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Abstract

The ability to move production between different geographical locations has
recently become more important, due to the increasing need for sustainabil-
ity and faster response times, complying with local regulations, and dealing
with brittle international supply chains. To this end, the movable factory
concept has been put forward, which is defined as mobile production units
that can be installed near the customer’s location. Unfortunately, industrial
paradigms such as Industry 4.0 make little if any notice of movable factories
but instead focus on the digitalization of their fixed counterparts. In the
form of a systematic literature review, this paper breaks down the concept
of the movable factory, relates it to the state-of-the-art, and summarizes its
main use cases, requirements, research gaps, and opportunities. The review
covers over 100 relevant articles published in the past two decades. Com-
pared to existing surveys, we have not only focused on the motivations for
movable factories, but also identified research gaps and discuss the impact of
modern technologies such as Internet-of-Things, digital twins, and modeling
and simulation in fulfilling these gaps. The result is a survey of the state-of-
the-art and a list of domains for potential future research on different aspects
of movable factories.
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Nomenclature

AI Artificial Intelligence

AR Augmented Reality

CapEx Capital Expenditure

DLT Distributed Ledger Technology

DMS Dedicated Manufacturing System

DPS Distributed Production System

DT Digital Twin

ETO Engineer-To-Order

FiaB Factory-in-a-Box

FMS Flexible Manufacturing System

GPN Global Production Network

IoT Internet-of-Things

JiT Just-in-Time

LIM Location Independent Manufacturing

M&S Modeling and Simulation

MMS Mobile Manufacturing System

MPS Modular Production System

OPEX Operational Expenditure

RMS Reconfigurable Manufacturing System

SME Small and Medium-sized Enterprises

TRL Technology Readiness Level

VR Virtual Reality
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1. Introduction

To maintain competitiveness in the global market, manufacturing compa-
nies need to reduce production costs while keeping up with the high quality
and short delivery time of the products [1]. However, these can be unde-
sirably challenged by uncertainties in the supply chain [2], variations in the
products [3], changes in customer requirements [4], local regulations [5], etc.
A particularly important factor is transportation prices. A recent study re-
ports a steep increase of 180% in the global shipping prices in the period
from November 2020 to February 2021 primarily as a result of Covid-19 [6].
The increased shipping distances as a result of the globalized market [7] and
the increased size of the products will further challenge the cost and time
constraints in manufacturing. Likewise, the transportation feasibility some-
times puts constraints on the size and weight of the manufacturing products
[8], such as in the case of the wind turbine blades, nacelles, or towers. In
addition, permission from authorities must be acquired before the transporta-
tion of the bulky wind turbine components, which is also a time-consuming
task. Moreover, some customers and local/international regulations demand
specific environmental practices that manufacturing companies need to take
into account to meet climate and sustainability requirements [9, 10]. A new
manufacturing paradigm is needed to address these challenges.

A recent manufacturing concept is to move the production sites closer
to the location of the demand. This emerging concept that has recently
been adopted by some manufacturing companies (see examples in Section 4)
is known as a movable factory. A movable factory is composed of mobile
manufacturing modules that are easy to transport to different production
sites, can be quickly assembled to form a complete manufacturing process,
and can be easily reconfigured to meet requirements for change drivers such
as new types of products and technologies, new production volumes, sup-
ply chain variations, local regulations, etc. In addition to addressing the
manufacturing challenges regarding time, cost, and sustainability, a mov-
able factory can create a high degree of internal flexibility, responsiveness, as
well as the capability of operational reconfigurability to suit new demands.
Furthermore, the movable factory concept facilitates localization of the pro-
duction/manufacturing [11], which offers several advantages such as (1) job
creation to boost the local economy, (2) emission reduction by reducing the
transportation needs and long-distance shipping, and (3) overall cost sav-
ings by avoiding import duties or shipping expenses. The motivations and
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Fig. 1. Illustration of the main motivations and benefits of the movable factory versus a
fixed factory.

benefits of mobile manufacturing are conceptually depicted in Fig. 1.
Based on a systematic literature review, this paper discusses the con-

cept of a movable factory also referred to as a Mobile Manufacturing System
(MMS). The aim is to provide a holistic overview of the benefits and chal-
lenges, characteristics, requirements, applications and use cases, and to pro-
vide guidelines for when to use an MMS instead of fixed factories, and suggest
areas of future research. Until now, the research on the MMSs has been scat-
tered under several different names, such as MMS [12], Movable Factory [13],
On-site factory [14], Factory-in-a-Box (FiaB) [15], and Location Independent
Manufacturing (LIM) [16]. While these concepts have some differences, they
all share the same main characteristic, that is, the ability to geographically
move the manufacturing system from one place to another. Furthermore, no
previous effort has been devoted to reviewing the MMS concept by systemat-
ically examining all scientific publications. However, there have been several
non-systematic overviews including [16, 17, 18, 19] to describe the concept
of the MMS. Some reviews such as [14, 20, 21] have focused on the use of
movable on-site factories in the construction industry. In these reviews, the
on-site factories are considered beneficial to achieve automated, scalable, and
distributed manufacturing systems in the construction sector. Lastly, studies
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in [22, 23, 24, 25] have investigated the use of small low-cost MMSs for sus-
tainable manufacturing in areas where people lack manufacturing skills and
the necessary infrastructure for large fixed factories. However, the challenges
and benefits in these areas are not all the same as large modern companies
are concerned with. This review covers the aforementioned gaps by com-
prehensively discussing the definitions, benefits and challenges, applications,
and requirements of movable factories.

The review is organized as follows: Section 2 describes the review method-
ology and the literature analysis. In Section 3, the life cycle of the movable
factory is presented and in-depth discussions regarding the background, def-
initions, benefits, and relevant manufacturing concepts are included. The
taxonomy, use case analysis, and requirements of the movable factories are
covered under Section 4. The main challenges and identified research oppor-
tunities are presented in Section 5. Finally, Section 6 concludes the paper.

2. Methodology and Literature Analysis

A systematic approach is selected to carry out the literature review on
the MMS topic following the methodology laid out in [26]. As shown in the
flowchart of Fig. 2, the review method consists of four main stages, namely
(1) planning, (2) screening and reading, (3) analysis and discussion, and (4)
documentation. In the following, different stages are explained in detail.
The first step was related to the planning in which the relevant keywords
and search databases were selected. The search settings and paper screening
summary are listed in Table 1. In the search process, different publication
types including peer-reviewed articles, book chapters, dissertations/theses,
and technical reports were considered. All documents published since 2000
were considered. The search was fulfilled considering well-established scien-
tific databases including Scopus and IEEE Xplore in addition to the grey
literature which was found through Google Scholar search. Overall, 23 key-
words were considered as search strings, as listed in Table 1. The keywords
were obtained by preliminary exploring of related papers in dialogue with
industrial experts. In the second stage, the validity and relevance of the
articles were preliminarily checked using an iterative approach, in which we
first screened the titles of the papers and accordingly removed non-relevant
items. Many of the articles could not be judged by their titles alone. These
articles were assessed in the second iteration by screening their abstracts.
Some other articles were also added to the literature review database using

5



Fig. 2. Flowchart of the methodology used for the literature review.

the snowballing technique, in which the reference lists of the articles found
were scanned for new sources and subsequently, the iterative search process
was applied again to find additional relevant articles. The applied method
resulted in overall 105 articles to create the final literature review database.
It should be noted that only the literature in English was considered. Af-
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Table 1
Search settings and paper screening summary.

