete guidelines on how to train models
of dynamical systems. Finding a rule of thumb for how much training data is necessary to reach a
certain degree of accuracy, would make it easier to determine if a data-driven approach is feasible
for a given application. In addition to determining how much data we need, it would be useful to
develop best practices on how to split the data into training and validation sets. For instance, in the
context of training time-stepper models, we may examine which length of trajectories result in a
good ratio between accuracy and training time. Likewise, it would be useful to determine how to
formulate the loss function such that the process of optimizing the model’s parameters is fast and
robust.

6 SUMMARY

In recent years, there has been an increased interest in applying NNs to solve a diverse set of
problems encountered in various branches of engineering and natural sciences. This has resulted in

ACM Comput. Surv.

Constructing Neural Network-Based Models for Simulating Dynamical Systems 29

a wealth of papers; each proposing how a particular physical phenomenon can be simulated using
NNs. As a consequence, the terminology and notation used in each paper vary greatly, making
it diicult to digest for all but experts in the respective ield. These papers, often constrained in
space, put great emphasis on describing the application and the physics involved, often at a cost of
omitting details like how the NN was trained and limitations of proposed methods.
This survey provides an easy-to-follow overview of the techniques for simulating dynamical

systems based on NNs. Speciically, we categorized the models encountered in the literature into
two distinct types: direct-solution- and time-stepper models. For each type of model, we provided
a concrete guide on how to construct, train, and use the model for simulation. Starting from the
simplest possible model, we incrementally introduced more advanced variants and established the
diferences and similarities between the models. Additionally, we supply source code for many of
the models described in the paper, which can be used as a reference for detailed implementation of
each model.
An open research question is determining how well these methods work across a broad set of

problems that are representative of real-world applications. We hope this survey will support this
goal by presenting the most important concepts in a way that is accessible to practitioners coming
from DL as well as various branches of physics and engineering.

ACKNOWLEDGMENTS

We acknowledge the Poul Due Jensen Foundation for funding the project Digital Twins for Cyber-
Physical Systems (DiT4CPS) and Legaard would also like to acknowledge partial support from the
MADE Digital project.

This research was supported by the Data Model Convergence (DMC) initiative via the Laboratory
Directed Research and Development (LDRD) investments at Paciic Northwest National Laboratory
(PNNL). PNNL is a multi-program national laboratory operated for the U.S. Department of Energy
(DoE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL0-1830.

REFERENCES

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jefrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geofrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems. Technical Report 1603.04467. arXiv:1603.04467

[2] Maren Awiszus and Bodo Rosenhahn. 2018. Markov Chain Neural Networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops. 2180ś2187.

[3] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flores Zambaldi, Mateusz

Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Çaglar Gülçehre, H. Francis Song,

Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston,

Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan

Pascanu. 2018. Relational Inductive Biases, Deep Learning, and Graph Networks. CoRR abs/1806.01261 (2018).

arXiv:1806.01261

[4] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray Kavukcuoglu. 2016. Interaction

Networks for Learning about Objects, Relations and Physics. CoRR abs/1612.00222 (2016). arXiv:1612.00222

[5] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jefrey Mark Siskind. 2018. Automatic

Diferentiation in Machine Learning: A Survey. arXiv:1502.05767 [cs, stat] (Feb. 2018). arXiv:1502.05767 [cs, stat]

[6] Jörg Behler. 2015. Constructing High-Dimensional Neural Network Potentials: A Tutorial Review. In-

ternational Journal of Quantum Chemistry 115, 16 (2015), 1032ś1050. https://doi.org/10.1002/qua.24890

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.24890

[7] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Joern-Henrik Jacobsen. 2019. Invertible

Residual Networks. In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine

ACM Comput. Surv.

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1502.05767
https://doi.org/10.1002/qua.24890
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.24890

30 Legaard et al.

Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 573ś582.

[8] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit

Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. The

Journal of Machine Learning Research 20, 1 (2019), 973ś978.

[9] Christopher Bishop. 2006. Pattern Recognition and Machine Learning. Springer-Verlag, New York.

[10] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. 2021. Geometric Deep Learning: Grids, Groups,

Graphs, Geodesics, and Gauges. CoRR abs/2104.13478 (2021). arXiv:2104.13478

[11] Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. 2020. Machine Learning for Fluid Mechanics. Annual

Review of Fluid Mechanics 52, 1 (2020), 477ś508. https://doi.org/10.1146/annurev-luid-010719-060214

[12] Keith T. Butler, Daniel W. Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. 2018. Machine Learning for

Molecular and Materials Science. Nature 559, 7715 (July 2018), 547ś555. https://doi.org/10.1038/s41586-018-0337-2

[13] François Edouard Cellier. 1991. Continuous System Modeling. Springer Science & Business Media.

[14] François Edouard Cellier and Ernesto Kofman. 2006. Continuous System Simulation. Springer Science & Business

Media.

[15] Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and David Begert. 2018. Multi-Level Residual Networks from

Dynamical Systems View. arXiv:1710.10348 [cs, stat] (Feb. 2018). arXiv:1710.10348 [cs, stat]

[16] Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. 2016. A Compositional Object-Based

Approach to Learning Physical Dynamics. CoRR abs/1612.00341 (2016). arXiv:1612.00341

[17] Zhengping Che, Sanjay Purushotham, Guangyu Li, Bo Jiang, and Yan Liu. 2018. Hierarchical Deep Generative Models

for Multi-Rate Multivariate Time Series. In Proceedings of the 35th International Conference on Machine Learning

(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan,

Stockholm Sweden, 784ś793.

