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ABSTRACT
Modelling cyber-physical systems is often seen as a highly
multi-disciplinary activity. Therefore, efficient methodolo-
gies are required to be able to represent environment, plant
and control models using the most appropriate formalisms.
On the one hand, the Petri net formalism is appropriate to
model the environment of a complex cyber-physical system,
especially since it inherently supports non-determinism and
concurrency. On the other hand, plant models, based on
the laws of physics, are often represented using differential
equations. In order to produce a relevant simulation of the
overall system, the controller, the plant and the environment
models are composed. Co-simulation and its industrial stan-
dard, the Functional Mock-up Interface, is one such generic
technique that allows for the coupling of different executable
models. However, coupling a non-deterministic model with
other types of models would be equivalent to build the state
space of the given composed system, which in some cases
is too complex. In this paper we discuss the co-simulation
of a Petri net environment model with a system described by
causal block diagrams. To reduce the size of the state space
explored, we use a constraint language based on automata and
trace matching. The approach is applied to the simulation of
a simplified train system.
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1. INTRODUCTION
Cyber-physical systems are characterized by the tight inte-
gration of computation, communication and physical com-
ponents. Such systems can be found in areas like automo-
tive, aero-space, etc. Model-based techniques have become
a popular approach for the development of these systems. In
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fact, these techniques allow for early decision making, by in-
tegrating and simulating a virtual prototype of the system un-
der design. The models do not solely represent the control
algorithm and the physical plant to control but also the en-
vironment, in which the system operates. This environment
is by nature concurrent and non-deterministic. For example,
autonomous driving systems work in a highly dynamic envi-
ronment where pedestrians and other traffic participants act
independently and asynchronously from each other [18].

Because Petri nets inherently support concurrency and non-
determinism, it is a very appropriate formalism to model the
environment of a complex cyber-physical system. The plant
model, based on the laws of physics, is often represented
using differential equations. The control model is mostly
represented using differential or difference equations and/or
discrete-event formalisms. Because of the heterogeneity of
these different types of models, techniques are needed to in-
tegrate and simulate them together.

Co-simulation in general, and the Functional Mock-up In-
terface (FMI) specifically, is a technique to couple multi-
ple simulators by establishing a common communication in-
terface [5]. The need for co-simulation is usually a prag-
matic one. In an industrial setting, many different tools
used by different, specialized teams need to be integrated [4].
Co-simulation offers a scalable solution for this problem at
any stage of the development process [22]. The use of co-
simulation has another advantage. Because of intellectual
property rights of the different stakeholders involved in build-
ing the system, the implementation details of the model can
be hidden. FMI hides these implementation details by expos-
ing only a common interface and extra information to allow
communication between simulators.

Unfortunately, the co-simulation of the system and the non-
deterministic environment is equivalent to building all pos-
sible scenarios of environment signals sequences. In other
words, this is equivalent to constructing the entire state space.
Obviously, this is highly impractical due to the state space ex-
plosion problem. However, one can guide the co-simulation
to specific signals sequences of the environment and there-
fore constrain the scenarios selected, reducing the quantity of
paths explored during the co-simulation. Additionally, this
trimming process can realize simulation intents, hiding there-
fore uninteresting behaviors.

We summarize the contributions of this paper: (a) We demon-
strate the meaning of coupling a non-deterministic formalism
with deterministic formalisms using co-simulation. (b) We
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show how to construct a master algorithm to couple these co-
simulation units together using the FMI standard. (c) Finally,
we define a constraint language, based on automata and trace
matching, that helps in pruning part of the state space.

The rest of the paper is organized as follows: Section 2 gives
an overview of the work related to this contribution. Section 3
introduces the running example of this paper, the coupling of
an environmental model of the railway signaling system with
a model of the physics and control of a train. Section 4 intro-
duces the different FMUs of the running example. Section 5
shows how to compose the non-deterministic and determin-
istic FMU. Section 6 defines a constraint language to prune
part of the state space. We discuss the approach in Section 7
Finally, we conclude in Section 8.

2. RELATED WORK
To the best of our knowledge, there is no approach that lever-
ages black box co-simulation for the verification of systems,
effectively lowering the entry barrier for the application of
verification techniques in a tool agnostic manner.

