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1 Introduction

Increasing manufacturing customization, reducing the manufacturing cost and CO2

emissions, faster system verification and validation are goals that have been sought
in industry. Smart manufacturing and Industry 4.0, assisted by different technolo-
gies, are introduced to make these objectives possible. Digital twin (DT), the virtual
counterpart of a physical entity, is one of the current concepts of Industry 4.0 that
has gained attention both in industry and academia [1]. A DT can simultaneously
represent, monitor, optimize, and control the physical replica [2].
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1.1 Definitions of Digital Twins

Different academics and industrial practitioners have definedDTs over the past years,
but most of these definitions touch upon the same concepts [3, 4]. One of the first
definitions of the DT comes from NASA and the US Air Force Research Labora-
tory, which referred to DT as “an integrated multi-physics, multi-scale, probabilistic
simulation of a vehicle or system that uses the best available physical models, sensor
updates, fleet history, and so forth, to mirror the life of its flying twin” [5]. However,
nowadays, DT is defined by a broader definition as a virtual replica that continu-
ously updates and represents products, assets, personnel, or processes and adapts
synchronously to depict changes in geometric characteristics, resource states, or
working conditions [6].

1.2 Elements

Different vital elements of DTs are referred to as dimensions, and according to the
literature, DTs can include three or five dimensions [3]. The basic three-dimension
model of DT points out the physical entity, virtual counterpart, and the connection as
the main DT elements. Later, a five-dimensional definition of DT was proposed by
Tao et al. [7], which introduced the services that DT provides, and the data transferred
between two entities as vital elements of DT.

1.3 Enabling Technology

Five-dimension DT emphasizes the need for a high-fidelity model with a comprehen-
sive perception of the environment. For this purpose, different sensing technologies
are needed to make the virtual model aware of the physical entity status. Further-
more, different big data analytics methods are needed due to the large volume of
data. Moreover, for transmitting data between the twins, different communication
protocols are needed [8].

1.4 Case Study

This case study focuses on developing a DT for an industrial manufacturing proto-
type with multiple steps. The adjustments and assembly of several components and
subassemblies are performed at speeds suitable for high-volume production. There-
fore, the data collection is implemented with a mature method, and all equipment
and process signals from various sensors are organized as a database. Furthermore,
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the details related to the assembly machine, the product, and the process of interest
are explained in Sect. 3.

Standard programmable logic controller (PLC) data collection mechanisms are
typically limited by a sampling rate that is considerably lower than the scan cycle at
which the PLCs operate, e.g., 100 ms intervals versus 5 µs scan cycles. For the data
collection to keep up with the scan cycle speed, we employ a Kafka-based ingestion
solution where data are buffered and transmitted efficiently from the PLC to a Kafka
broker running on standard PC hardware [9]. Using Kafka allows us to consume the
PLC data, unpack and interpret them so that the data can be re-published back into
Kafka, and become ready for further analysis. By delegating the data processing to
standard PC hardware, we can currently process approximately 500,000 datapoints/s.
Moreover, data collection and ingestion architecture of this case study is described
in Sect. 4.

Furthermore, to gain access to the data in a structured manner, we utilized the
CATCH.AI proprietary system. The system gives the ability to store, visualize, and
act on the data in an easy-to-use interface, so the focus can stay on developing the
analysis tools. Furthermore, the CATCH.AI system is used to set up a trigger for the
data analytics model that is executed when a particular manufacturing process step
is concluded. In Sect. 5, the details of the CATCH.AI tool are clarified.

The data analytics model deploys a machine learning method to extract the
summarized knowledge from the database. In other words, to evaluate the quality of
the products, an anomaly detection model is developed for one step of the assembly
process. To train the anomaly detection model, some products in normal status are
produced. However, to validate the detector, some fault injection experiments also
need to be conducted. The quality and sample numbers also play an essential role
in the performance of the model; therefore, some synthetic data are produced with
a data augmentation method. Furthermore, Sect. 6 describes the experiments and
machine learning methods that have been used in the case study.

