
Runtime Verification of Autonomous Systems
utilizing Digital Twins as a Service

Morten Haahr Kristensen∗, Alberto Bonizzi†, Cláudio Gomes∗, Simon Thrane Hansen‡, Carlos Isasa∗,
Hannes Iven§, Eduard Kamburjan¶, Peter Gorm Larsen∗, Martin Leucker§, Prasad Talasila∗,

Valdemar Trøjgård Tang∗, Stefano Tonetta†, Lars B. Vosteen§, Thomas Wright∗
∗Department of Electrical and Computer Engineering

Aarhus University, Denmark
{mhk, claudio.gomes, cisasa, pgl, prasad.talasila, valdemar.tang, thomas.wright}@ece.au.dk

†Fondazione Bruno Kessler, Italy
{bonizzi,tonettas}@fbk.eu

‡Interdisciplinary Centre for Security, Reliability and Trust
University of Luxembourg

simon.hansen@uni.lu
§Institute for Software Engineering and Programming Languages

Universität zu Lübeck, Germany
hannes.iven@student.uni-luebeck.de, {leucker,vosteen}@isp.uni-luebeck.de

¶Department of Informatics
University of Oslo, Norway

eduard@ifi.uio.no

Abstract—Autonomous Systems (AS) enable systems to adapt
to drastic and unprecedented environmental changes, a capability
that can be enhanced through the utilization of Digital Twins
(DTs). However, the additional capabilities of AS come at the cost
of explainability, as the expanding adaptation space complicates
the reasoning about the system’s behavior. For certain types
of systems, it is crucial to ensure that specific properties are
upheld despite the system’s autonomous behavior. To facilitate
the monitoring of these properties, we propose the use of Runtime
Verification (RV). This tutorial demonstrates the integration of
RV tools into the Digital Twins as a Service (DTaaS) platform to
monitor and verify the behavior of AS in real-time. By exploring
various methods to incorporate RV tools within a DT context, the
tutorial aims to advance the application of RV technologies in au-
tonomic computing and self-adaptive system design. Specifically,
we demonstrate how the behavior of a self-configuring DT can
be verified utilizing RV. This is accomplished through the DTaaS
platform, which supports seamless deployment of DT-based AS.

Index Terms—Self-adaptivity, runtime verification, digital
twins, monitor, TeSSLa, NuRV

I. INTRODUCTION

The vision of autonomic computing inspired new ap-
proaches to designing flexible Autonomous Systems (AS)
capable of adapting to dynamic environments [14]. Initially,
research on AS primarily focused on reducing the complexity
of large-scale software systems, which often comprise tens of

The work presented here is partially supported by the RoboSAPIENS
project funded by the European Commission’s Horizon Europe programme
under grant agreement number 101133807, the O5G-N-IoT project, funded by
the German Federal Ministry for Economic Affairs and Climate Action, due
to a resolution of the German Bundestag, and the SM4RTENANCE project
under grant no. 101123423.

millions of lines of code, particularly within purely software-
based environments such as cloud computing. Since then, the
field has advanced significantly, extending its concepts to new
domains including dynamic software architectures [1], robotics
[4], business process management (BPM) [16], and cyber-
security [17]. However, the increasing level of adaptability
makes the verification of such systems significantly more chal-
lenging. For instance, within the domain of robotics, there is a
critical need for flexible self-adaptive robots that can operate
reliably despite dynamic environmental changes. Nevertheless,
the safety of human life must never be compromised, and
ensuring that these robots adhere to safety standards despite
their self-adaptivity remains an ongoing challenge. Research
addressing these challenges, such as [4] and [13], involves
formulating and validating the adherence to requirements at
runtime. Similar requirements for continuous monitoring of
system properties are present in other domains utilizing AS.
Within this context, self-adaptivity can be considered as a
component that increases the possible behaviors of the system,
while Runtime Verification (RV) serves as the component that
excludes unwanted behaviors.

The purpose of the tutorial is to demonstrate how re-
searchers within the AS community can utilize RV tools within
their work to ensure the correctness of their systems. In doing
so, emphasis is placed on the different ways that RV tools
can be integrated within a deployment platform and utilized
by the existing system. Through this process, we aim that
attendees will become familiar with how monitoring services
are deployed, as well as gain practical insight into how to build
them. The tutorial adopts a hands-on approach, utilizing the

Incubator case study [9], [10], which features a Digital Twin
(DT) capable of self-configuring during anomalous situations.
Although the tutorial is presented within the context of a DT,
the majority of the concepts discussed extend beyond this
specific application. Through the Incubator, we explore five
different scenarios for integrating an RV tool within an existing
AS, all of which are deployed on the Digital Twin as a Service
(DTaaS) platform (detailed in Section II).

