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Abstract
The robots of tomorrow should be endowed with the ability to adapt to drastic and unpredicted
changes in their environment and interactions with humans. Such adaptations, however, cannot
be boundless: the robot must stay trustworthy. So, the adaptations should not be just a recovery
into a degraded functionality. Instead, they must be true adaptations: the robot must change
its behaviour while maintaining or even increasing its expected performance, and staying
at least as safe and robust as before. The RoboSAPIENS project will focus on autonomous
robotic software adaptations, and will lay the foundations for ensuring that they are carried
out in an intrinsically trustworthy, safe, and efficient manner, thereby reconciling open-ended
self-adaptation with safety by design. RoboSAPIENS will transform these foundations into
‘first time right’-design tools and platforms, and will validate and demonstrate them.

Introduction16

Whenever autonomy is introduced in physical systems that can potentially harm the17

environment, including humans, it is essential to provide the necessary evidence to assure18

the safety. Different standards are used in different domains to ensure the trustworthiness19

of such autonomous systems. The area of robotics is governed by what is called the20

machinery directive1. One requirement in the machinery directive prevents any robot21

that includes any learned element in its control system from being legally used. We believe22

that this requirement is too strict: our hypothesis is that in some cases it is possible to23

provide the necessary safety evidence. Our goal is to prove this hypothesis. To achieve24

this overall goal, the RoboSAPIENS project2 will extend the state-of-the-art by pursuing25

four main objectives:26

1. Enable robotic open-ended self-adaptation in response to unprecedented system struc-27

tural and environmental changes;28

2. Advance safety-engineering techniques to assure robotic safety not only before, but29

also during and after adaptation;30

3. Advance deep learning techniques to actively reduce uncertainty in robotic self-31

adaptation;32

4. Assure trustworthiness of systems that use both deep-learning and computational33

architectures for robotic self-adaptation.34

To achieve these objectives, RoboSAPIENS will extend techniques such as MAPE-35

K (Monitor, Analyse, Plan, Execute, Knowledge) (Kephart and Chess 2003) (see Figure 1)36

and Deep Learning (DL) to set up generic adaptation procedures, including also for the37

Social Sciences and Humanities (SSH) dimension of a robotic system. RoboSAPIENS will38

1. https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/733576/EPRS_BRI(2022)733576_EN.pdf
2. The RoboSAPIENS project started January 2024 so, naturally, there are not many research results to report

here. Instead this is an illustration for what to do enable the desired level of autonomy for robots while keeping
the overall safety.
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Figure 1. MAPE-K loop in an autonomic element.

demonstrate a novel approach to trustworthy robotic self-adaptation on four industry-scale39

use cases: an industrial disassembly robot, a warehouse robotic swarm, a prolonged hull of40

an autonomous vessel, and an application that requires interaction between humans and41

robots.42

This article is a first response to the question: “How to ensure safety of learning-enabled43

cyber-physical systems?” (Paoletti and Woodcock 2023). This is accomplished by (see44

Figure 2): 1) adding an additional Legitimate step (validate and verify) of the safety of45

the suggested plan in a MAPE-K context (to become MAPLE-K); 2) adding a run-time46

trustworthiness checker to the actual robotics controller; and 3) establishing “continous”47

communication between the autonomic manager and the physical robot.48

After this introduction49

an overview of the envisaged RoboSAPIENS approach is presented. This is followed50

by a description of a small academic case study and four industrial scale case studies tested51

with the RoboSAPIENS technology. Finally, the paper is concluded with looking into52

what research will be conducted in the future in the framework of the RoboSAPIENS53

project.54

The RoboSAPIENS Approach55

To reconcile the opposite requirements for open-ended self-adaptation on the one hand,56

and safe and trustworthy behaviour of robotic systems even in circumstances not considered57

at design time on the other, RoboSAPIENS will provide the following extensions to the58
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Figure 2. RoboSAPIENS impact in yielding robotic systems with advanced capabilities.
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MAPE-K loop (see Figure 2):59

(1) To “guarantee” the safety and trustworthiness of a self-adapting robot, RoboSAPI-60

