DynSRV: Dynamically Updated Properties for
Stream Runtime Verification™

Morten Haahr Kristensen?[0009—0008—8467—-7567]

Thomas Wrightl[0000—0001—8035—0884] Claudio Gomesl[0000—0003—2692—9742]
))

Lukas Esterlel[0000—0002—0248—1552]7 and

Peter Gorm Larsenl[0000—0002—4589—1500]

Department of Electrical and Computer Engineering, Aarhus University, Denmark
{mhk,thomas.wright,claudio.gomes,lukas.esterle,pgl}@ece.au.dk

Abstract. Systems that adapt to their environment or change based
on new requirements pose challenges for runtime verification. Complex-
ity is increased when the system needs to retain its internal state and
continue monitoring while also updating properties or adding new ones
during runtime. In this work, we propose DynSRV, a Stream Runtime
Verification language that allows for dynamic updates of properties. A
core benefit of this language is its capability to update properties at
runtime without requiring a restart of the monitor, maintaining the in-
ternal state of the remaining properties. We formalise the semantics of
our core primitives and demonstrate design patterns for allowing adap-
tations under certain constraints. Finally, we present an implementation
of DynSRV and describe three memory strategies that balance memory
usage and the ability to resolve dynamically added properties depending
on historical data.

Keywords: Runtime Verification, Dynamic Properties, Stream Run-
time Verification, Autonomous Systems, Dynamic Software Updating,
Self-Adaptive Systems

1 Introduction

Motivation. How do we ensure continuous and accurate runtime monitoring
when the system evolves during execution? If the system evolves in simple ways
that can be captured in static Runtime Verification (RV) specifications then
system evolution is not an issue. However, if significant behavioural changes
are introduced by a human through Dynamic Software Updating (DSU) (see,

* The work presented here is supported by the RoboSAPIENS project funded by the
European Commission’s Horizon Europe programme under grant agreement number
101133807. In addition, the authors would like to thank Amalie Kaastrup-Hansen,
Tobias Frejo Rasmussen, and Mikkel Kirkegaard for the fruitful discussions leading
up to the paper.

2 M.H.Kristensen et al.

e.g. |14]) or autonomously, then the RV specification must also be updated to
ensure that the system is still being monitored correctly. Moreover, changes
often entail that the system requirements have evolved [14], and if so, then
the RV specification must also evolve to reflect these new requirements. An
example of this is shown in [19], where a self-adaptive cloud-edge-end power
distribution system requires the deployment of a state-machine based monitor
that changes to reflect requirement changes in real-time, as the system reacts
to evolving load demands, sensors failure, or maintenance events. Naturally, one
possibility is restarting the monitor with an updated specification, but this is
not always possible, as it involves loss of internal state potentially leading to
incorrect verdicts |22].

Contribution 1. We propose and formally define DynSRV, a Stream Run-
time Verification (SRV) language that allows monitors to be updated at runtime
without requiring restarts or manual rewriting. Specifically, we introduce two
primitives to DynSRV which enable expressing Dynamically Updated Proper-
ties (DUPs).
— defer(p) allows a RV property p to be specified at a later point in time,
enabling exactly one dynamic update.
— dynamic(p) extends the concept of defer(p) by permitting continual up-
dates, allowing the dynamic property to be modified multiple times through-
out execution.

DUPs extend the concept of DSU to SRV by allowing specifications to evolve
alongside the system without restarting. Unlike traditional DSU, which modifies
the functional aspects of a running system, DUPs focus on changing the RV
properties that the system is expected to satisfy.

Contribution 2. While DynSRV enables flexible adaptation, allowing arbitrary
dynamic expressions within a monitor introduces challenges in reasoning about
specification correctness. Thus, we propose design patterns for the specification of
DUPs, enabling controlled adaptations, refinements, and demonstrating common
adaptation patterns within DSU.

Contribution 3. We highlight the unique challenge presented by allowing adap-
tive SRV with DynSRV, such as ensuring consistency in monitoring results de-
spite evolving specifications, managing historical data for updated properties,
and developing performant interpreters that allow evaluating unforeseen prop-
erties.

2 Background & Related Work

We begin by linking the fields of DSU and Self-Adaptive Systems (SASs), which
provided the motivation for this work, and we discuss how they relate to DUPs.
We then recap the basic concepts of SRV before introducing existing works that
express special cases of DUPs in the context of RV.

DynSRV: Dynamically Updated Properties for SRV 3

2.1 Dynamic Software Updating and Self-Adaptive Systems

DSU enables modifying running systems without stopping them, which is critical
for applications like financial systems or web servers where downtime is costly.
Key challenges include maintaining safety, supporting flexible updates, minimis-
ing overhead, and easing the developer’s burden. Hicks, Moore, and Nettles [14]
address these with a DSU system for C-like languages using type-safe dynamic
patches and tools to aid patch creation and application.

SASs autonomously manage and adjust themselves to meet high-level goals [16].
Inspired by biological autonomic systems, they reduce manual intervention through
capabilities like self-configuration, optimisation, healing, and modular architec-
tural updates [27]. SASs use feedback loops and distributed components to moni-
tor, analyze, plan, and execute changes in dynamic environments. Key challenges
include goal specification, ensuring safety, and handling emergent behaviour.

DSU and SASs are interrelated: DSU enables runtime adaptation for SASs,
while SASs frameworks can manage DSU to maintain stability during updates.
Virtual machine-based DSU approaches, such as those presented in [25] |26 [15],
inspired our monitor architecture, offering runtime control and transformation
of system structures.

At design time, formal verification ensures DSU maintains safety and live-
ness properties. A foundational model by Bierman et al. [2| uses a A-calculus
with an update primitive to enable formal reasoning about dynamic updates.
Despite extensive research (see surveys [23| [20} [28]), runtime updating of verifi-
cation properties remains an underexplored area. The following sections address
existing work on this topic.