This chapter describes our case study and introduces different definitions and
elements. We will discuss about the novelty of this work, the physical system, the
volume of the data, and the data analysis and processing tools. Finally, we discuss
the challenges in enabling a DT of such a large case study, along with lessons learned
and future work.

The remainder of the chapter is organized as follows. In Sect. 2, related work in
DT for manufacturing is discussed. Section 3 introduces the physical system and
the process of interest. Furthermore, the details about the data collection and storage
tools that have been used in this case study are provided in Sect. 4. Moreover, Sect. 5
describes the dashboard and visualization tool, CATCH.AI and its connection to the
data management section and the data analytics tool. Afterward, Sect. 6 presents
the anomaly detection model and different assembly experiments to produce normal
and abnormal products. Finally, Sect. 7 summarizes the chapter and discusses the
challenges of constructing a DT for a manufacturing pilot line.
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2 Related Work

In recent years, people in academia and industry have invested in designing DTs for
various physical entities, which has led to different simulation tools employed for
such physical machines. Data storage and transmission methods for further analysis
have been explored concerning data with diverse volumes or content in various appli-
cations. Furthermore, DTs with diverse services have been developed for physical
devices with different objectives. For displaying the results of the DT, various visu-
alization tools and dashboards have been designed. This section introduces some of
the DT enablers, tools, and techniques briefly.

2.1 Physical Systems

Designing DT has gained attention in different industries; therefore, various phys-
ical entities have been studied for developing DT. In [10], the authors defined an
architecture for developing DTs and examined their proposed method in a case study
which includes a refinery automation systemwith four valves. Moreover, some phys-
ical systems like grinding wheel [11], 3D printer [12], welding production line [13],
rotating machinery [14], machine tools [15], and robots [16] have been invested for
designing DT. In [17], the authors proposed an incubator system that is complex
enough to highlight the need for DTs while at the same time being simple enough to
be built from widely available tools. Later, in [18], the authors described the imple-
mentation of a DT for the incubator system. The resulting architecture has been
generalized in [19] based on the comparison with another DT for a race car test
bench.

2.2 Data Management Technologies

Data storage and transmission are data-related functionalities for expressing the phys-
ical entity and connecting it to its digital replica. Therefore, various methods have
been proposed and applied for these purposes.

2.2.1 Data Storage

There are various frameworks for big data storage, for example, MySQL and HBase.
In the MySQL framework, data are stored as tables with records of data in rows
and the data description in columns [20]. Furthermore, for storing the data related
to the machine tool in [15], the PostgreSQL database is employed. This database is
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an open-source database running on a local PC through the Internet using a script in
Python.

2.2.2 Data Transmission

Different data transmission protocols have been introduced to efficiently and securely
connect the two digital and virtual replicas. Lu et al. in [2] describe how industrial
communication protocols have evolved from the fieldbus legacy communication
method to the second generation, Ethernet-based protocols and the current category,
wireless network technologies. All these improvements are implemented to satisfy
the real-time and reliability requirements of industrial processes. On the other hand,
transmission mechanisms can be divided into two categories wire-based or wireless
methods. Some of the wire-based tools are twisted pair coaxial cable and optical
fiber; the wireless methods are Zig-Bee, Bluetooth, Wi-Fi, ultra-wideband (UWB),
and near-field communication (NFC) [10].

2.3 Digital Twin Services

Depending on the physical system, DTs have diverse objectives; for instance, in the
aerospacedomain, aDTshouldbe able to predict the life cycle of an aircraft.However,
the DT machining application enables real-time quality inspection of machining
results [21]. Furthermore, one of the important yet less achievable goals of a DT is
process optimization and control that is implemented for a machine tool to stabilize
machining parameters for achieving optimum surface roughness in [22]. On the
other hand, fault diagnosis is one of the DT services that has been implemented for
different physical systems. For example, the authors in [14] developed a pilot digital
twin prototype of a rotor system that effectively diagnoses rotor unbalance fault and
predicts its progression.