[18] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2019. Neural Ordinary Diferential

Equations. arXiv:1806.07366 [cs, stat] (Dec. 2019). arXiv:1806.07366 [cs, stat]

[19] Travers Ching, Daniel S. Himmelstein, Brett K. Beaulieu-Jones, Alexandr A. Kalinin, Brian T. Do, Gregory P. Way,

Enrico Ferrero, Paul-Michael Agapow, Michael Zietz, Michael M. Hofman, Wei Xie, Gail L. Rosen, Benjamin J.

Lengerich, Johnny Israeli, Jack Lanchantin, Stephen Woloszynek, Anne E. Carpenter, Avanti Shrikumar, Jinbo Xu,

Evan M. Cofer, Christopher A. Lavender, Srinivas C. Turaga, Amr M. Alexandari, Zhiyong Lu, David J. Harris,

Dave DeCaprio, Yanjun Qi, Anshul Kundaje, Yifan Peng, Laura K. Wiley, Marwin H. S. Segler, Simina M. Boca,

S. Joshua Swamidass, Austin Huang, Anthony Gitter, and Casey S. Greene. 2018. Opportunities and Obstacles

for Deep Learning in Biology and Medicine. Journal of The Royal Society Interface 15, 141 (April 2018), 20170387.

https://doi.org/10.1098/rsif.2017.0387

[20] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio. 2015. A

Recurrent Latent Variable Model for Sequential Data. In Advances in Neural Information Processing Systems, C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28. Curran Associates, Inc.

[21] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho. 2020. Lagrangian

Neural Networks. arXiv:2003.04630 [physics, stat] (July 2020). arXiv:2003.04630 [physics, stat]

[22] Raj Dandekar, Karen Chung, Vaibhav Dixit, Mohamed Tarek, Aslan Garcia-Valadez, Krishna Vishal Vemula, and

Chris Rackauckas. 2021. Bayesian Neural Ordinary Diferential Equations. arXiv:2012.07244 [cs] (March 2021).

arXiv:2012.07244 [cs]

[23] Moritz Diehl, H.Georg Bock, Johannes P. Schlöder, Rolf Findeisen, Zoltan Nagy, and Frank Allgöwer. 2002. Real-Time

Optimization and Nonlinear Model Predictive Control of Processes Governed by Diferential-Algebraic Equations.

Journal of Process Control 12, 4 (2002), 577ś585. https://doi.org/10.1016/S0959-1524(01)00023-3

[24] Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton, Alex

Alemi, Matthew D. Hofman, and Rif A. Saurous. 2017. TensorFlow Distributions. CoRR abs/1711.10604 (2017).

arXiv:1711.10604

[25] Ján Drgoňa, Javier Arroyo, Iago Cupeiro Figueroa, David Blum, Krzysztof Arendt, Donghun Kim, Enric Perarnau Ollé,

Juraj Oravec, MichaelWetter, Draguna L. Vrabie, and Lieve Helsen. 2020. All You Need to Know about Model Predictive

Control for Buildings. Annual Reviews in Control 50 (2020), 190ś232. https://doi.org/10.1016/j.arcontrol.2020.09.001

[26] Jan Drgona, Aaron R. Tuor, Vikas Chandan, and Draguna L. Vrabie. 2020. Physics-Constrained Deep Learning of

Multi-Zone Building Thermal Dynamics. arXiv:2011.05987 [cs.LG]

[27] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. 2019. Augmented Neural ODEs. arXiv:1904.01681 [stat.ML]

[28] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. 2020. How to Train Your Neural ODE:

The World of Jacobian and Kinetic Regularization. arXiv:2002.02798 [stat.ML]

[29] Marc Finzi, Ke Alexander Wang, and Andrew Gordon Wilson. 2020. Simplifying Hamiltonian and Lagrangian Neural

Networks via Explicit Constraints. CoRR abs/2010.13581 (2020). arXiv:2010.13581

ACM Comput. Surv.

https://arxiv.org/abs/2104.13478
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1038/s41586-018-0337-2
https://arxiv.org/abs/1710.10348
https://arxiv.org/abs/1612.00341
https://arxiv.org/abs/1806.07366
https://doi.org/10.1098/rsif.2017.0387
https://arxiv.org/abs/2003.04630
https://arxiv.org/abs/2012.07244
https://doi.org/10.1016/S0959-1524(01)00023-3
https://arxiv.org/abs/1711.10604
https://doi.org/10.1016/j.arcontrol.2020.09.001
https://arxiv.org/abs/2011.05987
https://arxiv.org/abs/1904.01681
https://arxiv.org/abs/2002.02798
https://arxiv.org/abs/2010.13581

Constructing Neural Network-Based Models for Simulating Dynamical Systems 31

[30] Marco Forgione and Dario Piga. 2020. dynoNet: A Neural Network Architecture for Learning Dynamical Systems.

arXiv:2006.02250 [cs.LG]

[31] Alexander I.J. Forrester and Andy J. Keane. 2009. Recent Advances in Surrogate-Based Optimization. Progress in

Aerospace Sciences 45, 1-3 (Jan. 2009), 50ś79. https://doi.org/10.1016/j.paerosci.2008.11.001

[32] Marco Fraccaro, Sùren Kaae Sùnderby, Ulrich Paquet, and OleWinther. 2016. Sequential Neural Models with Stochastic

Layers. arXiv preprint arXiv:1605.07571 (2016). arXiv:1605.07571

[33] Jonathan Friedman and Jason Ghidella. 2006. Using Model-Based Design for Automotive Systems Engineering -

Requirements Analysis of the Power Window Example. In Transactions Journal of Passenger Cars: Electronic and

Electrical Systems (Automotive Systems Engineering, Vol. 115). SAE Technical Paper, Detroit, USA, 8. https://doi.org/

10.4271/2006-01-1217

[34] Xiang Gao, Farhad Ramezanghorbani, Olexandr Isayev, Justin S. Smith, and Adrian E. Roitberg. 2020. TorchANI:

A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials.