Other works have developed temporal logic-based controller synthesis tech-
niques to generate dynamic updates to a controller which satisfy temporal logic
properties specifying both the expected new behaviour and the manner of the
update. Nahabedian et al. [21] introduced an approach to synthesising controllers
which satisfy new specifications as well as update strategies which ensures correct
behaviour during the update; this corresponds to a guided adaptation strategy
as proposed by Zhang and Cheng [29]. Finkbeiner, Klein, and Metzger [11] in-
troduced LiveLTL, an extension of Linear Temporal Logic (LTL) for specifying
desired behaviour before and after a dynamic update, and introduced a synthesis
algorithm for synthesising updated controllers which meet the new requirements
as well as any outstanding unsatified old requirements.

2.2 Dynamically Updated Properties

SRV is a lightweight RV approach that monitors systems producing continuous
data streams. It processes input streams, i.e., sequences of event values, into
verdict streams following a given specification.

LOLA [§] is a SRV language, inspired by LUSTRE and ESTEREL, support-
ing basic operations, conditionals, and time-offsets to enable temporal monitor-
ing. LOLA uses a dependency graph to determine if a specification is “Efficiently

4 M.H.Kristensen et al.

Monitorable”, ensuring bounded memory usage. LOLA pioneered SRV and has
influenced many subsequent languages, including TeSSLa [18].

Lola 2.0 improves dynamic RV through dynamic parametrization, enabling
quantification over objects and monitor spawning independent of observed in-
stances, and retroactive parametrization, allowing monitors to revisit past events
during execution [22|. While the new monitors support parameterizing existing
expressions, DynSRV allows dynamically providing any syntactically valid ex-
pression that references valid input streams.

Barringer et al. [1] propose Eagle, a general logic framework supporting recur-
sive monitoring rules with fixpoint semantics. Eagle supports dynamic monitor
generation and logics like LTL, Metric Temporal Logic (MTL), and Statistical
Contracts.

First order logic quantification in dynamically created objects in RV was ex-
plored by Havelund and Peled [13] and Sokolsky et al. [24] with LC,,. LC,, uses
first-order and attribute quantifiers to track dynamic entities (e.g., tasks, sen-
sors). This relates to Allocational Temporal Logic (ATL) using history-dependent
automata |9

Actor-based runtime verification |7, |6, 4, 5] has previously been applied to
self-adaptive systems, using independent monitor actors that observe and react
to behaviour asynchronously.

The most relevant related work in terms of goals (but not methods) is by
Carwehl et al. [3], who propose dynamically adapting monitors to changing re-
quirements without restarting the monitor. Their monitors are synthesized as
automata with error states based on structured English specifications trans-
lated into MTL, whereas we use stream-based properties. During execution, a
Runtime Verifier checks for violations, and when requirements change, a Require-
ments Manager applies predefined Property Adaptation Patterns (e.g., updating
a time guard or updating events). In contrast, we support arbitrary property ex-
pressions as long as they are syntactically valid and use existing input streams.
While they argue that adhering to fixed patterns leads to safer adaptations and
view fully dynamic RV as undesirable, we take a different stance, and demon-
strate through Contribution 2 that we can address these valid concerns while
prioritising expressiveness.

3 Specification Language

3.1 Motivational Example

To provide a motivational example (Fig. [1)), we consider future production lines
where different products are manufactured by autonomously moving robots. The
robots move around in the production hall and utilise the different tools available
in order to produce the desired items. The robot has an understanding of the
production process and which tools to utilise for each product. However, while
the robot and the production line are developed in parallel, the robot will only get
knowledge of the final layout and the respective locations of the different tools

DynSRV: Dynamically Updated Properties for SRV 5

e’

gz = >4 & t 'J%. e 4

N > 4
S i Y
| '
\
N, 4

g

1=
®

Fig. 1: Example of a production line at different time steps. First is the empty
production hall, then the layout with the machines is added — a specific area is
for robot maintenance (red square). Last two show which tools are allowed to
be used during phases t3 and ¢4 (highlighted in purple).

upon completion of the production hall. Upon deployment, the robot will be
given a product to manufacture, and it will start to move around the production
hall. When the product is completed, the robot will receive a new product —
potentially with a different requirement for the tools to be used. The robot
will then have to adapt its plans, movement and overall behaviour to the new
product. Finally, the robot is battery-operated and will need to recharge at
certain intervals as well as undergo regular maintenance.

In this scenario, the robot uses the stream [= defer(l;,) for the layout of the
production lines, respective locations of the different tools, and restricted areas,
using defer since this configuration becomes immutable once it is made. At de-
ployment time, p = dynamic(p;,) is used to change the rules determining which
products the robot is allowed to manufacture as the production line evolves.
Here, the new rules can use the information gathered from the layout stream.
Finally, the verdict is available with v = update(p;nit, p) where an initial value
of production rules is provided with update, which is detailed in Section [3.3]

This example highlights the need for DUPs in scenarios where the monitored
system is subject to dynamic changes, and the monitoring properties must adapt
accordingly. In addition, the specification can include static properties. For in-
stance, the robot is also subject to regular maintenance and recharging within
at least certain intervals (e.g., at least every 12 hours), requiring stateful prop-
erties to be monitored. As the stateful maintenance information would be lost if
the monitor is restarted, a simple restart for each product update is not feasi-
ble. While this is only a simple example, the reader can imagine more complex
scenarios with multiple robots and multiple products operating in parallel and
potentially creating conflicts around resources and tools during execution.

3.2 Syntax

DynSRV defines monitors that transform a set of input streams I = {p1,...,pn}
into a set of output streams O = {01, ..., 0n}. Each stream s = (s1, s2,...) is a
sequence of typed values s; in some domain ID. These domains D include booleans
B, integers Z, floating point numbers F, and, recursively, stream expressions in
the DynSRV expression domain E[D] which we will shortly define with values

6 M.H.Kristensen et al.

in some domain D. Streams may also take on a special value 1 (pronounced
deferred), denoting that no value was sent at the current time step.

