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Abstract—Developing a data-driven fault detection model for
an actual manufacturing process poses significant challenges, par-
ticularly during the design phase, when accessing a large volume
of data is not feasible. One approach to address data scarcity is
the generation of synthetic datasets to aid in the training process.
This paper focuses on conducting a comparative study between
deep generative models and a simulation model for generating
synthetic samples. Various deep generative models such as
Variational Autoencoder (VAE) are explored and applied in this
study. Additionally, the Finite Element Analysis (FEA) technique
is employed to develop the simulation model, leveraging physics-
based approaches. Furthermore, the performance of these gener-
ative techniques is evaluated and compared using qualitative and
quantitative evaluation methods. The results demonstrate that
different methods exhibit varying levels of performance based
on qualitative and quantitative criteria. Eventually, the impact
of synthetic samples generated by different approaches on the
fault detection model is evaluated and reported. Synthetic normal
and anomalous samples are added to the training set, and the
model is tested solely on real data. The results indicate that
majority of generative techniques enhance the performance of
the fault detection model, requiring fewer training iterations and
improving the model’s predictive capabilities. Notably, synthetic
data generated by VAE significantly improve the fault detection
model’s F1 score when only synthetic normal samples added to
the training set by 0.185 in our case.

Index Terms—Deep Generative Models, Finite Element Anal-
ysis, Synthetic Data, Fault Detection.

I. INTRODUCTION

Detecting faults in manufacturing processes is crucial for
maintaining product quality and production performance [1].
In pharmaceutical device manufacturing, traditional fault de-
tection methods, such as rule-based approaches, have limita-
tions as they increase process complexity and are only partially
reliable due to the challenges posed by batch manufacturing
processes [2]. The rise of machine learning (ML) models has
offered more advanced solutions [3], but their effectiveness is
heavily reliant on the volume and quality of available data [4].

Insufficient data quality and volume significantly impact
the performance of complex ML models, compromising their
precision and reliability, particularly in fault detection for
industrial processes [4]. Addressing data deficiency is a major
challenge during the design phase, prompting the exploration
of solutions such as introducing synthetic samples to over-
come this limitation [5]. Various ML and simulation-based

techniques have been proposed to generate precise synthetic
samples in response to data shortage challenges.

Deep generative models are powerful tools in ML, capable
of understanding complex data distributions and probabilistic
features, making them valuable for generating synthetic sam-
ples to address data scarcity [6].

Additionally, physics-based models, like FEA, offer dis-
tinct advantages in generating synthetic samples, especially
in scenarios where accessing a large dataset with real data is
impractical. The use of simulation models in the design phase
requires less data for calibration and enables the exploration
of various scenarios, thus enhancing the fault detection per-
formance when synthetic data, enriched with physics-based
knowledge, is used for training [7].

The paper’s contribution comprises two interconnected
parts. The first part involves a comparative study of deep gen-
erative and simulation models for creating synthetic datasets,
evaluating the performance of three separate generative models
for an industrial use case. Additionally, an FEA-based model
is developed for this purpose to leverage physics-based knowl-
edge. The second part investigates the impact of synthetic
samples on the fault detection model by evaluating different
generated datasets and comparing their effect on fault detection
accuracy, ultimately reporting the model that provides the most
assistance.

The organization of the paper is structured as follows:
Section II presents previous work related to fault detection in
pharmaceutical processes and the generation of synthetic sam-
ples. Section III describes the adopted methodological steps
in generating and evaluating synthetic data and employing the
data to assist the fault detection model. Section IV provides
the method evaluation, introducing the industrial use case and
presenting the related results for comparison. Finally, Section
V concludes with the final results and findings.

II. RELATED WORK

Fault detection models play a critical role in identifying
abnormal changes in a process plant, with methods typically
categorized as model-based or data-driven, depending on the
involvement of physical models [8].Data-driven methods, such
as K-Nearest Neighbor (KNN) and Support Vector Machine
(SVM), have been employed to classify batch process data,



while Principal Component Analysis (PCA) has been used for
fault detection in biopharmaceutical drug product manufactur-
ing [9]. Despite the advancements, modern deep learning mod-
els have demonstrated significant progress in fault detection
but often require large amounts of high-quality data, which
may not always be available [10].

Deep generative models, including variational autoencoders
(VAE) and Generative Adversarial Networks (GAN), have
shown remarkable potential in generating synthetic data sim-
ilar to the original dataset, thus increasing the size of the
training dataset for various applications, such as image and
text generation [11]. These models have been utilized to
improve image classification accuracy and generalizability in
tasks such as CT segmentation and surface defect detection
of steel strips in manufacturing processes, thus enhancing
fault detection accuracy with synthetic data [12]. Furthermore,
deep generative models have also been explored in time series
analysis, where models like TimeGAN have been developed
to capture complex patterns and dependencies in time series
data, showing promise in anomaly detection and machine fault
diagnosis tasks [13].

