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Abstract—Evaluating the product quality in an assembly ma-
chine is critical yet time-consuming since, in product assessment
in batch manufacturing, a certain amount of products should be
investigated in an invasive manner. However, continuous manu-
facturing ensures product quality assessment during assembly
with high efficiency and traceability. This paper proposes a
quality assessment method for an industrial use case. First, the
data is prepared based on two indicators and expert knowledge.
Then two data classification approaches (one-class classification
and binary classification) are applied to evaluate the products’
quality by analysing the related data. Finally, the most efficient
model is selected to predict the product labels and deviate
anomalies from normal products. For the studied use case and
the limited number of products, the binary classifier guarantees
to detect 100% of defective products. The proposed approach
can provide the engineers and operators with understandable
extracted process knowledge, and can therefore be adapted to
a high-speed manufacturing line where large data volume and
process complexity can be problematic.

Index Terms—Medical Device Assembly, Anomaly Detection,
Product Quality Assessment, One Class Support Vector Machine,
Binary Classifier.

I. INTRODUCTION

Continuous Manufacturing has become of great importance
in pharmaceutical industry recently, to support the use of
modern manufacturing technology and to simplify the man-
ufacturing processes by, e.g. using an integrated process with
fewer process steps and shorter processing times; supporting
an enhanced development approach; enabling real-time prod-
uct release; and providing flexible operation. The intention is
that this will be to the benefit of both industry and patients
[1].

The mechanical process steps in the assembly of medical
devices are needed in order to secure high precision of
the assembly steps during high-speed manufacturing. Quality
control of the mechanical processes is usually carried out by
using calibrated equipment and by following specific control
steps measuring defined output characteristics, e.g. examining
whether the force applied during a step in the production of a
product is within a pre-specified range or the product should be
declined. Using such rule-based approaches for quality control
increases the number of control steps and the complexity of the
entire assembly process, specifically when there is a limited
data collection and, thereby, limited insight in actual process
performance.

However, with the use of new sensors, introduction of new
technology and use of Machine Learning (ML) algorithms,
one can develop a quality assessment model for the assembly
process of medical devices by identifying critical process
parameters, process responses and quality characteristics. ML
algorithms have been rarely used in quality control systems for
medical device assembly, and to the best of our knowledge,
there is only one example of ML-based quality control system
for this purpose [2]. It is expected that adopting ML-based
quality assessment models in assembly of medical devices will
increase device quality, lower manufacturing costs, decrease
the lead time from assembly to release of device and, in the
end, improve availability of quality devices to the patients.

Anomaly detection models are beneficial for product quality
assessment since they can detect any deviation from the normal
status especially when there are not sufficient samples of faulty
products. Different approaches to address anomaly detection
in time series have been proposed [3], [4]. However, these
complex and time consuming computational methods are not
suitable for real-time quality control systems. Furthermore,
the high complexity of the suggested algorithms often results
in poor explainability of the model. Support Vector Machine
(SVM) is one of the well-known ML methods that have shown
good performance in different fields; e.g. a quality monitoring
model for a plastic injection molding process based on SVM
was designed in [5]. Variants of the SVM targeting one-class
classification problems have also been shown to be effective
in novelty detection problems [6], [7].

To overcome the current drawbacks of the conventional
quality assessment tools in medical device assembly lines,
we propose an anomaly detection method for an industrial
use case. In this method, first, the data related to a specific
step in the assembly process is identified based on two
different recorded measurements and expert knowledge. This
data preparation and feature extraction method can reduce
the computational time in training an efficient ML method.
Then the conventional data preprocessing techniques like noise
filtering and data normalization are applied. Two ML-based
approaches are assessed to find the best candidate for detecting
anomalies from normal products for the existing data. This
process can give the operators reliable feedback about the
current status of the assembly line for a more informed
troubleshooting process.
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The paper is structured as follows. Background on ML
methodologies is provided in Section II. The industrial use
case is described in Section III. The adopted methodological
steps are described in Section IV, followed by the method
evaluation in Section Section V. Conclusions are drawn in
Section VI.

II. BACKGROUND

In this section, we introduce the concept of anomaly detec-
tion, and then we narrow down to the two ML models used
in this paper: one class SVM and Binary SVM.

A. Anomaly Detection
Anomaly detection is similar to outlier detection in statistics

and is used interchangeably with novelty detection in the data
analysis field. As can be derived from the phrase, anomaly
detection means observing unusual and unexpected instances.

Developments in ML methods and the ability to collect
extensive data sets make it possible to improve anomaly
detection methods. However, to be useful in applications, data
collected at a point in time or over an extended period must
be accurate and reliable. In this paper, we try to improve the
accuracy and reliability of the detection model by choosing
those measurements that are sensitive to deviation from normal
situations.