Searching
Index

Specific Content

Database Scopus, Grey literature, IEEE Xplore

Publication type
Peer-reviewed journal and conference articles, book chapters, technical re-
ports, dissertations/theses

Search string

“movable factory”, “movable factories”, “moveable factory”, “moveable fac-
tories”, “portable factory”, “portable factories”, “transportable factory”,
“transportable factories”, “factory-in-a-box”, “factory in a container”, “loca-
tion independent manufacturing”, “on-site factory”, “pop-up factory”, “mo-
bile factory”, “mobile factories”, “mobile manufacturing”, “mobile produc-
tion unit”, “movable production”, “moveable production”, “reconfigurable
production”, “reconfigurable manufacturing”, “mobility in manufacturing”,
“mobility in production”

Search period 2000-2022
Screening
procedure

The relevance with the research topic is judged by the content of the title
and the abstract of every paper

ter stage 2, the literature was categorized for further analysis and write-up
in stages 3 and 4. In stage 3, the produced knowledge was analyzed and
discussed with academic and industrial experts to decide the suitable pre-
sentation format, segmentation of the review, chart types, and analytic tools
for the literature review, and the results were compiled, accordingly. Finally,
in stage 4, the write-up of the review manuscript was accomplished. The
results of the literature review are presented through five major sections in
the paper. Sections 1 and 2 present the introduction and description of the
methodology. Section 3 is dedicated to the definition of the related concepts
and benefits of movable factories. The results related to the use case and
requirements analysis are placed in Section 4 while Section 5 is dedicated
to discussing the challenges, gaps, and opportunities with modern manufac-
turing technologies. The results of the literature analysis are summarized
in Figs. 3 to 5. In Fig. 3, the number and type of the reviewed documents
published between 2000 and 2022 are shown in a histogram plot. The publi-
cations are categorized into five major types including journal articles, con-
ference papers, dissertations, book chapters, and technical reports, which are
distinguished with a different color in Fig. 3. Most of the publications are
among journal and conference articles. The large number of publications in
the last few years shows that the movable factory has been an active and
timely research area, which also justifies the pertinence of this review.

The literature data is analyzed and the results are visualized using the
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Fig. 3. Number and type of documents per year related to the analyzed literature
database.

Fig. 4. Network visualization of the keywords in the literature database plotted by
VOSviewer.
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Fig. 5. Geographical heat map showing countries of the first authors of the publications
in the

literature review database.

VOSviewer software [27]. Fig. 4 shows the keyword map of all subject ar-
eas related to the literature database. The analysis is fulfilled considering
all keywords including the authors’ keywords and the index keywords. The
relative size of the nodes shows the usage frequency of the corresponding key-
word or research topic whereas the thickness of the links shows the strength
of the pairs of keywords. From the figure, the most popular subject areas
or keywords among researchers can be easily identified. Likewise, the nodes
and keywords with poor connectivity and link to other keywords have the
potential to develop into fresh research areas. The VOSviewer clustering
analysis tool is used to further organize the key research topics. Accordingly,
six major clusters are identified and listed in Table 2. The table shows lists
of correlated keywords that have been used together in different references
considered for the review. The clusters are also distinguished in Fig. 4 with
different colors.

Fig. 5 shows the geographical distribution of the countries associated with
the first authors of the reviewed documents. Overall, authors from 22 coun-
tries have contributed to the field while authors from USA and Finland have
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Table 2
Major topic clusters for movable factories.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

3d printing Decision making Assembly
Computer aided
manufacturing

Information
management

Automation

Additive manufac-
turing

Economic and so-
cial effects

Manufacturing
process

Computer software
Mobile pro-
duction units

Containers

Costs Forecasting
mobile man-
ufacturing

Mobile supply
chain

Mobile
robots

Life cycle

Factory automa-
tion

Logistics
Portable fac-
tories

Mobility
Multi agent
systems

Location

Flexible manufac-
turing

Sustainable devel-
opment

Project man-
agement

Reconfigurable
manufacturing

Production
engineering

Modular
construction

Integer program-
ming

Mobile factories Robotics Shared factory
Robot pro-
gramming

Productivity

Supply chain Optimization
Supply chain man-
agement

Vehicle routing
problem

Recycling

Reverse logistics

had the greatest contributions with 17 and 15 publications, respectively.

3. Mobile Manufacturing

Based on the review methodology described in Section 2, different aspects
of the MMSs including the definition and characteristics, life cycle, evolution
trend, relevant manufacturing concepts, and main benefits are reviewed in
detail and the results are presented through the following subsections.

3.1. Definition and life cycle

The key characteristic of an MMS is that it has external mobility, that is,
the manufacturing system is able “to change between geographically differ-
ent places with little penalty in time, effort, cost, and performance” [28, 29].
In [30, 31], the concept of FiaB was proposed and defined as on-demand
production capacity featuring flexibility, speed, and mobility. The latter
implies that the factory has to be designed as a “mobile platform” which
can be easily moved anywhere within the production system, to a supplier
or another production site. Based on a theoretical overview of mobility in
manufacturing, Stillström and Jackson [28] conclude that there is no explicit
definition of mobile manufacturing and that mobility is used as a characteris-
tic in both the operational and strategic domains. Operational mobility may,
for example, refer to internal mobility, which is described by Upton [32] as
the ability to change quickly between products, or by Wiendahl [33] as the
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ability to move around manufacturing equipment, e. g., by placing machines
on rollers. Strategic mobility refers to a company’s ability to efficiently pro-
duce its products or services at various locations across different geographical
places [28, 34]. This could be enabled by a geographically disperse manufac-
turing network that can transfer products, processes, and personnel between
factories, and potentially move the factories. A generally accepted guideline
to achieve external mobility is that the MMS should be able to fit in stan-
dard containers [35], either the full manufacturing setup or the dismantled
parts [36, 37], such that the whole system can be transported using standard
transportation vessels such as trucks, rail, vehicles, and ships [38].

Peltokoski [39] defined the LIM concept and classified the movable fac-
tory into three different groups including individual, multiple, and modular
movable factories. The individual movable factory consists of one single pro-
duction unit that is transportable with a shipping container. The multiple
and modular movable factories are alike, both consisting of several produc-
tion units but with different sizes.

In [40, 19], a movable factory was defined as a production unit that can be
installed near the customer’s location to enable real-time services. A similar
definition has also been proposed in [41], in which it is argued that mov-
able factories improve manufacturing flexibility, responsiveness of the supply
chain, as well as the manufacturing sustainability. Likewise, Benama [42]
proposed a holistic definition wherein the “mobility” is considered concern-
ing the components of the manufacturing system including the technical,
human, and information components.

The mobile modular factory otherwise known as “E-plant in a box” was
defined in [43, 44] as a low-capitalization installation that can be easily and
cost-effectively reconfigured in new locations. Accordingly, mobility is de-
fined as the capability of building, running, packaging, and moving such a
factory.