Synthetic data from simulation models have been widely
used for training ML models. Using simulated data has proven
beneficial in training neural network models for machine fault
diagnosis, especially when labeled fault condition samples
were insufficient or unavailable, highlighting the potential of
simulation in overcoming difficulties in fault diagnosis tasks
[7]. However, challenges arise from the disparities between
simulation and real-world scenarios, which requires careful
use of simulated data and the application of transfer learning
or domain adaptation techniques to bridge the gap between
simulation and reality [14].

III. METHODOLOGY AND BACKGROUND

The overall methodological steps are depicted in Fig. 1,
illustrating the generation of distinct synthetic datasets, their
evaluation, and the impact on the fault detection model.

a) Generative models: A deep generative model tries to
fit a model of the probability distribution p(z) to a given a
dataset D = {z;}}¥,. Once fit, the model can be used to
generate samples z. Note that here z is time series data. In this
paper, we investigate three different deep generative models,
VAE, GAN, and TimeGAN, to generate synthetic data for fault
detection.

The VAE consists of an encoder g4(z|z) and a decoder
po(x|z) [15]. The encoder g4(z|z) and decoder py(z|z) are
neural network models parameterized by ¢ and 6, respectively.
The encoder takes the input x and produces a distribution p(z)
where z is the latent vector. The decoder uses the latent vector
to sample from py(x|z) to produce x.

GAN involves two neural network models called generator
and discriminator. The generator is able to draw samples
from the distribution p(x) by taking a vector z that serves
as input to the generator function fp (z) — x. The input
vector z can be thought of as a source of randomness which is
typically represented as a standard Gaussian distribution. The

discriminator examines a sample x and returns the estimate
fo,(x) — (0,1) of whether x is drawn from the training
distribution p(x) or from the generator.

TimeGAN proposed in [13] uses GAN to generate a low-
dimensional representation h of data z instead of generat-
ing x directly. An autoencoder model with the embedding
and recovery functions construct h. The embedding function
fo.(x) — h maps input = to h while the recovery function
fo.(h) — x maps h back to input z. The GAN architecture as
described earlier is utilized to generate h, where a generator
fo,(z) — h and a discriminator fg,(h) — (0,1) is included.
The latent vector z follows a standard Gaussian distribution.

b) Simulation model: To capture the responses encoun-
tered in production, geometrical and assembly variations are
introduced, leveraging the Resilient Modeling Strategy pro-
posed in [16] to create robust CAD models that can accom-
modate dimensional changes, as shown in Fig. 2. The input
variation encompasses five geometrical and two assembly
variables, selected based on their anticipated impact on the
assembly force, and is determined using a Fractional Factorial
design.

The FEA setup includes an explicit step, where the cap is
permitted to translate vertically and is constrained in all other
translations and rotations, with general contact applied along
with Coulomb friction. The software 3DX (Abaqus solver) is
utilized to manage the CAD model, conduct the simulation,
and export the Force-time signals for each run. This approach
allows for a detailed exploration of the significance of main
factors without confounding with 2-level interaction effects,
providing valuable insights into the assembly force and its
relationship with input variations.

c) Evaluation Techniques: This paper employs qualita-
tive and quantitative techniques to evaluate the introduced
models. For qualitative evaluation, Principal Component Anal-
ysis (PCA) and t-Distributed Stochastic Neighbor Embedding
(t-SNE) are used to map real and synthetic samples into a
two-dimensional space for diversity assessment [17], [18]. In
quantitative evaluation, discriminative and predictive scores
are considered. The discriminative score gauges the fidelity
of synthetic data by training a classifier model on real and
synthetic samples. However, the predictive score assesses the
usefulness of synthetic samples by ensuring the existence of
temporal dependencies.

d) Fault detection model: The real dataset consists of
normal and abnormal samples and to detect the abnormal
samples, a fault detection model is developed. For this purpose,
a deep learning model with convolutional layers is employed.
Then, this model is trained on the combination of real and
synthetic samples, and the impact of the generative techniques
is evaluated.

IV. INDUSTRIAL CASE STUDY AND EVALUATION

In this section, we evaluate the methodology explained in
Section III with an industrial use case, a pharmaceutical device
assembly process.
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Fig. 1: Tllustration of the overall diagram of the applied methodology.
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Fig. 2: Simulation geometry, highlighting the snap features
which are generating the assembly force.