Anomaly detection endeavours to identify data occurrences
that are dissimilar from normal samples. So far, there have
been many applications requiring identification of anomalies
[8], [9]. Anomaly detection is also advantageous for pro-
duction system monitoring in digitalization and continuous
manufacturing. However, finding an anomaly with traditional
methods in complex industrial devices is not easy; unknown
types of anomalies, lack of traceability, system complexity,
and equipment degradation are some of these challenges.

The SVM technique is introduced in [10] as a classification
method. SVM can be applied to define a linear hyperplane
depending on the data distribution when the classes forming
a classification problem can be divided linearly. In more
complex cases, where data forming the classes is distributed
non-linearly, the raw data should be mapped into a new feature
space in which classes can be discriminated linearly.

B. One Class Support Vector Machine
One Class Support Vector Machine (OCSVM) is one of

the methods that have been proposed for solving one-class
classification problems [11]. In this method, data samples with
normal labels are mapped to another feature space, in order
to find a hyperplane with the largest distance from the origin,
while all mapped data are placed on the opposite side of the
hyperplane. Assuming that xi is the feature vector of a data
sample and w is the weight vector, the defined hyperplane in
OCSVM is formulated as wTϕ(xi)− ρ = 0. This goal can be
formulated as the following primal optimization problem:

min
w,ξ,ρ

1

2
∥w∥2 + 1

νN

N∑
i=1

ξi − ρ

s.t. wTϕ(xi)− ρ+ ξi ≥ 0, ξi ≥ 0, ∀i.

(1)

In (1), ν ∈ (0, 1] is the regularization factor, which ex-
presses a trade-off between model complexity and training
error; it controls the number of training samples excluded by
decision boundary. ξi’s are the slack variables to soften the
margin and ϕ(·) is the mapping function. Furthermore w and ρ
are a weight vector and an offset, respectively, parameterizing
a hyperplane in the feature space. The dual form of the 1 is
as follows:

max
α

−1

2

N∑
i,j=1

αiαjK(xi, xj),

s.t.
N∑
i=1

αi = 1, 0 ≤ αi ≤
1

νN
, ∀i,

(2)

where K(xi, xj) = ϕ(xi)
T .ϕ(xj), the kernel function, is the

inner product of mapped data, and αi is the dual variable. One
of the nonlinear kernels that is commonly used is Radial Basis
Function (RBF) K(xi, xj) = exp(−γ

∥∥xi − xj
∥∥2), where γ

is a scalar that defines how much influence a single training
sample has.

C. Binary Classifier with Support Vector Classifier

Support Vector Network is one of binary classification
methods first proposed in [12] and later the parameter ν which
is proved to be an upper bound on the fraction of training
errors and a lower bound of the fraction of support vectors was
introduced in [13]. The ν-Support Vector Classifier (ν-SVC) is
the binary classifier that is used for separating the normal and
abnormal samples in this paper. The objective of this model
is to separate the two classes of data with a hyperplane and
unlike the OCSVM model, the binary classifier is a supervised
method. Similar to the previous section we assume xi as the
input vector and yi ∈ {−1,+1} as the data label where the
+1 shows the normal data and the −1 shows the anomalous
samples. The primal optimization problem is as following:

min
w,ξ,b,ρ

1

2
∥w∥2 − νρ+

1

N

N∑
i=1

ξi

s.t. yi(wTϕ(xi) + b) ≥ ρ− ξi, ξi ≥ 0, ∀i.

(3)

As mentioned in the previous subsection, ξi’s are the slack
variables and ϕ(·) is the mapping function while w, ρ and b
are weight vector and offsets parameterizing a hyperplane in
the feature space. The dual problem is as the following:

min
α

1

2

N∑
i,j=1

αi(yiyjK(xi, xj))αj ,

s.t. 0 ≤ αi ≤
1

N
,

∑
i

αi ≥ ν,
∑
i

yiαi = 0, ∀i.
(4)

D. Leave-One-Out Cross-Validation

Leave-One-Out cross-validation is a popular method em-
ployed in many studies to evaluate the performance of a
classification model, especially when the number of samples
either in the data set or in one specific class is small [14]. This
validation method aims to obtain a reliable accuracy estimate
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of the classification model. This method leaves one sample
out from the training set; e.g. assume n samples in the data
set, n-1 are used for training the model, and one is used for
validation. Cross-validation is an advantageous technique for
assessing the effectiveness of the model, particularly in need
of decreasing overfitting. It is also of use in determining the
model’s hyperparameters, in the sense that which parameters
will result in the lowest test error.

