
Safe Temperature Regulation:
Formally Verified and Real-World Validated

Carlos Isasa1[0000−0002−5035−8559], Noah Abou El Wafa2[0000−0002−3987−9919],
Claudio Gomes1[0000−0003−2692−9742], Peter Gorm Larsen1[0000−0002−4589−1500],

and André Platzer2[0000−0001−7238−5710]

1 {cisasa, claudio.gomes, pgl}@ece.au.dk Aarhus University, Denmark
2 {noah.abouelwafa, platzer}@kit.edu Karlsruhe Institute of Technology,

Germany

Abstract. This paper presents a case study in the design and for-
mal verification of a safe controller for the generic two-element lumped-
capacitance model of temperature regulation, using formal cyber-physical
system (CPS) theorem proving. The coupled dynamics and the absence
of a fallback state reflect the complexities of real-world control systems
and make it a representative challenge for theorem proving. A controller
is developed by a design-by-invariant methodology. Verification using the
axiomatic theorem prover KeYmaera X revealed critical assumptions for
safety and pushes the frontier of CPS theorem proving. The parametric,
general and provably safe controller can be applied to a wide range of
temperature regulation tasks and is validated by deploying an instance of
the verified controller on a physical system, demonstrating its robustness
under model inaccuracies and confirming its real-world usability.

1 Introduction

From nuclear power plants to organ preservation, unsafe temperature changes
lead to life-threatening outcomes. Despite the diverse domains, these systems
share a common challenge: the need for safe and ideally verified controllers to
maintain a safe temperature. Recent advances in formal theorem proving for
cyber-physical systems (CPS) [20] offer a promising approach to finding a generic
solution to this challenge by enabling formal verification through (computer-
checkable) safety proofs for parametric controller specifications, that can be used
practically in a wide array of applications and provide strong safety guarantees.

This paper presents a generic temperature regulation controller, that is for-
mally verified through an integration of CPS theorem proving into the controller
design process. Moreover, the controller design is validated experimentally on a
real-world instance of the temperature regulation system, demonstrating how
theorem proving as an approach to CPS verification can be integrated end-
to-end : from the theoretical model and controller design via the formal safety
proof to a real implementation on a physical system. The temperature changes
of a generic heat-exchange system are modeled by linear ordinary differential



2 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

equations, which provide a practical trade-off between accuracy and complex-
ity. While sufficiently accurate for many practical and industrial applications
[4,7,9,15], designing a provably safe controller for this model is challenging. The
proven controller is at the cutting edge of deductive verification, overcoming
challenges that have not been addressed in this context previously, and provides
valuable general insights for verifying more complex systems.

Differential dynamic logic (dL) [18] is used to model the controller and ver-
ify correctness in the axiomatic CPS theorem prover KeYmaera X [10]. The
deductive approach enables formal verification for unbounded time and generic
parameters, making it possible to find a versatile controller with very strong
safety guarantees. Safety is fully addressed at design time, so that online safety
checks or reachability analysis are no longer strictly needed. Nonetheless these
can still increase the safety margin.

A new major difficulty of the considered system is the lack of a safe fallback
action. The controller must always either choose to heat or not to heat. In the
first case, it runs the risk that the temperature drops below a safe threshold and
in the latter, the temperature may exceed the safe maximum. Thus, every action
potentially leads to a state, from which a safety violation is inevitable. To tackle
this, directional invariants are introduced as a new technique, which can be an
ingredient in the verification of any system without a safe fallback action.

The successful validation of the verified controller on a real-world instance of
the studied model confirms its correctness. By completing the circle (Figure 1)
from the physical system, through modeling, control design, formal safety proof,
and implementation, back to the real-world system, this paper provides a first-
of-its-kind, end-to-end case study paving the way for the verification of even
more complex CPSs. Furthermore, the experiments enable an empirical analysis
of how safety depends on system parameters, revealing a surprising robustness
of the verified controller to both calibration and state estimation errors.

Summary of Contributions. The red arrows in Figure 1 illustrate the contribu-
tions of this paper. A generic provably safe controller for temperature regulation
is presented ( 1 ) and formally verified by a deductive proof in differential dy-
namic logic ( 2 ). Finally, an instance of the safe controller ( 3 ) is validated on
a real instance of the model ( 4 ), which demonstrates both the practical feasi-
bility of the deductive approach and the robustness of the generic approach to
calibration and state estimation errors.

Related Work. The analyzed model has been used extensively in other scientific
areas. Different techniques for the modeling of heat flow with lumped elements
have been compared [1]. A similar model, including the estimation of its pa-
rameters and validation from data, was derived in detail [9], with the main
difference that different types of heat transfer are considered (radiation). Model-
based predictive control (MPC) approaches for heating in buildings are reviewed
by Drgoňa et al. [6]. MPC is complementary to this work, since the control law
(from Section 3.1) can be inserted as an additional constraint in deriving an
MPC, to ensure safety (see [6, Section 2.3]).



Safe Temperature Regulation 3

Correct Controller

Plant Model

deploy and
validate

Verified Controller

Real System

Implemented
Controller

Source

Target

Correct Controller

C
on

tro
lle

d 
Te

m
pe

ra
tu

re

time

H
ea

te
r T

em
pe

ra
tu

re

time

heatingBound

coolingBound

Legend:
               heater off
               heater on

    safe paths
    unsafe pathsHeater is turned off

at ...

... because this would
happen before 

KeYmaera X

use data
to validate

1

2

3

4

Fig. 1. Summary of the work. Contributions are marked by the red arrows.

The lumped parameter model of temperature has been verified in specific
instances via reachability analysis [24,15]. However, due to the need of instanti-
ated parameters in order to carry a reachability analysis, no generic temperature
regulation controller has been verified previously. Moreover, the safety guaran-
tees presented here hold for an unbounded time horizon.

Other case studies for deductive CPS verification have been modeled and
verified successfully in KeYmaera X [14,13,19,11] and using Hybrid CSP [25]
and hybrid Hoare logic [16]. While end-to-end verification of CPSs has been
considered [3], this work is the most complex model without fallback options
using theorem proving, which is also evaluated on a real system.

2 Background

2.1 Deductive CPS Verification in dL

The formalization and verification in this paper is carried out in differential
dynamic logic (dL), a language for describing models of hybrid systems with a
proof calculus for the formal verification of safety properties. A brief introduction
into the main ideas of dL is given here. For details see [18,10].