In the domain of non-exhaustive system verification, non-
deterministic models have been used extensively. For a broad
overview of approaches for the verification of hybrid systems,
please see [1]. In this domain, – in which our approach be-
longs –, the work closest to ours is [14], extended in [15]. In
[14], the system to be verified is also assumed to be a black-
box, i.e., only its outputs are observed, and all possible traces
of the simulation across a bounded amount of time are also
computed in a parallel architecture. They deviate from our
work because they require the disturbance model to be based
in Finite State Automata, that has to be available to the tool.
In contrast, we use Petri nets but most importantly, we present
in detail the framework (synchronization algorithm and se-
mantic adaptations) for co-simulation that can be reused to
couple other non-deterministic simulators for verification.

The advantage of the work developed in [14] is that, because
they have knowledge about the disturbance model, they de-
velop sophisticated techniques for optimizing the simulation
and they can predict the total number of scenarios up-front,
thus allowing for a graceful degradation (see [15]) in case the
verification is aborted. The graceful degradation provides a
useful upper-bound on the probability that the system will fail
the verification process with the scenarios that where not sim-
ulated yet. These techniques make their approach scalable for
large disturbance models. In contrast, because we allow veri-
fication without access to the disturbance model, it is hard to
optimize the number of possible scenarios. To mitigate this,
we provide a mechanism to trim the scenarios explosion but
that still requires some knowledge about the simulators in-
volved, at least the possible outputs of the disturbance model.

We distinguish our work from [9] by the fact that a stochas-
tic process (see [24] for a good introduction) is used to select
from all possible scenarios, a relevant few. Because we do not
assume any knowledge about the disturbance model, it is hard
to apply these techniques in our work. Thus, at every simula-
tion step, we explore all possible cases, that can be filtered by
the constraint language that we support.

In the software testing domain, Petri nets have been used ex-
tensively to generate test scenarios for the system under ver-
ification, as it was done with high level Petri nets such as
CO-OPN in [13, 16], for example.

In the works of [23], a predicate/transition net is used to
model the behavior of the system under test. The test sce-
narios are then generated from this model. To contrast with
our approach, we only need information about the outputs and
inputs of the disturbance model. This also means that we are
not capable of automatically selecting interesting scenarios to
simulate the system.

In the domain of model checking, Edmund Clarke et al. ad-
dressed the idea of using a CEGAR approach to perform
model checking on hybrid automata in [10], therefore trans-
forming the infinite state space of the hybrid system to a finite
one through abstraction. The key of this approach is obvi-
ously the abstraction methods, that we are unable to perform
efficiently in our approach considering that models are seen
as black box, and have been extensively studied in various
papers [2, 3, 19].

Although the work presented in [17] uses model checking
techniques, it isn’t actually exploring exhaustively the state
space of a hybrid system. In previous work, they use motion
planning to explore the state space of a hybrid system in their
approach HyDice. To improve that approach, they proposed
TemporalHyDICE in which they extrapolate atomic propo-
sitions from hybrid traces and perform LTL falsification on
designed properties, improving therefore their performance.
This work is close to what was explored in this paper, even
though the two approaches diverge by the way the state space
is explored.

In summary, our work presents interesting challenges in the
application of the techniques of the state of the art in system
verification and software testing. The distinguishing factors
of our approach are:

1. Both the disturbance model and the system under verifica-
tion are black boxes.

2. The output of the system can influence the disturbance
model through feedback loops.

3. By taking advantage of the FMI standard, we lower the
barrier for these techniques to be applied in the industry.

3. RUNNING EXAMPLE
To show the contribution of this paper, we use a running ex-
ample of a driverless train that reacts to the traffic lights sig-
nals at each railway segment. The control system and the
plant of the train, are modeled with Causal Block Diagrams
(CBD). CBDs are a general-purpose formalism used for the
modeling of causal systems. The traffic light as the environ-
ment for this system is represented using a Petri net.

3.1 Train Control System and Plant
The control system regulates the speed of the train and en-
sures a comfortable ride for the passengers. As a simplifica-
tion we assume that the railway is a straight line, divided into
equally sized segments. At the end of each segment there is a



traffic light that informs the train if it can enter the next seg-
ment. We abstract a train as a mass mtrain moving along one
dimension, under the influence of a traction force Ftraction,
with a single standing passenger in it. The passenger is mod-
eled as a mass-spring-damper system mpassger attached to a
pole, which in turn is fixed to the train. There is no friction
between the masses mpassger and mtrain. If the maximum
displacement of the passenger exceeds 0.6m from the equi-
librium, then she/he has fallen. The control system is a sim-
ple PID Controller that regulates the traction force Ftraction

given the ideal velocity of the train videal.