A specification @ over input streams and output streams S = I W O (where
W denotes the disjoint union) consists of a set of equations

01=¢01 Onzqson

where the expressions ¢, are defined as stream expressions with output domain
D. Stream expressions ¢ € E[D] are defined recursively to be a basic expression,
a DUP, or a DUP helper. We elaborate on the precise semantics for DUPs in
Section 3.3l

A basic expression is one of the following:

— a constant vEc forceD
— a stream variable dEv for any v € S
— a function application &= fahr, ... 0n)
which lifts an arbitrary data-domain function f:D; x ... x D, — D
— a temporal index & = p[—j] for p € E[D],j € N
referring to the value of ¢ at j time units in the past
— a conditional ¢ £ if o then 9| else for o € E[B]
Y1,¢2 € E[D]

A DUP is one of the following:

— a defer ¢ = defer(v)) for ¢ € E[D]
referring to a dynamic property which is 1 until the first point at which
1 becomes available and behaves like ¥ subsequently
— a dynamic ¢ £ dynamic (1)) for ¢ € E[D]
referring to a dynamic property which behaves like the most recent value
of 1 or is L if none has been sent
A DUP helper is one of the following;:

— a default ¢ = default(y,c) for v € ED],ce D
which uses the default value c if ¢ is L

— a when ¢ = when(v)) for ¢ € E[D]
which is false until the first time v is not 1 and true thereafter

— an update ® = update(vy,¥s) for 11,19 € E[D]

which is 1 until the first time 1) is not L and 5 thereafter
Standard data-domain operators such as addition, multiplication, logical con-
junction, disjunction, and comparison operators are supported as functions f
lifted to stream expressions. These operators propagate 1 values such that e.g.
24+ 1 =1.

Furthermore, we define a specification to be well-defined, if it has no zero-
time cycle of dependencies (similarly to [§]), that is, if any dependency cycle is
guarded by a time index. This restriction is necessary for specifications to be
monitorable.

DynSRV: Dynamically Updated Properties for SRV 7

3.3 Semantics of DUPs

In this section we define a mathematical semantics for DynSRV specifications &.
We note that this follows a similar approach to the semantics of TeSSLa [1§]
and LOLA [8], whilst introducing novel definitions to handle DUPs.

First, we need to formalise the notion of streams, used for specification input
and output. Streams s range over the time domain T £ N of natural numbers,
and assign to each time point t € T a stream value s(t) in an appropriate
data domain . We also need these to handle both deferred data L (for dynamic
properties) as well as partiality, which uses the special value ? to represent stream
values which have not yet been computed.

Definition 1 (Stream). A partial stream (or simply, stream) is a function
s: T —DU{? L} such that s(i) = ? implies that for all j > i we must have
s(j) = ?. We denote the set of streams by STREAM = [V — DU {7, L}].

Additionally, we call a partial stream total if Vi € T : s(3i) # 7.

We define the input namespace in(®) consisting of the set of input variables,
the output namespace out(®) consists of the set of output variables, and we define
vars(®) = in(P) U out(P). We also define vars(¢), for any stream expression ¢
to be the set of all stream variables appearing in ¢, and define V to be the
set of all variable namesﬂ This allows us to introduce contexts, representing an
assignment of partial streams to some stream variables v in the set of all stream
variables V.

Definition 2 (Context). A context is a partial function C : V — STREAM.
We denote the set of all such partial functions as

CONTEXT = [V =T - DU{?, 1L}] = [V — STREAM].

That is, within a given context, for a stream variable v € V in the domain
of stream variables for which it is defined, we have a stream for this stream
variable C(v) : T — DU{?, L}. In particular, the inputs to a specification ¢ can
be provided via an input context Cj, such that dom(Ch,) = in(P).

We also define the refinement partial order on data values by setting v C v iff
v =7 implies uw = 7. This extends elementwise to a partial order C on streams,
and on contexts sharing the same domain.

Using this, we define the semantics of a specification @ as the least fixed-
point of a single-step semantics, which expands one recursive step of the stream
equations, using refinement to gradually build streams covering the whole time
domain.

Definition 3. We define the single-step semantics for a specification @ to be the
function [@]; : CONTEXT — CONTEXT — CONTEXT defined such that

[2],(C)(D)(v) = [¢u],(C)(D W C)

1 To be concrete, we can set V = N for countably many numerically-indexed variables.

8 M.H.Kristensen et al.

for each v € vars(¢), whilst the denotation function for a well-defined specifi-
cation @ given nitial context C = Ciy to be the function [P] : CONTEXT —
CONTEXT defined as the least-fized point:

[2)(C) = nD. [2],(C)(D).

under the refinement order C.

We also define the shorthand [](C) £ [¥](C) for the semantics of ¢ within
the specification W £ v = 1) where v is any fresh variable name.

The fixed-point in the above definition exists and is unique for well-defined speci-
fications @ by Kleene’s fixed-point theorem since the definitions of the single-step
semantics for individual operators — which we will give shortly — are monotone
in the refinement order T, and hence so is [®],(C).

This depends on the single-step semantics for individual operators, which we
define as follows for basic operators,

[l (C)(D)() £ ¢
[v]1(C)(D)(i) = D(v)(i)
[f (1,)] (OND)(@) = f([1], (CND) (@), [¥], (C)(D)(D))

[r], (C)(D)(i) if [o],(C)(D)(i) = true
[if o then ¢y else v2],(C)(D)(i) = T’ZL(C)(D)(@) i %Z%lggiggigz; i iz_%lse
: it [o1,(C)(D)() = ?

[, (C)D)(i—j4) ifix>j
L otherwise

[Y[=411,(C) (D)) = {

For the other functions, we first define duration restricted subsets of a con-
text, which can be used to evaluate properties using only data available at a
given point in time.