In this paper, an adapted version of the Leave-One-
Out cross-validation method, called One-Anomaly-out cross-
validation, is applied for hyperparameter selection in OCSVM
and ν-SVC. This method leaves one abnormal sample out
in each iteration while the rest of the abnormal data set
participates in the validation process. For tuning ν in OCSVM,
the training set consists of only normal samples; however, the
validation set includes normal and abnormal samples. In ν-
SVC hyperparameter selection, specific ratios of normal and
abnormal data sets are used for both training and valida-
tion processes. In both OCSVM and ν-SVC hyperparameter
tuning, one abnormal sample and some normal samples are
combined to test the model in each iteration.

III. INDUSTRIAL USE CASE

The use case generating the data that the two classifiers
are tested on features a snap process from a real-world
pharmaceutical manufacturing pilot line. In the related station
two parts of the medical device called sub-assemblies are
assembled by a linear motor with vertical displacement.

A. Pilot Line

The pilot line consists of a test bench for medical device
assembly by Stevanato Group/SVM. As shown in Fig. 1(a),
the assembly line contains a base and top frame (1 and 2).
The transport system (3) is a modular XTS linear motion
platform by Beckhoff Automation. The linear motors (5 and 6,
Linmot PR02-52) provide both vertical and rotary motion and
are equipped with force and torque transducers for continuous
process monitoring with sampling frequencies up to 20 kHz.
A height sensor (4) is used to verify the assembly process.
The actual image of the machine is depicted in Fig. 1(b).
The mover, or pallet, is mounted on the transport system. It
contains the sub-assemblies and component to be assembled
and can move to an arbitrary position along its axis of
movement.

B. Product

To complete the medical device assembly two modules (or
sub-assemblies) and one component must be assembled (see
Fig. 2(a)) . The modules and components are kept together by
a snap connection.

C. The Snap Process

This process consists of two sub-assemblies snap together
with linear displacement along the arrow direction shown in
Fig. 2(a). However, prior horizontal alignment and rotational
orientation are needed for the two sub-assemblies to be in

the required position with respect to each other. Next, to
mount the two modules and stabilise the assembly a snap-
fit method as shown in Fig. 2(b) consisting of two main
snaps and two minor snaps is applied. To study the behaviour
of the snap process, we look into different sensors signals,
as shown in Fig. 3. The force profile and displacement are
correlated with the snap process, which means for mounting
two sub-assemblies, the gripper moves down, resulting in
negative values in displacement measurement. At the same
time, the applied force increases for interlocking the two parts.
The torque measurement does not carry valuable knowledge
since the interlocking process lacks rotational movement. The
velocity measurement is also the derivative of the vertical
displacement.

IV. METHODOLOGY

We propose the following methodology. First, data genera-
tion is carried out, where normal and abnormal products are
assembled, and related sensors are recorded. Then, sensors
related to the snap process and suitable for anomaly detection
are selected. Since the data is collected continuously, it forces
us to use a data preparation process to find the exact data
segment related to the snap process. Finally, the anomaly
detection model is trained on the prepared data, and the output
of this model is the process quality label. The data preparation
method, considers supervised dimension reduction, aims for
faster implementation and testing of the anomaly detection
model for future data and more accurate performance.

A. Data Generation

The assembly machine assembles products with normal sta-
tus to generate the data set labeled normal. Some experiments
have been conducted to introduce abnormal behaviour in the
assembly process to evaluate the anomaly detection model.
Furthermore, we produced products labeled ”abnormal” with
different process characteristics. The anomalous samples are
performed in two different types, Type1 and Type2. With fault
Type1, we change the setting of the assembly machine, so
the gripper offset differs from the calibrated working point.
The calibrated value is 180◦; however, the gripper position
gets different values as {170◦, 175◦, 185◦, 190◦}, as shown
in Table I. While in fault Type2, we change the structure
of the sub-assemblies (see Section III-B). We remove some
deformation structures in the products, as shown in Table I,
with varying number of structures to see various abnormal
behaviour.

B. Sensor Selection and Data Preparation

For the various recorded measurements of the snap process,
the force profile and displacement best show the process
response. As described in Section III-C, the vertical dis-
placement with axial force is applied for snapping the sub-
assemblies. At the same time, there is no rotational movement
for interlocking the two sub-assemblies. Therefore, the torque
sensor does not reveal extra information about the process. The
displacement and velocity measurements are recorded directly
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(a) (b)

Fig. 1. (a) 3D schematic of the assembly equipment consists of (1) base frame, (2) top frame (not shown in figure) (3) transport
system, (4) sensor system, (5) and (6) linear motors. (b) Shows the linear motors perform the assembly steps, and the sensor
system verifies the assembly [15].