In summary, we have the following system of first order dif-
ferential equations:

e = videal − v
Ftraction = Kp · e+Ki ·

∫
e dτ +Kd · dedt

Fspring = k(−xpassger)

Fdamper = c(−vpassger))

dvpassger

dt =
Fspring+Fdamper−mpassger∗

Ftraction
(mtrain+mpassger)

mpassger
dvtrain

dt = Ftraction

(mtrain+mpassger)
dxpassger

dt = vpassger
dxtrain

dt = vtrain
Note that the solutions for these equations describe the dy-
namics of the train as functions of time (signals). The
ideal train velocity videal is given as an input to the CBD,
adapted from the traffic light system. The parameters that
we found sensible for this scenario are: mpassger = 73kg
; mtrain = 6000kg ; k = 300 ; c = 150 ; Kp = 500
; Ki = 0 ; Kd = 100. Because of the space constraints
we do not include the complete CBD model but we refer
the reader to http://msdl.cs.mcgill.ca/people/joachim/
publ/train_control_system.pdf. The CBD model con-
tains a fixed-step numerical solver to discretize the differen-
tial equation. Therefore, the CBD model is executed with a
relatively small time step (0.001s).

3.2 Light Signaling System
Figure 1 depicts a simplified model of the railroad traffic
lights signals in Belgium1: 1. the red means to stop; 2. the
green means to continue at full speed; 3. the yellow means
that at the next segment, a red might be shown so the train
must adapt its speed. We opted for the simplified traffic light
signal to keep the meaning of the Petri net clear. We im-
plemented the full traffic light model (with 12 possible sig-
nals). The model is available at http://msdl.cs.mcgill.
ca/people/joachim/publ/PetriNetTrainModel.zip.

The Petri net model, shown in Figure 1, is non-deterministic,
i.e., multiple transitions can be fired from some markings. For
example, in its current state, two transitions can fire: r2g and
r2y. This means that two possible markings can be reached
from the current state of the Petri net. The operational seman-
tics of a Petri net specify that the next state after a transition is
the set of all possible markings. A marking is a set of integer
variables, one for each place, indicating the number of tokens
in that place. For the considered Petri net model, the marking
1http://www.infrabel.be/en/about-infrabel/safety/
railway-signalling-systems
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Figure 1: Non-deterministic environment model

consists of a single token in the place named red and none in
the others.

3.3 Co-Simulation Scenario
To simulate the interactions between the two models, two
challenges remain: 1. Define the meaning of the coupling
between a deterministic model – the CBD – with a non-
deterministic one – the Petri net. 2. Connect and adapt the
inputs and the outputs of both models.

In this work we couple the two models by exporting them,
along with the simulator code, as Functional Mockup Units
(FMU) 2 [5].

Intuitively, the Petri net output is the set of markings in which
the Petri net is. Because each of those markings dictates the
ideal velocity to be set in the CBD model, we shift from a
linear time model - traditional to co-simulation scenarios - to
a branching time model. This implies that the meaning of a
co-simulation scenario that contains one or more Petri nets in
it, is no longer a single trace for each signal, but the set of
all possible traces. Operationally, each time the traffic light
model is simulated, it fires all the enabled transitions; and for
each possible marking, an alternate co-simulation branches
off the current one, with that marking as the input for the
CBD.

At time t, and for each marking m of the Petri net, the input
to the CBD model (videal) is given as:

videal(t) =


27m/s if m(t) = (1, 0, 0)

15m/s if m(t) = (0, 1, 0)

0m/s if m(t) = (0, 0, 1)

(1)