3 Physical Pair

This section describes the physical system in this case study briefly. Moreover,
different machine and the device components are shown and explained to better
understand the process. The process of interest is briefly introduced since the anomaly
detection model is designed for this process.
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3.1 Pilot Line

The physical pair consists of a test bench for medical device assembly by Stevanato
Group/SVM. As shown in Fig. 1, this small assembly line contains a base and
top frame (1 and 2). The transport system (3) is a modular XTS linear motion
platform by Beckhoff automation. The linear motors (5 and 6, Linmot PR02-52)
provide both vertical and rotary motion and are equipped with force and torque trans-
ducers for continuous process monitoring with sampling frequencies up to 20 kHz.
A sensor system (4) for single-point data is used to verify the assembly process. The
most common way of doing so is by measuring the total height or other geometric
dimensions of the assembly.

A closer look of the system is provided in Fig. 2. The mover, or pallet, is
mounted on the transport system. It contains the sub-assemblies and component
to be assembled and can move to an arbitrary position along its axis of movement.

Fig. 1 Schematics of the physical pair while the actual machine is shown in Fig. 2. The assembly
equipment consists of (1) base frame, (2) top frame (not shown in figure), (3) transport system, (4)
sensor system, (5) and (6) linear motors. The linear motors perform the assembly steps, and the
sensor system verifies the assembly
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Fig. 2 A more detailed look at the equipment from Fig. 1. The transport system moves a pallet,
also called mover, which contains components to be assembled. In this figure, a gripper, mounted
on linear motor (6), holds a component which must be mounted to a subassembly for the fabrication
of a device. Correct assembly can typically be verified by using a height probe

3.2 Process of Interest

The test case in this study is the assembly of a medical device. Its constituent compo-
nents and assembly process steps are shown in Fig. 3. First, two modules, also called
subassemblies, are mounted together (as shown in Fig. 3a). This requires linear
movement in the direction of the arrow with prior alignment and rotational orien-
tation along the long axis of the modules. Next, the modules are joined using a
snap-fit consisting of two main snaps and two minor snaps to stabilize the assembly.
A certain axial force is required for successful operation. Second, a similar process
with a segmented ring snap is performed with a single component mounted onto the
new subassembly (shown in Fig. 3b) to form the complete device shown in Fig. 3c.

A snap joint between two plastic components is illustrated in Fig. 4. Upon
mounting the green component (moving right to left) onto the blue one, the entire
snap structure is bent inward until the “hook” snaps into place and establishes the
joint. The axial force mentioned above is needed to bend the snap structure and
overcome friction during the assembly process.

According to the process sequence in Fig. 3, the mover is positioned, and the one
subassembly is picked up by the gripper, which then moves upward. The mover is
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Fig. 3 Assembly of a medical device consisting of two modules (subassemblies) and one compo-
nent (a). The two modules are assembled in (b), and the device is completed when the final
component is mounted (c)

Fig. 4 Snap joint between two plastic components (image by Christoph Roser at AllAbout-
Lean.com under the free CC-BY-SA 4.0 license)

then repositioned, and the two subassemblies are mounted by a controlled movement
of the linear motor. This sequence is then repeated for the second step in which the
single component is mounted to complete device assembly.

3.3 Process Assessment

The entire sequence is shown in Fig. 3. Both for the assembly process itself, as well
as the axial acceleration and deceleration of the motor with the gripper, forces are



Towards Developing a Digital Twin for a Manufacturing Pilot Line: … 47

required. The process is typically verified by a height measurement, which ensures
that all components are assembled in the correct position. However, geometrical
tolerancesmaycause the verification to be insufficient, and additional action is needed
to ensure the snap quality is perfect.