ENS will add a Legitimate step (including validation and verification) to the MAPE-K61

loop (adjusting it to become a MAPLE-K loop)3. After the Monitor has detected a change62

in the robot or its environment, after having Analysed it, and after having Planned possible63

adaptations, the new Legitimate step will validate and verify whether all expected func-64

tionality can still be met safely (under the explicit assumptions mentions and taking the65

uncertainties into account). This includes not only a priori defined performance expecta-66

tions (such as, correct execution of tasks, accuracy, velocity, etc), but also safety and other67

trustworthiness requirements. For these validation and verification tasks, experiments68

need to be conducted. Therefore, RoboSAPIENS will rely on a digital twin capability to69

conduct virtual experiments, and on real experiments (semi-)automatically defined by the70

Legitimate step and conducted on the robot itself.71

(2) A second addition to achieve open-ended, safe, and trustworthy self-adaptation,72

will be theMAPLE-KTrustworthiness Checker also explicitly checking the assumptions.73

Any interaction between the MAPLE-K Loop and the managed robot must pass via this74

checker, at least for changes initiated to reduce knowledge uncertainty. For example,75

the Analyser may not have sufficient data to conclude with certainty the cause of an76

anomaly. So, the MAPLE-K loop may request the robot to execute sufficiently exploratory77

experiments to enable further analysis of the assumed change. The execution of such78

experiments may only be done under safe conditions and the results from such experiment79

should be trustworthy as well. For example, in the ship motion prediction case study (see80

below), the ship needs to be driven in a zig-zag path, to gather sufficient data to perform81

the self-adaptation. Such experiment can only be conducted with sufficient clearance of82

nearby objects and structures. At first one may think that when a plan already has been83

verified in the Legitimate step there is no need to have such an additional trustworthiness84

checker but the assumptions taken into account in the Legitimate step could still be wrong.85

Thus, we have opted for including this because the knowledge about the situation the86

robot is in may be different than the perception reached from the sensors.87

The MAPLE-K Trustworthiness Checker, therefore, contains a set of monitors to88

check whether elementary trustworthiness rules are respected under all circumstances,89

according to the domain’s trustworthiness requirements. One of the fundamental problems90

solved by the trustworthiness checker is: how can it be established that the relevant91

verification and validation activities have been carried out by the MAPLE-K Loop? For this92

purpose, the trustworthiness checker can rely on the partial observations of its interactions93

with the managed element, on historical data, on the use of models, as well as on the94

presentation of verification certificates. RoboSAPIENS will apply formal verification95

methods to accurately delineate the safe operation boundaries of the robot based on the96

readily available information. It is expected that this will be closely related to Run-Time97

Verification techniques (Falcone, Havelund, and Reger 2013).98

(3) To achieve true self-adaptation, i.e., to deal with a broad range of unforeseen99

environments and structural changes, RoboSAPIENS will rely on two complementary100

solutions. The first is DL as a powerful self-adaptation technique. This takes place in the101

Planner, and it is expected that it will open up a plethora of robot adaptation possibilities.102

Nevertheless, it remains possible that some of the proposed changes are disapproved by the103

Legitimate step or deemed not trustworthy by the MAPLE-K Trustworthiness Checker.104

Therefore RoboSAPIENS will foresee the possibility of manual version updates of the105

autonomic manager. Besides validation failures, this manual update can also be applied106

in case of updates to the Knowledge base (such as the addition of new robot or human107

models).108

3. The reason for writing “guarantee” in quotes is that there are various single point of failure situations that
we cannot solve with the RoboSAPIENS solution, since if the sensors provide wrong information the perception
will be incorrect.
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Trustworthiness and Safety Assurance109

A key aspect in an autonomic manager is its knowledge about the managed element110

and the world. Based on that knowledge, the MAPE-K (or MAPLE-K) loop monitors111

the managed element and its environment, including humans, and, when an anomaly is112

detected, constructs and executes plans based on the data gathered about the anomaly.113

In Figure 2 our suggested adjustment is sketched where an additional step is included114

between the plan and the execute elements. This step is indicated as Legitimate and115

consider this extension of the conventional MAPE-K architecture.116

Trustworthiness in the context of RoboSAPIENS refers to the degree to which robots117

featuring the MAPLE-K architecture are perceived as robust, safe, and capable of per-118

forming tasks as expected during runtime. This includes their compliance to ethical or119

legal boundaries and their inability to cause harm to humans, living creatures, or the120

environment. The concept entails the following aspects that will be integrated into the121