In our traffic light example, it does not make sense to perform
a simulation step in the Petri net every time the train model is
simulated because the traffic light would change at every sim-
ulation step and the train model needs to be simulated at very
small time intervals. The simplest way to solve this problem
is to perform a multi-rate adaptation: the Petri net model is
executed every 60 seconds whereas the train model is exe-
cuted every 0.001 seconds. However this adaptation is not
valid for our example because we assume that the segments
of the railway are equidistant and that there is a traffic light
at the end of each segment. This means that, depending on
the velocity, the train can reach the traffic light sooner or later
(or never, in case the traffic light was red), but not exactly
every 60 seconds. The distance covered by the train xtrain
2Functional Mockup Units are, in a very simplified way, executable
units that obey the Functional Mockup Interface standard, making
it possible to link them together, plus a master algorithm, to co-
simulate them.

http://msdl.cs.mcgill.ca/people/joachim/publ/train_control_system.pdf
http://msdl.cs.mcgill.ca/people/joachim/publ/train_control_system.pdf
http://msdl.cs.mcgill.ca/people/joachim/publ/PetriNetTrainModel.zip
http://msdl.cs.mcgill.ca/people/joachim/publ/PetriNetTrainModel.zip
http://www.infrabel.be/en/about-infrabel/safety/railway-signalling-systems
http://www.infrabel.be/en/about-infrabel/safety/railway-signalling-systems


thus controls the execution of the Petri net simulator: when-
ever the train crosses 500 meters, the Petri-net simulator is
executed and synchronized with the CBD simulator.

Because we simulate the traffic light model at a lower rate
than the train model, the output of traffic light m(t), and con-
sequently videal, is undefined most of the time steps in which
the CBD is simulated. To ensure that we have well defined in-
puts whenever we simulate the train model, the most recently
defined output of the traffic light model is used3

All possible traces of the co-simulation scenario described in
this section, across 80 seconds, are depicted in Figure 3a. The
branching time of the traces becomes obvious in the plot of
the displacement of the train.

4. FUNCTIONAL MOCKUP UNITS
In this section we introduce the two FMU classes of the co-
simulation scenario.

4.1 Petri Nets
The formalization of a subset of FMU was already presented
in [20]. Hence, the latter can be adapted to represent Petri
nets.

DEFINITION 1 (PNFMU). A PNFMU is a tuple N =
〈S,U, Y,D, s0, set, get, doStep〉. In order to completely de-
fine a PNFMU, universes of input and output variables must
be defined as follow:

• U is the universe of input variables;
• Y is the universe of output variables.
• U ∩Y = ∅
A PNFMU is therefore defined as follow:

• a set of markings S;
• a set of input places U ⊆ U;
• a set of output places Y ⊆ Y;
• a set of output-input dependencies D;
• an initial marking s0 ∈ S;
• a function set : P(S) × U × N → P(S) that sets the

number of tokens of an input place;
• a function get : P(S)× Y → P(N) that returns the num-

ber of tokens of an output place;
• a function doStep : P(S)×R→ P(S)×R that makes an

evolution step of the FMU. Given a set of states s ∈ P(S)
and a time step h ∈ R, doStep(s, h) returns a pair (s’,h’),
s′ ∈ P(S) and h′ ∈ R, such that h′ = h and s’ is the set
of reachable markings after firing all possible transitions
once.

Please take note of the following remarks: 1. The semantics
of the doStep is the Petri net semantics; 2. The time step
h isn’t taken into account in the doStep: it will still fire all
enabled transitions, once; 3. The state of a PNFMU is a set
of markings since at each doStep all enabled transitions are
fired; 4. The function set will set a number of tokens of an in-
put place to all markings of the Petri net. As for the get func-
tion, it returns a set of values and not a single value; 5. Since
a PNFMU can encapsulate a set of markings, we defined the
3This technique is also known as zero-order hold extrapolation.

functions set, get and doStep with the power set P(∗) in
their domain and co-domain.

4.2 Causal Block Diagrams
As we desired to model our system using Causal block dia-
grams, one must also formalize CBD as it was done with Petri
nets.

DEFINITION 2 (CBDFMU). A CBDFMU is a tuple
C = 〈S,U, Y,D, s0, set, get, doStep〉. In order to com-
pletely define a CBDFMU, we will reuse universes of inputs
and outputs defined previously for PNFMU. A CBDFMU can
be defined as follow:

• a set of states S;
• a set of input variables U ⊆ U;
• a set of output variables Y ⊆ Y;
• a set of output-input dependencies D;
• an initial state s0 ∈ S;
• a function set : S × U × V → S that sets the value of an

input variable;
• a function get : S × Y → V that returns the value of an

output variables;
• a function doStep : S × R≥0 → S × R≥0 that makes an

evolution step of the FMU. Given a state s ∈ S and a real
time step h ∈ R≥0, doStep(s, h) returns a pair (s’,h’),
s′ ∈ S and h′ ∈ R≥0, such that s’ is the resulting CBD
state after a simulation step of time h from the state s.