Definition 4. Given a context C' we define the duration-d prefiz of C as the
contezt Clq defined by

) Cv)(@) ifi<d
C 2
la(v)(@) {? otherwise
which we use to define the following two helper functions,

Definition 5. For mazimum duration i, expression v, and context C, we define
the functions first,last : N x E[D] x CONTEXT — N U {co} defined by

first(i,v, C) £ min{j € N | [¢](Cl;)(j) ¢ {L,?}Aj<i}
last(i, 6, C) £ max{j € N | [W)(CI;)() ¢ {L,7}Aj <1}
where each of these functions is set to oo if [¢¥](C|;)(j) € {L,?} for all j.

DynSRV: Dynamically Updated Properties for SRV 9

Then we define the single-step semantics of dynamic properties by,
[v;],(C)D)(E) ifiz=j
€ if j =00

[vel, (C)D) (@) ifi=k
1 if k=00

[aefer(y)], (C)(D)(i) = {
[dynamic(¥)],(C)(D)(i) £ {

where j = first(i,),C), k = last(i,9,C), ¥; £ [¢¥],(C|;)(D)(j), and vy £
[, (Cle) (D) ().

Finally, we define the semantics of each of the DUP helper functions by

>

fupdate(v, vl (C)(D)(D) 2 {Wlﬂl(C)(D)“) st g D) =

[¥2],(C)(D)(i) otherwise

» Jfalse if first(i,9),C) = o0
true otherwise

[when(4)], (C)(D)(2)
[Vl (C)(D)G) i [¥],(C) D)) # L

c otherwise

[detault(y, c)],(C)(D)(i) = {

4 Design Patterns with DUPs

In practical RV scenarios, system requirements change. Supporting such changes
with a first-class language construct allows specifications to adapt systematically,
and allows expressing which parts are allowed to adapt. With DUPs, not only can
the specification itself evolve over time, but it also becomes possible to express
meta-properties, i.e., properties about how the specification may change. This
section presents design patterns for writing specifications with DUPs in DynSRV.

General Design Patterns

Open Property shows the most permissive use of dynamic, where the verdict
v, directly reflects the incoming property p. In this case, it is up to the sender
to ensure that the provided property is safe and valid.

v = dynamic(p)

Weaken allows dynamic properties to weaken an existing requirement. In this
example, accepting a new goal g normally requires the robot’s battery level
b to be above 30%. However, in emergencies such as a fire, strictly enforcing
this threshold could block critical actions, such as evacuating an area or saving
material, thus custom rules p are allowed.

v=g = b>30Vdefault(dynamic(p), false)

10 M.H.Kristensen et al.

Rconp
—

SprOP Tprop SpROP TprOP
O OO O0OO0 <T> O O (?
AREQ AREQ
(a) One-point adaptation, where (b) Guided adaptation, where Tprop
Tprop is used immediately upon is used when Rconp is satisfied.
arrival.
RconD
O Tprop
SpPROP
O property before adaptation property after adaptation
O O (?
property during adaptation — interval
AREQ

(¢) Overlap adaptation, where Trrop
is used alongside Sprop until the
Rconp is satisfied, whereafter only
TpRop is used.

Fig. 2: Adaptation semantics proposed by Zhang and Cheng, figure adapted from
[29] with minor modifications for SRV.

Strengthen allows dynamic properties to strengthen existing requirements. In
the example, T is the current time, T, is the scheduled maintenance time, and
p represents dynamic rules that further constrain the maintenance window. For
instance, these rules might shorten the service interval if the battery degrades
or if the robot moves farther from its charging station.

v=T < Ty, Ndefault(T < dynamic(p), true)

Refinement allows refining an existing property with a new one, where the
verdict reflects whether the refinement is valid. In this example, b represents an
update of the original condition b, to a new property p once sent. The refinement
expression r evaluates whether the new property remains valid within the context
of the original condition. Notably, r is a tautology (b = b.) when no new
property has been provided. The verdict v combines the updated condition b
and the refinement r, where true means the requirements are met. If the new
property evaluates to L, the verdict becomes false.

be = bin, > 30 b = update(b., defer(p))
r=b = b, v = default(b A r, false)

Adaptation Patterns
In their works on A-LTL, Zhang and Cheng [29] formalised the semantics of
three commonly occurring adaptation semantics: one-point, guided, and overlap

DynSRV: Dynamically Updated Properties for SRV 11

to t t, t; ts
1 1 1

to t t, ts ts
1 1 1 1 1

]]
1 1
[T X T X2 X3 X) s O X 1T X 2z X3 X 7))
T[7 Yx+tiw0X 7 X 7 X 7) T 7 Yx+100X 7 X 7 X 7)
false X false X false true true R | _false X false X false true true
c | false X false X false true X false) c | false X false X false X true X false)
sL_o X 1 X 2 x 3 X 4) sL_o X 1 X 2 X 3 X 4)
vl o X 17 X 2 X 103 X 104) vl o 702 704 X 103 104
(a) Trace demonstrating guided adap- (b) Trace demonstrating overlap adap-
tation. The verdict stream v switches tation. The verdict stream v combines
to T after R is satisfied. S and T until R is satisfied, after which

it uses only 7.

Fig. 3: Example traces for guided and overlap adaptation.

adaptatiorﬂ This is depicted in Fig. [2| To highlight the expressiveness of Dyn-
SRV, we demonstrate how the latter two can be expressed with DUPs. One-point
adaptation is trivial with DynSRV, as it immediately applies the new property,
which is the default behaviour of defer and dynamic.

Guided Adaptation allows a new property to not be used immediately but
await for a restriction condition to be satisfied, as depicted in Fig. This allows
the system to delay the application of a new property until appropriate.

The example below demonstrates a specification implementing guided adap-
tation in DynSRV, with the corresponding trace in Fig. [3a] An integer stream
is used for the verdict to more clearly represent its distinct states.