The logic dL can describe and reason about discrete dynamics, in the form
of programs, combined with continuous dynamics, in the form of differential
equations. The shape of a typical dL formula asserting the safety of a hybrid



4 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

system model is

assumptions → [(ctrl; plant)∗] safe (1)

This formula consists of assertions and hybrid programs. The system (ctrl; plant)∗

is a hybrid program and serves as a nondeterministic over-approximation of a
hybrid system. Hybrid programs are models, which do not deterministically de-
scribe one behavior, but rather describe a set of possible executions. In this
way the model abstracts from minor details and focuses on the important as-
pects. And where determinstic models must consider modeling errors, a non-
determinstic overapproximation should include the actual behaviour of the real
system.

The condition safe and the assumptions are formulas in first-order logic (over
R) defining the safe region which the system should not leave (safe) and the
initial assumptions under which this should be guaranteed. In this case study
the formula safe will be Tmin ≤ Tc ∧ Tc ≤ Tmax asserting that the controlled
temperature Tc is in the range [Tmin, Tmax].

Formula (1) combines these assertions and a hybrid program to formally state
that under the assumptions every execution of the system (ctrl; plant)∗ remains
safe. (This is indicated by the square brackets [ ] of the box-modality.)

Hybrid Program Syntax The hybrid programs in (1) and at the heart of dL are
described here briefly. Their syntax is given by the following grammar

α ::= x := e | ?φ | x′ = f(x) & φ | α ∪ β | α;β | α∗

where x is a variable, e a term in the variables and φ is a first-order formula.
Assignments are represented as a hybrid program in dL by x := e, which dis-
cretely updates the value of the variable x to the value of the term e. The test
program ?φ restricts the nondeterminism by removing all possible execution
traces which do not satisfy the formula φ. Most important are the continuous
programs x′ = f(x) & φ of dL. These consist of an ordinary differential equation
(ODE), which describes the continuous physical behavior of a CPS and are an-
notated with an evolution domain constraint formula φ to restrict the evolution
of the dynamics to the set described by φ. The remaining hybrid programs are
analogous to regular expressions. The choice program α∪β introduces a nonde-
terministic choice between α and β and α;β is a composition indicating that β
is run after α. The nondeterministic repetition program α∗ means that α may
be run repeatedly an arbitrary finite number of times.

The hybrid program model (ctrl; plant)∗ describes a typical control cycle con-
sisting of a discrete controller ctrl followed by the evolution of a continuous
process described by plant in a loop of arbitrary length indicated by ∗. The dis-
crete controller ctrl models all possible control decisions. It relies on information
provided by the system as input, performs computations and makes choices for
the future execution. The communication between the controller and the plant is
handled through shared variables. The plant describes the physical evolution of
the continuous system. Typically, this takes the form of a continuous program.



Safe Temperature Regulation 5

KeYmaera X Differential dynamic logic is equipped with a proof calculus that
enables formal (mechanized) safety proofs of formulas such as (1). The proof cal-
culus for dL is implemented in the KeYmaera X theorem prover [10] for hybrid
systems. It facilitates the interactive theorem proving of theorems formalized in
dL and is equipped with powerful automation techniques for proving properties
of continuous dynamics [20] and finding differential invariants [22]. Proofs de-
veloped with KeYmaera X provide a witness of correctness, that can be easily
checked by the small soundness-critical core of KeYmaera X.

2.2 Lumped-Capacitance Model

The lumped-capacitance model (LCM) describes the transmission of heat be-
tween lumped elements, ignoring the inner heat dynamics of each element. Phys-
ically, the model describes the heat transfer akin to Newton’s law of cooling [21].
By lumping elements together, the dynamics become significantly easier to han-
dle through simulations and are simpler to study than the partial differential
equations that can be used to model continuous heat distribution.

Here a controller for the two-element lumped-capacitance model (2ELCM)
consisting of a heat source and a target whose temperature needs to stay between
two bounds is verified. The heat source can either be powered on and thereby
heat itself or be powered off. The target, under the assumption that the outside
temperature is lower, continuously loses heat to the environment and heat is
always transmitted from the heat source to the target.

In this model, a temperature controller cannot rely on a safe fallback action:
turning off the heating is not a safe choice when the temperature is too low.
Conversely, turning on the heating is not a safe choice when the temperature is
too high (see Section 3.1).

The following lumped parameter heat transfer model is derived from the
principles of thermodynamics [5]:

T ′
h =

1

Ch
(V · I−Gh(Th − Tc))

T ′
c =

1

Cc
(Gh(Th − Tc)−Gc(Tc − Ts))

(2)

where Th is the heat source (e.g. a heater) temperature, Tc is the controlled
temperature of the target, Ts is the (constant) temperature of a heat sink
which models the environment, V, I are the voltage and current respectively
and Ch,Cc,Gh,Gc are constant model parameters. Modeling the environment
as a heat sink is justified when the environment is such that its temperature
remains unaffected by temperature changes in the system. For example, the out-
side temperature of a building does not change (significantly) when the inside
is heated up. The parameters Ch and Cc represent the heat capacitance (i.e.
how fast energy is absorbed into temperature) of the heat source and the tar-
get, respectively, while the parameters Gh and Gc represent the heat transfer
coefficients between the heat source and the target and between the target and



6 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

the sink. Note that the rate of change of the controlled temperature Tc is pro-
portional to the difference of the incoming heat, which itself is proportional to
the temperature difference Th − Tc, and the outgoing heat, which is itself pro-
portional to the temperature difference Tc − Ts. The heat source temperature
behaves similarly, where the incoming heat comes from the electric power V · I
delivered. The parameters V, I,Ch,Cc,Gh,Gc are assumed to be positive and
Ts ≤ Tc ≤ Th is assumed initially, so the heat is always transferred in the same
direction. This model has been created and validated on a real-world prototype
[7] and will be used to validate the safe controller in Section 4.

3 Verified Safe Controller

Section 3.2 will formally define the full hybrid systems model of the temperature
regulation system consisting of a discrete controller defined in Section 3.1 run-
ning in a control loop (similar to eq. (1)), in which plant follows the continuous
dynamics eq. (2) and the controller is executed at least every τ seconds. The
verifcation of the model is discussed in Section 3.3.

3.1 Verifiably Safe Controller

Controller Requirements. A safe controller must ensure that the temperature
Tc remains within the safe temperature range Tmin ≤ Tc ≤ Tmax. It receives the
current heat source temperature Th and the current temperature of the heated
object Tc and decides whether the heat source should be powered on or off for
the next cycle (up to τ seconds). We define the hybrid program on ≡ I := Ion,
which sets the current I to Ion. This models turning on the heat source. Similarly,
the hybrid program off ≡ I := 0 sets the electric current I to 0 to model turning
off the heat source.