Journal of Chemical Information and Modeling 60, 7 (2020), 3408ś3415. https://doi.org/10.1021/acs.jcim.0c00451

arXiv:https://doi.org/10.1021/acs.jcim.0c00451

[35] Carlos E. García, David M. Prett, and Manfred Morari. 1989. Model Predictive Control: Theory and PracticeÐA Survey.

Automatica 25, 3 (1989), 335ś348. https://doi.org/10.1016/0005-1098(89)90002-2

[36] C W Gear and O Osterby. 1984. Solving Ordinary Diferential Equations with Discontinuities. ACM Trans. Math.

Softw. 10, 1 (Jan. 1984), 23ś44. https://doi.org/10.1145/356068.356071

[37] Daniel Gedon, Niklas Wahlström, Thomas B. Schön, and Lennart Ljung. 2020. Deep State Space Models for Nonlinear

System Identiication. arXiv:2003.14162 [eess.SY]

[38] Anubhab Ghosh, Antoine Honoré, Dong Liu, Gustav Eje Henter, and Saikat Chatterjee. 2021. Robust Classiication

Using Hidden Markov Models and Mixtures of Normalizing Flows. CoRR abs/2102.07284 (2021). arXiv:2102.07284

[39] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neural Message Passing

for Quantum Chemistry. CoRR abs/1704.01212 (2017). arXiv:1704.01212

[40] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep Learning. Vol. 1. MIT press

Cambridge.

[41] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. 2019. Hamiltonian Neural Networks. In Advances in Neural

Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox,

and R. Garnett (Eds.). Curran Associates, Inc., 15379ś15389.

[42] Batuhan Güler, Alexis Laignelet, and Panos Parpas. 2019. Towards Robust and Stable Deep Learning Algorithms for

Forward Backward Stochastic Diferential Equations. arXiv:1910.11623 [stat.ML]

[43] Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson. 2018.

Learning Latent Dynamics for Planning from Pixels. CoRR abs/1811.04551 (2018). arXiv:1811.04551

[44] Ernst Hairer and Gerhard Wanner. 1996. Solving Ordinary Diferential Equations II: Stif and Diferential-Algebraic

Problems. Number 14. Springer-Verlag Berlin Heidelberg.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning for Image Recognition.

arXiv:1512.03385 [cs] (Dec. 2015). arXiv:1512.03385 [cs]

[46] Pashupati Hegde, Markus Heinonen, Harri Lähdesmäki, and Samuel Kaski. 2018. Deep Learning with Diferential

Gaussian Process Flows. arXiv:1810.04066 [cs, stat] (Oct. 2018). arXiv:1810.04066 [cs, stat]

[47] Jeen-Shing Wang and Yi-Chung Chen. 2008. A Hammerstein-Wiener Recurrent Neural Network with Universal

Approximation Capability. In 2008 IEEE International Conference on Systems, Man and Cybernetics. 1832ś1837. https:

//doi.org/10.1109/ICSMC.2008.4811555

[48] Junteng Jia and Austin R. Benson. 2019. Neural Jump Stochastic Diferential Equations. CoRR abs/1905.10403 (2019).

arXiv:1905.10403

[49] Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Lin Lin, Roberto Car, Weinan E, and Linfeng Zhang. 2020. Push-

ing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning.

arXiv:2005.00223 [physics.comp-ph]

[50] Bin Jiang, Jun Li, and Hua Guo. 2016. Potential Energy Surfaces from High Fidelity Fitting of Ab Initio Points: The

Permutation Invariant Polynomial - Neural Network Approach. International Reviews in Physical Chemistry 35, 3

(2016), 479ś506. https://doi.org/10.1080/0144235X.2016.1200347 arXiv:https://doi.org/10.1080/0144235X.2016.1200347

[51] Zhihao Jiang, Miroslav Pajic, Rajeev Alur, and Rahul Mangharam. 2014. Closed-Loop Veriication of Medical Devices

with Model Abstraction and Reinement. International Journal on Software Tools for Technology Transfer 16, 2 (April

2014), 191ś213. https://doi.org/10.1007/s10009-013-0289-7

[52] Pengzhan Jin, Aiqing Zhu, George Em Karniadakis, and Yifa Tang. 2020. Symplectic Networks: Intrinsic Structure-

Preserving Networks for Identifying Hamiltonian Systems. CoRR abs/2001.03750 (2020). arXiv:2001.03750

[53] Laurent Valentin Jospin, Wray Buntine, Farid Boussaid, Hamid Laga, and Mohammed Bennamoun. 2020. Hands-

on Bayesian Neural Networks ś a Tutorial for Deep Learning Users. arXiv:2007.06823 [cs, stat] (July 2020).