The tutorial is structured as follows: Section II introduces
the main background concepts for following the tutorial. Then
Section III presents five examples showcasing the implementa-
tion of monitoring using two different RV frameworks. Finally,
Section IV concludes the tutorial.

II. BACKGROUND

A. Runtime Verification

RV is a lightweight method of improving the integrity
of deployed systems by extending a system with additional
monitoring functionality to avoid unintended behavior at run-
time. This is accomplished through a variety of monitoring
techniques, which check whether a system conforms to a
specification based on traces or streams of data from the
running system.

A wide range of RV methods have been developed over the
years, offering a variety of different specification languages
for expressing the desired behavior of the system including
temporal logics such as Linear Temporal Logic (LTL) [18] and
Signal Temporal Logic (STL) [7] as well as domain-specific
languages such as TeSSLa [6].

RV encompasses both passive monitoring techniques which
focus on detecting errors without changing the behavior of
the system, as well as more active techniques (also known as
runtime enforcement [8]) which aim to block or correct bad
behaviors.

B. NuRV

NuRV [5]1 is an extension of the nuXmv model checker
for assumption-based LTL RV with partial observability and
resets. Monitoring formulas are specified in LTL while as-
sumptions are specified in SMV. Thanks to the assumption, the
output of the monitor can be conclusive even in cases where
the formula contains future operators or if not all variables are
observable.

The tool provides commands for online/offline monitoring
and code generation into standalone monitor code. Using
the online/offline monitor, LTL properties can be verified
incrementally on finite traces from the system under scrutiny.
The code generation currently supports C, C++, Common
Lisp, and Java, and is extensible. Furthermore, from the same
internal monitor automaton, the monitor can be generated into
SMV modules, whose characteristics can be verified by Model
Checking using nuXmv.

1https://nurv.fbk.eu

C. TeSSLa

The Temporal Stream-based Specification Language
(TeSSLa) [6] framework2 combines a language and a suite of
tools designed for real-time verification of systems through
data stream analysis. TeSSLa allows the declaration of input
data types and the transformation of this data into new,
derived streams by applying a series of defined operations.
This approach enables effective monitoring of complex
systems, ensuring accurate tracking and analysis without
overly complex processes.

TeSSLa provides extensive libraries and supports the cre-
ation of macros. These macros allow users to define custom
operations, simplifying the specification of complex behaviors
and increasing the accessibility of the language. TeSSLa also
supports the generation of detailed output streams, including
statistical data with precise event timestamps, and allows
integration with monitoring tools developed in modern pro-
gramming languages such as Rust and Scala. Its integration
with the metrics collection agent Telegraf [21] contributes
to its effectiveness in real-world applications. At its core,
TeSSLa’s strength lies in its ability to map input data to
meaningful outputs, which is essential for real-time system
monitoring and informed decision-making in areas such as
DT technologies.

D. Digital Twins as a Service

The DTaaS3 platform is a collaborative platform to build,
use, and share DTs. It is based-off a microservices architec-
ture with dedicated software containers4 for DT assets, user
workspaces, platform services, a front-end website, and service
router.

One of the architectural principles used in the development
of DTaaS is to conceive DTs as composed of reusable assets,
which separate the functionality into their constituent parts.
Within DTaaS, data, models [23], tools [19], services [20] and
ready to use DTs [2] have been identified as reusable assets.
The DT Assets software container provides an interface to
perform create, reuse, update, and delete operations on the
reusable stored within the DTaaS.

Users utilizing DTaaS have private workspaces in which
they can build and use systems, from where they can access
assets as a regular part of the filesystem. All workspaces have
internet access thereby enabling the integration of DTs running
inside workspaces with external software systems.

Out-of-the-box, DTaaS supports multiple commonly used
services across DTs and users. The most commonly used
are RabbitMQ and MQTT (communication), InfluxDB and
MongoDB (data storage), and Grafana (data visualization).
Additionally, it is possible to host private services accessible
to a selected number of users. These services include the run-
time services provided by TeSSLa and NuRV.