Mounting two
subassemblies with axial 

force 

(a)

Mounting the component 
on the device

(b)

The device is completed 

(c)

Fig. 2. The product consists of two sub-assemblies and a com-
ponent, the vertical displacement with applied force snap two
sub-assemblies (a), the snap-fit method is used for interlocking
the two modules (b), the product is finished after the snap
process (c)

from the linear motor and are used to indicate the snap process
period. Therefore, we focus on the specific part of the force
profile that shows the snapping action using displacement and

TABLE I. Different types of faults that have been applied

Fault Types Value
Type1 175◦

170◦
185◦
190◦

Type2 4
2
2
3

all

velocity measurements, as shown in Fig. 3. The green line
depicts when the gripper is holding the sub-assembly and
waiting for the vertical down movement. The red line specifies
when the velocity is zero, no further action is applied, and
the sub-assemblies are mounted completely. Consequently, we
focus only on the specific time where the gripper holds the top
sub-assembly and mount it on the other one. Therefore, the
redundant part of the force profile where the machine is not
in contact with the device is ignored. By selecting the correct
part of the force measurement, we do not lose the critical part
of the data, and we supervise dimension reduction, which will
be beneficial for saving time for training the anomaly detection
model.

C. Anomaly Detection

To evaluate the snap quality, we use two efficient ML
models, described in Section II. Since we have a handful of
anomalous samples and a larger set of normal samples, we
try two different approaches to address the issue of the small,
imbalanced data set. The first approach is to find the boundary
around the normal samples by OCSVM, where the model
is only trained on normal data and afterwards is tested both
with normal and abnormal sets. The strength of this method
is to focus mainly on the normal data set and try to verify
the distribution related to normal samples. Since we have an
imbalanced data set with a larger amount of normal samples,
it is beneficial to find the normal sample distribution.

The second approach is to train a binary classifier that
benefits from both normal and abnormal samples in training
time. Finally, we try to see which method performs best and
consider this model as the winning candidate for the anomaly
detection.

The algorithm shown in Fig. 4 illustrates the overall view
of the methodology. First, the new product is assembled by
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Fig. 3. Different sensors signals for the snap process. The
specific force profile is selected by displacement and velocity
measurements, where the second local maximum point of
displacement and the fifth local minimum points in velocity
are the indicators.

Start

No Yes
empty data No Data

Find related force

Find t2 Based on
velocity

New Product

Force,Displacement,
Velocity

Find t1 based on
Displacement

End

No

Yes
y=-1 The product is

rejected

The product is
accepted

Predict the label

Fig. 4. The data preparation method for anomaly detection

the pilot line. Then the three critical measurements related
to the snap process are extracted from the recorded data set.
Afterwards, we find the starting point of the snap process t1
from the displacement measurement. The end point of the snap
process t2 is derived from the velocity measurement. Based on
the boundary [t1, t2] found in the previous step, we select the
correct segment of force measurement. Finally, the sample is
tested by the anomaly detection model (the best performing
model among OCSVM or the binary classifier) to predict the
label of the product.

V. EVALUATION

In this section, we evaluate the proposed algorithm for de-
tecting anomalous products in the industrial use case described
in Section III. We produced 102 normal and nine abnormal
products for this purpose. After generating the data, we apply
the data preparation process as the core preprocessing step, as
mentioned in Section IV. To find the best hyperparameter ν
for OCSVM and ν-SVC, we employ the One-Anomaly-Out
validation method, see Section II. To get the most reliable
accuracy, we employ the Micro-F1 score metric to evaluate
the performance of the model due to the imbalanced data
set. Since we only have two positive and negative classes
which represent normal and abnormal samples respectively,
the Micro-F1 score is calculated as TP+TN

TP+FP+TN+FN , where TP is
the number of positive samples predicted as positive samples,
etc.

A. Hyper Parameter Selection

The One-Anomaly-Out Validation method leaves one of the
anomalous samples out for the testing process in each iteration.
Therefore, these iterations are repeated nine times since there
are nine abnormal samples. In the hyperparameter selection
process, the normal and abnormal data sets are split into train,
validation, and test categories. In OCSVM hyperparameter
selection, the training set only includes normal samples; how-
ever, the validation and test sets consist of abnormal samples.
Moreover, in ν-SVC, the abnormal samples exist in all three
phases of train, validation and test. In the following, the
differences between the two processes are described.