It should also be noted that the MMS has a different life cycle than a fixed
factory. The life cycle of the movable factory is illustrated in Fig. 6 (derived
based on [29, 45, 42]). Each life cycle phase and its corresponding activi-
ties are shown with a distinct color in the figure. Some activities such as
warehousing might only be needed under certain conditions and for specific
manufacturing cases and thus, they might not be present/mandatory in all
MMS life cycles. These activities are distinguished with dashed lines. The life
cycle activities shown with solid lines are general and should be sequentially
performed in all manufacturing cases.
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Fig. 6. Life cycle of a movable factory with four main phases including transportation,
setup, production, and disassembly. Each phase and its corresponding activities are shown
with distinct colors. Solid lines refer to the main life cycle activities whereas dashed lines
show occasional activities.

As shown in Fig. 6, the life cycle can be divided into four main phases: (1)
Transportation, (2) Setup, (3) Production, and (4) Disassembly. The circular
arrow in the middle shows the sequence of the life cycle phases. Each phase
might include one or more activities as shown in Fig. 6. For example, the
setup phase might include a pre-arrival setup at the customer site, e.g. if
the ground needs to be flatted. Likewise, the equipment must be unpacked,
assembled/installed, or may also need to be configured before production can
begin. The production phase includes production ramp-up, full production,
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production phase-out, and control diagnosis. A fast production ramp-up is
necessary to be competitive with the fixed factories. Afterward, the MMS
should be diagnosed to make sure that the performance is acceptable. After
finishing the production, the MMS must be disassembled and packed for
transportation to the warehouse or directly transported to the next customer.
The latter aspects are covered in the disassembly and transportation phases
of the MMS life cycle as shown in Fig. 6.

Apart from these main life cycle phases, there are other activities that
might exist in the life cycle of some manufacturing cases as discriminated
in Fig. 6 using the dashed lines. For instance, instead of direct trans-
portation from one site to the next one, an occasional off-site warehousing
phase might be required. This might occur when, for example, inspection
and maintenance services should be fulfilled on the MMS, the MMS needs
off-site configuration for the next order, or in case the next order is not
placed. The procurement activity occurs when a new manufacturing equip-
ment/service/asset needs to be incorporated into the MMS production cycle
whereas decommissioning activity refers to the case when some manufac-
turing modules/equipment/assets are considered out-of-service, for example,
due to breakdowns or degradation of the components.

As seen in Fig. 6, the configuration activity can happen at different phases
of the life cycle, either off-site, on-site during setup or on-site during disas-
sembly. The off-site configuration allows the MMS owner to configure and
test the MMS before transporting it to the site; however, this will reduce the
operational time as the MMS is not transported directly between customers.
The on-site configuration during setup allows each order to be handled in-
dividually but will require additional time to begin production and parts
might be missing for that specific configuration unless a strict configuration
control is maintained. The on-site configuration during disassembly has the
advantages of an off-site configuration but will require additional time from
the customers after production is completed, which might not be possible in
all cases. Assuming that the MMS has been configured off-site, it needs to be
packed and transported to the customer. The MMS needs to be configured for
each order, as there will rarely be two orders that are exactly the same due to
the customer need, country/location regulations/requirements/limitations,
etc. [29].

Therefore, while a fixed factory has a linear life cycle, i. e., construction
then production, and finally decommissioning, in the case of the MMS, the
factory will be set up and disassembled multiple times during its life cycle. It
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should also be noted that the MMS is not able to reach the same throughput
as the fixed factories. This is mainly due to two factors: (1) The MMS will
not be able to reach the same size, which will prevent the same economy of
scale. (2) The MMS will have a lower operational time due to the additional
time required for setting up and disassembling. Furthermore, the MMS will
probably have a higher frequency of production ramp-up and phase-out than
fixed factories.

3.2. Historic overview

The idea of mobile capacity is not a new concept [46]; the military has
camps that can be erected in hours; mobile hospitals are used by humanitar-
ian organizations in emergencies; and patents on portable paving plants can
be found from 1891 [47]. Nevertheless, the first scientific reference, that we
have found, that has mentioned the use of a Mobile Manufacturing Technolo-
gies laboratory is from 1993 [48]. However, that facility was exclusively used
for educational purposes, not manufacturing, therefore it is not considered
in line with other MMSs. Thereafter, the first occurrence we could find of
mobile facilities for manufacturing is from 2000 [49]. In addition, it was ar-
gued by authors in [46] that before FiaB from 2005, there were “no examples
found of adding the mobility factor to a manufacturing system within the
engineering industry”.

The historical overview and benchmarks in the research of the MMSs and
some important industry technological milestones/advancements are shown
in Fig. 7. The FiaB conceptualization, characteristics, and requirements defi-
nition were first introduced within 2005-2009 in [30, 31, 28, 46, 38, 50]. Soon
after, the possibilities and applications of the FiaB concept for Small and
Medium-sized Enterprises (SMEs) were explored in [51] wherein FiaB was
proposed to realize a product service system for a case company in the metal
manufacturing industry. Since then, the FiaB has gained increasing atten-
tion among researchers, industries, and SMEs resulting in the maturity of
the concept and this further led to the development of new FiaB use cases
and business models within 2014-2015 [40, 52, 53]. In the following years
until 2017, a similar but broader term, i.e. LIM, was proposed by Peltokoski
[18] and solutions were suggested to address the globalization challenges of
the movable factories. Under the LIM concept, additional benefits such as
using local labor, local material, and semi-ready products were discussed.
Most recently, the research on movable factories has been focused on de-
veloping mathematical frameworks and models for the movable factory to
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Fig. 7. Chronological history of research on MMSs, industrial revolutions, and emerging
industrial technologies.

achieve optimal planning and decision making, for example, router master
planning [54, 55, 56, 57, 58], assembly hierarchy planning [59], facility lo-
cation optimization [60], and decentralized decision-making for FiaBs [61].

In Fig. 7, the time relevance of the MMS research with the evolution of
industrial revolutions and technologies is also depicted. Industry 4.0 refers to
the fourth industrial revolution which involves the integration of digital tech-
nologies such as Internet-of-Things (IoT), big data analytics, and Artificial
Intelligence (AI) to increase autonomy, efficiency, productivity, and flexibil-
ity in manufacturing processes. More recently, Industry 5.0 is put forward,
which emphasizes the integration of human intelligence and collaboration
with technology to create a more human-centered approach to manufactur-
ing. Industry 5.0 seeks to build on the strengths of Industry 4.0 but also
recognizes the importance of human skills and creativity in the manufac-
turing process [62, 27]. Society 5.0, on the other hand, is a concept that
describes a vision of the future society that is both technologically advanced
and human-centric and as described in [63] includes three main pillars: (1)
human centricity, (2) resilience, and (3) sustainability. The movable factory
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concept is well-suited to both Industry 4.0 and Industry 5.0 as it enables a
flexible and adaptive manufacturing approach that leverages advanced tech-
nologies such as digital twins (DTs), AI, etc., and supports human-machine
collaboration. The characteristics of movable factories such as the emphasis
on the local workforce and production sustainability are also aligned with the
requirements of Industrial 5.0 and Society 5.0. Application of new industrial
technologies in the context of the movable factory is discussed in more detail
in Section 5.