2https://tessla.io
3https://github.com/INTO-CPS-Association/DTaaS
4Container is a software component at level-2 of the C4 model.

https://nurv.fbk.eu
https://tessla.io
https://github.com/INTO-CPS-Association/DTaaS

E. FMI-based Co-simulation

Integrating verification methods early in development en-
sures system correctness from the start [22]. One approach is
co-simulation, which combines multiple simulation tools into a
single simulation [12], [15]. Co-simulation is crucial for mod-
eling complex systems co-developed by multiple organizations
and systems whose complexity transcends the capabilities of
any single simulation tool.

Interoperability between heterogeneous simulation tools is
achieved using Functional Mock-up Units (FMUs) defined
by the Functional Mock-up Interface (FMI) standard [3]. An
FMU encapsulates the behavior of a dynamic system, whose
state evolves according to evolution rules and external stimuli,
into a discrete trajectory. This allows complex behaviors to be
represented modularly while protecting intellectual property.

Multiple FMUs are composed into a scenario by coupling
their input and output ports to represent the behavior of a
complex system. A coupling signifies that the state of one
FMU (the output) directly influences the state of another
(the input). A scenario is simulated using a co-simulation
framework that interacts with the FMUs through their interface
to advance them in lockstep and exchange values between the
coupled ports.

III. EXAMPLE INTEGRATIONS

Five examples showcasing the RV integration into the AS
are presented below: three utilizing NuRV and two utilizing
TeSSLa. For NuRV, the first example demonstrates a scenario
where the components of a self-adaptive DT are validated
before the system is deployed. This involves exporting the
NuRV specification as an FMU and conducting co-simulations
with the other components of the system. In the second
example, the reusability of the FMU within a service-oriented
architecture is demonstrated, enabling RV on the deployed
system. It listens to real-time sensing data sent by the Physical
Twin (PT), i.e., the physical counterpart of the system, through
RabbitMQ to the DT, evaluating the truth value of LTL
formulas. In the third example, the NuRV specification is
deployed on a standalone server, with its services exposed
to the DT. As a result, it is uncoupled from the DT instance.
For TeSSLa, the two examples demonstrate passive and active
monitoring. In passive monitoring, an alarm is raised in the
event of a violation of the monitored conditions. In contrast,
active monitoring entails altering the system’s behavior if a
monitored condition is falsified.

A. The Incubator

The different ways of integrating RV monitors are show-
cased using the Incubator system described in [11]. The
objective of the Incubator is to keep the temperature inside
a box close to a target temperature, a task that can be difficult
to achieve when more sophisticated scenarios, such as the
possibility of someone opening the lid or the object inside
the box releasing heat, are considered. These considerations
have led to the development of a DT [9], which consists of
a dynamical model of the physical components of the PT

and software components capturing its controller behavior.
Additionally, the DT contains a self-adaptation service that
reacts to possible changes in the environment and adjusts
the Incubator’s objective as necessary. In order to do this, a
Kalman filter estimates the state of the system and compares it
to the empirical data from the sensors. As soon as a deviation
is detected, the DT looks at historical data to identify the
anomaly and plan accordingly.

The self-adaptation service is divided into two different
services: anomaly detection, which handles detecting the dif-
ference between the expected temperatures and the sensed
temperatures, and energy saving, which changes the target
temperature to a lower one in case the anomaly detection
service has detected an opening of the lid. An overview of the
interaction of these services and the PT can be seen in Fig. 1.
The runtime monitoring property that is used throughout
the examples, ensures the correct combined behavior of the
anomaly detection and energy saver blocks. The STL property
can be seen below:

□(A =⇒ ♢[0,3]S) (1)

where A stands for the anomaly detection service detecting the
opening of the lid and S stands for the energy saver service
changing the target temperature. It can roughly be translated
into: “It must always hold that if an anomaly is detected then
energy saver is started within 3 seconds”.

Kalman Filter

 PT state

Anomaly Detection

Energy Saver Runtime Verification

 Predicted state

Anomaly detected Anomaly detected

 Configuration

 Configuration

 PT state Digital Twin

Physical Twin

Fig. 1: High-level overview of the DT components relevant to
the examples below. Arrows indicate RabbitMQ messages and
associated data.