RoboSAPIENS’ MAPLE-K loop as internalised norms that are tightly linked to the ethics122

guidelines for trustworthy Artificial Intelligence (AI) of the European Union4. A second123

extension in our proposal is also visible in Figure 2 as a trustworthiness checker connected124

directly to the control software.125

Levels of Adaptivity126

Robot self-adaptation has been thoroughly studied, with different techniques and processes127

proposed to calculate control actuation following changes in a robot’s environment,128

either predicted or monitored, to secure better customisation and performance. However,129

only a few attempts consider structural and functional changes, where functionality or130

hardware are upgraded or newly integrated (Alattas, Patel, and Sobh 2019; Silva et al. 2016).131

Evolutionary robotics has been introduced as a discipline to design and study autonomous132

adaptive modular robots (Alattas, Patel, and Sobh 2019; Tolley, Hiller, and Lipson 2011).133

Structural and functional changes to the robot add an extra dimension to the design134

complexity of self-adaptive robots, so that the adaptation space can be exponential with135

respect to the size of the newly added functionality. This makes safety verification and136

validation immensely challenging (White et al. 2005; Auerbach et al. 2014) and that is137

exactly what RoboSAPIENS targets to improve.138

Correctness of Techniques139

Across Europe, there are significant efforts to adapt and enhance modern Software Engi-140

neering techniques to robotics (Cavalcanti et al. 2021), including the application of formal,141

mathematically based approaches (Luckcuck et al. 2019).142

A key part of a robust software development is the adoption of a robust architec-143

ture (Ahmad and Babar 2016). There are many more for robotic applications and many144

proposed architectures (Siciliano and Khatib 2016, Chap. 12). There are, however, no145

clear definitions of these architectures, and certainly no formalisation. In terms of formal146

approaches, the focus is on specific aspects of a system or even of just a component: reaction,147

time, neural network, uncertainty, or planning, for instance. This is particularly true for148

the verification of neural networks including DL: the techniques and tools are concerned149

with proofs of properties defined with respect to mathematical definitions of the input or150

output space, rather than system-level properties.151

For the MAPE-K architecture, probabilistic model checking based on Markov chains152

to capture knowledge has been extensively used to improve the Analysis and Knowledge153

components (Fang et al. 2022). For runtime verification, where a software monitor is154

deployed that checks the system behaviour against a specification (Bartocci et al. 2018), a155

system approach is naturally adopted and can handle collections of adaptive systems (Cali-156

nescu, Gerasimou, and Banks 2015); existing work relies on the definition of mathematical157

models by hand and does not support for DL (Calisnescu et al. 2012). Formal techniques158

are popular in handling uncertainty (Hezavehi et al. 2021). The approach presented in159

this paper makes use of formal techniques in order to ensure trustworthiness and safety160

concerns in the new L element of the suggested MAPLE-K approach.161

4. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai.
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Deep Learning162

Attempts to bridge the gap between perception and action have been made recently; active163

perception is a prominent example (Bajcsy, Aloimonos, and Tsotsos 2018; Tosidis, Passalis,164

and Tefas 2022). DL is also gradually shifting away from the traditional static training165

paradigm and delving into continual learning (De Lange et al. 2021), wherein DL models166

are designed to be capable of adapting as they receive more training data.167

Several difficulties arise in continual learning and adaptation setups, such as catastrophic168

forgetting (Kemker et al. 2018), which can significantly deteriorate the performance of169

models if countermeasures are not taken. Anomaly detection methods (Pang et al. 2021),170

which are capable of identifying situations that have not been encountered in the past,171

have also seen significant advances. However, despite the progress in the aforementioned172

areas, little work has been done on developing complete self-adaptive pipelines on top of173

DL models, as also seen for traditional Machine Learning approaches (Saputri and Lee174

2020). The approach presented in this article builds on the existing attempts of using DL175

in an autonomous robot setting without the need to re-certify the robot.176

Active Uncertainty Reduction177

Uncertainty quantification for DL models helps ensure their decisions’ trustworthiness.178

To this end, there are two mainstream approaches: Bayesian and ensemble-based (Abdar179

et al. 2021), which have been applied to various tasks, e.g., medical imaging and natural180

language processing. Related to self-adaptive systems, recent works (Catak, Yue, and Ali181