ACM Comput. Surv.

https://arxiv.org/abs/2006.02250
https://doi.org/10.1016/j.paerosci.2008.11.001
https://arxiv.org/abs/1605.07571
https://doi.org/10.4271/2006-01-1217
https://doi.org/10.4271/2006-01-1217
https://doi.org/10.1021/acs.jcim.0c00451
https://arxiv.org/abs/https://doi.org/10.1021/acs.jcim.0c00451
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1145/356068.356071
https://arxiv.org/abs/2003.14162
https://arxiv.org/abs/2102.07284
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1910.11623
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1810.04066
https://doi.org/10.1109/ICSMC.2008.4811555
https://doi.org/10.1109/ICSMC.2008.4811555
https://arxiv.org/abs/1905.10403
https://arxiv.org/abs/2005.00223
https://doi.org/10.1080/0144235X.2016.1200347
https://arxiv.org/abs/https://doi.org/10.1080/0144235X.2016.1200347
https://doi.org/10.1007/s10009-013-0289-7
https://arxiv.org/abs/2001.03750

32 Legaard et al.

arXiv:2007.06823 [cs, stat]

[54] Anuj Karpatne, Gowtham Atluri, James H. Faghmous, Michael Steinbach, Arindam Banerjee, Auroop Ganguly,

Shashi Shekhar, Nagiza Samatova, and Vipin Kumar. 2017. Theory-Guided Data Science: A New Paradigm for

Scientiic Discovery from Data. IEEE Transactions on Knowledge and Data Engineering 29, 10 (Oct. 2017), 2318ś2331.

https://doi.org/10.1109/TKDE.2017.2720168

[55] Jacob Kelly, Jesse Bettencourt, Matthew James Johnson, and David Duvenaud. 2020. Learning Diferential Equations

That Are Easy to Solve. arXiv:2007.04504 [cs.LG]

[56] Gaëtan Kerschen, Keith Worden, Alexander F. Vakakis, and Jean-Claude Golinval. 2006. Past, Present and Future

of Nonlinear System Identiication in Structural Dynamics. Mechanical Systems and Signal Processing 20, 3 (2006),

505ś592. https://doi.org/10.1016/j.ymssp.2005.04.008

[57] Patrick Kidger, Ricky T. Q. Chen, and Terry Lyons. 2020. "Hey, That’s Not an ODE": Faster ODE Adjoints with 12

Lines of Code. arXiv:2009.09457 [cs, math] (Sept. 2020). arXiv:2009.09457 [cs, math]

[58] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. 2018. Neural Relational Inference

for Interacting Systems. arXiv:1802.04687 [stat.ML]

[59] Peter E Kloeden and Eckhard Platen. 1992. Numerical Solution of Stochastic Diferential Equations.

[60] Ernesto Kofman and Sergio Junco. 2001. Quantized-State Systems: A DEVS Approach for Continuous System

Simulation. Transactions of The Society for Modeling and Simulation International 18, 3 (2001), 123ś132.

[61] Slawomir Koziel and Anna Pietrenko-Dabrowska. 2020. Basics of Data-Driven Surrogate Modeling. Springer Interna-

tional Publishing, Cham, 23ś58. https://doi.org/10.1007/978-3-030-38926-0_2

[62] R. Krishnan, U. Shalit, and D. Sontag. 2017. Structured Inference Networks for Nonlinear State Space Models. In

AAAI.

[63] Rahul G. Krishnan, Uri Shalit, and David Sontag. 2015. Deep Kalman Filters. arXiv:1511.05121 [stat.ML]

[64] Rahul G. Krishnan, Uri Shalit, and David Sontag. 2016. Structured Inference Networks for Nonlinear State Space

Models. arXiv:1609.09869 [stat.ML]

[65] Rahul G. Krishnan, Uri Shalit, and David Sontag. 2016. Structured Inference Networks for Nonlinear State Space

Models. arXiv:1609.09869 [cs, stat] (Dec. 2016). arXiv:1609.09869 [cs, stat]

[66] Andreas Kroll and Horst Schulte. 2014. Benchmark Problems for Nonlinear System Identiication and Control Using

Soft Computing Methods: Need and Overview. Applied Soft Computing 25 (2014), 496ś513. https://doi.org/10.1016/j.

asoc.2014.08.034

[67] Kookjin Lee and Eric J. Parish. 2021. Parameterized Neural Ordinary Diferential Equations: Applications to Compu-

tational Physics Problems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477,

2253 (Sept. 2021), 20210162. https://doi.org/10.1098/rspa.2021.0162

[68] I. Lenz, Ross A. Knepper, and A. Saxena. 2015. DeepMPC: Learning Deep Latent Features for Model Predictive Control.

In Robotics: Science and Systems.

[69] Randall J LeVeque. 2007. Finite Diference Methods for Ordinary and Partial Diferential Equations: Steady-State and

Time-Dependent Problems. Vol. 98. Siam.

[70] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. 2020. Scalable Gradients for Stochastic

Diferential Equations. arXiv:2001.01328 [cs.LG]

[71] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. 2018. Learning Particle Dynamics

for Manipulating Rigid Bodies, Deformable Objects, and Fluids. CoRR abs/1810.01566 (2018). arXiv:1810.01566

[72] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B. Tenenbaum, Antonio Torralba, and Russ Tedrake. 2018. Propagation

Networks for Model-Based Control under Partial Observation. CoRR abs/1809.11169 (2018). arXiv:1809.11169

[73] Dong Liu, Antoine Honoré, Saikat Chatterjee, and Lars K Rasmussen. 2019. Powering Hidden Markov Model by

Neural Network Based Generative Models. arXiv preprint arXiv:1910.05744 (2019). arXiv:1910.05744

[74] Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. 2019. Neural SDE: Stabilizing Neural ODE

Networks with Stochastic Noise. arXiv:1906.02355 [cs.LG]

[75] Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. 2019. Neural SDE: Stabilizing Neural ODE

Networks with Stochastic Noise. arXiv:1906.02355 [cs, stat] (June 2019). arXiv:1906.02355 [cs, stat]

[76] Lennart Ljung. 2006. Some Aspects of Non Linear System Identiication. IFAC Proceedings Volumes 39, 1 (2006),

110ś121. https://doi.org/10.3182/20060329-3-AU-2901.00009

[77] Michael Lutter, Christian Ritter, and Jan Peters. 2019. Deep Lagrangian Networks: Using Physics as Model Prior for