In order to obtain provable safety guarantees, the controller must make the
choice whether to run on or off in a way that is safe and facilitates formal deduc-
tive reasoning. Abstractly, the controller (corresponding to the hybrid program
ctrl in eq. (1)) is of the form

ctrl ≡ {{?(onSafe(Th)); on} ∪ {?(offSafe(Th)); off}} (3)

This hybrid program ctrl describes a nondeterministic controller, which can be
read as follows: the controller may turn the heat source on whenever the con-
straint onSafe(Th) is satisfied and it may turn the heat source off if offSafe(Th)
is true. Theoretically the conditions can be arbitrarily complex and a significant
part of the contribution is to obtain conditions onSafe and offSafe, which depend
only (polynomially) on the heat source (not the regulated target) temperature.
This ensures the controller is practical (can be checked quickly at runtime),
verifiably safe, and always has at least one choice available (can not get stuck).



Safe Temperature Regulation 7

System Invariant. A provably safe controller can be found through design-
by-invariant [18], where the invariant properties that should remain true for as
long as the system is running are derived first and then guide the design of the
controller. Proving safety formally requires an inductive invariant of the system,
which is strong enough to ensure its own invariance. For example, it must prevent
the temperature from reaching the upper limit of the safe range Tc = Tmax with
too much energy in the heat source, which would make it impossible to cool
down the system before safety is violated.

time (s)

T
em

p
er
a
tu
re

(°
C
)

Th

Tc

Tmax

Heater On Heater Off

Fig. 2. Tc maximum reached after the heater is turned off (Th maximum).

Clearly then, any invariant needs to ensure not only that Tc is in the safe
region, but that it will never leave. Considering the upper and the lower limit of
the safe region separately, this can be decomposed into two directional criteria
that make up the following directional invariant :

(I) Tmin ≤ Tc ≤ Tmax

(II) if T ′
c ≥ 0 then the temperature will never exceed Tmax

(III) if T ′
c ≤ 0 then the temperature will never drop below Tmin

Combining (II)-(III) as a conjunction ensures that Tc never breaches the safety
bounds, while crucially allowing reasoning about the bounds independently.

Directional Invariant Refinement. To describe an invariant formally, so that
it is amenable to deductive verification, it is first necessary to capture ‘never
exceeding the bounds’ (as used in (II) and (III)) symbolically in the form of
bounds on Tc. This is done by conservatively over/underestimating the maximum
and minimum values of Tc that can be reached in the next control cycle, given the
current state of the system. The controller temperature Tc is locally minimal or



8 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

maximal only at times te where T ′
c(te) = 0. By solving the equilibrium condition

T ′
c = 0 (recall eq. (2)) for Tc, the extremal values of Tc are seen to be of the form

E(Th(te)) with E(T ) := GhT +GcTs

Gc +Gh
(4)

for some time te when the extremal value is attained. Because the exact ex-
pression for Th(te) involves exponentials, it cannot be used for a dL verifiable
controller. However in the following a polynomial approximation is presented,
that turns out to be practical and efficient as it is only used for short time
(Section 4). Note that in case the heater is turned off (I = 0), Th is decreasing
(T ′

h = −Gh(Th−Tc) ≤ 0 by eq. (2)). Since E(T ) is monotone, assuming that the
controller can intervene at any time to turn off the heater, the maximal value
of Tc is bounded above by E(Th). As the invariant is evaluated at every point
in time, the implication T ′

c ≥ 0 → E(Th) ≤ Tmax ensures (II). However, the con-
troller can only act at specific times, and its decisions will be restricted (onSafe
and offSafe defined appropriately) to take into account reaction delay to make
E(Th) ≤ Tmax invariant.

Similarly, (III) can be approximated by the implication T ′
c ≤ 0 → E(Th) ≥

Tmin. However, this implication will ensure (III) only in case the temperature
Th always rises, whenever the heater is turned on. This assumption is discussed
below, since it depends in a surprising way on the controller constraint onSafe.
In summary, the conjunction of the above conditions forms the invariant inv,
presented in Invariant 1.

Invariant 1 Inductive Directional System Invariant.

inv

∣∣∣∣∣∣∣
1 Tmin ≤ Tc ≤ Tmax

2 T ′
c ≥ 0 → E(Th) ≤ Tmax

3 T ′
c ≤ 0 → E(Th) ≥ Tmin

Safe Heating Condition. To verify that a condition onSafe maintains Invari-
ant 1 inductively, the directionality of the invariant means that attention can be
restricted to the upper bound Tmax. Specifically, Line 3 from Invariant 1 ensures
that the lower bound is not violated and since Th is rising, Line 3 remains true.
Because every control cycle is of duration ≤τ , a control decision at t0 maintains
the invariant, if the invariant holds at times t ∈ [t0, t0+τ ]. Because T ′

h ≤ VI
Ch

(see

eq. (2)), the heat source temperature in this scenario can be bounded above:

sup
t∈[t0,t0+τ ]

Th(t) ≤
VIon
Ch

τ + Th(t0) = Tmax
h (Th(t0)) (5)

where Tmax
h (T ) := VIon

Ch
τ + T . Consequently, by eq. (4) it is safe to turn on

the heater if E(Tmax
h (Th(t0))) ≤ Tmax. By solving this expression for Th(t0),



Safe Temperature Regulation 9

a decision bound Bheat (heating bound) is obtained such that Th(t0) ≤ Bheat

guarantees that the controlled temperature will not overshoot Tmax. Defining

onSafe(Th(t0)) ≡ Th(t0) ≤ Bheat (6)

where

Bheat :=
Tmax(Gh +Gc)−GcTs

Gh
− VIonτ

Ch

ensures that for the controller (3) line 3 of Invariant 1 is an inductive invariant.
Note that the heating bound conveniently depends only on the system parame-
ters Gh, Gc, Ch, V,Ion, Tmax, Ts, τ and not on the system state Tc, Th.