2021, 2022) propose a novel uncertainty quantification metric for DL models specifically182

trained for object detection in the context of self-driving cars. This metric was used to183

quantify the uncertainty in a DL model to evaluate the prediction’s reliability, which184

was then improved by retraining. These works focus on classification tasks, and have not185

been used to quantify the uncertainty of embedded DL models in self-adaptive systems.186

Instead, the data produced was used to train DL models for uncertainty quantification.187

In the RoboSAPIENS approach it is targeted to provide “guarantees” in the presence of188

uncertainties, and propose methodologies for actively trying to reduce uncertainty and189

increase trustworthiness. This is to be used both inside the L part of the MAPLE-K loop,190

as well as inside the Trustworthiness checker.191

The RoboSAPIENS Case Studies192

This section starts with introducing an academic case study to demonstrate the proof of193

concept of the RoboSAPIENS approach. Afterwards, four industrial-scale case studies194

from RoboSAPIENS are described.195

An Academic Case Study196

A small academic case study based on a TurtleBot 4 has been defined. This will be used to197

illustrate the different RoboSAPIENS technologies as it is being developed and to be used198

in subsequent publications.199

TurtleBot 4 is an open-source robotics platform designed for education and research.200

It comes equipped with an iRobot® Create3 mobile base, a Raspberry Pi 4 running ROS201

2, an OAK-D spatial AI stereo camera, and a 2D LiDAR.202

The robot, without any support from the MAPLE-K, should be able to autonomously203

navigate an unknown map using SLAM and a planner (referred to as the local planner204

to distinguish from the MAPLE-K Loop planner). Additionally, it must estimate the205

remaining useful life of the battery, assuming that the map floor is uniform.206

With RoboSAPIENS technology, the aim is to demonstrate how this navigation can207

be improved for example to handle the following anomalies:208

• Non-uniform floors, which cause the robot to consume more energy in certain areas.209

• Partial obstruction of the LIDAR sensor.210

• High vibration zones that should be avoided when the robot is carrying a load (to be211

implemented later as a demonstration of MAPLE-K continuous delivery).212
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To achieve these improvements, RoboSAPIENS will implement a MAPLE-K loop that213

complements the robot’s local planner through multiple extension points. For example,214

rewards and punishments can be provided to influence the local planner’s decision-making.215

Additionally, the sensor data accessible to the local planner can be modified by the MAPLE-216

K loop to enhance map information.217

Regarding trustworthiness and safety, RoboSAPIENS envisions conducting formal218

verification on the local planner offline, covering a wide range of operational scenarios219

(though not necessarily the adaptations provided by the MAPLE-K loop). This verification220

will serve as the foundation for runtime verification during the validation of MAPLE-K221

loop activities. The trustworthiness checker will ensure that the MAPLE-K adheres to222

the best practices of mobile robots, and the legitimate block will employ simulation and223

model checking for validating new robot configurations.224

Robotic remanufacturing225

This case study, provided by the Danish Technological Institute (DTI), focuses on the226

remanufacturing process, where used products are repaired and restored to a like-new227

condition, maintaining the same quality, performance, and warranty. The remanufactur-228

ing process involves six steps: disassembly, cleaning, inspection, restoration, reassembly,229

and testing. This study emphasises the disassembly task, which is often the most time-230

consuming and labor-intensive phase. Traditionally, manual work is required for complex231

disassembly tasks involving high levels of uncertainty (Vongbunyong, Kara, and Pag-232

nucco 2013). Tasks such as unscrewing, un-snap fitting, and destructive disassembly233

demand precision and adaptive control. While collaborative robots can be programmed234

by demonstration, their effectiveness highly depends on the task type and the expertise of235

the demonstrator. These robots are efficient for repetitive tasks but struggle with tasks236

requiring force-based control to compensate for inaccuracies.237

The RoboSAPIENS project aims to bridge the gap between labor-intensive reman-238

ufacturing and adaptable robotic automation using the MAPLE-K framework. This239

technology enables robots to adapt to new and unforeseen situations while ensuring safety240

and trustworthiness.241

In this context, the MAPLE-K framework is employed to enhance the adaptability and242

efficiency of robotic disassembly. The robot continuously monitors its environment and243

the state of the disassembly process using sensors and cameras. Upon detecting an anomaly,244

such as a difficult-to-remove screw, the system analyses the situation to determine the245

cause of the failure, leveraging historical data and real-time sensor inputs. Based on this246

analysis, the robot formulates a new plan to address the detected issue, such as switching247

tools or adjusting its force application strategy.248

Before executing the new plan, the system validates and verifies it through simulations.249