Deep Learning. arXiv:1907.04490 [cs, eess, stat] (July 2019). arXiv:1907.04490 [cs, eess, stat]

[78] J. E. Marsden and M. West. 2001. Discrete Mechanics and Variational Integrators. Acta Numerica 10 (May 2001),

357ś514. https://doi.org/10.1017/S096249290100006X

[79] Stefano Massaroli, Michael Poli, Michelangelo Bin, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. 2020. Stable

Neural Flows. arXiv:2003.08063 [cs.LG]

ACM Comput. Surv.

https://arxiv.org/abs/2007.06823
https://doi.org/10.1109/TKDE.2017.2720168
https://arxiv.org/abs/2007.04504
https://doi.org/10.1016/j.ymssp.2005.04.008
https://arxiv.org/abs/2009.09457
https://arxiv.org/abs/1802.04687
https://doi.org/10.1007/978-3-030-38926-0_2
https://arxiv.org/abs/1511.05121
https://arxiv.org/abs/1609.09869
https://arxiv.org/abs/1609.09869
https://doi.org/10.1016/j.asoc.2014.08.034
https://doi.org/10.1016/j.asoc.2014.08.034
https://doi.org/10.1098/rspa.2021.0162
https://arxiv.org/abs/2001.01328
https://arxiv.org/abs/1810.01566
https://arxiv.org/abs/1809.11169
https://arxiv.org/abs/1910.05744
https://arxiv.org/abs/1906.02355
https://arxiv.org/abs/1906.02355
https://doi.org/10.3182/20060329-3-AU-2901.00009
https://arxiv.org/abs/1907.04490
https://doi.org/10.1017/S096249290100006X
https://arxiv.org/abs/2003.08063

Constructing Neural Network-Based Models for Simulating Dynamical Systems 33

[80] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. 2021. Dissecting Neural ODEs.

arXiv:2002.08071 [cs.LG]

[81] D. Masti and A. Bemporad. 2018. Learning Nonlinear State-Space Models Using Deep Autoencoders. In 2018 IEEE

Conference on Decision and Control (CDC). 3862ś3867.

[82] Sparsh Mittal and Shraiysh Vaishay. 2019. A Survey of Techniques for Optimizing Deep Learning on GPUs. Journal

of Systems Architecture 99 (Oct. 2019), 101635. https://doi.org/10.1016/j.sysarc.2019.101635

[83] George Montanez, Saeed Amizadeh, and Nikolay Laptev. 2015. Inertial Hidden Markov Models: Modeling Change in

Multivariate Time Series. In Proceedings of the AAAI Conference on Artiicial Intelligence, Vol. 29.

[84] Mehrdad Moradi, Cláudio Gomes, Bentley James Oakes, and Joachim Denil. 2019. Optimizing Fault Injection in

FMI Co-Simulation. In Proceedings of the 2019 Summer Simulation Conference. Society for Computer Simulation

International, Berlin, Germany, 12. https://doi.org/10.5555/3374138.3374170

[85] Kevin P Murphy. 2012. Machine Learning: A Probabilistic Perspective. MIT press.

[86] Mohammed Kyari Mustafa, Tony Allen, and Koi Appiah. 2019. A Comparative Review of Dynamic Neural Networks

and Hidden Markov Model Methods for Mobile On-Device Speech Recognition. Neural Computing and Applications

31, 2 (2019), 891ś899.

[87] Oliver Nelles. 2001. Nonlinear System Identiication: From Classical Approaches to Neural Networks and Fuzzy Models.

Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04323-3

[88] Alexander Norclife, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. 2020. On Second Order Behaviour

in Augmented Neural ODEs. arXiv:2006.07220 [cs.LG]

[89] Viktor Oganesyan, Alexandra Volokhova, and Dmitry Vetrov. 2020. Stochasticity in Neural ODEs: An Empirical

Study. arXiv:2002.09779 [cs, stat] (June 2020). arXiv:2002.09779 [cs, stat]

[90] Olalekan Ogunmolu, Xuejun Gu, Steve Jiang, and Nicholas Gans. 2016. Nonlinear Systems Identiication Using Deep

Dynamic Neural Networks. arXiv:1610.01439 [cs] (Oct. 2016). arXiv:1610.01439 [cs]

[91] Olalekan P. Ogunmolu, Xuejun Gu, Steve B. Jiang, and Nicholas R. Gans. 2016. Nonlinear Systems Identiication

Using Deep Dynamic Neural Networks. CoRR abs/1610.01439 (2016). arXiv:1610.01439

[92] Katharina Ott, Prateek Katiyar, Philipp Hennig, and Michael Tiemann. 2020. When Are Neural ODE Solutions Proper

ODEs? arXiv:2007.15386 [cs, stat] (July 2020). arXiv:2007.15386 [cs, stat]

[93] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An

Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems

32, H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc.,

8026ś8037.

[94] Ludovic Pintard, Jean-Charles Fabre, Karama Kanoun, Michel Leeman, and Matthieu Roy. 2013. Fault Injection in the

Automotive Standard ISO 26262: An Initial Approach. In Dependable Computing, David Hutchison, Takeo Kanade,

Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan,

Bernhard Stefen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Marco

Vieira, and João Carlos Cunha (Eds.). Vol. 7869. Springer Berlin Heidelberg, Berlin, Heidelberg, 126ś133. https:

//doi.org/10.1007/978-3-642-38789-0_11

[95] Alessio Plebe and Giorgio Grasso. 2019. The Unbearable Shallow Understanding of Deep Learning. Minds and

Machines 29, 4 (Dec. 2019), 515ś553. https://doi.org/10.1007/s11023-019-09512-8

[96] Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park. 2020. Graph

Neural Ordinary Diferential Equations. arXiv:1911.07532 [cs.LG]

[97] Tong Qin, Kailiang Wu, and Dongbin Xiu. 2019. Data Driven Governing Equations Approximation Using Deep Neural

Networks. J. Comput. Phys. 395 (Oct. 2019), 620ś635. https://doi.org/10.1016/j.jcp.2019.06.042

[98] Meng Qu, Yoshua Bengio, and Jian Tang. 2019. Gmnn: Graph Markov Neural Networks. In International Conference

on Machine Learning. PMLR, 5241ś5250.