Safe Cooling Condition. The derivation of the condition offSafe is more subtle
as it critically relies on the assumption that the temperature Tc rises immediately
once the heater is turned on. Using the lower bound

inf
t∈[t0,t0+τ ]

Th(t) ≥ Th(t0) +
GhTh(t0)

Ch
· τ = Tmin

h (Th(t0)) (7)

where Tmin
h (T ) := T+GhT

Ch
·τ , it is safe to turn off the heater if E(Tmin

h (Th(t0))) =

Tmin. Solving for Th(t0) assuming Ch > Ghτ (see below), yields the (cooling)
bound Bcool

Bcool :=
Tmin(Gh +Gc)−GcTs

Gh

Ch

Ch −Ghτ

such that E(Tmin
h (Th(t0))) ≥ Tmin is true exactly if the decision guard

offSafe(s) ≡ Th(t0) ≥ Bcool (8)

holds. This ensures that the temperature does not drop below the lower limit
of the safe range. Like the heating bound, the cooling bound Bcool also depends
only on the system parameters Gh, Gc, Ch, Tmin, Ts, τ .

The two decision guards, onSafe and offSafe, completely define the non-
deterministic controller ctrl. Invariance of inv and suitability of the controller
are discussed in Section 3.3. The controller is simple to instantiate, as it only
adds polynomial constraints (the decision bounds Bheat and Bcool) on turning
the heat source on and off, which are easy to implement and can be verified via
theorem proving.

Heater Power Assumption. For Line 2 of Invariant 1 it was assumed that
the heater immediately starts heating up after being turned on. In order to
formally verify the controller, this assumption needs to be made symbolically.
Interestingly, this assumption can depend on the definition of the controller,
since the heater temperature Th does not need to rise immediately whenever
the heater is turned on, but Th must rise when the heater has been turned
on by the controller and the invariant inv holds. In other words it suffices to



10 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

show that in case the invariant inv holds (Tc ≥ Tmin), the heating condition is
satisfied (onSafe(Th(t0)) is true) and the heater is turned on (I = Ion), the heater
temperature rises immediately (T ′

h(t0) ≥ 0). This implication is guaranteed by
the following assumption on the heater power:

VIon ≥ Tmax(Gh +Gc)−GcTs −GhTmin (9)

Proof. It is shown that eq. (9) implies that the heater has sufficient power to
immediately heat the box once it is turned on. Observe first that

VIon(1 +
Gh

Ch
τ) > VIon ≥ Tmax(Gh +Gc)−GcTs −GhTmin

Rearranging gives

VIon > Tmax(Gh +Gc)−GcTs −GhTmin −VIon
Gh

Ch
τ

= Gh(
Tmax(Gh+Gc)−GcTs

Gh
− Tmin − VI

Ch
τ)

= Gh(Bheat − Tmin)

So since onSafe(Th(t0)) is true, VIon > Gh(Th(t0) − Tmin). By definition of the
dynamics (eq. (2)):

T ′
h(t0) = VIon −Gh(Th(t0)− Tmin) > 0

Thus the heater temperature rises immediately when the heater is turned on.

The fact that the assumptions shown in eq. (9) are parametric in the con-
troller variables V, Ion, allows for flexibility in engineering the system. Depending
on the system parameters the power of the heat source can be chosen to satisfy
eq. (9).

The derivation of the minimum heater power illustrates the power of the fully
symbolic approach to verification. The increased complexity of the manual proof
work is redeemed by its easy formal interpretability.

Liveness. For the verified model to be meaningful, the controller should always
have a choice available. If Bheat ≥ Bcool is true, the controller can always safely
turn the heater on or off. Since both constants depend only on the parameters,
liveness of the controller does not depend on the state of the system and so
can be established at design time. And conversely, the parametric expressions
of Bheat and Bcool help with making appropriate choices of for the heater power
to ensure liveness. This is the reason the safety conditions were expressed in the
form of heating and cooling bounds For the real-system parameters used in the
validation (see Table 1), it is the case that Bheat ≥ Bcool.

Summary. The conditions onSafe(Th) and offSafe(Th) were defined in terms of
the decision bounds, Bheat and Bcool (Figure 1) and ensure that Tc will remain
in the safe region. It is always possible to either cool down or heat up the



Safe Temperature Regulation 11

system before Tc leaves the safe region. Which choice is available depends only
on the temperature of the heat source, Th. Perhaps surprisingly, restricting the
controller decision guards, onSafe and offSafe to the heat source temperature
makes the safety proof significantly easier, while still yielding a functional and
safe controller, as will be demonstrated in Section 4.

3.2 Formal dL Model

The formal dL hybrid systems model of the 2ELCM is a control loop as in eq. (1).
The postcondition safe is the safety condition, which says that the temperature of
the target remains within the safe range Tmin ≤ Tc ≤ Tmax, where Tc denotes the
temperature of the heated object. The controller ctrl has been defined in eq. (3)
and the heat dynamics describes the physical evolution of the system according to
eq. (2). The precondition assumptions is the conjunction of the conditions listed
in Listing 1, as obtained in the design process of the controller in Section 3.1 and
the assumption that the system is in a safe starting state. (Line 3 captures the
parametric liveness assumption as used in the derivation of Bcool and the heater
power assumption from eq. (9).) The precondition assumptions is a conjunction
of the conditions in Listing 1.

Listing 1 Pre- and postconditions for safe controller.

assumptions

∣∣∣∣∣∣∣
1 Gh,Gc,Cc,Ch, Ion,V > 0 ∧ Bcool ≤ Th ≤ Bheat

2 Tmin ≤ Tc ≤ Tmax ∧ 0 ≤ Ts ≤ Tc ≤ Th0

3 Ch > Ghτ ∧ VIon > Tmax(Gh +Gc)−GcTs −Gh · Tmin

safe
∣∣ 4 Tmin ≤ Tc ≤ Tmax

The formal model of the continuous heat dynamics side of the hybrid system
model is shown in Listing 2. In order to include the time-triggered nature of the
controller, an explicit timer is introduced (t′=1), which is reset (t:=0 in Line 5
of Listing 2) at the beginning of every control cycle. The timer is used inside the
evolution domain constraint (t ≤ τ) to ensure that the controller is executed at
least τ seconds after the last controller execution. As the ODE has no explicit
dependence on time, the timer does not affect the behaviour of the dynamics.
The continuous plant dynamics are separated into two phases in order to make
case-distinction reasoning possible in the verification process. It splits the phase
tempRise in which the temperature is rising T ′

c ≥ 0 and the phase tempFall
where it is falling T ′

c ≤ 0. Switching between these phases (ghost switching [23])
is realized through the use of a nondeterministic choice facilitating the phase-
transition and a loop allowing any execution to make an arbitrary (finite) number
of phase transitions.



12 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

Listing 2 Continuous dynamics model with ghost switching.