B. NuRV FMU monitor

NuRV provides the capability to export runtime monitors
as standalone FMU components. This feature enables users to
easily interface monitors within custom applications using a
variety of libraries that support the FMU standard. This section
outlines how to utilize these FMU monitors to perform an
early validation of the internal components of the Incubator
before its deployment. Specifically, it is shown how to validate
the energy saver and anomaly detection components using an
FMU monitor.

1) Monitor definition and integration: The monitor is de-
fined by the SMV model seen in Fig. 2. This model specifies a
safety LTL property: Whenever an anomaly occurs, the system
should reconfigure itself and enter energy-saving mode within
a maximum of 3 time steps. The output of this monitor can
be a final verdict of either true or false, or unknown if there
is insufficient information to reach a definitive conclusion.

MODULE main
VAR

anomaly : boolean;
energy_saving : boolean;

LTLSPEC -- Safety
G (anomaly -> F [0, 3] energy_saving)

Fig. 2: NuRV monitor model

2) Simulation environment: For the validation process, a
simulation environment was established comprising several
components (depicted in Fig. 3): the energy saver and
anomaly detection components, each encapsulated within dis-
tinct FMUs, along with the NuRV monitor, exported by NuRV
using the specification in Fig. 2. The input data for the simu-
lation is generated by a purpose-built FMU component named
source, which supplies testing data, simulating an anomaly
occurring at time t=60s. A final component, watcher, is
employed to verify whether the energy saver activates in
response to an anomaly reported by the anomaly detector. The
FMUs for the energy saver and anomaly detector were con-
structed packaging their Python code using unifmu5, while
the source and watcher components were generated using
OpenModelica6. maestro7 served as the co-simulation
engine.

Source Anomaly
Detector

kalman_input

sensor

Energy
Saver Watcher NuRV FMU

Monitor
desired_temp

lid_open

enabled

energy_saving

Fig. 3: Simulation architecture of components and their ex-
changed signals

3) Simulation creation and execution: The setup of the
simulation is automatically performed through the create
script, which installs the required dependencies and compiles
the monitor from its specification model. The simulation is

5https://github.com/INTO-CPS-Association/unifmu
6https://openmodelica.org/
7https://github.com/INTO-CPS-Association/maestro

initiated using the DTaaS execute script, which also starts
the maestro co-simulation engine to simulate the system.
Given the characteristics of the FMU monitor exported by
NuRV, each invocation of the doStep function corresponds to
a logical heartbeat of the monitor. Consequently, this allows
the monitor to assess the current values of its inputs and
determine the appropriate outcome, thus providing validation
of the system.

C. NuRV FMU service monitor

It is not possible to directly integrate the NuRV FMU
monitor with the deployed Incubator. However, by imple-
menting straightforward wrapper logic, it becomes viable to
expose the FMU as an internal service, thereby enabling
its utilization within the system. Theoretically, automating
this process could be achieved through the development of
a dedicated tool; however, no such tool currently exists to
the authors’ knowledge. For the purposes of this tutorial, a
Python-based prototype has been developed to demonstrate
the potential functionality of such a tool. It is important to
underscore that this solution serves as a prototype only, and
certain challenges, such as fault tolerance, remain unaddressed.

DTaaS Platform
Physical Twin

Digital Twin

RabbitMQ Server
(platform service)

Internal Service

Python
rabbitmq-fmpy NuRV FMU

User Workspace

Other DT
Assets

Fig. 4: Overview of components involved with the NuRV
FMU service monitor. Notice that rabbitmq and fmpy are
libraries.

1) Overview: As depicted in Fig. 4, the tool leverages
the Python libraries rabbitmq8 and fmpy9, to realize its
functionality. rabbitmq facilitates subscription to the Rab-
bitMQ topics that are relevant for the monitor. fmpy enables
the simulation of an FMU within Python, allowing the in-
troduction of custom logic between each simulation step. In
conjunction, this tool orchestrates its operations such that upon
the occurrence of a new message on a RabbitMQ topic, the
internal state of the Python program is updated, and the signals
are subsequently forwarded to the FMU monitor, resulting in
the generation of a new verdict.
Given the reuse of the FMU, the NuRV specification remains
identical to the one outlined previously.