5. COMPOSITION

5.1 Non-determinism
Based on the previous formalization, we illustrate here how
a single PNFMU, denoted as P , evolves through time. At
each step of the evolution, every enabled transitions, up to
n, is fired from the current marking, therefore creating new
PNFMUs encapsulating the new markings:

{P}

{P 1, · · · , Pn}

h
h

h

As for a CBD, if a (time)step h is simulated, only a single
state is produced:

{Cbd(t)}

{Cbd(t+ h)}
h

Because the PNFMU is composed with the CBD, we need to
perform two semantic adaptations on the Petri net. The first
adaptation changes the output data from the Petri net to the
CBD. The second adaptation corresponds to a control/time
adaptation. Indeed, we have to define when environment sig-
nals are forwarded to the CBD. In the light signaling sys-
tem, we send environment signals whenever the train crosses
a segment (500m). This adaptation is therefore a function
fdist based on the distance travelled by the train. This set of
adaptations are represented here with the function I:

{I(P, fdist)(t)}

{I(P 1, fdist)(t+ h), · · · , I(Pn, fdist)(t+ h)}

h
h

h

where applying the function fdist returns a time of h.
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Figure 2: Synchronization Diagrams for the co-simulation

Therefore, the co-evolution of the Petri net and the CBD com-
position will end up in a set of tuple of FMU instances:

{(I(P, fdist), Cbd)(t)}

{(I(P 1, fdist), Cbd)(t+ h), · · · , (I(Pn, fdist), Cbd)(t+ h)}

h
h

h

5.2 Master Algorithm
The master algorithm is responsible for the orchestration of
the co-simulation. We describe two different master algo-
rithms based on the canonical synchronization algorithm de-
scribed in [12]. The first one, illustrated in Figure 2 (a) de-
scribes the naive approach described in Section 3.3. This sit-
uation occurs when no feedback loop is present between the
system and the environmental model. The master algorithm
communicates the adapted Petri net state to the CBD. In Fig-
ure 2 (a) the Petri net and CBD simulators are synchronized
at time t. Then, the CBD solver is allowed to compute its
state until the time t + (n + 1)h, where n is a parameter de-
noting the number of steps allowed before synchronization
occurs. Afterwards, the Petri net catches up to the CBD. The
second synchronization algorithm, shown in Figure 2 (b), en-
sures a more realistic co-simulation by detecting when the
train crossed a segment (state event detection), and instruct-
ing the Petri net to catch up. A feedback loop is thus created
between the system and its environment. The master algo-
rithm detects the crossing of the threshold and communicates
the size of the time step required in the Petri net. The syn-
chronization algorithm can be extended with state event lo-
cation, the detection of the event within a certain boundary.
This requires the roll-back capabilities in the CBD simulator.
When the semantic adaptation requires both an event-based
and time-based adaptation, both synchronization algorithms
must be combined.

Algorithm 1 shows the simplified pseudocode to orchestrate
the complete co-simulation with the second synchronization
mechanism. In this case we use a threaded approach to or-
chestrate the multiple co-simulation instances. If another par-
allelization mechanism is preferred, the algorithm should be
adapted accordingly. Each thread executes the masterFunc-
tion and has its own CoSimulationInstance data, containing
the FMUs and other needed data. The thread runs until it
reaches the experiment STOPTIME. In each step, the CBD
simulation is executed. A state event detector checks if the
train exceeded the predefined distance. If an event is detected,
the Petri net FMU is executed. We use the fmi2GetFMUstate

to get the different markings of the Petri net. The first time
the master calls this function, the FMU returns the state of the
first marking (used by the current thread). The subsequent
calls return the other markings until it becomes undefined.
For each of these subsequent states, we create a new thread
with that Petri net state and a copy of the CBD state. Be-
cause the new thread executes the same step again, we cannot
execute the PN FMU and CBD FMU again.