ODE

∣∣∣∣∣ 1 T ′
h = 1/Ch(VI−Gh(Th − Tc)),

2 T ′
c = 1/Cc(Gh(Th − Tc)−Gc(Tc − Ts)),

tempFall
∣∣ 3 {ODE, t′ = 1& t ≤ τ ∧ T ′

c ≤ 0}
tempRise

∣∣ 4 {ODE, t′ = 1& t ≤ τ ∧ T ′
c ≥ 0}

plant
∣∣ 5 {t := 0; {tempFall ∪ tempRise}∗}

3.3 Formal Verification of Safety

Any minor oversight in the design of the controller could lead to an unsafe
controller leading to potentially dangerous outcomes. This possibility is excluded
by a formal proof of safety carried out in KeYmaera X. The formal proofs are
available in the repeatability package [12] and the proof tactic serves as an easily
checkable witness of correctness. As such the proof also certifies the correctness
of the controller to a third party, which would only need to trust the small
proof-checking core of KeYmaera X [2] and the accuracy of the model itself.

This section describes some of the key challenges and insights required for
the formal proof of safety and in particular their general lessons for modeling
and verifying cyber-physical systems formally.

Verification Process The correct controller was obtained through several design
and proof iterations. Many critical assumptions were made implicitly in the de-
sign of the controller and were only revealed through the process of constructing
a formal proof. (See for example the assumption on the minimum power of the
heater on Section 3.1.)

Case Distinctions and Local Invariants At the heart of the formal proof of
safety lies the verification that Invariant 1 indeed is an inductive invariant of
the system. Note that the invariant mentions Th,init as the initial temperature
of the heat source at the beginning of the control cycle (which can be introduced
as a constant using a discrete ghost argument [18]). Ghost switching enables a
formal proof by case distinction into four distinct cases along two dimensions:
The heat source may be powered on or off and the temperature may be rising
or falling. The directional invariants are a new ingredient that fully leverage the
case distinction to reduce a complex property to its core and discharge many
proof obligations using the advanced automation of KeYmaera X. The idea to
make the invariant conditional on the direction of the evolution (cf. Lines 4 and 5
in Invariant 2) constitutes a novel approach in deductive CPS verification and
is promising for many other cases. In particular, it is a powerful technique for
treating the challenges posed by the lack of a safe fallback controller action.

The effect of the case distinction and the directional invariant is that the
temperature Tc and the heat source temperature Th can be considered (tem-
porarily) monotone, which enables formalization of symbolic estimates of the



Safe Temperature Regulation 13

temperatures, as used in the design of onSafe and offSafe in Section 3.1. To ex-
ploit the monotonicity syntactically, a key ingredient in the proof are the two
local invariants, which remain true of the physical system only for the duration
of one control cycle, one for each of the two modes of the controller. These local
invariants are essentially the invariants for the continuous dynamics (differential
invariants), with the difference that, thanks to the ghost switching they only
need to be verified until the temperature reaches a critical point. The local in-
variant for the heating cases (Invariant 2) captures additionally that the heater
temperature will be hotter than it is initially throughout the control cycle and is
based on the over-approximation argument of the temperature. The directional
nature of the invariant determines whether the next extremal temperature is
maximal or minimal. The local invariant for cooling is similar.

Invariant 2 Local Invariant for Heating Cycle.

heatingInv

∣∣∣∣∣∣∣∣∣∣∣

1 Tmin ≤ Tc ≤ Tmax ∧ 0 ≤ t ≤ τ

2 0 ≤ Ts ≤ Tc ≤ Th ∧ Th,init ≤ Th

3 Tmin
h (Th,init) ≤ Th ≤ Tmax

h (Th,init)

4 T ′
c ≤ 0 → (Tc ≥ E(Th,init) ∧ E(Th,init) ≥ Tmin)

5 T ′
c ≥ 0 → (Tc ≤ E(Tmax

h (Th,init)) ∧ E(Tmax
h (Th,init)) ≤ Tmax)

Proof Technology. The marked improvements in the theorem-proving technology
for hybrid systems are critical for the successful formal verification. Of particular
importance are recent advances in the automatic complete verification of differ-
ential invariants [20]. This obviates the need for complex reasoning about the
continuous evolution. As long as a valid differential invariant can be found, it can
be verified automatically. KeYmaera X implements invariance verification in the
tactic odeInvC, which automatically proves any valid differential invariant for a
system. However, for computational reasons, it is still necessary to simplify the
invariance problem to avoid time outs. This requires controlling exactly which
assumptions are required for invariance. In the artificat package [12] a part of
the proof is explained in depth to illustrate the subtleties of reducing a complex
problem to one that can be solved efficiently and automatically.

Another valuable tool in the verification process was the counterexample
finding tool of KeYmaera X. In the process of designing and verifying the safe
controller refinement, counterexamples made clear which assumptions were miss-
ing and highlighted possible scenarios that were overlooked.

4 Control Deployment and Validation

The controller was validated on the incubator described by Feng et al. [7] con-
sisting of an insulated box containing a heater (the heat source in the 2ELCM)



14 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

and a fan to distribute the heat (so that it can be modeled as a single lump).
The heater can be turned on or off and the inside air temperature (Tc) is viewed
as the average of two sensor readings.

An important feature of this case study is that the heatbed temperature Th

is not measured directly. Instead, it is estimated through a Kalman filter [8] that
uses the same model used for the proof of the controller. We evaluate in practice
the impact of the uncertainty in this estimation and the controller performance.

To test the limits of the bounds, the physical controller is a refinement of the
(nondeterministic) dL specification, which heats for as long as possible and then
cools for as long as possible, by activating the heater exactly if:

1. either the heater was previously on and it is safe to leave it on; or
2. the heater was previously off and it is unsafe to leave it off.

This example illustrates the flexibility of the generic, verified controller, which
allows many alternative implementations, which optimize for other measures and
can be designed manually. A correct-by-construction controller monitor that
checks at runtime that any choice made by the controller is allowed by the
specification can be obtained through Modelplex [17].

Table 1. Parameter sets used in the experiments. (The parameters are approximate
and exact values can be found in the repeatability package [12].)