[99] Alessio Quaglino, Marco Gallieri, Jonathan Masci, and Jan Koutník. 2020. SNODE: Spectral Discretization of Neural

ODEs for System Identiication. arXiv:1906.07038 [cs.NE]

[100] R. Rai and C. K. Sahu. 2020. Driven by Data or Derived through Physics? A Review of Hybrid Physics Guided Machine

Learning Techniques with Cyber-Physical System (CPS) Focus. IEEE Access 8 (2020), 71050ś71073.

[101] M. Raissi, P. Perdikaris, and G.E. Karniadakis. 2019. Physics-Informed Neural Networks: A Deep Learning Framework

for Solving Forward and Inverse Problems Involving Nonlinear Partial Diferential Equations. J. Comput. Phys. 378

(Feb. 2019), 686ś707. https://doi.org/10.1016/j.jcp.2018.10.045

[102] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. 2018. Multistep Neural Networks for Data-Driven Discov-

ery of Nonlinear Dynamical Systems. arXiv:1801.01236 [nlin, physics:physics, stat] (Jan. 2018). arXiv:1801.01236 [nlin,

physics:physics, stat]

ACM Comput. Surv.

https://arxiv.org/abs/2002.08071
https://doi.org/10.1016/j.sysarc.2019.101635
https://doi.org/10.5555/3374138.3374170
https://doi.org/10.1007/978-3-662-04323-3
https://arxiv.org/abs/2006.07220
https://arxiv.org/abs/2002.09779
https://arxiv.org/abs/1610.01439
https://arxiv.org/abs/1610.01439
https://arxiv.org/abs/2007.15386
https://doi.org/10.1007/978-3-642-38789-0_11
https://doi.org/10.1007/978-3-642-38789-0_11
https://doi.org/10.1007/s11023-019-09512-8
https://arxiv.org/abs/1911.07532
https://doi.org/10.1016/j.jcp.2019.06.042
https://arxiv.org/abs/1906.07038
https://doi.org/10.1016/j.jcp.2018.10.045
https://arxiv.org/abs/1801.01236

34 Legaard et al.

[103] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. 2020. Hidden Fluid Mechanics: Learning Velocity and

Pressure Fields from Flow Visualizations. Science 367, 6481 (Feb. 2020), 1026ś1030. https://doi.org/10.1126/science.

aaw4741

[104] Syama S. Rangapuram, Matthias W. Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim Januschowski.

2018. Deep State Space Models for Time Series Forecasting. In Advances in Neural Information Processing Systems 31,

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc.,

7785ś7794.

[105] Saman Razavi, Bryan A. Tolson, and Donald H. Burn. 2012. Review of Surrogate Modeling in Water Resources:

REVIEW. Water Resources Research 48, 7 (July 2012). https://doi.org/10.1029/2011WR011527

[106] Danilo Jimenez Rezende and Shakir Mohamed. 2016. Variational Inference with Normalizing Flows.

arXiv:1505.05770 [stat.ML]

[107] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic Backpropagation and Approximate

Inference in Deep Generative Models. In International Conference on Machine Learning. PMLR, 1278ś1286.

[108] David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, Andrew Slavin

Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, Alexandra Luccioni, Tegan Maharaj, Evan D.

Sherwin, S. Karthik Mukkavilli, Konrad P. Kording, Carla Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix

Creutzig, Jennifer Chayes, and Yoshua Bengio. 2019. Tackling Climate ChangewithMachine Learning. arXiv:1906.05433

[cs, stat] (Nov. 2019). arXiv:1906.05433 [cs, stat]

[109] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael M. Bronstein. 2020.

Temporal Graph Networks for Deep Learning on Dynamic Graphs. CoRR abs/2006.10637 (2020). arXiv:2006.10637

[110] Lars Ruthotto and Eldad Haber. 2018. Deep Neural Networks Motivated by Partial Diferential Equations.

arXiv:1804.04272 [cs, math, stat] (Dec. 2018). arXiv:1804.04272 [cs, math, stat]

[111] Lars Ruthotto and Eldad Haber. 2020. Deep Neural Networks Motivated by Partial Diferential Equations. Journal of

Mathematical Imaging and Vision 62, 3 (April 2020), 352ś364. https://doi.org/10.1007/s10851-019-00903-1

[112] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter W. Battaglia. 2019. Hamiltonian Graph Networks

with ODE Integrators. CoRR abs/1909.12790 (2019). arXiv:1909.12790

[113] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaf, Rex Ying, Jure Leskovec, and Peter W. Battaglia. 2020.