One of the solutions that can address this problem is to correlate the product quality
and the process behavior. In other words, by looking into the force and displacement
curves that represent the process behavior, we can evaluate the quality of the products.
For this purpose, a data transfer layer is needed to collect the data and store them on
a hard drive for data access and visualization.

4 Data Management

In this section, the data collection and storage methods are briefly described. First,
the data transfer layer Apache Kafka, a distributed event store and stream-processing
platform applied for data collection, is explained. The data transfer layer runs on a
local computer close to the physical system. Then, data are temporarily stored in
Kafka, and later, it can be transferred to a cloud-based solution.

4.1 Data Collection

Extracting data from PLCs in real time and with a resolution sufficient to capture all
state changes requires a very efficient data collection mechanism. In order to collect
and harmonize the data coming from the different PLCs of the manufacturing line,
an Apache Kafka-based data collection platform has been implemented.

Kafka is chosen as a transport layer in the solution due to its unique capabili-
ties for high throughput and strict ordering guarantees. Furthermore, Kafka is well
supported and integrated into standard data engineering and analytics tools and there-
fore provides a bridge between the industrial engineering traditions and modern data
science development methodologies.

The platform consists of a number of input adapters (Kafka Connect sources)
that consume a continuous stream of binary data from the PLCs that are optimized
for transmission efficiency and publish them into a separate Kafka topic for each
PLC. The binary data are then consumed and converted into a structured format and
published back into new topics ready for further consumption by data analytics tools
as shown in Fig. 5.

In our setup, the input adapters support two commonly used protocols, MQTT
and plain TCP. The data format transmitted through these protocols is typically not
standardized, and therefore, the interpretation/conversion into a structured format is
tightly coupled to this format.

Many solutions for consuming process data generated by PLCs rely on sampling-
based technologies like OPC-UA where the current state of the PLC is sampled at
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Fig. 5 Data collection structure with Kafka

regular intervals, typically every 100ms. This is often sufficient to capture high-level
process steps, but not always enough to fully create a model of the physical system.
Therefore, the PLC code has been augmented with a block that during each scan
cycle transmits all changed data values to the Kafka input adapters.

4.2 Data Storage

Kafka supports the concept of automatic retention management. That is, each topic
containing data in Kafka can be configured with a retention parameter telling Kafka
for how long to store data in the topic. This is used to allow Kafka to take on the role
of a data buffer. Data are typically stored in Kafka for hours or a few days in which
time-relevant data are retransmitted to more permanent data storage, e.g., an SQL
database or a cloud-based system.

5 Dashboard CATCH.AI

In this section,CATCH.AI, the dashboard andvisualization tool, is briefly introduced.
CATCH.AI is a flexible software solutionmade for working with significant amounts
of data. The data model structure, dashboard, and some CATCH.AI capabilities are
explained in the following. It is outside the scope of this chapter to give a full overview



Towards Developing a Digital Twin for a Manufacturing Pilot Line: … 49

of CATCH.AI features. We refer the reader to [23] for more details. In the following,
we discuss the features of CATCH.AI used in connection to the case study.

5.1 Catch.AI Overview

Catch.AI is a tool that allows the creation and configuration of dashboards, visualiza-
tions, data collection, and feedback loops that can reconfigure the physical system.
Figure 6 shows an example dashboard, where the time series related to a process and
different diagrams related to it are displayed. However, CATCH.AI cannot use data
analysis tools internally; it can activate external sources for data analysis purposes.

CATCH.AI is made as a flexible solution that can cater to a wide range of different
inputs; in this case study, we will focus on the input from the Kafka system. The
raw data are transferred from the Kafka database to the CATCH.AI data model. It
provides an easy-to-use Web interface that makes the data accessible event based.
Furthermore, the report section inCATCH.AImakes it possible to access historic data
for data mining purposes. In addition, CATCH.AI provides dashboard functionality
with both historical and live data.