Parameters Power Bounds

Cc Gc Ch Gh V Ion Bheat Bcool Source

Γ1 24.59 0.16 47.26 0.22 12.17 1.55 49.47 49.17 Calibration Process
Γ2 17.63 0.16 40.01 0.13 12.17 1.55 57.56 56.75 Calibration Process
Γ3 34.63 0.16 40.01 0.13 12.17 1.55 58.02 57.22 Γ2 with Cc Disturbed
Γ4 24.59 0.25 47.26 0.22 12.17 1.55 55.92 55.24 Γ1 with Gc Disturbed

Experimental Setup. Four distinct experiments with parameter sets Γ1, Γ2, Γ3

and Γ4, shown in Table 1, were conducted to validate the controller on a real
system with tight safety margins (parameter sets Γ1 and Γ2), and to investi-
gate the impact of modeling errors and parameter variations (parameter sets Γ3

and Γ4). The parameters are used in the controller decision process and in the
Kalman filter for state estimation. For the experiments the temperature bounds
Tmin = 3.5 ◦C and Tmax = 37.75 ◦C were used for a range of 1.25 ◦C. The first
two parameter sets, Γ1 and Γ2 were obtained through a calibration process [7],
which fits the parameters to an experimental run of the physical system. This
process involves an underconstrained optimization problem, so that two differ-
ent sets of parameters (Γ1 and Γ2), representing different, well-fitting models,
are obtained. To study the effect of perturbations the most and least sensitive
parameters were determined by a sensitivity analysis over Bheat and Bcool (com-
puting partial derivatives of eqs. (6) and (8)). Parameter set Γ3, was obtained by
adding 17 to the value of the least sensitive parameter Cc in Γ2 (almost doubling



Safe Temperature Regulation 15

it) and Γ4 is Γ1 with the value of the most sensitive parameter Gc multiplied by
1.5 in Γ1.

The measured (average) air temperatures of the real-world experiments are
overlaid in Figure 3 from the moment both sensor readings first exceed Tmin.

0 100 200 300 400 500 600

time (s)

36.50

36.75

37.00

37.25

37.50

37.75

38.00

38.25

T
em

p
er
at
u
re

(°
C
)

T 1
c

T 2
c

T 3
c

T 4
c

Bounds

Fig. 3. Average incubator temperature T i
c for each experiment with parameters Γi.

Discussion. As verified deductively, fig. 3 shows that the controlled temperature
(T 1

c and T 2
c ) remains within the bounds in both experiments (Γ1, Γ2). Inter-

estingly the verification result applies to very different values for the decision
bounds Bheat and Bcool (see Table 1). These experiments provide evidence that
our controller remains safe, despite typical modeling, calibration, and estimation
uncertainties.

Interestingly, the temperature T 3
c also stays within the safety bounds. This

is surprising, as a perturbation to one of the parameters (capacitance Cc) might
intuitively make the system unsafe. However, the capacitance Cc does not affect
the heating and cooling bounds at all, so that, according to the model and
the experiment, safety is not affected by changes to the capacitance Cc, such as
placing objects inside the air volume. This is particularly relevant for applications
where it is unknown what objects will be placed inside the temperature controlled
environment.

Finally, the temperature T 4
c fails to stay within the safety bounds. The per-

turbation of the coefficient Gc (by 50%) makes the system unsafe, by virtue of
the larger significance of the affected parameter. While the decision bound Bheat

(see Table 1) is similar to the one in Γ2 the reliance of the Kalman filter on the
same parameters means that the estimate of the temperature Th does not fit the
model anymore.



16 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

5 Conclusion

This paper introduced a formally verified controller for temperature regulation
in the two-element lumped-capacitance model. The requirements of formal veri-
fication guided the design of the controller and revealed all critical assumptions
on the heating system for the system to be provably safe. The controller was de-
signed using several correct-by-construction over-/under-approximations of the
safety bounds in order to obtain verifiably correct decision bounds. These ap-
proximations are correct for the dynamical system that models the real-world
dynamics and thus correct for the real world dynamics assuming that the ap-
proximation is good enough. This process ensures safety for unbounded time
and presents a representative verification case study of a controller that does not
rely on a safe fallback action. Safety is formalized in the hybrid systems theorem
prover KeYmaera X, which delivers easily checkable correctness guarantees. The
resulting controller is generic and allows for the straightforward implementation
of a safe temperature-regulation unit in many application domains, as demon-
strated by the real-world validation of the controller. The validation provides an
end-to-end case study for CPS verification of a hybrid system with dynamics of
general interest.

Furthermore, the validation on a real system shows the strength and applica-
bility of this approach. The complexities of the formal approach are vindicated
in the implementation and validation phase, where the verified bounds reveal
which parameters are the most relevant to the inner workings of the system.
This is validated by applying a large disturbance to the least relevant parame-
ter (Gc) and showing that it does not influence the safety of the system. All in
all, this process minimizes calibration problems and thus allows for more robust
implementations. Initially, the potential of modeling discrepancies and the fact
that the controller requires a Kalman filter, are concerning, since the correctness
hinges on the 2ELCM being a good fit for the system. However, it is shown that
controller safety is quite robust with respect to modeling inaccuracies.

Future Work. This work opens up several exciting areas of research. As a real-
world case study, the 2ELCM model provides a valuable aid to the development
of advanced hybrid systems verification techniques. The surprising robustness of
the presented controller with respect to parameter errors suggest an investigation
of the impact that calibration errors and state estimation (the Kalman filter)
can have on the safety of a formally verified CPSs beyond 2ELCM.

The conditions on the safe controller use an overapproximation of the maxi-
mal heater temperature. Alternative controller bounds that are derived similarly
could be explored, using alternative assumptions and better bounds. This could
achieve practical improvements with more efficient control envelopes at the ex-
pense of increased proof complexity.

The presented controller solves many challenges at the heart of the heat-
transmission problem. Although still challenging, increasing the complexity of
the model to more elements is now possible on the basis of the verified two-



Safe Temperature Regulation 17

element controller. This makes it an interesting object for further research into
the composability of deductive hybrid systems verification.

The approach used in the deductive verification has many generalizable
lessons and critical insights that are useful in other cases, in which safety can
not be maintained by simply retaining a safe fallback option at all times. This
is potentially useful for other verification tasks and could benefit from being
studied more generally.

Acknowledgments This research was supported by the RoboSAPIENS Project
financed by the European Commission’s Horizon Europe programme under Grant
101133807 and the Alexander von Humboldt Professorship program.

References

1. Afroz, Z., Shafiullah, G., Urmee, T., Higgins, G.: Modeling techniques used in
building hvac control systems: A review. Renewable and Sustainable Energy Re-
views 83, 64–84 (2018). https://doi.org/10.1016/j.rser.2017.10.044

2. Bohrer, R., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) Certified Programs and
Proofs - 6th ACM SIGPLAN Conference, CPP 2017, Paris, France, January 16-17,
2017. pp. 208–221. ACM (2017). https://doi.org/10.1145/3018610.3018616

3. Bohrer, R., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: Verified
controller executables from verified cyber-physical system models. In: Grossman,
D. (ed.) PLDI. pp. 617–630. ACM, Philadelphia (2018). https://doi.org/10.