The process involves a linear motor as depicted in Fig. 3.
This process entails mounting a medical device component and
sub-assembly module, requiring linear downward movement,
prior alignment, and rotational orientation. The assembly in-
volves a segmented ring snap, shown in Fig. 2, where axial
force is essential to bend the snap structure and overcome
friction during assembly. The linear motor is equipped with a
force transducer for continuous process monitoring, allowing
for a comprehensive understanding of process quality. The
force profiles of normal and abnormal experiments have been
collected, where abnormal scenarios were induced separately
[19], [20].

Despite limited availability, a dataset comprising 100 normal
and a few abnormal samples from the pilot line has been
collected. Recognizing the need for a larger dataset to train
ML-based fault detection models effectively, synthetic samples
are crucial to address these limitations and challenges.

a) Generative models results: The synthetic samples
generated by generative models, are shown in Fig. 4. The
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pallet/mover K

>

Fig. 3: Illustration of the physical system [19].

VAE model is trained on real samples to generate synthetic
ones. It consists of linear transformation layers followed by
the Rectified Linear Unit (ReLU) in the encoder and the
Tanh transfer function in the decoder. After training for 5000
iterations on normal samples, VAE successfully generates
synthetic data resembling real data patterns, as shown in
Fig. 4(b).

The generator of the GAN shares the same structure as the
VAE encoder; however, in this case, the input is the random
sample, and the output is generated synthetic data. Then, the
synthetic sample is fed to the discriminative model, where
the structure comprises linear transformation layers followed
by Leaky ReLU transfer functions. Trained with two different
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Fig. 4: Synthetic data samples generated by different models from normal real data samples.

learning rates for 10000 iterations, GAN’s synthetic samples
after applying noise cancelling filters exhibit similarity with
the actual data, as depicted in Fig. 4(c).

TimeGAN uses Gated Recurrent Unit (GRU) hidden layers
and is trained with a learning rate of 10~3 for 7000 iterations.
Together with a low-pass filter resulting synthetic data in
Fig. 4(d) reveal resemblance to existing temporal patterns, with
exceptions in capturing the force profile’s decrease towards the
process end.

b) Simulation model results: The FEA for the snap
process is carried out via Abaqus software. With the Design
of Experiment (DoE), the effect of different geometrical and
assembly variations has been studied, resulting in different
recorded force responses. The Force signals were then used
to define a model where the DoE variables are considered
input and the Force signal as output. Furthermore, using JMP
Pro software version 16.0.0, a Spline function is fitted to the
simulation data.

Afterwards, we generate input variables by changing the
DoE variables within the accepted boundary. New sets of input
samples are generated randomly with the normal distribution
where the mean value for each variable is the nominal value
which are then given as inputs to the snap-process formula (a
Spline formula), thereby generating simulation based synthetic
data. The synthetic data from the snap process formula is
shown Fig. 4(e).

¢) Evaluation of synthetic data: To evaluate the quality
of synthetic data, we measure three different criteria: diversity,
fidelity, usefulness. The evaluation process comprises assessing

diversity to ensure the synthetic samples distribution encom-
passes real data. Additionally, fidelity evaluation aims to make
synthetic samples indistinguishable from real ones. Finally,
usefulness evaluation ensures that synthetic samples are as
beneficial as real ones for predictive purposes.

Qualitative evaluation: The synthetic and real data distri-
butions are visualized in a two-dimensional space using PCA
and t-SNE, as shown in Fig. 5. The synthetic data generated
by VAE, with both PCA and t-SNE methods, shows overlap
with the actual data distribution according to Fig. 5(a). The
highest overlap can ensure that no outlier data is introduced
while using VAE. GAN-based synthetic data is adjacent to
the actual data in some areas, and in some points, it has
some distance from the real data points as shown in Fig. 5(b).
The distance from the real data can stretch the actual data
distribution boundary, leading to more generalization for future
classification purposes. Comparatively, TimeGAN attempts to
generate synthetic samples similar to the real data; however,
it generates samples that can be considered outliers since the
samples are far from the actual data, as shown in Fig. 5(c).

The simulation-based synthetic samples, however, only
cover part of the data distribution, as expected, since the
simulation model was conducted with the predefined setting
and cannot replicate all the possible assembly scenarios as
shown in Fig. 5(d).

Quantitative evaluation:

The fidelity criterion measures whether the artificial samples
are distinguishable or not by calculating the discriminative
score. A Recurrent Neural Network (RNN) model is trained
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Fig. 5: The distribution of real and synthetic data in two dimension space using PCA and TSNE. z; and x> show the two

dimensions of the reduced data.

to distinguish between real and synthetic samples. For this
purpose, the original data is labelled real, and the synthetic
samples are labelled not real.