S=z R = when(T) A ¢V default(R[—1], false)
c=x==23 v = if R then defer(T) else S

Here, x and T are input streams, with T representing a property received at
time step 1. This property is not applied to the verdict v immediately but is
gated by R, which becomes true when ¢ holds after the property is received —
at time step 3. The disjunction with default(R[—1],false) ensures that once R
holds, it remains true thereafter. The verdict v switches to the deferred property
defer(T) only after R holds; otherwise, it yields from S.

Overlap Adaptation allows a new property to be used alongside the original
property until a condition is satisfied, as depicted in Fig. Once this condition
holds, the new property is used exclusively.

2 In Zhang and Cheng’s semantics, adaptation may involve a delay between re-
ceiving and applying an adaptation request to ensure the program is in a safe state.
This is not required in DynSRV, as it is stateless.

12 M.H.Kristensen et al.

The example below shows a DynSRV specification implementing this be-
haviour, with its trace depicted in Fig. [3b}

S=z R = when(T) A ¢V default(R[—1], false)
c=x==3 v=if —when(T) then S else if "R then S+ T else T

Unlike guided adaptation, overlap adaptation introduces a transition phase where
the original stream and the new one are combined (S + T)E| until the condition
R becomes true. Initially, the verdict v yields from S. When a new property is
received at time step 1 via T, the verdict combines S and T until R is satisfied
at time step 3. After that, the verdict uses only T

5 Memory Management and History with DUPs

Efficient online monitoring with SRV has long been a focus of the community.
Newer languages such as TeSSLa [18] guarantee Bounded Memory (BM) by dis-
allowing future stream indexing — a restriction also adopted by DynSRV. Here,
we define BM to mean that at each monitoring step, the monitor’s memory usage
does not grow with the length of the trace. While memory usage may change
dynamically (e.g., when new properties are added), it must remain independent
of the trace length. Allowing DUPs in DynSRV introduces a trade-off for en-
suring BM, as dynamic expressions may require access to historical data that
would otherwise be discarded as a part of the memory management strategy. In
static SRV languages, the Dependency Graph (DG) can be used to safely dis-
card unused history once it is no longer needed to resolve equations. In contrast,
DUPs can introduce new data dependencies at runtime, potentially referencing
historical values that have already been discarded to free memory. This dynamic
behaviour makes it impossible to guarantee both BM usage and optimal resolu-
tion of expressions introduced by DUPs. Even if a dynamic expression at time
t could be resolved to a non-_L value given the full trace, the monitor may still
return | if the necessary data has been discarded. This section defines solvable
stream expressions in relation to memory management and presents three strate-
gies that demonstrate the trade-off.

Solvable Stream Expressions

For this section, we use the notation that ¢[—j] refer to a stream expression ¢
annotated with an optional temporal index —j, where j = 0 when no explicit
index is given.

3 Here, addition is used as an example; other operators may apply depending on
context.

DynSRV: Dynamically Updated Properties for SRV 13

Definition 6 (Effective Index). Given a stream expression ¢[—j] and stream
variable s € vars(¢), the effective index index(¢, s, j) is defined as:

j+J if ¢ = s[—j'], s € vars(¢)
j if & = when(y)) v
¢ = default(y,c)
index (4, s, j) if ¢ = defer(y)) V
& = dynami ()
. . index(z/)7 S)j +.7/) Zf¢ = ’L/)[_j/]
index(0,5.4) = | max({index(v, s.j) | if 6= f(r,. s 0n)
1/} € {¢17»¢n}})
max({index(o, s, j), if ¢ = if o then ¢
index(¢1,s,7), index(1)2, s,7)} else o
max({index(v1, s, j), if ¢ = update(t1,1)2)
index(19,s,7)}
j otherwise

Effective Index is useful for reasoning about expressions with nested temporal
indices. We highlight the case with when(v) and default (1), ¢) expressions, which
do not introduce new temporal indices and can therefore be used in practice to
relax the requirements for solvable introduced below.

Definition 7 (Dependency Graph). Lets, € O,s, € S be streams and
¢[—j] the expression assigned to s,. A Dependency Graph (DG) is a weighted
and directed multigraph G = (S, E), with edges (sz, sy, k, T) € E iff the equations
for sy contains s, as a subexpression with effective index k = index(¢, sy,),
and the edge was introduced at monitor step T .

The need for T in the DG definition becomes apparent when considering Dy-
namic Dependency Graphs (DDGs) in strategy 3 below. Until then, it can be
assumed that 7' = 0.

Note that if the specification contains DUPs, e.g., if © = dynamic(p) then
(z,p,0,0) € E, but the properties sent at runtime to p are not. As a result,
the DG must be extended to track new dependencies introduced by DUPs, as
demonstrated with the strategies below, such that the dynamically received ex-
pressions can become solvable.

Definition 8 (Solvable). Let k = index(¢,s,j) be the effective index of ¢ for
stream variable s € vars(¢). A stream expression ¢|—j] is said to be solvable at
monitor step t if there exists an edge (s',s,j',T) € E such that:

t>TH+kANj >k,

and s evaluated at monitor step (t — k) is not equal to L.

Intuitively, the first term ¢ > T + k ensures that the monitor has progressed
sufficiently in steps since the dependency was introduced to solve the expression.
The second term j' > k ensures that there exists an edge in the DG with a
sufficiently large effective index such that the kth last value of s is not discarded.

14 M.H.Kristensen et al.

Theorem [I| claims that a solvable stream expression evaluates to a non-_L
value at monitor step t. The proof follows by structural induction on ¢ and is
written out below.

Theorem 1. Let ¢ be a stream expression that is solvable at monitor step t and
may contain DUPs instantiated with solvable stream expressions (¥1,...,%UnN).
Then, ¢ evaluated at monitor step t is not equal to L.