1145/3192366.3192406

4. Buhagiar, A.J., Freitas, L., III, W.E.S., Larsen, P.G.: Digital twins for organ
preservation devices. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, Rhodes,
Greece, October 22-30, 2022, Proceedings, Part IV. Lecture Notes in Com-
puter Science, vol. 13704, pp. 22–36. Springer (2022). https://doi.org/10.1007/
978-3-031-19762-8_3, https://doi.org/10.1007/978-3-031-19762-8_3

5. Cengel, Y.A., Boles, M.A., Kanoğlu, M.: Thermodynamics: an engineering ap-
proach, vol. 5. McGraw-hill New York, New York, USA (2011)

6. Drgoňa, J., Arroyo, J., Cupeiro Figueroa, I., Blum, D., Arendt, K., Kim, D., Ollé,
E.P., Oravec, J., Wetter, M., Vrabie, D.L., Helsen, L.: All you need to know about
model predictive control for buildings. Annual Reviews in Control 50, 190–232
(2020). https://doi.org/10.1016/j.arcontrol.2020.09.001

7. Feng, H., Gomes, C., Thule, C., Lausdahl, K., Sandberg, M., Larsen, P.G.: The
incubator case study for digital twin engineering (2021), https://arxiv.org/abs/
2102.10390

8. Feng, H., Gomes, C., Larsen, P.G.: Model-based monitoring and state estimation
for digital twins: The Kalman filter (2023), https://arxiv.org/abs/2305.00252

9. Frahm, M., Langner, F., Zwickel, P., Matthes, J., Mikut, R., Hagenmeyer, V.: How
to derive and implement a minimalistic RC model from thermodynamics for the
control of thermal parameters for assuring thermal comfort in buildings. In: 2022
Open Source Modelling and Simulation of Energy Systems (OSMSES). pp. 1–6.
IEEE, Aachen, Germany (Apr 2022). https://doi.org/10.1109/osmses54027.
2022.9769134

https://doi.org/10.1016/j.rser.2017.10.044
https://doi.org/10.1016/j.rser.2017.10.044
https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1007/978-3-031-19762-8\_3
https://doi.org/10.1007/978-3-031-19762-8_3
https://doi.org/10.1007/978-3-031-19762-8\_3
https://doi.org/10.1007/978-3-031-19762-8_3
https://doi.org/10.1007/978-3-031-19762-8_3
https://doi.org/10.1016/j.arcontrol.2020.09.001
https://doi.org/10.1016/j.arcontrol.2020.09.001
https://arxiv.org/abs/2102.10390
https://arxiv.org/abs/2102.10390
https://arxiv.org/abs/2305.00252
https://doi.org/10.1109/osmses54027.2022.9769134
https://doi.org/10.1109/osmses54027.2022.9769134
https://doi.org/10.1109/osmses54027.2022.9769134
https://doi.org/10.1109/osmses54027.2022.9769134


18 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

10. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An ax-
iomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A.
(eds.) CADE. LNCS, vol. 9195, pp. 527–538. Springer, Berlin, Germany (2015).
https://doi.org/10.1007/978-3-319-21401-6_36

11. Garcia, L., Mitsch, S., Platzer, A.: HyPLC: Hybrid programmable logic controller
program translation for verification. In: Bushnell, L., Pajic, M. (eds.) ICCPS. pp.
47–56 (2019). https://doi.org/10.1145/3302509.3311036

12. Isasa, C., Abou El Wafa, N., Platzer, A., Larsen, P.G., Gomes, C.: Artifact for
Safe Temperature Regulation: Formally Verified and Real-World Validated. https:
//doi.org/10.6084/m9.figshare.28869218

13. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki,
E., Platzer, A.: Formal verification of ACAS X, an industrial airborne collision
avoidance system. In: Girault, A., Guan, N. (eds.) EMSOFT. pp. 127–136. IEEE
Press, Amsterdam, Netherlands (2015). https://doi.org/10.1109/EMSOFT.2015.
7318268

14. Kabra, A., Mitsch, S., Platzer, A.: Verified train controllers for the Federal Rail-
road Administration train kinematics model: Balancing competing brake and track
forces. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(11), 4409–4420
(2022). https://doi.org/10.1109/TCAD.2022.3197690

15. Kapuria, A., Cole, D.G.: Formal verification of a nuclear plant thermal dispatch
operation using system decomposition. In: 2024 IEEE 6th International Conference
on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA).
pp. 543–548 (2024). https://doi.org/10.1109/TPS-ISA62245.2024.00074

16. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calcu-
lus for hybrid csp. In: APLAS. pp. 1–15 (2010), https://doi.org/10.1007/

978-3-642-17164-2_1

17. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-
physical system models. Formal Methods in System Design 49(1), 33–74 (Oct
2016). https://doi.org/10.1007/s10703-016-0241-z

18. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

19. Platzer, A., Quesel, J.D.: European Train Control System: A case study in
formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM. LNCS,
vol. 5885, pp. 246–265. Springer, Rio de Janeiro (2009). https://doi.org/10.
1007/978-3-642-10373-5_13

20. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. J. ACM
67(1), 6:1–6:66 (2020). https://doi.org/10.1145/3380825, https://doi.org/

10.1145/3380825

21. Serway, R.A., Faughn, J.S.: College Physics. Saunders college publishing, Philadel-
phia, 5th ed. edn. (1999)

22. Sogokon, A., Mitsch, S., Tan, Y.K., Cordwell, K., Platzer, A.: Pegasus: A frame-
work for sound continuous invariant generation. In: ter Beek, M., McIver, A.,
Oliviera, J.N. (eds.) FM. LNCS, vol. 11800, pp. 138–157. Springer (2019). https:
//doi.org/10.1007/978-3-030-30942-8_10

23. Tan, Y.K., Mitsch, S., Platzer, A.: Verifying switched system stability with logic.
In: Proceedings of the 25th ACM International Conference on Hybrid Systems:
Computation and Control. HSCC ’22, Association for Computing Machinery, New
York, NY, USA (2022). https://doi.org/10.1145/3501710.3519541