This step ensures that the new plan will not compromise safety or performance. The250

validated plan is then executed by the robot, which adapts its behaviour in real-time to251

successfully complete the disassembly task, maintaining overall efficiency and safety. The252

outcomes of the executed plan are recorded and added to the system’s knowledge base,253

enhancing future adaptations and sharing knowledge across different robots to improve254

their performance.255

A demonstration of this use case will be set up at DTI’s lab, involving a robot cell256

designed to disassemble electronic consumer waste, such as laptops. The demonstration257

will showcase the robot’s ability to handle complex manipulations and adapt to unforeseen258

challenges using the MAPLE-K framework.259

Autonomous Mobile Robots on Manufacturing Floor260

Automated Guided Vehicles (AGVs) operating on shop floors are ad-hoc machines that261

require specific distribution and means of transport. Advancement towards Industry 4.0,262

however, calls for the use of Autonomous Mobile Robots (AMRs), a more versatile and263

affordable option than AGVs, consisting of robots equipped with a mobile base and even264

robotic arms, allowing them to autonomously navigate and perform dexterous tasks265

without the support of additional physical equipment. It is envisioned that these robots will266
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be deployed as a fleet on the shop floor, able to navigate freely and safely, while taking into267

account changes in the fleet and the surroundings (e.g. change to the number of robots268

and blockages by humans) based on self and environmental awareness. RoboSAPIENS269

will provide a solution to dynamically adapt the work assigned to each member of the fleet270

and the navigation through paths when such changes occur. Such adaptation will take271

dynamic parameters into account, such as disconnected robots, battery status, proximity272

to goals, past human behaviour, etc.273

The case study will use a fleet of robots from the TIAGo family developed by PAL274

Robotics, the TIAGo OMNI Base. This mobile base is equipped with omnidirectional275

mecanum wheels that allow the robot to move in any direction, two LIDAR sensors for an276

unobstructed 360º FOV and 2 depth camera to complement the other sensors and detect277

stairs, tables, etc. The scenario involve these robots set in a shop floor, controlled via a278

fleet management system. During their operation, one or more robots may come and go279

(e.g. due to low battery), communication between robots and the fleet management may280

drop, emergency exits may be blocked (due to stopped or malfunctioning robots cutting281

supply chains and endangering humans), or the floor plan itself may change.282

Such anomalies will trigger the MAPLE-K at the fleet level, and the state of the fleet283

and the environment will be re-evaluated. The TIAGo robots are capable of Simultaneous284

Localisation and Mapping (SLAM), and their sensor readings are used to update the map285

and inform the fleet manager. The planning phase is carried out by adopting a genetic286

algorithm to reschedule tasks and paths of the robots. After the system is validated through287

simulation, and the self-adaptation process is deemed trustworthy, the model is deployed288

to the fleet manager.289

At the robot level another MAPLE-K loop will be integrated. It will be a human290

tracker based on the sensing capabilities of the robot platform. The robot will be able to291

adapt its path and avoid humans at a socially acceptable distance while keeping track of292

the uncertainty of the human switching predicted path and crossing the robot planned293

path. Via RoboSAPIENS legitimate capability the new plan is then assessed and if it is294

decided as trustworthy, the updated path is then executed by the TIAGo OMNI base.295

Autonomous Ship Motion Prediction296

Estimating the motion of a ship in the immediate future, either from a dynamic model, or297

a data-driven one using adequate historical data, could support autopilots and thus improve298

the safety of autonomous ships. However, deploying the prediction system to new ships299

without sufficient prior knowledge of their dynamic behaviour deteriorates navigation300

capability, especially in the presence of environmental uncertainties such as wind, currents,301

and waves. Identifying model parameters via sea trials or collecting the needed data for302

ship motion modelling will take a relatively long time. In this case study, RoboSAPIENS303

leverages the dynamic model from a reference ship and the limited available data from the304

target ship to build up a transferrable model that can represent the target ship motion.305

RoboSAPIENS will use the Norwegian University of Science and Technology (NTNU)’s306