Function masterFunction(master: coSimInstance) : int is
pnData← Get and adapt PN output data;
while master.currentTime < STOPTIME do

if not master.cbdExecuted then
set CBD input data to pnData;
doStep(master.CBD, . . . );
master.cbdExecuted← true;
cbdData← Get and adapt CBD output data;

end
if eventDetection(cbdData) then

doStep(master.PN,. . . );
selfNewState← fmi2GetFMUstate(master.PN);
branchState← fmi2GetFMUstate(master.PN);
while branchState is defined do

new← createNewCoSimInstanceFromCurrent();
CBDState← fmi2GetFMUState(master.CBD);
fmi2SetFMUState(new.CBD,CBDState);
fmi2SetFMUState(new.PN,branchState);
createThread(masterFunction,new);
. . . ;
branchState← fmi2GetFMUstate(master.PN);

end
pnData← Get and adapt PN output data;

end
master.cbdExecuted← false;
Increment time;
. . . ;

end
wait for joining threads;

end
Algorithm 1: Master Algorithm Example

Figure 3a shows the plots of executing the case study with
this described master algorithm.

6. CONSTRAINT LANGUAGE
Due to the non determinism in the Petri net, the number of
different scenarios exponentially increases. We must there-
fore be able to reduce the amount of branching.

Let us consider our traffic light example. The railway expert’s
knowledge must be used in order to distinguish interesting
scenarios that need to be simulated. For example, the expert
might know that exploring scenarios where two subsequent
green lights is not relevant to the study. Furthermore, the ex-
pert might want to explore scenarios starting with a given se-
quence of traffic lights, i.e. three green lights.



From the previous paragraph, two main classes of constraints
are distinguished: 1. Constraints that guide the co-simulation,
called prefixes; 2. Constraints that reduce the number of sce-
narios explored, called global constraints; We want to express
constraints using the number of tokens of the Petri net output
places and the output values of the CBD. In other words, we
create signals Sig from expressions based on the FMUs out-
put variables U , boolean comparators comp = {=,≥,≤, >
,<} and real values. In the railway example, the set of signals
Sig is defined as follows:

• g ≡ (gv = 1), g ∈ Sig;
• r ≡ (rv = 1), r ∈ Sig;
• y ≡ (yv = 1), y ∈ Sig;

As mentioned before, one can see the composition co-
simulation as a set of traces. Assuming a variables ordering
〈rv, yv, gv, r, y, g〉 for the traces where rv, yv, gv are output
variables of the Petri net and r, y, g are signals created from
Petri net output variables, one can consider the following set
of traces:

tracesexmpl=



0

1

0

⊥
>
⊥
...





0

1

0

∅
∅
∅
...





0

1

0

∅
∅
∅
...





1

0

0

>
⊥
⊥
...




0

0

1

⊥
⊥
>
...



· · ·

· · ·

h h

h

h

h

h

Note that we show a reduced number of steps between two
consecutive Petri net steps. A few remarks can be made on
the example set of traces: 1. The time semantic adaptation of
the Petri nets is equal to 3 × h. In fact, the first doStep of
the Petri net is performed after a time of 3 × h. Therefore,
∅ is used to symbolize the fact that the created signals aren’t
forwarded to the CBD; 2. After a time of 3 × h, a branching
is produced in the algorithm. In fact, in one case, the traffic
light went from yellow to red, whereas it went from yellow
to green in another scenario; 3. One can see that the semantic
adaptation of the output variables are forwarded only at the
time in which the doStep is called for the Petri net.

In our running example, only constraints on the signals re-
sulting from expressions on Petri net output variables were
defined. Nevertheless, extending constraints using signals de-
fined on CBD output variables can be made effortlessly.

Because the sequence of signals is represented as traces, one
can define the latter constraint language using automata. For
example, the co-simulation starting with the sequence of sig-
nals yellow, green, red can be defined by a prefix as follow:

q0start q1 q2 q3
y g r

As for global constraints, one can define two constraints,
hence avoiding scenarios in which two red are encountered
in a row:

q0start q1 q2

r
r

Σ\r

Σ\r
The figure 3b depicts results of an execution with two trivial
constraints applied. To show the effectiveness of the con-
straints language, we performed a small benchmark between
five distinct executions without and with constraints. For this
two sets of executions, we used the following simulation pa-
rameters:

• Stop time = 250 seconds;
• Step size = 0.001 seconds;
• Train segment length: 500 meters.