3.3. Related concepts

This section reviews the emerging manufacturing concepts and their link
with MMSs. The review is detailed in Table 3 and contains nine emerging
manufacturing paradigms including Reconfigurable Manufacturing System
(RMS) [64, 65], Modular Production System (MPS) [66], Dedicated Manu-
facturing System (DMS) [67], Flexible Manufacturing System (FMS) [68, 69],
Distributed Production System (DPS) [70, 71], micro-factory [72, 73], flying
factory [74, 75], FiaB [38], and MMS [45]. Different criteria related to the
movable factories are also listed in Table 3 and the manufacturing concepts
are evaluated against them. The characteristics of the MMS and FiaB are
very close to each other except that for the latter case internal mobility has
not been reported as a main feature. Therefore, the two concepts have been
interchangeably used in the literature. According to the review, one of the
main limitations of the existing manufacturing concepts compared to the
MMS is the lacking emphasis on mobility. Likewise, except for the MMSs
and MPSs, none of the manufacturing concepts emphasizes modular produc-
tion to facilitate mobility. Therefore, for manufacturing cases in which it is
preferred to have mobile production, the MMS concept offers a significant
advantage.

Another relevant manufacturing concept that emphasizes the decentral-
ization of production is referred to as global production network (GPN)
[76, 77]. The GPNs are typically characterized by the fragmentation of pro-
duction processes, with different stages of production taking place in different
parts of the world, and the close coordination of activities among the various
actors involved [78]. The movable factory concept can facilitate the GPNs by
enabling companies to establish a presence in different regions of the world
without committing to long-term investments in fixed infrastructure. This
flexibility allows companies to benefit from comparative advantages of dif-
ferent regions, such as access to (cheaper) natural resources, skilled labor, or
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Table 3
Review of emerging manufacturing concepts and the related focus areas.

No. Ref. Concept Definitions and objectives

Focus criteria

In
te
rn
al

M
ob

il
it
y

E
x
te
rn
al

M
ob

il
it
y

S
p
ee
d

M
o
d
u
la
ri
ty

C
h
a
n
g
ea
b
il
it
y

N
ea
r
th
e
en

d
u
se
r

L
o
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l
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so
u
rc
es
*

V
ol
u
m
e
C
h
a
n
g
es
*
*

N
ee
d
s
C
h
a
n
ge
*
**

1

[64,
65,
17,
35]

RMS

Formed of standardized assets enabling rapid
change in production volume or type; Reconfig-
urability may refer to machines in a system or
modules/mechanisms in machines

2 [66] MPS

Formed of standardized factory-preassembled
blocks/modules, which can be easily intercon-
nected to build a product; MPS features simpli-
fied maintenance, lower downtime, scalable ca-
pacity, and lower costs

3 [67] DMS
Designed to manufacture a single part at a high
production rate through fixed simultaneous oper-
ations

4
[68,
69]

FMS

Designed to have built-in flexibility to manufac-
ture multiple products at low production vol-
umes; Flexibility is often defined as production
system ability to alter its behavior without the
need for reconfiguration

5
[70,
71]

DPS
Formed of smaller decentralized and geograph-
ically dispersed manufacturing facilities much
closer to the end user

6
[72,
73]

Micro
Fac-
tory

Designed to minimize the production system size
to match with the size of the parts; also known
as desktop factory; Savings in space, energy, and
costs achievable

7
[74,
75]

Flying
Fac-
tory

Manufacturing in temporary off- or near-site lo-
cations based on technologies and processes that
are easy and quick to setup and dismantle; Also
known as temporary manufacturing factory

8 [38] FiaB
Consists of standardized manufacturing units,
which can be installed in a container and are easy
to be transported to external sites

9 [45] MMS
Formed of manufacturing modules that are placed
on a movable platform; Mobility refers to both
internal and external mobility

* Including labor and/or raw material. ** Ability to handle changes in production volume. *** Ability to adapt
to changing customer requirements.

favorable regulatory environments. Both concepts involve the use of flexible
and adaptable production strategies that allow companies to respond quickly
to changing market conditions and to take advantage of the opportunities
presented by different regions of the world [79].
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3.4. Main benefits
The benefits of the MMSs are illustrated in Fig. 1. One of the main

benefits is that the factory can be moved to the location where it is most
useful, which reduces the need for transportation and its associated costs.
One option is to move the MMS close to the customer or consumption site
and this will allow components to be transported more compactly than the
final product. An example in the wind industry is the transportation of the
metal sheets rather than wind turbine tower sections. At the same time, the
close vicinity to the customers allows a shorter reaction time to the changes
in the customers’ requirements because of the reduced transportation time
between the factory and the customer. This also creates the possibility of us-
ing local labor for manufacturing. This aspect and the lower transportation
emissions will improve the social and environmental sustainability of manu-
facturing [80, 81]. The MMS could also be moved close to the materials that
it should process, which enables the producers of the materials to process
the materials further and get a better price for their product [82, 22], e. g., in
food production, the MMS can allow the farmers to refine their products [83].
In addition, movable factories facilitate the Just-in-Time (JiT) delivery to
minimize the required storage space for material, and this makes the sys-
tem robust to the market/logistics uncertainties [14]. Another option is to
move the MMS between fixed factory locations as a means to have shared
equipment between sites. This enables several advantageous use cases. For
example, sharing expensive assets, managing occasional production peaks,
or using movable units as a temporary backup resource to handle machine
shut-downs or to enhance production capacity when necessary [56]. It could
also be the case that such assets will be used in the same company when that
asset is needed, occasionally. Likewise, this can enable manufacturing affin-
ity [84] and new business opportunities, such as leasing equipment, service
as a product, and joint ventures [12].

Another important benefit of the MMS is the possibility of having a
high Capital Expenditures (CapEx) return. CapEx is the funds used by a
company to acquire, upgrade, and maintain physical assets such as property,
plants, buildings, technology, or equipment [85]. For MMSs, most of the
CapEx investment put into the buildings and equipment can be returned to
the company after the order has been completed and reused at the next site.
This reduces the risk related to the CapEx as it is easier to use the factory
for multiple orders. For the fixed factory, the return on investment is bound
to an estimated prognosis of the orders that should be completed. On the
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contrary, the MMS can allow a more uncertain prognosis for local demand.
The CapEx return allows for new market opportunities by mitigating the

barriers against starting production in a different country. This is emphasized
in countries with local content requirements, i. e., when a percentage of the
production must take place in the country where the product is sold. For a
fixed factory, the risk related to entering this market is high as there is no
guarantee that further orders will follow. For MMSs, this is less of an issue
as the factory can be moved to another location after the completion of the
order with local requirements.

Table 4 summarizes the benefits of the MMSs compared to fixed facto-
ries. It should be noted that the suitable choice between a movable factory
and fixed factory depends on the specific manufacturing requirements, which
may vary from one application to another. In some manufacturing cases,
movable factories can be more expensive to operate than fixed factories due
to additional costs of transportation, setting up, and dismantling. However,
movable factories can be more cost-effective in certain situations where the

Table 4
Summary of the comparison between MMSs and fixed factories.