Gunnerus research vessel as a case study. Gunnerus has gone through a thruster refit307

in 2015 and been extended by 5m in length in 2018. While there is a high-precision308

dynamic model of the original vessel, it cannot directly be used for the longer vessel, for309

which there are limited data available. In such a context, three objectives are considered310

in this case study, from dynamic system identification, to transfer learning of identified311

systems, to online model adaptation. RoboSAPIENS will first obtain a rough dynamic312

model of the longer vessel based on the dynamic model of the original vessel and then313

apply DL to the longer vessel, by combining the rough dynamic model with the limited314

real-motion data to generate a ship predictor.315

In the MAPLE-K loop, a motion calibrator will be created based on the motion316

discrepancy from the hybrid predictor and real data, and further incorporated into that317

predictor for motion prediction. When the ship’s motion predictor underperforms a318

monitor is triggered. Data is recorded from the trigger time to a predefined later time319

for generation of a new dataset in runtime, at the aims of analysing the main factor320

of prediction error in the analyse phase and updating the transferred prediction model321
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trained using DL in the plan phase. If a better prediction performance is validated via322

RoboSAPIENS legitimate capability and it is deemed trustworthy, the updated model is323

deployed and executed, otherwise the system goes back to the plan phase. RoboSAPIENS324

will investigate what a suitable amount of data is needed for the transferable model, the325

impact on the prediction performance, and the generalisation of the transfer modelling.326

Dynamic Risk Model for Cobots in Industry 4.0327

Risk assessment is a mandatory procedure in human-robot interaction for cobots. It is328

an iterative process that systematically identifies hazards and specifies measures to reduce329

these hazards’ probability. The procedure and requirements are specified in the Machinery330

Directive 2006/42/EC and harmonised safety standards.331

The current manually operated and strongly heuristic practice contradicts the paradigm332

of Industry 4.0. Ignoring data during the risk assessment leads to a loss of efficiency in333

safety engineering and, most importantly, an unnecessarily decreased robot productivity.334

This is particularly evident in production systems featuring human-robot collaboration,335

where people and machines work closely together. In this case study, RoboSAPIENS will336

use system and sensor data in a dynamic human-robot safety model to automatically and337

continuously assess the risk, to improve the overall production system’s efficiency, and to338

significantly reduce the costs associated with risk assessment.339

An experimental production line will serve to test the benefits of the MAPLE-K340

loop technology in an industrial setting. The production line includes human workers,341

mobile platforms, a collaborative robot and various safety sensors that monitor positions,342

movements and states of human workers. The data from the safety sensors and the digital343

twins of the robots will be continuously analysed for incomplete data and changes, such as344

those that can occur when a human abruptly moves in another direction. In case of such345

abnormalities, the robots’ motions and activities will be newly planned. The planning346

result will then be legitimated in simulations under worst-case conditions. Once this part347

of the MAPLE-K loop has evidently concluded that the newly planned robot motions348

will not lead to obvious or additional health risks, the new plan will be transmitted to the349

production line’ management system and there executed if the Trustworthiness Checker350

confirms that all requirements from applicable standards, laws and other rules are fulfilled.351

Thanks to RoboSAPIENS technology based on the MAPLE-K loop architecture, a352

dynamic risk management will be realised for a production system that includes multiple353

robots and, of course, freely-moving humans. Whenever a deviation from original354

assumptions or even abnormalities is detected, the production system will automatically355

adapt by itself to mitigate current risks. Only if any self-adaptation is deemed trustworthy,356

the production system will finally implement and execute the measures planned.357

Concluding Remarks and Future Work358

We believe that RoboSAPIENS to a large extent is set up to answer the research question359

‘How to ensure safety of learning-enabled cyber-physical systems?” asked in the Cam-360

bridge University Press journal called “Research Directions: Cyber-Physical Systems”.361

The RoboSAPIENS focus is naturally autonomous robots but it is expected that some of362

the research results that will be delivered will be of more general nature. The expectation363

is that more detailed publications will be published for the RoboSAPIENS technology,364

initially using the academic case study. Subsequently, it is expected that the usefulness365

of the conducted research will be demonstrated in the four industrial-scale case studies366

and separate publications will be made for each of these. We believe that each of these367

publications will be submitted as follow up papers to the same question.368
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