The discriminative score, calculated as
|classification accuracy — 0.5|, determines the distinguishabil-
ity of the synthetic samples. When classification accuracy is
1, the discriminative score is 0.5, indicating easily detectable
synthetic samples. Conversely, a classification accuracy of
0.5 results in a discriminative score of 0, indicating non-
distinguishable synthetic samples. The discriminative scores
are detailed in Table I

The discriminative results show that the synthetic dataset
from the TimeGAN model has the lowest score, so it performs
best and is most indistinguishable. However, all the methods
for generating synthetic samples are well suited for creating
synthetic datasets from the fidelity point of view due to their
low discriminative score.

To evaluate the usefulness of synthetic time series, a se-
quence prediction model (2-layer LSTM) is trained on the
synthetic dataset to calculate the predictive score. This model
is evaluated on the real data, and the performance is measured
in terms of the mean absolute error (MAE). However, to com-
pare different models used for generating synthetic samples,
we report the relative MAE where we standardize the MAE
values between [0, 1].

According to Table I, GAN has the lowest predictive error,
i.e. higher predictive performance. TimeGAN and simulation
model slightly perform better than VAE in case of usefulness.
Howeyver, the initial MAE values are close for all different
models.

Furthermore, the reason for the performance of the
simulation-based synthetic data is that real and simulation
force signals differ around index 600 acording to Fig. 4(a)

TABLE I: Quantitative evaluation of Synthetic data generated
from different models.

Model Discriminative Predictive Score
score

VAE 0.082 1

GAN 0.082 0

TimeGAN 0.0516 0.854

Simulation

Model 0.0944 0.96

and Fig. 4(e). Where the real data shows a bump, which is
not captured in the simulation signals, the difference could
indicate a physical phenomenon on the production line that is
not captured accurately in the simulation model.

d) Fault detection results: To detect abnormal samples,
we train a Fully Convolutional Network (FCN) with a com-
bination of real and synthetic datasets. We use 80% of the
normal real data for training and 20% for testing the FCN
model. The FCN model consists of three layers with dimension
of [256, 128, 64]. The learning rate for this model is 107°.

We examine two specific scenarios referred to case 1 and
case 2. In the case 1, both real and synthetic normal datasets,
along with four real abnormal samples, are employed to
train the fault detection model. However, in the second case,
we incorporate synthetic abnormal samples generated using
various techniques into the training process of the FCN model.

Finally, to evaluate the fault detection model’s performance
on test data (consisting of a combination of 20% of real normal
data and the latest real abnormal samples), we employ the
macro F1 score criterion. The macro F1 score is calculated
as the unweighted average of the F1 scores computed for
each class. The F1 score itself is derived using the formula:

TP ...
TP+ L(FPTN)” where TP represents true positive. To ensure



TABLE II: Fault detection model performance with the assis-
tance of different synthetic datasets.

Model Case 1 Case 2
(mean/std) (mean/std)
Only Real Data (0.67, 0.108)

(0.746, 0.134)

VAE (0.855, 0.056)

GAN (0.704, 0.076)  (0.652, 0.095)
TimeGAN (0.63, 0.127) (0.603,0.092)
Simulation Model (0.673,0.079) -

reproducibility, we run the models for 100 iterations and report
the mean and standard deviation values for the macro F1 score
in Table II.

As shown in Table II, in case 1, synthetic data generated
through VAE and GAN and simulation-based model, enhance
the performance of fault detection model. Among these tech-
niques, VAE demonstrates the greatest improvement, primarily
due to the higher similarity between the data generated by VAE
and real data.

In Case 2, only the data generated by VAE contributes to
enhancing the fault detection performance. However, it should
be noted that since the deep generative models utilized in
this study still heavily rely on data volume, their performance
is hindered by the limited availability of abnormal samples.
Consequently, the synthetic abnormal samples themselves do
not yield an improvement in the fault detection performance

V. CONCLUSION

Addressing data scarcity involves generating synthetic sam-
ples and augmenting the training set. This study compared
various deep generative models and a simulation model for
synthetic dataset generation. Three deep generative models
— VAE, GAN, and TimeGAN — were assessed for their
industrial applicability. Additionally, a simulation model based
on finite element modeling was developed to create diverse
scenarios.

The qualitative analysis revealed that VAE achieved a higher
score due to the better overlap between the generated synthetic
samples and the distribution of real data. This suggests that
VAE can accurately estimate the parameters of the real data
distribution, such as mean and standard deviation. Conversely,
the quantitative results indicated that the synthetic data gener-
ated by TimeGAN had a lower discriminative score, implying
that it was less distinguishable. The predictive score favored
the synthetic data generated by GAN, suggesting that GAN
was effective in preserving the temporal dependencies present
in the real data.

The fault detection model results indicated that VAE sig-
nificantly improved the model’s performance, especially when
only normal synthetic samples were used. However, gener-
ating abnormal synthetic samples with limited data posed
challenges. In conclusion, VAE proved effective in closely
estimating real data parameters and enhancing fault detection.
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