Criterion MMS Fixed factory

Mobility
Easily movable making them more ver-
satile and adaptable to changes in de-
mand or supply chain

Difficult or impossible to move to a new
manufacturing location

Size and ca-
pacity

Generally are small in size and have rel-
atively low production capacity due to
the limits on the size and complexity of
the modular equipment/infrastructure

Generally can be large and can achieve
a large production capacity

Transportation
of finished
products

Minimal transportation need since the
manufacturing is close to the cus-
tomer’s place

Transportation of heavy products can
be expensive or in some cases impossi-
ble

Distance to
customer

Manufacturing can take place close to
the customer’s vicinity

Production is done in a fixed location

Local re-
sources

Possibility to use local material and/or
workforce at the customer place

Difficult to use local resources

Environmental
sustainabil-
ity

High sustainability by reducing trans-
portation needs/emissions

Larger environmental impact as they
are built on a permanent site and may
require significant infrastructure and
resources

JiT delivery
Facilitated JiT reduces the storage
space and warehousing

More vulnerable to market/logistics un-
certainties

Shared
equipment

Possible to share expensive equip-
ment/assets to cover production peaks

Difficult to share equipment. New in-
vestment might be needed to cover pro-
duction peaks
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benefits of mobility outweigh the extra costs.

4. Literature Review

In this section, the literature taxonomy and classification, MMSs’ re-
quirements, application domains, and use cases of the MMSs are reviewed
and presented through the below subsections.

4.1. Literature taxonomy and classification

The literature taxonomy and classifications criteria for the analyzed lit-
erature database are shown in Fig. 8 [86]. The classification is fulfilled based
on several MMSs characteristics such as their size, mobility, distance to head-
quarters, etc. The classification criteria are explained in the following.

• Changeable Manufacturing System: Flexible and/or reconfigurable man-
ufacturing system

• Size: Single container, multiple containers, dismantled factory

• Mobility: External (near site, on-site, or at materials/product), inter-
nal

• Material setup: Component, kit-assembly, final assembly, or testing

• Distance to headquarters: Organizational, time, geographical, techno-
logical, social and cultural

• Workforce: Pre-/post-operating labor (local or fixed), operational labor
(local or fixed)

• Knowledge transfer: Physical or digital (manual or automatic)

• Time at site: Setup time, and operational time
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4.2. Applications and use cases

The use cases of the MMSs are diverse and cover a range of application
domains in different industrial sectors. This includes, for example, the pro-
duction of biofuels using movable factories [87], mobile recycling units for
recycling of construction [88] and electronic equipment material [89], addi-
tive manufacturing based on portable 3D printing units [90], etc. The use
cases and applications are comprehensively reviewed in Table 5. Based on
the literature analysis, Fig. 9 shows the percentage of the MMSs’ use cases
for 16 different industries. The figure shows that MMSs have been mostly
studied within the context of construction (19%), biomass (15%), and food
industries (13%), as well as additive manufacturing (8%).

Fig. 9. Different industry sectors using the MMS concept.

4.3. Requirements

According to the literature, the three main requirements of movable fac-
tories are mobility, speed, and flexibility. As discussed, mobility can be of two
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Table 5
Applications and use cases of MMSs reported in the literature.

Application
area

Ref. Use cases

Food indus-
try

[91, 83, 92,
93, 94]

A concept known as “travel factory” in a portable shipping container
designed by Unilever; End-to-end production process from material to
packaging; All-in-one utility capabilities [91];MMS application for pro-
duction of cocoa paste close to cocoa bean farmers to enhance sustain-
ability [83]; Application of mobile poultry processing units offering lower
start-up cost, increased product quality, possibility of equipment leasing,
etc. [92, 93].

Pharmaceutical
industry

[95, 57, 96]
Portable continuous miniature and modular system offered by Pfizer
[95]; Vaccination projects wherein the final products (i.e., vaccines) were
assembled at the customer locations, as inspired by FiaB concept [57, 96].

Telecommuni-

cations
[97, 19]

FiaB concept developed by Nokia consisting of Lego-like containers that
can be packed, shipped, and brought to operation within a few hours;
Movable communication facilities for providing service to a region with
temporal and spatially distributed demand.

Additive
manufactur-
ing

[98, 90, 99,
100]

3D printing units that can be packed, transported, and re-installed very
quick.

Machinery
maintenance

[101]
Concept used for maintenance of agricultural machinery to enable fast
and reliable maintenance services for failed machines.

Subtractive
manufactur-
ing

[102]
MMS used for drilling and milling operations of small features such as
notches, holes, etc. to better handle the customer demand variations in
mass produced parts.

Waste man-
agement

[103] Miniaturized mobile recycling unit embedded into containers

Military lo-
gistics

[104, 105] Mobile military medical evacuation units and military logistics

Aviation in-
dustry

[106, 107]

Used in assembly of airplane wings by substituting large fixtures used in
assembly lines of large structures with small mobile robots [106]; MMS
used in production of spacecrafts and spaceships fuel from the ore found
on the lunar surface; MMS used to move between locations that fossil
deposits are located [107]

Process in-
dustry

[61, 56, 55]
Optimized mobile factory routing problem and production scheduling at
the customers locations

Construction
industry

[108, 109, 14,
110, 75, 37]

Schedule the movement of mobile concrete batching facilities in railway
construction projects

Biomass in-
dustry

[111, 112,
113, 114,
115, 116,
117]

Production of bio-fuel based on MMSs [111, 116, 113]; Bio-oil production
based on mobile refineries [112, 115]; Using several semi-mobile process-
ing units to supply a large coal-fired plant [114]; Using mobile grinder
system [117].

Recycling [88, 89, 118]
Using mobile recycling centers for on-site recycling of construction ma-
terial [88]; Movable plants for recovery of valuable metals from waste
electrical and electronic equipment [89, 118]

Solar plant [13]
Movable factories used for producing and installing solar farms to reduce
transportation costs, cover larger area, and reused at least 5 more farms

Power trans-
mission

[36]
Mobile factory used for assembly and welding process in transmission
lines to reduce the need for transport and product cost

Surface min-
ing

[119]
MMS used in surface mining to produce and deliver explosive compound
in mining operations
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different types: internal and external mobility. External mobility is deemed
as the key prerequisite when the factory needs to be geographically moved.
In addition to mobility, a movable factory should fulfill the movement process
with little penalty in time and effort. Therefore, a movable factory has also
sufficiently fast transitions between different life cycle phases. In each life
cycle phase, different settings need to be adjusted which demand flexibility
in equipment, operations, processes, material handling, routing, etc.

The overview of different requirements for movable factories is provided in
Fig. 10. In this figure, the three main characteristics, i.e. mobility, speed, and
flexibility appear in the center layer, and in the middle layer, the potential

Fig. 10. Overview of movable factories requirements.
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factors that satisfy/facilitate these three main requirements are shown. The
requirements are broad but not all of them are necessarily for all use cases.
The requirements are related to five manufacturing aspects including manu-
facturing system, equipment, processes, competencies, and business concept,
as depicted in the outer layer of Fig. 10.

The requirement related to the modularization refers to the implementa-
tion of small and transportable modules which can be easily assembled and
disassembled to facilitate mobility, improve flexibility, and improve speed in
relocation, reconfiguration, volume capacity change, etc. [41]. Reconfigura-
bility improves the responsiveness to manufacturing changes and supports
the flexibility requirement [120]. Reconfigurability has been defined as the
ability to add, remove, or rearrange the structure and configurations/settings
of the manufacturing system in the desired manner [41]. The responsiveness
to changes can also be facilitated/accelerated by increasing the automation
level. An appropriately automated system can overcome labor shortages and
reduce errors caused by human involvement.