Proof. Assume ¢ is a stream expression that is solvable at monitor step t, po-
tentially containing DUPs receiving solvable subexpressions (¢1,...,9¥y). We
proceed by structural induction on the stream expression ¢:

— Basic expressions: By definition of solvable, all stream variables referenced
by ¢ at their respective time indices are not equal to | at monitor step t.
Therefore, if ¢ is a basic expression it cannot evaluate to L at monitor step ¢,
since basic expressions only evaluate to 1. when a referenced stream variable
is L at that time step.

— default (v, ¢) never evaluates to L, because it yields ¢ if ¢ # L, and defaults
to the constant ¢ € D otherwise.

— when(v) is guaranteed to evaluate to a value in B.

— update(t1,12) evaluates to o if 19 # L, which is guaranteed by the defi-
nition of solvable.

— DUPs: If ¢; is a DUP, it is either ¢; = defer(¢}) or ¢); = dynamic(¢}). For
1; to be solvable, 1) must also be solvable. By induction, this means that]
is either a non-DUP expression that evaluates to a non-_L value at step ¢ or
a DUP that is solvable, meaning it will evaluate to a non-_L value at step t.

Therefore, ¢ evaluated at monitor step ¢ is not equal to L.

When writing DynSRV specifications, considering when a stream expression is
not solvable is crucial, as an | verdict at runtime may not be desirable. We
now present three memory management strategies that have different trade-offs
between memory efficiency and trace availability (keeping expressions solvable
as often as possible).

Strategy 1 — Discard BM: Retain the Entire History
Favoring trace availability, this strategy introduces unbounded time dependen-
cies to every other stream in the specification when a DUP is present:

EDUP = U {(578/7j70) | haSDUP<5>7S/ € S\{S}7] € N}
s€O

G = (S, FU EDUP)

where hasDUP(s) indicates that stream s’s expression contains a DUP.

Using this DG to retain data ensures that any stream expression received
dynamically through a DUP is solvable at any monitor step ¢, if the monitor has
progressed sufficiently and none of the referenced stream variables are 1 at the
specific monitor steps. That is, the condition j' > k from Definition [§]is always
met. However, this strategy sacrifices memory efficiency, as any specification

DynSRV: Dynamically Updated Properties for SRV 15

involving DUPs will no longer have BM.

Strategy 2 — Preserve BM: Statically Specifying Dependencies of DUPs
To retain memory efficiency, an alternative approach is to restrict DUPs by re-
quiring users to explicitly annotate their potential temporal dependencies in ad-
vance. For example, the expression dynamic(p, {(z, —4), (y, —2)}) declares that
the dynamically introduced property p may depend on stream x up to 4 steps
back in time, and on stream y up to 2 steps. A similar change could be made
for defer. The DG is then defined as:

Epup = | declaredDUP(s)
s€0

G = (S, EFU EDUP)

where declaredDUP(s) returns the set of edges that are explicitly declared as
dependencies of s. This strategy allows each property in the specification to
maintain BM, even when using DUPs. However, this comes at the cost of ex-
pressiveness as it becomes possible to introduce expressions that never become
solvable, specifically, expressions where the condition j/ > index(¢,s,j) does
not hold, causing them to always evaluate to L.

Strategy 3 — Preserve BM: Dynamically Update Dependencies
To balance memory efficiency and trace availability, we propose a DDGs, which
extends static DGs by adding dependencies introduced by DUPs at runtime. The
DG becomes a time-dependent structure, where the edges are updated based on
the declared dependencies of received expressions.

We define the DDG as a stream of DGs that is updated according to the
received expressions:

EDUP(t) = U dep(57 L, [[S]] (laSt(t7 €, [[QS]] Czn)))

s€O
where s is assigned e

G(t) = (S, EU EDUp(t))

where [s] (last(t, e, [?] C;»)) denotes the last received expression for stream s at
time ¢ in the context [®] Cy,, and dep(s, T, e) returns the set of dependencies
introduced by the expression e assigned to stream s at monitor step 7.

The DDG is used in our DynSRV implementation, detailed in Section [6]
to determine how much history to retain at each step. By updating the DDG
accordingly, the condition j > index(¢, s, j) from Definition [§|is guaranteed for
new properties as there exists a 7’ equal to j. However, the monitor step T from
Definition[7]is crucial here: If a new expression 1 referencing stream variable s at
effective index k arrives at step 7', and at step T'— 1, s had no incoming edges in
the DDG, then v is not solvable before time 7'+ k, and may evaluate to L until
then. While this approach offers weaker trace availability than the previous two
strategies, it preserves bounded memory and supports the full expressiveness of
DUPs.

16 M.H.Kristensen et al.

6 Implementation and Performance

DynSRYV is implemented in Rust as part of the RoboSAPIENS trustworthiness
language framework [17], which is a general framework for implementing stream-
based languages. The framework is implemented as a modular runtime, with a
parser layer that parses specifications into an Abstract Syntax Tree, an extensible
execution layer that allows for multiple runtime engine and language semantics
to be implemented, and a flexible IO layer allowing input and output streams
to be transmitted several sources including files, MQTT, and ROS topics. The
full source code is available at [

As discussed in Section [5, DUPs impose some additional requirements on the
implementation of the language compared to existing SRV languages. We meet
these requirements via two runtime engine implementations: a constraint-based
similar to LOLA 8], and a novel stream-based which translates the specification
into a collection of asynchronous Rust actors that communicate over channels.
The latter engine features some key design decisions:

— Dependencies between stream variables are handled dynamically, with a
publisher/subscriber model used to propagate input values to dependent
streams.

— The lifetimes of stream values are handled automatically via Rust’s owner-
ship model and the use of channels to communicate between actors. This
means that there is no central constraint store or garbage collection step.

This dynamic model does impose some performance challenges since specifica-
tions cannot easily be compiled to specifically optimized Rust code for a single
specification (as in [12]) and has to keep track of dependencies at runtime.