Learning to Simulate Complex Physics with Graph Networks. CoRR abs/2002.09405 (2020). arXiv:2002.09405

[114] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin A. Riedmiller, Raia Hadsell,

and Peter W. Battaglia. 2018. Graph Networks as Learnable Physics Engines for Inference and Control. CoRR

abs/1806.01242 (2018). arXiv:1806.01242

[115] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2009. The Graph Neural

Network Model. IEEE Transactions on Neural Networks 20, 1 (2009), 61ś80. https://doi.org/10.1109/TNN.2008.2005605

[116] Johan Schoukens and Lennart Ljung. 2019. Nonlinear System Identiication: A User-Oriented Roadmap. CoRR

abs/1902.00683 (2019). arXiv:1902.00683

[117] M. Schoukens and J.P. Noël. 2017. Three Benchmarks Addressing Open Challenges in Nonlinear System Identiica-

tion**We Thank Torbjorn Wigren and Per Mattsson (Uppsala University, Sweden) for Their Help in Realizing the Cas-

caded Tanks Benchmark. This Work Was Funded by the Fund for Scientiic Research (FWO), the Methusalem Grant of

the Flemish Government (METH-1), the IAP VII/19 DYSCO Program, and the ERC Advanced Grant SNLSID under Con-

tract 320378. The Author J.P. Noel Is a Postdoctoral Researcher of the Fonds de La Recherche Scientiique - FNRSWhich

Is Gratefully Acknowledged. IFAC-PapersOnLine 50, 1 (2017), 446ś451. https://doi.org/10.1016/j.ifacol.2017.08.071

[118] Dieter Schramm, Wildan Lalo, and Michael Unterreiner. 2010. Application of Simulators and Simulation Tools

for the Functional Design of Mechatronic Systems. Solid State Phenomena 166ś167 (Sept. 2010), 1ś14. https:

//doi.org/10.4028/www.scientiic.net/SSP.166-167.1

[119] Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, and Klaus-Robert

Müller. 2017. SchNet: A Continuous-Filter Convolutional Neural Network for Modeling Quantum Interactions.

arXiv:1706.08566 [stat.ML]

[120] Elliott Skomski, Jan Drgona, and Aaron Tuor. 2020. Physics-Informed Neural State Space Models via Learning and

Evolution. arXiv:2011.13497 [cs.NE]

[121] Elliott Skomski, Soumya Vasisht, Colby Wight, Aaron Tuor, Jan Drgona, and Draguna Vrabie. 2021. Constrained

Block Nonlinear Neural Dynamical Models. arXiv:2101.01864 [math.DS]

[122] B. Sohlberg and E.W. Jacobsen. 2008. GREY BOX MODELLING ś BRANCHES AND EXPERIENCES. IFAC Proceedings

Volumes 41, 2 (2008), 11415ś11420. https://doi.org/10.3182/20080706-5-KR-1001.01934

[123] Heung-Il Suk, Chong-Yaw Wee, Seong-Whan Lee, and Dinggang Shen. 2016. State-Space Model with Deep Learning

for Functional Dynamics Estimation in Resting-State fMRI. NeuroImage 129 (2016), 292ś307. https://doi.org/10.1016/

j.neuroimage.2016.01.005

ACM Comput. Surv.

https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1029/2011WR011527
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1906.05433
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/1804.04272
https://doi.org/10.1007/s10851-019-00903-1
https://arxiv.org/abs/1909.12790
https://arxiv.org/abs/2002.09405
https://arxiv.org/abs/1806.01242
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/1902.00683
https://doi.org/10.1016/j.ifacol.2017.08.071
https://doi.org/10.4028/www.scientific.net/SSP.166-167.1
https://doi.org/10.4028/www.scientific.net/SSP.166-167.1
https://arxiv.org/abs/1706.08566
https://arxiv.org/abs/2011.13497
https://arxiv.org/abs/2101.01864
https://doi.org/10.3182/20080706-5-KR-1001.01934
https://doi.org/10.1016/j.neuroimage.2016.01.005
https://doi.org/10.1016/j.neuroimage.2016.01.005

Constructing Neural Network-Based Models for Simulating Dynamical Systems 35

[124] Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev, and Irina Higgins. 2020.

Hamiltonian Generative Networks. arXiv:1909.13789 [cs, stat] (Feb. 2020). arXiv:1909.13789 [cs, stat]

[125] Oliver T. Unke and Markus Meuwly. 2018. A Reactive, Scalable, and Transferable Model for Molecular Energies from

a Neural Network Approach Based on Local Information. The Journal of Chemical Physics 148, 24 (2018), 241708.

https://doi.org/10.1063/1.5017898 arXiv:https://doi.org/10.1063/1.5017898

[126] Oliver T. Unke and Markus Meuwly. 2019. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole

Moments, and Partial Charges. Journal of Chemical Theory and Computation 15, 6 (2019), 3678ś3693. https:

//doi.org/10.1021/acs.jctc.9b00181 arXiv:https://doi.org/10.1021/acs.jctc.9b00181

[127] Felipe A. C. Viana, Christian Gogu, and Raphael T. Haftka. 2010. Making the Most Out of Surrogate Models: Tricks

of the Trade. In Volume 1: 36th Design Automation Conference, Parts A and B. ASMEDC, Montreal, Quebec, Canada,

587ś598. https://doi.org/10.1115/DETC2010-28813

[128] Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch,

Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, Michal Walczak, Jochen Garcke, Christian Bauckhage, and

Jannis Schuecker. 2020. Informed Machine Learning ś A Taxonomy and Survey of Integrating Knowledge into

Learning Systems. arXiv:1903.12394 [cs, stat] (Feb. 2020). arXiv:1903.12394 [cs, stat]

[129] Laura von Rueden, Sebastian Mayer, Rafet Sifa, Christian Bauckhage, and Jochen Garcke. 2020. Combining Machine

Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions. Advances in Intelligent

Data Analysis XVIII 12080 (2020), 548ś560. https://doi.org/10.1007/978-3-030-44584-3_43