2) Creation, execution, and termination: As an extension
of the configuration provided in Section III-B, the prerequisites
are a superset of those previously outlined. Additionally, the
Python libraries fmpy and rabbitmq must be installed. As a
consequence, the create script fulfills the same function as

8https://pypi.org/project/rabbitmq/
9https://pypi.org/project/FMPy/

https://github.com/INTO-CPS-Association/unifmu
https://openmodelica.org/
https://github.com/INTO-CPS-Association/maestro
https://pypi.org/project/rabbitmq/
https://pypi.org/project/FMPy/

described above, while also installing the requisite additional
Python libraries.
In this configuration of the Incubator, an additional service
in the form of the RV monitor is initiated concurrently with
the DT. Given that the monitor is deployed as an internal
service, it becomes the responsibility of the DT to manage the
monitor, thereby intertwining their lifecycles. Consequently,
the execute script commences the DT as usual but with the
inclusion of starting the monitor. This enables the continuous
monitoring of the anomaly detection and energy saving blocks,
facilitating their verification at runtime.

D. NuRV ORBit2 monitor

Alternatively, NuRV can also be deployed as a standalone
monitoring server service accessible to the DT. Consequently,
the NuRV monitor and DT operate independently with their
lifecycles entirely decoupled. This section delineates the steps
to achieve this with the incubator.

1) NuRV monitor server: NuRV supports a network-based
monitoring server mode: from the interactive shell mode,
NuRV can enter with a command into a network listening
state. This enables user code to remotely execute the heartbeat
command for online monitoring. In server mode, NuRV can
accommodate multiple clients connecting to multiple servers.
In this context, each monitor server refers to a running
NuRV process where numerous LTL properties are incorpo-
rated alongside their respective runtime monitors, established
through the build_monitor command. It should be empha-
sized that a single NuRV process has the capacity to administer
multiple monitors, each tailored to different LTL properties.

2) Monitor integration: The process of connecting the
monitor server to the DT of the incubator is automated by
the execute script. This script, in turn, employs a Python
script file, that initially launches the omniNames CORBA
Name Service utility from the omniORB toolset, followed by
starting the NuRV_orbit version of NuRV. Subsequently, a
connection is established with the monitor server using the
omniORB Python library. Once this connection is established,
the Python script starts the incubator DT and subscribes to
relevant RabbitMQ topics such as energy saver status and lid
open status. The lid open status is mapped to the anomaly for
the NuRV monitor.
Figure 5 shows the architecture of the system comprising the
incubator DT and the NuRV monitoring server. Upon receiving

DTaaS Platform
Physical Twin

Digital Twin

RabbitMQ Server
(platform service)

External Service

NuRV-Client
RabbitMQ-Client NuRV

User Workspace

Other DT
Assets

CORBA

Fig. 5: Overview of components involved with the NuRV
ORBit2 monitor.

DTaaS Platform
Physical Twin

Digital Twin

RabbitMQ Server
(platform service)

External Service

Telegraf TeSSLa

User Workspace

Connector

Fig. 6: Overview of components involved with the TeSSLA
passive and active monitors.

a message, the DT’s status is relayed to NuRV via a heartbeat
operation call through the CORBA interface. NuRV responds
to this heartbeat by providing the monitor’s output. If the
monitor’s output represents a final verdict, the monitor is reset
to prepare for its utilisation for the subsequent execution of
the DT.

E. TeSSLa passive monitor

As an alternative to NuRV, the RV tool TeSSLa can be
utilized for monitoring the AS properties. Similar to the
example presented in [21], the monitor consists of three parts
(see Fig. 6). At its core, the TeSSLa monitor processes input
streams and produces output streams, but is not itself capable
of integrating them into a larger system context. A helper
function (Connector) is compiled to handle the streams by
connecting TeSSLa streams to sockets with which external
tools can interact. Telegraf provides an additional layer of
flexibility by adding:

• reconfigurability at runtime – the service can be con-
figured to automatically adapt to a changing configura-
tion file using the --watch-config flag, or simply
restarted without losing the internal state of the monitor,

• data aggregation with basic statistical operations (such as
count, mean, min or histograms),

• stream processing for filtering or transforming data
streams, and

• by providing more than 200 integrations with different
services and protocols to send or receive streams10.

The create script prepares the system by ensuring that the
necessary tools and software are installed and configured. It
installs Java, Rust and Telegraf on the system and downloads
the necessary files for the TeSSLa-Telegraf Connector11. Two
files, a TeSSLa specification and a Telegraf configuration, must
be provided by the user.