In Fig. @] we compare the monitoring of a dynamically introduced property
to the same property introduced statically. We also compare the impact of the
time during the run at which the dynamic property was introduced. This shows a
significant, but constant overhead factor for the use of dynamic properties in this
scenario, with this overhead factor increasing the later the dynamic property is
introduced in the trace. However, in this case, the overall monitoring performance
is still sufficient for real-time monitoring, with 100,000 events being monitored
in under 350 milliseconds in the worst case. All benchmarks use integer inputs
read from a file and were carried out using an Intel i7-1370P CPU with 32 GiB
RAM, and averaged over 10 runs.

7 Conclusion

In this paper, we have demonstrated how DUPs can be supported with our SRV
language DynSRV. Section [2] highlights how DynSRV differs from most related
work by enabling truly dynamic expressions to the system’s existing properties,
whereas prior approaches primarily focus on adapting specific system behaviours.

The semantics presented in Section [3.3] define the denotational meaning of
our DUPs primitives, while Section [5] compliments this by describing different

4 https://github.com/INTO-CPS-Association/robosapiens-trustworthiness-checker

https://github.com/INTO-CPS-Association/robosapiens-trustworthiness-checker

DynSRV: Dynamically Updated Properties for SRV 17

350 100%

w

o

o
|

75%
50%
25%

N N

o w

o o
! !

Time (millis)
@
e

0%
100

50

direct

1 25,000 50,000 75,000 100,000
Events

Fig.4: Time taken to monitor a deferred property z = default(defer(e), true)
with the property e = x A y introduced at a certain percentage of the run. This
is compared to compared to directly monitoring the static property z = x A y.

memory management strategies based on the trade-off between memory usage
and trace availability. Design patterns in Section [demonstrate how to weaken,
strengthen, and refine properties, as well as describe how to express well-known
DSU adaptation patterns.

We consider DynSRV to be especially relevant given the increasing number
of systems that require DSU and SASs in our environment and the correspond-
ing need for correctness and safety assurances. While the adaptation for some
of these systems is simple enough to be specified statically, others may change
in ways where we do not necessarily know what the behaviour in certain situ-
ations precisely looks like as shown by Esterle and Brown in [10]. Even if we
could specify all possible adaptations in advance, state-space explosion makes it
practically infeasible. Our language allows deferring certain parts of the verifica-
tion to runtime, allowing users to specify new properties as the system evolves,
similar to DSU, or allowing a SASs to autonomously specify updated properties
as the system evolves.

In the future, we intend to further evaluate the language for industrial use
cases, including the case studies provided by the RoboSAPIENS project [17]. We
also hope to extend the core language to add full support for asynchronous, timed
properties and distributed monitoring of properties. As an additional direction,
more work could be carried out to understand and improve the performance
characteristics of DUPs based on more realistic benchmarks and properties. For
instance, techniques such as Just In Time compilation could potentially reduce
the performance impact of dynamic properties compared to static properties.

18

M.H.Kristensen et al.

References

10.

11.

12.

13.

14.

15.

16.

Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-Based Runtime Verifi-
cation. In: Verification, Model Checking, and Abstract Interpretation, pp. 44-57
(2004). https://doi.org/10.1007/978-3-540-24622-0_5

Bierman, G., Hicks, M., Sewell, P., Stoyle, G.: Formalizing Dynamic Software Up-
dating

Carwehl, M., Vogel, T., Rodrigues, G.N., Grunske, L.: Runtime Verification of Self-
Adaptive Systems with Changing Requirements. In: IEEE/ACM Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 104—
114 (2023). https://doi.org/10.1109/SEAMS59076.2023.00024

Cassar, 1., Francalanza, A.: On Implementing a Monitor-Oriented Programming
Framework for Actor Systems. In: Integrated Formal Methods, pp. 176-192 (2016).
https://doi.org/10.1007/978-3-319-33693-0_12

Cassar, 1., Francalanza, A.: Runtime Adaptation for Actor Systems. In: Runtime
Verification, pp. 38-54 (2015). https://doi.org/10.1007/978-3-319-23820-3_3
Clark, T., Kulkarni, V., Barat, S., Barn, B.: A Homogeneous Actor-Based Monitor
Language for Adaptive Behaviour. In: Programming with Actors: State-of-the-Art
and Research Perspectives, pp. 216-244 (2018). https://doi.org/10.1007/978-
3-030-00302-9_8

Clark, T., Kulkarni, V., Barat, S., Barn, B.: Actor Monitors for Adaptive Be-
haviour. In: Proceedings of the Innovations in Software Engineering Conference,
pp- 85-95 (2017). https://doi.org/10.1145/3021460.3021469

D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H., Mehrotra, S., Manna, Z.: LOLA: Runtime Monitoring of Synchronous
Systems. In: Proceedings of the International Symposium on Temporal Representa-
tion and Reasoning, pp. 166-174 (2005). https://doi.org/10.1109/TIME.2005.26
Distefano, D., Rensink, A., Katoen, J.-P.: Model Checking Birth and Death. In:
Proceeings of IFIP International Conference on Theoretical Computer Science
(TCS), pp. 435-447 (2002). https://doi.org/10.1007/978-0-387-35608-2_36
Esterle, L., Brown, J.N.: The Competence Awareness Window: Knowing what I can
and cannot do. In: 2020 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion (ACSOS-C), pp. 62-63 (2020). https:
//doi.org/10.1109/ACS0S-C51401.2020.00031

Finkbeiner, B., Klein, F., Metzger, N.: Live Synthesis. Innovations Syst Softw Eng
18(3), 443-454 (2022). https://doi.org/10.1007/511334-022-00447-5
Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified Rust Monitors for
Lola Specifications. In: Runtime Verification, pp. 431-450 (2020). https://doi.
org/10.1007/978-3-030-60508-7_24

Havelund, K., Peled, D.: Runtime Verification: From Propositional to First-Order
Temporal Logic. In: Runtime Verification, pp. 90-112 (2018). https://doi.org/
10.1007/978-3-030-03769-7_7