[130] JiangWang, Simon Olsson, ChristophWehmeyer, Adrià Pérez, Nicholas E. Charron, Gianni de Fabritiis, Frank Noé, and

Cecilia Clementi. 2019. Machine Learning of Coarse-Grained Molecular Dynamics Force Fields. ACS Central Science

5, 5 (2019), 755ś767. https://doi.org/10.1021/acscentsci.8b00913 arXiv:https://doi.org/10.1021/acscentsci.8b00913

[131] Sifan Wang, Yujun Teng, and Paris Perdikaris. 2020. Understanding and Mitigating Gradient Pathologies in Physics-

Informed Neural Networks. arXiv:2001.04536 [cs, math, stat] (Jan. 2020). arXiv:2001.04536 [cs, math, stat]

[132] Sifan Wang, Xinling Yu, and Paris Perdikaris. 2020. When and Why PINNs Fail to Train: A Neural Tangent Kernel

Perspective. arXiv:2007.14527 [cs, math, stat] (July 2020). arXiv:2007.14527 [cs, math, stat]

[133] G. Wanner and E. Hairer. 1991. Solving Ordinary Diferential Equations I: Nonstif Problems (springer s ed.). Vol. 1.

Springer-Verlag.

[134] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea Tacchetti. 2017.

Visual Interaction Networks: Learning a Physics Simulator from Video. In Advances in Neural Information Processing

Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30.

Curran Associates, Inc.

[135] Paul Westermann and Ralph Evins. 2019. Surrogate Modelling for Sustainable Building Design ś A Review. Energy

and Buildings 198 (Sept. 2019), 170ś186. https://doi.org/10.1016/j.enbuild.2019.05.057

[136] Hao Wu, Andreas Mardt, Luca Pasquali, and Frank Noe. 2018. Deep Generative Markov State Models. arXiv preprint

arXiv:1805.07601 (2018). arXiv:1805.07601

[137] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2019. A Comprehensive

Survey on Graph Neural Networks. CoRR abs/1901.00596 (2019). arXiv:1901.00596

[138] Winnie Xu, Ricky T. Q. Chen, Xuechen Li, and David Duvenaud. 2021. Ininitely Deep Bayesian Neural Networks

with Stochastic Diferential Equations. arXiv:2102.06559 [cs, stat] (Aug. 2021). arXiv:2102.06559 [cs, stat]

[139] Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. 2018. Deep Potential Molecular Dynamics:

A Scalable Model with the Accuracy of Quantum Mechanics. Physical Review Letters 120, 14 (April 2018), 143001.

https://doi.org/10.1103/PhysRevLett.120.143001

[140] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and Weinan E. 2018. End-to-End Symmetry

Preserving Inter-Atomic Potential EnergyModel for Finite and Extended Systems. arXiv:1805.09003 [physics.comp-ph]

[141] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2018. Deep Learning on Graphs: A Survey. CoRR abs/1812.04202 (2018).

arXiv:1812.04202

[142] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. 2019. Symplectic ODE-Net: Learning Hamiltonian

Dynamics with Control. CoRR abs/1909.12077 (2019). arXiv:1909.12077

[143] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,

and Maosong Sun. 2020. Graph Neural Networks: A Review of Methods and Applications. AI Open 1 (2020), 57ś81.

https://doi.org/10.1016/j.aiopen.2021.01.001

ACM Comput. Surv.

https://arxiv.org/abs/1909.13789
https://doi.org/10.1063/1.5017898
https://arxiv.org/abs/https://doi.org/10.1063/1.5017898
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1021/acs.jctc.9b00181
https://arxiv.org/abs/https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1115/DETC2010-28813
https://arxiv.org/abs/1903.12394
https://doi.org/10.1007/978-3-030-44584-3_43
https://doi.org/10.1021/acscentsci.8b00913
https://arxiv.org/abs/https://doi.org/10.1021/acscentsci.8b00913
https://arxiv.org/abs/2001.04536
https://arxiv.org/abs/2007.14527
https://doi.org/10.1016/j.enbuild.2019.05.057
https://arxiv.org/abs/1805.07601
https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/2102.06559
https://doi.org/10.1103/PhysRevLett.120.143001
https://arxiv.org/abs/1805.09003
https://arxiv.org/abs/1812.04202
https://arxiv.org/abs/1909.12077
https://doi.org/10.1016/j.aiopen.2021.01.001

	Abstract
	1 Introduction
	1.1 Related Surveys
	1.2 Survey Structure

	2 Background
	2.1 Differential Equations
	2.2 Neural Networks
	2.3 Model Taxonomy

	3 Direct-Solution Models
	3.1 Methodology
	3.2 Vanilla Direct-Solution
	3.3 Automatic Differentiation Direct-Solution
	3.4 Physics-Informed Neural Networks
	3.5 Hidden Physics Networks

	4 Time-Stepper Models
	4.1 Methodology
	4.2 Integration Schemes
	4.2.1 Direct Time-Stepper
	4.2.2 Residual Time-Stepper
	4.2.3 Euler Time-Stepper
	4.2.4 Neural Ordinary Differential Equations

	4.3 External Input
	4.3.1 Neural State-Space Models
	4.3.2 Neural ODEs with External Input

	4.4 Network Architecture
	4.4.1 Hamiltonian and Lagrangian Networks
	4.4.2 Deep Potential Energy Networks
	4.4.3 Graph Time-Steppers

	4.5 Uncertainty
	4.5.1 Deep Markov Models
	4.5.2 Latent Neural ODEs
	4.5.3 Bayesian Neural Ordinary Differential Equations
	4.5.4 Neural Stochastic Differential Equations

	5 Discussion
	6 Summary
	Acknowledgments
	References