The mean execution time on a Intel Core i5 processor at 1.7
GHz with 8 GB of RAM running Windows 8 is as follows:

Without Std. With Std. Speedup
constraints Deviation constraints Deviation
283.16 s 34.79 42.9 s 1.785 6.6

Note that we removed the best and worst execution time to
average the values. As for the number of threads, we clearly
see the branching reduction:

Without constraints With constraints
2322 285

7. DISCUSSIONS
During the construction of the Petri net FMU, great care was
taken that the resulting unit is compliant to the FMI standard.
This means that integrating this unit in another co-simulation
scenario with a generic master algorithm is possible. The cou-
pling in that case, will yield a deterministic simulation of a
single trace throughout the whole state space of the model.
We refer to [7] for more information to deterministically cou-
ple multiple simulators.

However when the Petri net is used to generate multiple sce-
narios of the behaviour of the coupled system, a special mas-
ter is required to create the different threads, possibly dis-
tributed over different physical computers. The creation of
this master is cumbersome and error-prone. The needed se-
mantic adaptation for data, control and time exacerbates this
complexity [6]. It is therefore preferable to create a (domain-
specific) language to configure and automatically generate the
master and semantic adaptation between the different mod-
els, similar to [21, 11]. In our running example, there is only
a single Petri net being co-simulated. The composition pro-
posed in this paper can be extended to include more than one
non-deterministic FMU and/or deterministic FMU. The cas-
cading technique for synchronization has to be extended to
work with multiple units. The generalization of the approach
together with the creation of this master algorithm from a
model in a (domain-specific) language is considered future
work.

The presented approach uses Petri nets to express non-
determinism and concurrency in the environment of a sys-
tem. Nevertheless, one could imagine using a set of Petri net
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Figure 3: Execution scenarios without and with constraints
applied. Each trace is named according to how it branched
out.

models composed together to form a network of discrete sys-
tems for the controller and CBDs or differential equations to
represent the physical environment surrounding this network.
For example, a heater system divided in two subsystems: one
subsystem that probes and regulates the temperature of the
water and another that is in charge of ensuring that there is
no unusual behaviour in the regulation of the temperature.
The same type of master algorithms and synchronization al-
gorithms are required to orchestrate the co-simulation.

In our approach, we guide the simulation towards interesting
traces, and subsequent properties, using the constraint lan-
guage. We constrain the state space of the system primar-
ily for performance reasons because of the state space explo-
sion. By reasoning more explicitly about the time-invariance
(or shift-invariance) of the system, we can constrain the state
space even further. A time-invariant system is a system where
the output does not explicitly depend on time. If we know that
our system is time-invariant, the initial state of the branch can
be compared to the initial states at each of the branches. If the
initial value problem is the same, we can safely assume that
the branch is already simulated. While this seems easy in the-
ory, in practice it is more intricate. Numerical approximation
allows us to simulate continuous-time systems on computers.
In the case of differential equations, the simulation is usu-
ally done using time discretization. This type of numerical
algorithms give rise to local and global truncation errors, and
precision errors which accumulate [8]. The amount of toler-
ated approximation must also be included to actually make a
useful comparison between the different states. We consider
this future work.

Finally, an FMU could take advantage of the underlying com-
putational infrastructure to improve the computation time. A
specific example could be the use of SIMD, Single Instruction
- Multiple Data architectures to solve the sorted equations of
models of the physics when the causality does not change.
The FMU thus allows parallelism within the FMU.

8. CONCLUSION
Petri nets are an appropriate formalism to model the environ-
ment of cyber-physical systems because of their inherent non-
determinism and concurrency. However, they need to be cou-
pled with deterministic models that represent the plant and
control of the system. In this paper we showed the meaning
of coupling this non-deterministic model with a deterministic
model using co-simulation. Furthermore, we operationalized
the co-simulation using the FMI standard. We have shown
that we are able to efficiently reduce the number of scenar-
ios explored through simple traces matching constraints. Ad-
ditionally, the constraint language we have implemented is
based on well known and easy to use concepts. Finally, we
demonstrated the approach on an example from the railway
industry. By leveraging the FMI co-simulation standard to al-
low for the system verification through simulation, we hope
to lower the entry barrier to the usage of these techniques.
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