A TeSSLa specification suitable for this scenario (shown
in Fig. 7) monitors two key states of the Incubator: whether
the lid is open and whether the energy saving mode is used,
which are passed to the TeSSLa monitor via different event
streams. The helper function raisingDelay delays any
change from false to true by three time steps without
affecting changes from true to false. This function

10https://docs.influxdata.com/telegraf/v1/plugins/
11https://git.tessla.io/telegraf/tessla-telegraf-connector/-/blob/master/

Release/tessla-telegraf-connector.zip

https://docs.influxdata.com/telegraf/v1/plugins/
https://git.tessla.io/telegraf/tessla-telegraf-connector/-/blob/master/Release/tessla-telegraf-connector.zip
https://git.tessla.io/telegraf/tessla-telegraf-connector/-/blob/master/Release/tessla-telegraf-connector.zip

is used to define an internal data stream critical that
represents when the energy saving mode is expected to be
active. If it is not, an alert stream is set to true. This
stream is sent back to the system. The @TelegrafIn
and @TelegrafOut annotations allow the compiler to
automatically create the Connector function and add to the
Telegraf configuration. The Telegraf configuration consists of

include "./Telegraf.tessla"

@TelegrafIn("amqp_consumer","host=<hostname>",
"lid_open")↪→

in lid_open: Events[Bool]

@TelegrafIn("amqp_consumer","host=<hostname>",
"energy_saver_on")↪→

in energy_saver: Events[Bool]

def delayedOpen = raisingDelay(lid_open, 3)
def critical = lid_open && delayedOpen
def alert = critical && !energy_saver

@TelegrafOut("alert")
out alert

def raisingDelay(e: Events[Bool], d: Int):
Events[Bool] = merge3(false, const(true,

delay(const(d, boolFilter(e)), e)),
const(false, falling(e)))

↪→

↪→

Fig. 7: a TeSSLa specification for the passive monitor

two parts – where to connect to external data sources and
sinks (RabbitMQ in this case), and how to connect to the
TeSSLa monitor. The first has to be specified manually, as it
depends on the specific case. Here it configures the AMQP
plugin to connect to the RabbitMQ server, subscribe to the
topics incubator.diagnosis.plant.lidopen
as well as incubator.energysaver.status
and publish the monitor verdict to the topic
incubator.energysaver.alert.

The execute script uses the following command to add
the configuration of how to communicate with the TeSSLa
monitor to the supplied Telegraf configuration, create and run
the Connector helper function, and compile as well as run the
monitor.

./TesslaTelegrafConnector -i
./incubator.tessla -c ./telegraf.conf -r↪→

Fig. 8: Command used within execute lifecycle script.

The script then starts the Telegraf service with systemctl
start telegraf. This procedure allows data flow to and
from the RabbitMQ broker, facilitating the collection, process-
ing and monitoring of sensor data.

The terminate script stops the Telegraf service as well
as the TeSSLa monitor and removes all temporary files.

F. TeSSLa active monitor

To use TeSSLa as a monitor for runtime enforcement, the
TeSSLa specification (Fig. 7) and the Telegraf configuration
must be changed.

To adapt the TeSSLa specification to control the energy
saver mode instead of monitoring, the energy saver status is
no longer needed as an input and the delayed signal can be
provided as an output stream to switch on the energy saver if
the lid is still open. Because only the rising edge is delayed,
energy saving mode is switched off as soon as the lid closes.

The notable change in the Telegraf configuration is the line
shown in Fig. 9 in the AMQP output plugin, which translates
the boolean value for controlling the energy saving mode into
the JSON format required by the Incubator. By adding this
post-processing step to Telegraf12, the user is able to change
the formatting or desired temperature setting in the running
system by changing the configuration without recompiling the
monitor or losing its internal state.

transform = '{"temperature_desired":
fields.value ? 21 : 35}'↪→

Fig. 9: Telegraf JSON transformation

IV. CONCLUDING REMARKS

This tutorial paper delineates the process of integrating
RV within existing AS, by demonstrating different integration
patterns through five use cases. Although the tool integrations
has been demonstrated using NuRV and TeSSLa within a DT
context utilizing DTaaS, the underlying concepts extend be-
yond these implementation details. Consequently, the learning
outcomes can be generalized, enabling tutorial participants to
apply RV tools in their research to provide stronger guarantees
of the correctness of their AS. In the physical tutorial con-
ducted at ACSOS 2024, the examples will be demonstrated
sequentially, with a discussion of the deployment advantages
and disadvantages of each approach. Participants will also have
the opportunity to run the examples directly in the DTaaS
platform.