Hicks, M., Moore, J.T., Nettles, S.: Dynamic software updating. ACM SIGPLAN
Notices 36(5), 13-23 (2001). https://doi.org/10.1145/381694.378798

Iftikhar, M.U., Weyns, D.: ActivFORMS: Active Formal Models for Self-Adaptation.
In: Proceedings of the International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), pp. 125-134 (2014). https://doi.org/
10.1145/2593929.2593944

Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41—
50 (2003). https://doi.org/10.1109/mc.2003.1160055

https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1109/SEAMS59076.2023.00024
https://doi.org/10.1007/978-3-319-33693-0_12
https://doi.org/10.1007/978-3-319-23820-3_3
https://doi.org/10.1007/978-3-030-00302-9_8
https://doi.org/10.1007/978-3-030-00302-9_8
https://doi.org/10.1145/3021460.3021469
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-0-387-35608-2_36
https://doi.org/10.1109/ACSOS-C51401.2020.00031
https://doi.org/10.1109/ACSOS-C51401.2020.00031
https://doi.org/10.1007/s11334-022-00447-5
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1145/381694.378798
https://doi.org/10.1145/2593929.2593944
https://doi.org/10.1145/2593929.2593944
https://doi.org/10.1109/mc.2003.1160055

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

DynSRV: Dynamically Updated Properties for SRV 19

Larsen, P.G., Ali, S., Behrens, R., Cavalcanti, A., Gomes, C., Li, G., De Meulenaere,
P., Olsen, M.L., Passalis, N., Peyrucain, T., Tapia, J., Tefas, A., Zhang, H.: Robotic
safe adaptation in unprecedented situations: the RoboSAPIENS project. Research
Directions: Cyber-Physical Systems 2 (2024). https://doi.org/10.1017/cbp.
2024 .4

Leucker, M., Sanchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: Run-
time Verification of Non-Synchronized Real-Time Streams. In: Proceedings of the
Annual ACM Symposium on Applied Computing, pp. 1925-1933 (2018). https:
//doi.org/10.1145/3167132.3167338

Li, Y., Duan, X., Xu, Y., Zhao, C.: Dynamic Assessment Approach for Intelligent
Power Distribution Systems Based on Runtime Verification with Requirements
Updates. High-Confidence Computing (2024). https://doi.org/10.1016/j.hcc.
2024 .100255

Lounas, R., Mezghiche, M., Lanet, J.-L.: Formal Methods in Dynamic Software
Updating: A Survey. International Journal of Critical Computer-Based Systems
9(1-2), 76-114 (2019). https://doi.org/10.1504/IJCCBS.2019.098794
Nahabedian, L., Braberman, V., D’Ippolito, N., Honiden, S., Kramer, J., Tei,
K., Uchitel, S.: Assured and Correct Dynamic Update of Controllers. In: 2016
IEEE/ACM 11th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), pp. 96-107 (2016). https://doi . org/
10.1145/2897053.2897056| https://ieeexplore.ieee.org/document /7830552
(visited on 07/25/2025)

Pedregal, P., Gorostiaga, F., Sanchez, C.: A Stream Runtime Verification Tool
with Nested and Retroactive Parametrization. In: Runtime Verification, pp. 351—
362 (2023). https://doi.org/10.1007/978-3-031-44267-4_19

Seifzadeh, H., Abolhassani, H., Moshkenani, M.S.: A survey of dynamic software
updating. Journal of Software: Evolution and Process 25(5), 535-568 (2012). https:
//doi.org/10.1002/smr.1556

Sokolsky, O., Sammapun, U., Lee, I., Kim, J.: Run-Time Checking of Dynamic
Properties. Electronic Notes in Theoretical Computer Science 144(4), 91-108 (2006).
https://doi.org/10.1016/j.entcs.2006.02.006

Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic Software Updates: A VM-
centric Approach. In: Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 1-12 (2009). https://doi.org/
10.1145/1542476.1542478

Walton, C., Krl, D., Gilmore, S.: An Abstract Machine for Module Replacement.
In: Proceedings of the Workshop on Principles of Abstract Machines (1998)
Weyns, D.: Engineering Self-Adaptive Software Systems — An Organized Tour. In:
Proceedings of the IEEE International Workshops on Foundations and Applications
of Self* Systems (FAS*W), pp. 1-2 (2018). https://doi.org/10.1109/FAS-
W.2018.00012

Wong, T., Wagner, M., Treude, C.: Self-adaptive systems: A systematic literature
review across categories and domains. Information and Software Technology 148,
106934 (2022). https://doi.org/10.1016/j.infsof .2022.106934

Zhang, J., Cheng, B.H.C.: Using Temporal Logic to Specify Adaptive Program
Semantics. Journal of Systems and Software 79(10), 1361-1369 (2006). https :
//doi.org/10.1016/7. jss.2006.02.062

https://doi.org/10.1017/cbp.2024.4
https://doi.org/10.1017/cbp.2024.4
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1016/j.hcc.2024.100255
https://doi.org/10.1016/j.hcc.2024.100255
https://doi.org/10.1504/IJCCBS.2019.098794
https://doi.org/10.1145/2897053.2897056
https://doi.org/10.1145/2897053.2897056
https://ieeexplore.ieee.org/document/7830552
https://doi.org/10.1007/978-3-031-44267-4_19
https://doi.org/10.1002/smr.1556
https://doi.org/10.1002/smr.1556
https://doi.org/10.1016/j.entcs.2006.02.006
https://doi.org/10.1145/1542476.1542478
https://doi.org/10.1145/1542476.1542478
https://doi.org/10.1109/FAS-W.2018.00012
https://doi.org/10.1109/FAS-W.2018.00012
https://doi.org/10.1016/j.infsof.2022.106934
https://doi.org/10.1016/j.jss.2006.02.062
https://doi.org/10.1016/j.jss.2006.02.062

	DynSRV: Dynamically Updated Properties for Stream Runtime Verification