1) One Class Support Vector Machine: In each iteration of
the One-Anomaly-Out validation method, 60% of the normal
data train the one-class classifier. Then 20% of the normal
data is combined with eight abnormal samples to validate the
performance of the model with the candidate ν. Therefore, one
abnormal sample is reserved with the last 20% of the normal
data for testing in each iteration to report the model perfor-
mance with candidate ν. This iteration is repeated nine times,
and each time, one of the abnormal samples is included in the
test set. Finally, the performance of the model for each specific
ν is calculated as the average of all iterations’ performance,
as shown in Algorithm 1. Values in [0.001, 0.01] have been
investigated with a step length of 0.001 to find the best value
for ν. The aim in One-Anomaly-Out hyperparameter selection
is to choose the ν that has the most significant Micro-F1 score
value. According to Table II all {0.003, 0.004, 0.006, 0.007}
have the same and the largest value of the Micro-F1 score.
Therefore, we set the ν parameter to 0.004.

2) Binary Support Vector Classifier: Similar to OCSVM,
for hyperparameter tuning in binary classifier ν-SVC, we
use One-Anomaly-Out validation method. In this case, in
each iteration, one anomalous sample is out for the testing,
combined with 20% of the normal samples, while six abnormal
samples are joined with 60% of the normal data set to shape
the training set. Furthermore, two remnants of the abnormal
data set are merged with 20% of the normal data set for
validating the model. The performance for each specific model
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Algorithm 1 One-Anomaly-Out cross-validation algorithm
for OCSVM hyperparameter tuning.

Require: Dnormal = {xn
i }Ni=1, Dabnormal = {xm

j }Mj=1, xn
i , x

m
j ∈ Rl,

ν = {νr} = {0.001× r}10r=1
Require: M OCSVM model
Ensure: Optimum ν∗ for M with highest Micro-F1 score
1: Split Dnormal to DTrain,DV al,DTest

2: MicF1V alAll← [ ]
3: MicF1TestAll← [ ]
4: for r ← 1 to 10 do
5: MicF1V alSum← 0
6: MicF1TestSum← 0
7: Train M on DTrain with νr
8: for j ← 1 to M do
9: Compute validation Micro-F1 score MicF1V al for M with

Dabnormal \ {xm
j }

⋃
DV al

10: MicF1V alSum←MicF1V alSum+MicF1V al
11: Compute MicF1Test for M with DTest

⋃
{xm

j }
12: MicF1TestSum←MicF1TestSum+MicF1Test
13: end for
14: MicF1V alAvg ←MicF1V alSum/M
15: MicF1TestAvg ←MicF1TestSum/M
16: MicF1V alAvg append to MicF1V alAll
17: MicF1TestAvg append to MicF1TestAll
18: end for
19: MicF1MaxIdx← argmax (MicF1V alAll)
20: ν∗ ← ν[MicF1MaxIdx]

with the candidate ν is calculated by averaging all nine
iterations’ results.

According to the results of One-Anomaly-Out validation
process, all the values of ν in the [0.001, 0.09] with steps
of 0.01 have the same performance, which shows the binary
classifier can ideally detect the anomalous samples.

B. Results

The results of both one-class and binary classifier are
reported for the best value of ν in Table III. Since we need a
high certainty in model prediction for our use case (to avoid
waste of time and resources), the binary classifier seems to
be more reliable. However, we need a large enough data set
with sufficient amount of abnormal samples in both train and
test data splits. On the other hand, data generation demands
time and resources. Increasing the model generalizability by
having limited amount of data is considered as future research
direction.

TABLE II. The One-Anomaly-Out validation results for
OCSVM

ν Micro-F1 Score
0.001 0,4643
0.002 0,8571
0.003 0,8929
0.004 0,8929
0.005 0,8571
0.006 0,8929
0.007 0,8929
0.008 0.8571
0.009 0.8571
0.01 0.8571

TABLE III. The Performance of OCSVM and ν-SVC

Model Micro-F1 Score
OCSVM 0.8571
ν-SVC 1

VI. CONCLUSION

In this work, an ML-based anomaly detection approach
was developed and evaluated for quality assessment in an
industrial medical device assembly line. The method consists
of different steps, including data generation, data preparation,
and ML model training. After producing some normal and
abnormal products and recording different sensors, in the data
preparation step, the sensor selection and feature extraction
occur in a supervised manner. Later on, an efficient ML
model (binary classifier) is selected to predict the quality of
the products. The results show that this anomaly detection
approach can identify defective products with 100% accuracy.
However, this method is in the early development stage and
applied only for the snap process with limited data. In the
future, the model will be trained on a large volume of data,
reflecting the various pilot line processes. Additionally, the
anomaly detection model will be integrated into the existing
dashboard for the pilot line to make the model more accessible
to operators.
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