REFERENCES

[1] Albassam, E., Porter, J., Gomaa, H., Menasc, D.A.: DARE : A Dis-
tributed Adaptation and Failure Recovery Framework for Software
Systems. In: IEEE International Conference on Autonomic Computing
(2017), https://doi.org/10.1109/ICAC.2017.12

[2] Aziz, A., Chouhan, S.S., Schelén, O., Bodin, U.: Distributed Digital
Twins as Proxies-Unlocking Composability and Flexibility for Purpose-
Oriented Digital Twins. IEEE Access 11, 137577–137593 (2023), https:
//doi.org/10.1109/ACCESS.2023.3340132

[3] Blockwitz, T., Otter, M., Åkesson, J., Arnold, M., Clauss, C., Elmqvist,
H., Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson,
H., Viel, A.: Functional Mockup Interface 2.0: The Standard for Tool
independent Exchange of Simulation Models. In: Proc. 9th International
Modelica Conference. Linköping University Electronic Press (2012)

12Telegraf first introduced the JSON transformation feature in version 1.24,
which has not yet been widely distributed to package repositories.

https://doi.org/10.1109/ICAC.2017.12
https://doi.org/10.1109/ACCESS.2023.3340132
https://doi.org/10.1109/ACCESS.2023.3340132

[4] Cheng, B.H.C., Lansing, E., Clark, R.J., Lansing, E., Langford, M.A.,
Mckinley, P.K.: AC-ROS : Assurance Case Driven Adaptation for the
Robot Operating System. In: 23rf ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems. pp. 102–113.
No. 1, ACM (2020), https://doi.org/10.1145/3365438.3410952

[5] Cimatti, A., Tian, C., Tonetta, S.: NuRV: A nuXmv Extension for
Runtime Verification. In: Finkbeiner, B., Mariani, L. (eds.) Runtime
Verification - 19th International Conference, RV 2019, Porto, Portugal,
October 8-11, 2019, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 11757, pp. 382–392. Springer (2019), https://doi.org/10.1007/
978-3-030-32079-9_23

[6] Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M.,
Thoma, D.: TeSSLa: temporal stream-based specification language.
In: Formal Methods: Foundations and Applications: 21st Brazilian
Symposium, SBMF 2018, Salvador, Brazil, November 26–30, 2018,
Proceedings 21. pp. 144–162. Springer (2018)

[7] Donzé, A.: On signal temporal logic. In: Runtime Verification: 4th
International Conference, RV 2013, Rennes, France, September 24-27,
2013. Proceedings 4. pp. 382–383. Springer (2013)

[8] Falcone, Y.: You should better enforce than verify. In: International
Conference on Runtime Verification. pp. 89–105. Springer (2010)

[9] Feng, H., Gomes, C., Gil, S., Mikkelsen, P.H., Tola, D., Larsen, P.G.,
Sandberg, M.: Integration Of The Mape-K Loop In Digital Twins. In:
2022 Annual Modeling and Simulation Conference (ANNSIM). IEEE
(Jul 2022), https://doi.org/10.23919/annsim55834.2022.9859489

[10] Feng, H., Gomes, C., Thule, C., Lausdahl, K., Iosifidis, A., Larsen, P.G.:
Introduction to Digital Twin Engineering. In: 2021 Annual Modeling and
Simulation Conference (ANNSIM). IEEE (Jul 2021), https://doi.org/10.
23919/annsim52504.2021.9552135

[11] Feng, H., Gomes, C., Thule, C., Lausdahl, K., Sandberg, M.,
Larsen, P.G.: The Incubator Case Study for Digital Twin Engineering.
arXiv:2102.10390 (2021)

[12] Gomes, C., Broman, D., Vangheluwe, H., Thule, C., Larsen, P.G.: Co-
Simulation: A Survey. ACM Computing Surveys 51(3) (2018)

[13] Jahan, S., Riley, I., Walter, C., Gamble, R.F., Pasco, M., McKinley,
P.K., Cheng, B.H.C.: MAPE-K/MAPE-SAC: An interaction framework
for adaptive systems with security assurance cases. Future Genera-
tion Computer Systems 109, 197–209 (2020), https://doi.org/10.1016/
j.future.2020.03.031