5.2 CATCH.AI Connection to Kafka

CATCH.AI has a REST API with OPENAPI3 description available. This interface
is used to connect Kafka and CATCH.AI. A custom mapper application is made for
the project to take care of the Kafka consume interface and map it into the domain
model of CATCH.AI. This mapper also ensures that we havemore clean data to work
with, since NULL characters can occur in the raw data streams. Therefore, the data
are cleaned up before being made available in CATCH.AI for easier usage by the
end-user.

5.3 CATCH.AI Data Structure

As mentioned above, CATCH.AI organizes data in an event-based manner to make
it easier to access data related to different steps of product assembly. Therefore,
labeling the data with three keywords: device, event, and property, enables an easy
access method to reach the data with specific characteristics.

The different equipment in the physical system or the DT correspond to the
keyword device in our case study; for example, the linear motor, shown in Fig. 1 as
number (6), in the assembly line is addressed as one device in CATCH.AI.
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Furthermore, the property of a device is defined as measurement values or states
related to the device; for example, the force sensor in the linear motor is defined as
a property.

Moreover, different state changes in properties of the machine form event. For
example, the stop and start points in producing a product can be defined as events
(see Fig. 6). However, different events can be described based on different properties.

In this case study, the process of interest (as described in Sect. 3.2) is defined as
an event base on the displacement as the property and the linear motor as the device.
Therefore, it is easier and significantly faster to access the data related to the process
of interest.

5.4 CATCH.AI Data Access

The event-based data structure lets the end-user access the specific data in the timeline
of the assembly process. On the other hand, if the end-user wants to access the data
related to one unit in production, they can select two events, “Start Process” and
“End Process.”

Therefore, the advantage of describing the data structure based on events is that
it makes it possible to search a significant volume of data from weeks of production,
including billions of data points in a short period. For example, Fig. 7 shows data
related to a unit produced in the assembly process. Different properties of Device 1
regarding starting and ending events are visible there.

5.5 CATCH.AI for External Services

Instead of polling for data in CATCH.AI on an interval, the system also contains the
“RuleEngine,” allowing us to work directly with the stream of data. For example,
the RuleEngine can be set up to trigger an external process when the product is
finished. In this case, later additions to the system, such as machine learning algo-
rithms, reporting, and other visualization tools, would not necessarily have to parse
everything in real time, but only act when required, that is, when a specific pattern
is found within the data stream.

In this case study, the data related to each product assembly process can be trans-
ferred to the anomaly detectionmodel viaCATCH.AI by triggering the corresponding
Python code. Figure 8 shows the rule management system in CATCH.AI where the
anomaly detection model is triggered when the product assembly is finished.
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6 Anomaly Detection Model

In this section, the anomaly detection model is described. This includes the machine
learning model, the dataset, and the experiment settings used to train and test the
anomaly detection model.

6.1 Product Quality Assessment

Evaluating the quality of products in an assembly process is critical. In this case
study, we evaluate the products by analyzing the behavior of the assembly process,
which is equal to looking into various signals from different parts of the process
and using this to predict the product quality. Anomaly detection also is a process
monitoring tool for early warnings before the product quality is compromised.

This case study is a proof of concept. It is essential to evaluate the process quality
based on the recorded signals. Figure 9 shows the force and displacement recorded
over the time from one of the equipment in the pilot line. The highlighted area in
Fig. 9 shows the force and displacement curves in the process. The force profile is
the measurement we investigate since it records the force applied to assemble the
components and the reaction.

The aim of analyzing the force profile is to find the anomaly in the products via
signals recorded while producing the product. For example, Fig. 10 shows that the
abnormality can be visible with the force signal by plotting the force curve related
to a normal and abnormal product in the same image. The blue signal was recorded

Fig. 9 Force and displacement of the process
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Fig. 10 Force–displacement for normal and abnormal products

when a normal product was assembled; while the orange one displays an abnormal
product that deviates from the normal status.