Another enabler of the movable factory is integrability. The integrability
can be met by designing standardized interfaces that enable the integration
of machines, information, control, etc. at the system level and easy and fast
integration of part modules at the machine level [50]. Likewise, the uni-
versality requirement ensures that the movable factory should be properly
dimensioned and structured to handle diverse tasks, demands, functionali-
ties, cultures, economies, IT infrastructures, etc. [33]. To tackle diversities
and interactions inside and outside of the manufacturing system, creating
compatible physical and logical systems/solutions is needed. The compati-
bility requirement ensures manufacturing compliance with different types of
potential materials, information, etc. Through utilizing uniform interfaces,
it also enables the incorporation/disconnection of the products, components,
processes, or production facilities in the existing manufacturing structures
and processes with a limited effort. Finally, the movable factory should meet
requirements related to reliable training and adopt agile business practices
[12] to address the challenges related to the local resources (unskilled local
workforce), continuously changing supply chains, and market requirements.

5. Discussion on Challenges, Research Gaps, and Opportunities

In this section, the challenges of the MMSs are reviewed and research gaps
are discussed. Likewise, the opportunities related to the MMSs including the
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possibility of applying cutting-edge technologies such as IoT, augmented re-
ality (AR)/virtual reality (VR), DT, etc. to address the existing MMSs
challenges are presented. Based on the challenges and opportunities, poten-
tial future research domains are identified and presented in this section, as
well.

5.1. Challenges in the implementation of the MMSs

Many challenges have been identified regarding the implementation of the
MMSs. As shown in Fig. 11, the challenges can be classified into six major
groups including issues related to the equipment, logistics, regulations, etc.
Some of the topics are similar to those for fixed factories. However, some
might be more profound for MMSs than fixed factories, such as finding labor
and training, which are challenges that must be handled in any case, but
for MMSs this must be tackled more often and possibly without the factory
available at the time of hiring and training (unless the factory has moved to
manpower place). Other challenges such as setup and dismantling are specific
to the MMS. In the following subsections, the challenges are discussed in more
detail.

Fig. 11. Classification of different challenges for implementation of the MMSs.
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5.1.1. Human resources

• Traveling workforce: When using a traveling workforce, there will be
traveling expenses that must be covered, and the hourly cost of such
a force will probably also be more expensive than the temporary local
workforce. Furthermore, if the MMS is moving between countries, it
may not be allowed to use a large workforce from another country [121].

• Find qualified labor: If the manufacturing processes are complex, it
might be hard to find qualified labor, especially in the case of entering
a new market where the company has not established a reputation
[122].

• Culture: Different countries have different work cultures, which will
need to be adequately handled at each location [16].

• Training: Training of a new workforce is time-consuming and expen-
sive. Furthermore, if the training requires the use of manufacturing
equipment, the training cannot start before the MMS has been set up
and it will prolong the time before the capacity of the factory can be
reached [123].

5.1.2. Information sharing

• Support from off-site: It is usually expensive to have “master opera-
tors” travel to the locations of the MMS [124].

• Cybersecurity: Movable factories may require remote access to shared
information and data. Infrastructure that will be used to serve this pur-
pose is often vulnerable to cyber attacks [125]. Preserving the privacy
and security of data and IT systems can be challenging [126].

• Quality assurance: Environment changes still need to provide proof of
quality [71].

• Organizational learning: Passing the learning from each MMS to the
organization can be difficult and time-consuming [70].

5.1.3. Equipment and products

• Equipment size: It is recognized that the manufacturing equipment
must be easy to transport and they should be able to fit in standard
containers. Otherwise, special transportation practices will be required,
which reduces the mobility [18, 127].
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• Storage space: The storage space needed for the MMS will potentially
vary between locations. This has to be carefully considered before
starting operation since a small storage space will put tight constraints
on the delivery of materials/parts and a large storage space comes with
extra expense [128].

• Setup and dismantling: The time it takes to set up and dismantle the
MMS results in reduced operation time, which means the profit will de-
crease. Hence, it is important that the time it takes for setup/dismantling
is small relative to the operation time. Reducing the setup/dismantling
time will enhance the MMS availability to be used in additional cases
[18].

• Non-offered and Engineer-To-Order (ETO): Manufacturing lines are
often designed according to the current products with poor changeabil-
ity to accommodate with the requirements of non-offered products and
ETO products [129].

5.1.4. Regulations

• Taxes: The tax systems in different countries are different and more
complicated when setting up a temporary factory as opposed to build-
ing a fixed factory [18].

• Local content: The legislation between projects and countries could be
different. It might also not be possible to use non-local workforce [129].

• Manufacturing permits: Acquiring manufacturing permits could be
challenging for the MMSs. Most of these are made for fixed factories,
which might prove troublesome for temporary setups. There might also
be political barriers related to the sustainability aspect of the MMSs
[25].

5.1.5. Logistics

• Mobility: Movement between sites and delivery of materials/parts to
the MMS is challenging [40].

• Suppliers: Changing suppliers at each site is difficult. For MMS, there
is also a much higher dependency on what happens at each customer,
as delays at one customer will prevent the MMS from moving to the
next customer. Thus, the challenge lies in accurate time estimations
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for each operation [56]. Also, closer collaborations between multiple
departments in the company are needed [16].

5.1.6. Manufacturing economy

• Increased OPEX: Even though there will be a high CapEx return, the
operational expenditures (OPEX) will probably increase when using
an MMS since there will be time “wasted” on setup and tear-down,
plus the use of new workforce every time will require ramp-up at every
location, which increases the operational time and results in increased
OPEX [23].

• Poor economy for SMEs: The concept of the MMS is not economically
attractive for SMEs [130].

• Poor economy of mass production for nearby mass markets: The econ-
omy of MMSs could be challenging for heavy industrial processes (for
example, converting iron to steel needs a large amount of energy and
space [23], or in the case of mass production for nearby mass markets).

5.2. Research gaps and opportunities

Although the MMS concept has attracted considerable interest from dif-
ferent stakeholders in academia and industry, several gaps in the knowledge
domain and implementation challenges need to be addressed yet. Emerging
tools and technologies such as IoT, DTs, modeling and simulation (M&S)
[132], additive manufacturing, AR/VR, etc. can help address some of these
challenges/gaps to meet the MMSs requirements. Table 6 presents an overview
of these modern technologies and their opportunities for the realization of the
MMSs. Likewise, the current technology readiness level (TRL) of each tech-
nology and its fit to the MMS life cycle are summarized in Table 6. Detailed
descriptions are provided in the following:

• IoT: IoT technology can be used to collect and process a large amount
of data from a network of physical objects in the manufacturing system.
This allows companies to make more informed decisions, optimize op-
erations, and enhance efficiency. The current TRL of IoT technology is
reported at level 7 [131]. TRL 7 equivalents system prototype demon-
stration in an operational environment. Despite the advancements, IoT
technology is still expensive, which hinders its applicability, especially
for small-size companies [133]. In addition, the cybersecurity of IoT
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Table 6
Overview of the emerging manufacturing technologies and their fits in the MMS concept.