[14] Kephart, J., Chess, D.: The vision of autonomic computing. Computer
36(1), 41–50 (2003), https://doi.org/10.1109/MC.2003.1160055

[15] Kübler, R., Schiehlen, W.: Two Methods of Simulator Coupling. Math-
ematical and Computer Modelling of Dynamical Systems 6(2) (2000)

[16] Malburg, L., Hoffmann, M., Bergmann, R.: Applying MAPE-K control
loops for adaptive workflow management in smart factories. Journal of
Intelligent Information Systems 61(1), 83–111 (2023), https://doi.org/
10.1007/s10844-022-00766-w

[17] Papamartzivanos, D., Gómez Mármol, F., Kambourakis, G.: Introducing
deep learning self-adaptive misuse network intrusion detection systems.
IEEE Access 7, 13546–13560 (2019), https://doi.org/10.1109/ACCESS.
2019.2893871

[18] Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium
on Foundations of Computer Science. pp. 46–57. IEEE (1977)

[19] Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L.,
Nee, A.: Enabling technologies and tools for digital twin. Journal of
Manufacturing Systems 58, 3–21 (2021)

[20] Robles, J., Martín, C., Díaz, M.: OpenTwins: An open-source framework
for the development of next-gen compositional digital twins. Computers
in Industry 152, 104007 (2023)

[21] Streichhahn Hendrick and Duodaki, Abdul Rahman and Hyttrek, Chris-
tian and Wolf, Jakob and Kreth, Yannick: TeSSLa Telegraf Connector.
https://tessla.io/blog/telegrafConnector/ (2024)

[22] Talasila, P., Craciunean, D.C., Bogdan-Constantin, P., Larsen, P.G.,
Zamfirescu, C., Scovill, A.: Comparison between the HUBCAP and
DIGITBrain Platforms for Model-Based Design and Evaluation of
Digital Twins. In: Proceedings of the 5th Workshop on Formal Co-
Simulation of Cyber-Physical Systems. CoSim CPS (2021)

[23] Zambrano, V., Mueller-Roemer, J., Sandberg, M., Talasila, P., Zanin, D.,
Larsen, P.G., Loeschner, E., Thronicke, W., Pietraroia, D., Landolfi, G.,
Fontana, A., Laspalas, M., Antony, J., Poser, V., Kiss, T., Bergweiler, S.,
Serna, S.P., Izquierdo, S., Viejo, I., Juan, A., Serrano, F., Stork, A.: In-
dustrial Digitalization in the Industry 4.0 Era: Classification, Reuse and
Authoring of Digital Models on Digital Twin platforms. Array p. 100176

(2022). https://doi.org/https://doi.org/10.1016/j.array.2022.100176, https:
//www.sciencedirect.com/science/article/pii/S2590005622000352

https://doi.org/10.1145/3365438.3410952
https://doi.org/10.1007/978-3-030-32079-9_23
https://doi.org/10.1007/978-3-030-32079-9_23
https://doi.org/10.23919/annsim55834.2022.9859489
https://doi.org/10.23919/annsim52504.2021.9552135
https://doi.org/10.23919/annsim52504.2021.9552135
https://doi.org/10.1016/j.future.2020.03.031
https://doi.org/10.1016/j.future.2020.03.031
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1007/s10844-022-00766-w
https://doi.org/10.1007/s10844-022-00766-w
https://doi.org/10.1109/ACCESS.2019.2893871
https://doi.org/10.1109/ACCESS.2019.2893871
https://tessla.io/blog/telegrafConnector/
https://www.sciencedirect.com/science/article/pii/S2590005622000352
https://www.sciencedirect.com/science/article/pii/S2590005622000352

	Introduction
	Background
	Runtime Verification
	NuRV
	TeSSLa
	Digital Twins as a Service
	FMI-based Co-simulation

	Example integrations
	The Incubator
	NuRV FMU monitor
	Monitor definition and integration
	Simulation environment
	Simulation creation and execution

	NuRV FMU service monitor
	Overview
	Creation, execution, and termination

	NuRV ORBit2 monitor
	NuRV monitor server
	Monitor integration

	TeSSLa passive monitor
	TeSSLa active monitor

	Concluding remarks
	References