An anomaly detection model should be developed to detect the anomalous cases
automatically based on the deviation from the normal situation. Since anomalies can
rarely happen, mining the signals related to normal products is valuable. We want to
identify the outer bounds of the normal date such that data outside this limit can be
classified as abnormal concerning what is considered normal data.

6.2 Detection Model

The detectionmodel consists of a one-class support vectormachine (OCSVM) [24] to
find the boundary enclosing the normal data and random guided warping to generate
augmented data. The augmented data can help generalize the detection model and
improve performance. Below, the theory related to thesemethods is described briefly.

6.2.1 One-Class Support Vector Machine

To detect the abnormality in the force curve, the OCSVM model is applied. This
method is trained by using only normal data,which ismapped to another feature space
through a nonlinear kernel function. In that feature space, the objective is to define
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Fig. 11 Finding the boundary around the normal data with OCSVM for a random dataset in two
dimensions

the hyperplane that best discriminates this data from the origin. This hyperplane in
the feature space then corresponds to a complex shape in the original space enclosing
the normal data.

For example, as shown in Fig. 11, the white and red dots show normal and
abnormal random data points, respectively, in two-dimensional space. With the help
of the radial basis function (RBF) as the nonlinear kernel, the boundary around the
normal data can be calculated in a way that does not include the abnormal data (for
more information about the theory, see [24]).

With adjusting the boundary, the accuracy of the model can be increased, or it can
worsen the performance of the classifier, as shown in Fig. 11. Therefore, introducing
a penalty term weighted by ν in the optimization formula as the regularization factor
can express the trade-off between model complexity and training error; ν controls
the number of training samples excluded by the decision boundary.

In Fig. 12, the normal training samples (white dots) are used to train the OCSVM.
The abnormal data (red dots) and normal test samples (green dots) are used to eval-
uate the performance of the model. Figure 12 shows that increasing ν tightens the
boundary and does not allow anomalous samples. On the other hand, a smaller ν will
introduce some uncertainty in training dataset. Therefore, tuning the hyperparameter
ν is an essential factor in training OCSVM to gain the suitable performance at test
time.



Towards Developing a Digital Twin for a Manufacturing Pilot Line: … 57

Fig. 12 OCSVM performance with different ν values

6.2.2 Data Augmentation Method

Random guided warping is applied to generate new normal samples to address data
shortage [25]. The backbone of this method is a similarity search technique called
dynamic time warping (DTW); this augmentation algorithm can generate new data
similar to the real dataset.

Dynamic Time Warping

DTW is a classic method for finding the optimized distance between two time series,
and it is robust to temporal distortion. Consider two time series r = r1, . . . , ri , . . . , rI
and s = s1, . . . , s j , . . . , sJ with sequence lengths I and J, respectively, shown in
Fig. 13. We consider r and s to be univariate time series. To find the global distance,
DTW finds the minimal path on the element-wise cost matrix C (the Euclidean
distance) using dynamic programming (for more information about the theory, see
[26]). Furthermore, the two sequences are stacked in Fig. 13 with a bias to see the
warping path.

This minimal path is referred to as the warping path, and the warping path is a
mapping from the time steps of one series to the other. For example, the gray lines
in Fig. 13 show the warping path. However, instead of using a one-to-one mapping
from two time-axes in series, similar patterns are connected to find the optimum
distance between r and s.

Random Guided Warping

Random guided warping uses DTW and a reference pattern to generate synthetic
patterns. In this case, instead of randomly warping the data sample and hoping it is
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Fig. 13 Alignment with DTW between r and s [8]

realistic, a teacher is used to instruct warping in time domain. For example, assume
S = {s1, s2, . . . , sN } is the training set, an augmented dataset will be generated
called S′ such that the accuracy of anomaly detection model trained on S ∪ S′ is
better than S alone. One of the advantages of using a reference for warping is that
both the local patterns exist in the original dataset.