Tech-

nology
TRL* Technology gaps Opportunities for MMS realization

Fit in
MMS
lifecycle

IoT 7

-Vulnerable to cybersecurity threats
-Poor affordability especially for smaller
companies
-Complex data integration due to differ-
ent data formats/structures/protocols
-Difficult to assure data consis-
tency/accuracy/reliability across multi-
ple data sources

-Remote monitoring/control of opera-
tions
-Supply chain/stakeholder management
to track/manage inventories and suppli-
ers
-Real-time data analytics for rapid
decision-making, e.g., in case of uncer-
tainties such as weather change

All

DT 6

-Low scalability to outweigh implemen-
tation cost
-Privacy concerns and lack of proper
cyber-attack countermeasures
-Poor data interoperability

-Design optimization for factory lay-
out planning, equipment placement, and
minimizing need for physical modifica-
tions
-Faster and efficient quality assurance
-Automated reconfigurability

Setup
Production
Disassembly

VR
/AR

6-9

-Poor affordability
-Specialized skills/tools required for
content creation of complex and inter-
active environment
-Lack of standards, poor soft-
ware/hardware interoperability

-Effective training of staff regarding the
safety and operation of MMS
-Simulation of factory processes for de-
sign validation
-Remote collaboration between workers
and experts for design, troubleshooting,
and maintenance tasks

Setup
Production
Disassembly

3D
print-

ing

8-9

-Poor scalability for large-scale produc-
tion
-Lack of proper standards for procedures
regulation and quality control
-Low printing speed for mass production

-Speeding up prototyping and develop-
ment cycles of MMSs
-Reduced inventory and storage space re-
quirements

Setup
Production

Block
chain

7
-Lack of scalable solutions for large-scale
applications
-Lack of proper international standards

-Supply chain transparency and accessi-
bility
-Smart contracts
-Decentralized data management

All

AI 6
-Difficult to access a large amount of rich
data for training

-Optimized scheduling, planning,
resource allocation, inventory manage-
ment
-Decision support for man-
agers/operators to achieve informed
decisions based on real-time data and
insights
-Faster and efficient quality control

All

M
&S

6-9

-Large computations for physics-based
models
-Poor standardization for modeling
tools/methods

-Virtual prototyping
-Performance analysis
-Training and education

Setup
Production
Disassembly

Robot-

ics
&
Autom-

ation

7

-Complex task handling for high-level
cognitive abilities/adaptability
-Poor integrability of robots/automation
systems/equipment from different ven-
dors
-Challenging workforce adaptation and
skillset

-Enhanced internal mobility using mo-
bile robots
-Reducing manual labor, improving
safety
-Rapid reconfiguration or relocation of
the factory setup

Setup
Production
Disassembly

*TRL range is given considering different industrial sectors and application domains.
The TRL is provided based on statistics in ENTSO-E Technopedia [131]
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systems becomes very critical and challenging in an industrial setting
and this aspect still requires further exploration [126].

As discussed in [65, 134], IoT can be used to establish production
processes that are optimized over the entire manufacturing life cycle.
When it comes to the MMS, the IoT facilitates information sharing
(as outlined in Fig. 11) and can help manufacturers to meet MMS re-
quirements throughout the whole MMS life cycle by quickly adapting
to rapid changes, optimizing the production flow, remote monitoring
and control of factory operation, and management/optimization of the
supply chain.

Emerging technologies such as 5G, big data analytics, and cloud com-
puting [135] are closely linked to IoT and facilitate its application and
implementation in movable factories. 5G refers to the fifth generation
of wireless communication technology that features faster data transfer
speeds, lower latency, higher device density, and improved reliability
compared to previous cellular networks. This technology can provide
the necessary network infrastructure to handle the massive number of
connected devices and enables efficient communication between these
devices. Moreover, utilizing big data analytics [136] helps extract in-
sights and value from large and complex datasets gathered from various
sources such as sensors, equipment, production lines, and supply chain
systems. Big data analytics can be facilitated by cloud computing plat-
forms, as they provide a flexible and scalable platform for managing the
computing and storage needs of the movable factories. It enables secure
data storage, processing, and remote access, allowing movable factory
stakeholders to collaborate, monitor operations, and make informed
decisions in real time. With regards to cloud computing, methods such
as edge computing and fog computing [135] can be utilized to bring
computational resources closer to the data source or end user, facil-
itating faster data processing, reduced latency, and improved system
performance.

• DT: The DT refers to the digital replica of a tool, machine, process,
or even a whole manufacturing system [137, 138]. According to the re-
cent report [131], the DT has an existing TRL of 6, which refers to the
demonstrated technology in a relevant environment. The technology
is still expensive and lacks scalability. Similar to the IoT, DT suffers
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also from cybersecurity threats [126]. Proper countermeasures have
to be devised and put in place to enhance the TRL of the DT. The
DT technology can address the MMS challenges in several ways. For
example, it could be used to speed up the assets reconfiguration and
shop floor re-planning when the factory moves, through virtual test-
ing of several configurations/plans to acquire optimized manufacturing
settings. Instead of conventional quality assurance methods which are
very time-consuming (also because of the frequency of the moves), one
can use DT to automate the quality control tests in a virtual setup,
similar to the one reported in [139]. The DT also leverages the de-
sign and optimization processes [140] wherein state-of-the-art control
and optimization algorithms and machine learning approaches can be
applied to circumvent difficult and time-consuming design validation
tests [141]. The DT can fit in the setup, production, and disassembly
phases of the MMS life cycle.

• AR/VR: AR/VR technologies allow interaction with digital content in
engaging and immersive ways. They can be used for off-site assistance,
training of the staff, and/or visualization and perception of abstract
data, designs, and analysis models. In terms of the TRL scale, VR/AR
technologies are given a TRL range from 6 to 9 [131] depending on the
specific application or industry sector.

The advances in M&S tools with 3D modeling and embedded VR ca-
pabilities allow more sophisticated analysis and interactions with the
models, which provides effective communication and collaboration so-
lutions. This will particularly help to address the MMS’s challenges
regarding the training of the staff, off-site support, and organizational
learning. This, in turn, reduces the need for the traveling workforce
[124]. The technologies will thus fit in the three life cycle phases of
the MMSs, namely in the setup, production, and disassembly of the
MMSs.

Despite the high TRLs achieved, the technologies yet face challenges
regarding the lack of standards, poor interoperability of the related
software/hardware, and difficulty to create content for interactive and
complex manufacturing environments [124].

• Additive manufacturing (3D printing): As opposed to subtractive man-
ufacturing, in additive manufacturing, materials will be joined to make
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objects, usually layer upon layer [142]. Additive manufacturing is a
mature technology with a reported TRL scale of 8 to 9 depending on
the specific industry sector and application area [131]. Despite its ma-
turity, the scalability for industries that require large-scale and mass
production is still challenging. In addition, the technology lacks proper
standards and regulations to assure the quality of the products printed
with additive manufacturing [143].

The additive manufacturing technology offers reduced development time
and cost for rapid prototyping as it can be directly derived from a 3D
CAD model [144]. With this technology, it is easier to manufacture
products at/close to customers thereby shortening the response time
to customer changes as outlined as a key feature for movable factories.
The latter point will also help to reduce the inventory and storage space
requirements. In terms of the MMS life cycle, additive manufacturing
can be most helpful for the setup and production phases.