For generating an augmented sample s′, a random sample r is chosen from the
training set S. Furthermore, the warping path between two data samples s and r
can be calculated by DTW. Moreover, we can exploit the warping path to align the
elements of the two time series. By aligning the elements in this way, sections of s
are warped in the time domain to fit r as shown in Fig. 14.

The result is a sequence s′ that has the feature values of s, but the time steps of r
under the warping path constraints provided by DTW. Finally, the process is repeated
by selecting any two random patterns in S. It is possible to synthesize N 2 number of
time series where N is the number of patterns in each class S. Finally, the augmented
training set S′ and the real training set S train the anomaly detection model, as shown
in Fig. 14.

Fig. 14 Random guided warping for generating S′ (inspired by [25])
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Table 1 Different types of
faults that have been applied

Type Value Product ID

Type 1 175° 8

170° 9

185° 10

190° 11

Type 2 4 19

2 20

2 21

3 22

All 23

6.3 Experiments

Some experiments have been operated to collect data related to abnormal products,
which is described in the following. Furthermore, a normal dataset is introduced in
this subsection for training the model and is collected by running the physical system
in the regular setting. For tuning the hyperparameter ν, the normal and abnormal
data are split into train, validation, and test sets, which is described in detail in this
subsection.

6.3.1 Fault Injection

Some data samples with abnormal labels are needed to test the anomaly detection
model. However, the process is robust, and the probability of an anomaly happening
is low. Therefore, many products need to be assembled before an anomaly occurs.
However, producing many products with the pilot line is costly. Therefore, we had
to introduce some fault into the process to test any future anomaly detection method.
For this purpose, two types of faults have been applied.

• First Type: With this type of fault, the setting related to the gripper position is
changed (see Fig. 2). The default setting is 180◦, but we gradually changed the
default setting with ±5◦ and ±10◦ according to Table 1.

• Second Type: With this type of fault, we remove some of the deformation struc-
tures of a plastic component in the product. Different number of components have
been removed, as Table 1 shows.

6.3.2 Dataset

For training and testing the anomaly detection model, data samples with labels
normal, abnormal are needed. Therefore, 102 devices were produced in normal
situations, and force measurements related to these products were collected. These
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Table 2 Dataset description
with normal and abnormal
labels

Data type Number of samples Time series length

Normal 102 11,239

Abnormal 9 11,299

force samples are referred to as normal data through this report. Furthermore, nine
abnormal devices were assembled to test the anomaly detection model (see Table
1). Therefore, the data related to these abnormal devices are addressed as abnormal
data.

Table 2 shows the normal and abnormal dataset and the time series length. The
size of normal and abnormal dataset is one of the challenges in this case study; since
producing the products is expensive, we relied on a small database. However, to
overcome data shortage, we use a data augmentation method (see Sect. 2).

6.3.3 Hyperparameter Selection

For finding the boundary around the normal dataset, the OCSVM model is applied
according to Sect. 6.2.1. In this model, the RBF is the kernel for mapping the raw
data to a new feature space; therefore, tuning the hyperparameters ν in OCSVM is a
vital task.

For tuning ν, we used a five-fold cross-validation method that can consider the
anomaly data in the validation time. Values in [0.001, 0.01] have been investigated
with a step length of 0.001 to find the best value for ν.

For conducting the cross-validation process, the normal data are split into train
and test sets with the ratio of (80%, 20%). In each iteration of cross-validation, we
split the training set into five subsets which four subsets are used for training the
model while the remaining subset is used for validation.

Furthermore, Fig. 15 explains how the five-fold cross-validation process is
applied. The training set formed by only normal data is split into five subsets. For
each candidate value of ν, we apply five experiments as follows. On each experi-
ment, we use four (out of the five) subsets to train the model. The remaining subset
is merged with the abnormal data (four samples) to form the validation set. We train
the OCSVM with the training set (formed only by normal data), and we evaluate
its performance on the validation set (formed by both normal and abnormal data).
After running the five experiments, we calculate the average performance. Then, the
average performances corresponding to different values of ν are sorted, and we select
the value of ν corresponding to the best performance.