• Distributed Ledger Technology (DLT) and blockchain: DLT is a decen-
tralized and transparent system for recording, verifying, and maintain-
ing transactions or data across multiple participants or nodes in the
network. The DLT can be used to enhance privacy and trust in mov-
able factory systems, e.g., to transparently store machinery’s usage data
as a basis for pay-per-use business models on the manufacturing shop
floor [145]. Blockchain is one of the most well-known and widely im-
plemented designs of DLTs [145]. The current TRL scale of blockchain
technology is reported at around level 7 [131]. The major technologi-
cal gap for blockchain is the lack of standards, and regulations as well
as scalable solutions for large-scale industrial applications. Ensuring
transparency and security of information in a distributed setting across
the supply chain of movable factories is challenging. A promising so-
lution could be to apply blockchain technology to create a resilient,
transparent, and secure log of manufacturing activities such as trans-
actions and movements of goods and materials within the supply chain
of movable factories [146].Using blockchain, it is possible to automate
supply chain processes and transaction costs through a concept known
as a smart contract [147]. Through decentralized data management,
the blockchain can also help to improve the security and integrity of
manufacturing data at all life cycle stages of the MMSs.
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• AI: AI technology uses algorithms and statistical models to analyze
and interpret data, learn from experience, and use it to improve man-
ufacturing performance over time. As of now, AI technology has been
generally validated up to a TRL of 6 [131]. Implementation at higher
TRLs is challenged by the lack of access to rich manufacturing data,
which is required to train AI algorithms. AI can be beneficial in differ-
ent stages of the MMS life cycle. In the production phase, AI-powered
systems can be used for quality assurance processes [148] e.g., by in-
spection of the products through AI-driven computer vision systems.
As for the assembly and disassembly stages, AI systems can be used
to optimize the supply chain by scheduling, planning, resource alloca-
tion, and management of inventories. AI can also be used as a decision
support system for managers and operators to help them achieve more
informed decisions based on real-time data and insights.

• M&S: Mathematical and computer-based models can be used to create
a virtual model of the factory and its processes. The virtual model can
be used to test and validate different layouts, equipment configurations,
and workflows to optimize the factory’s efficiency and productivity. The
TRL for this technology varies from one application to another. The
current TRL scale has been reported in the range of 6-9 [131]. Re-
garding the technology gaps, two main challenges can be highlighted.
First, a large computational capacity is needed to run complex mod-
els, especially physics-based models [149]. Second, there is a lack of
standards for the tools and methods used for modeling and simulation
of the factories [149]. Models and simulations can be fulfilled for vari-
ous purposes such as virtual prototyping, training and education, and
performance analysis of a production line [150]. Thus, the technology
provides opportunities in all life cycle stages of the movable factory.

• Robotics and automation: Applications of robotics technologies and
automation can help movable factories to achieve increased produc-
tivity, flexibility, efficiency, and reduced need for the workforce. Au-
tomation can be applied to various machinery and equipment used in
the movable factory including automated assembly systems, robotic
arms, conveyor systems, packaging machines, and inspection systems
[151]. For instance, mobile robots and automated guided vehicles can
be utilized to transport material and components between different
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workstations within the factory. Collaborative Robots (Cobots) can be
used to perform repetitive or physically demanding tasks to improve
ergonomics and enable efficient human-robot collaboration within the
factory. Overall, an increased level of automation enables streamlined
operations, improves safety, reduces manual labor, enhances produc-
tivity, and allows for rapid reconfiguration or relocation of the factory
setup [21]. While robotics and automation technologies play a vital
role in realizing a mobile and agile manufacturing system, there are
still some gaps that need to be addressed. For instance, integrating
robots, automation systems, and manufacturing units from different
vendors can be quite challenging as there is no standardized protocol
and platform for integration [21].

The discussions of subsection 5.1 and the current subsection about challenges
and emerging technologies in MMSs are used to identify potential future re-
search domains and the results are listed in Fig. 12. The main categories of
the MMS challenges and the modern technologies that can potentially ad-
dress each challenge category are also summarized in the figure. The links
between technologies and the challenges show the applicability of the respec-
tive technology to solve the corresponding challenge(s). In terms of future
research, six main domains are identified, namely (1) scheduling and plan-
ning of MMSs, (2) factory operation, (3) new use cases and business cases,
(4) standards and regulations, (5) training, and (6) sustainability. Domain
1 refers to the research on planning and scheduling at different factory lev-
els from the planning of the supply chain and logistics to the MMS opera-
tional planning such as factory and shop floor layout optimization. Domain
2 mainly includes research on new manufacturing processes and equipment
at component and system levels to help meet the MMS requirements sum-
marized in Fig. 10. The domain can be branched into several research paths,
which are listed in Fig. 12. For future work, it would also be worthwhile
to explore new applications and use cases and develop business models for
movable factories. This line of research can be covered under domain 3. Do-
mains 4 and 5 deal with standardization and training in the field of MMSs,
respectively. Finally, Domain 6 can cover research towards sustainability of
MMSs such as Life Cycle Analysis (LCA), research on recyclable manufactur-
ing material, waste management, and exploring energy-efficient technologies.
The proposed research agenda on MMSs facilitates their realization and con-
tributes to several key expected impacts such as enhanced local employment
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Fig. 12. Summary of the research gaps, opportunities, and potential future research
directions.
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and economic growth, sustainable competitiveness through the application
of advanced technologies, and manufacturing sustainability.

6. Conclusion

This review presents a systematic concept literature review of movable
factories. The background, definition, benefits, life cycle, related manufac-
turing concepts, literature taxonomy, requirements, use cases, challenges, and
opportunities of the movable factories are reviewed through different sections.
The literature review includes publications within the period 2000-2022 in
well-established scientific databases. Overall, 23 keywords were considered as
search strings, and the results of the review are formed based on 105 records
(journal and conference papers, reports, dissertations, etc.) in addition to a
small industry survey regarding the applications.

The review presents the historic overview of the movable factory, which
shows that the concept was put forward in 2005 and since then, it has been
considerably developed through the introduction of new use cases, applica-
tion to SMEs, and the latest building-related mathematical frameworks for
simulation/optimization studies. As highlighted by the literature, the main
characteristics of movable factories include mobility, speed, and flexibility.
The changes that these new characteristics will introduce to the manufac-
turing life cycle and the comparison with the life cycle of the fixed factories
are discussed in the paper. The benefits and opportunities of using movable
factories such as faster responses to requirements changes, high CapEx re-
turn, sustainability benefits, etc. are also elaborated. Regarding the latter
point, the review specifically highlights the improved performance in terms
of effort, time, and cost of transportation. In addition, the review draws a
comparison between the FiaB, MMS, and other related manufacturing con-
cepts. The comparison is based on eight manufacturing characteristics such
as mobility, speed, modularity, and changeability.

The use case analysis found 16 different application domains in the con-
text of MMSs. The review further breaks down the three main characteristics
of movable factories into eight different requirements and examples are pro-
vided about how each requirement should be met. The review discusses the
main challenges to the implementation and operation of the MMSs. All key
challenges are identified and classified in six categories each covering a re-
lated manufacturing aspect such as human resources, equipment, logistics,
and manufacturing economy. Moreover, the possibility of applying emerging
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manufacturing technologies such as digital twins, IoT, and additive manu-
facturing to the MMSs is explored and potential applications are suggested.
The review ends with a conceptual framework that lists all potential future
research opportunities within the movable factory context.

In terms of the limitations of this review, we should be fair to point out
that the review is confined to the literature that is available in English and
published after 2000.
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