As shown in Table 3 for different values of ν, the performance of themodel differs.
In this project, the F1-score (2 Precision×Recall

Precision+Recall ) is the metric used for choosing the best
model; the OCSVM model with a higher F1-score is selected. For example, among
(0.002, 0.001) with the highest F1-score, we set up ν to 0.002.
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Fig. 15 Five-fold cross-validation. normal validation

Table 3 Results of the
cross-validation for finding
the hyperparameter v

ν F1-score

0.01 0.8975

0.009 0.8975

0.008 0.8975

0.007 0.8975

0.006 0.8975

0.005 0.8975

0.004 0.9006

0.003 0.9006

0.002 0.9041

0.001 0.9041

6.3.4 Results

The result for the OCSVM with the augmentation method is shown in Table 4. The
five-fold cross-validation algorithm employs the normal and abnormal data as the
train and validation set for tuning the hyperparameter for the OCSVM. As described
in Sect. 6.3.3, in each iteration in the cross-validation, four subsets of data are used
for training. The fifth subset of data is chosen to validate the model with specific ν.
The last 20% of the normal data are reserved for testing the final anomaly detection
model.

Table 4 Results of the anomaly detection model

Result/model OCSVM OCSVM with Random guided warping method

F1-score 0.67 0.89

Recall 1.0 1.0

Precision 0.5 0.8
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Table 4 shows the results of the anomaly detectionmodelwith test set that includes
20% of normal data and five anomalous samples. We used the data augmentation
method to improve the performance of the model. The results in Table 4 indicate that
augmented data help improve the model performance by generalizing the model.

The OCSVM, with the assistance of augmented training data, can define a
boundary around the normal samples; therefore, the abnormal products can be
successfully labeled by testing the force measurements recorded while assembling
them with the anomaly detection model.

7 Conclusion

This case study aims to establish a DT for a physical system, trace back the anomalies
to the leading source, and predict the quality of the products with more confidence,
higher speed, and less invasive methods. Moreover, the DT can help the operators
by visualizing the signals related to the assembly process. In this case, they better
understand the process and the machine.

This chapter discussed developing a DT for a medical device assembly pilot line.
First, we described the physical machine and the product in detail and clarified
the process of interest where we focused on developing the machine learning tool.
In the process of interest, the subassemblies are mounted together with vertical
displacement and applied force. The critical point in the process is the snap process
quality, where two components should engage precisely.

Second, we introduced the Kafka data ingestion tool to collect and store data
locally for further analysis. In this case, the binary data are collected through PLCs
via Kafka with efficient speed and then consumed and converted into a structured
format and published back into new topics ready for further consumption by data
analysis tools.

Then, we presented the CATCH.AI as a tool for creating and configuring the
dashboard, visualization, and feedback loop that can reconfigure the physical system.
In addition, CATCH.AI can organize the data collected from the physical system,
make it easily accessible, and trigger the external data analysis tools for data mining
purposes.

Eventually, we introduced the anomaly detection model and the experiments we
conducted to assemble the normal and abnormal products. First, we applied a one-
class support vector machine model to determine the boundary around the normal
data. To make the model generalize better, we used an augmentation algorithm to
widen the decision boundary. The anomaly detection model is reliable, and we can
apply a similar model to detect abnormal samples in the other steps of the assembly
process.

One of the challenges in this case study has been collecting a large amount of
data from different assembly process steps with high throughput and low latency,
storing the data in a structured way and mining a large amount of data. Therefore,
to overcome these challenges, we propose different solutions; the Kafka data layer
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can collect the data with high throughput and store the data locally. However, a
cloud-based storage solution will be considered a permanent solution. Moreover, by
focusing on one assembly step at a time, we split the big data mining problem into
smaller subproblems; therefore, we analyzed a smaller volume of data to extract the
knowledge.
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