24. Wright, T., Gomes, C., Woodcock, J.: Formally verified self-adaptation of an incu-
bator digital twin. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022, Rhodes, Greece,

https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1145/3302509.3311036
https://doi.org/10.1145/3302509.3311036
https://doi.org/10.6084/m9.figshare.28869218
https://doi.org/10.6084/m9.figshare.28869218
https://doi.org/10.6084/m9.figshare.28869218
https://doi.org/10.6084/m9.figshare.28869218
https://doi.org/10.1109/EMSOFT.2015.7318268
https://doi.org/10.1109/EMSOFT.2015.7318268
https://doi.org/10.1109/EMSOFT.2015.7318268
https://doi.org/10.1109/EMSOFT.2015.7318268
https://doi.org/10.1109/TCAD.2022.3197690
https://doi.org/10.1109/TCAD.2022.3197690
https://doi.org/10.1109/TPS-ISA62245.2024.00074
https://doi.org/10.1109/TPS-ISA62245.2024.00074
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/978-3-642-17164-2_1
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1145/3380825
https://doi.org/10.1145/3380825
https://doi.org/10.1145/3380825
https://doi.org/10.1145/3380825
https://doi.org/10.1007/978-3-030-30942-8_10
https://doi.org/10.1007/978-3-030-30942-8_10
https://doi.org/10.1007/978-3-030-30942-8_10
https://doi.org/10.1007/978-3-030-30942-8_10
https://doi.org/10.1145/3501710.3519541
https://doi.org/10.1145/3501710.3519541


Safe Temperature Regulation 19

October 22-30, 2022, Proceedings, Part IV. LNCS, vol. 13704, pp. 89–109. Springer,
Rhodes, Greece (2022). https://doi.org/10.1007/978-3-031-19762-8_7

25. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying chinese
train control system under a combined scenario by theorem proving. p. 262–280.
VSTTE 2013, Springer-Verlag, Berlin, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-54108-7_14

https://doi.org/10.1007/978-3-031-19762-8\_7
https://doi.org/10.1007/978-3-031-19762-8_7
https://doi.org/10.1007/978-3-642-54108-7_14
https://doi.org/10.1007/978-3-642-54108-7_14
https://doi.org/10.1007/978-3-642-54108-7_14
https://doi.org/10.1007/978-3-642-54108-7_14


20 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

A Local Cooling Invariant

Invariant 3 is very similar to the heatingInv Invariant 2, with the main differences
in Line 4 and Line 5. These lines are the directional part of the invariants, and
as each invariant considers a different state of the heater, the direction that
contains an approximation of Th differs.

Invariant 3 Local Invariant for Cooling Cycle.

coolingInv

∣∣∣∣∣∣∣∣∣∣∣

1 Tmin ≤ Tc ≤ Tmax ∧ 0 ≤ t ≤ τ

2 0 ≤ Ts ≤ Tc ≤ Th ≤ Th,init

3 Tmin
h (Th,init) ≤ Th ≤ Tmax

h (Th,init)

4 T ′
c ≤ 0 → (Tc ≥ E(Tmin

h (Th,init)) ∧ E(Tmin
h (Th(t0))) ≥ Tmin)

5 T ′
c ≥ 0 → (Tc ≤ E(Th,init) ∧ E(Th,init) ≤ Tmax)

B Proof Tree Showcase

This section showcases a rough outline of a part of the formal proof to highlight
some of the key features. The full proof can be found in the formal KeYmaera X
model [12].

To prove the invariance of coolingInv (Invariant 3) it is necessary to prove
that Line 5 remains true in a control cycle assuming only that coolingInv holds
at the beginning of the control cycle (and the assumptions about constants). We
consider the case that the controller turns the heat source power off, i.e. that
onSafe holds initially. The ghost switching design allows us to distinguish the
between periods in which Tc is falling and rising. We showcase the invariance
proof in case Tc is falling. This is an interesting case, as the temperature may
drop below the lower limit, if the heater is turned off and the temperature is
falling.

Recall that the time variable t is reset at the beginning of every control cycle,
so that the heater was turned off at t = 0 and let t1 ≥ 0 describe the current
time. Since the heater was turned off by the controller beyond coolingInv the
proof may assume offSafe (and I=0 of course). Let Γ ≡ offSafe∧coolingInv∧ I=0
be this set of assumptions and ODE be the differential equation from Listing 2
(with the additional variable t′=1) and for the evolution domain contraint write
ev ≡ t ≤ τ ∧ T ′

c ≤ 0. Thus, to prove the invariance of Line 5 in coolingInv the
proof obligation is

Γ ⊢[ODE& ev](T ′
c ≥ 0 → (Tc ≤ E(Th,init) ∧ E(Th,init) ≤ Tmax))

Since T ′
c ≤ 0 is part of the evolution domain constraint, it suffices to prove

T ′
c = 0 → (Tc ≤ E(Th,init)∧E(Th,init) ≤ Tmax) holds after an arbitrary evolution

of the dynamics. Note that, due to the asymptotic behaviour of the system, once



Safe Temperature Regulation 21

the controlled temperature changes direction, i.e. begins to rise or fall, a change
of direction or an equilibrium can only happen due to external changes (such
as the heat source being turned on/off). Hence, the only two possibilities are
that the heater temperature was at a critical point initially (T ′

c(t1) = 0) or that
the antecedent (T ′

c ≥ 0) of Line 5 from Invariant 3 is not satisfied. Abbreviate
P ≡ (T ′

c(t1) = 0 ∨ T ′
c < 0). Using a differential cut, it suffices to prove that

P remains true during the evolution, since the tactic odeInvC makes it possible
to discharge the goal Γ ⊢ [ODE&(ev ∧ (T ′

c(t1) = 0 ∨ T ′
c < 0))](T ′

c = 0 →
(Tc ≤ E(Th,init) ∧ E(Th,init) ≤ Tmax)). See Figure 4 for an outline of the proof
tree. The proof proceeds by distinguishing the three cases that T ′

c(t1) is zero,
positive or negative. The three branches are illustrated in Figure 4, where the
leftmost branch T ′

c(t1) = 0 is concerned with the case that the system was at a
maximum/equilibrium and no time has passed and the middle branch T ′

c(t1) > 0
is in contradiction with the evolution domain constraint, as we are considering
the case of falling temperatures. The remaining proof obligation ∗ is the case
that once the temperature starts falling, it will keep falling.

Next to prove ∗ a differential cut of ∆ ≡ (Th > Tc ∨ Th(t1) = Tc(t1)) is
used. This captures that, because of their asymptotic behaviour, Th and Tc will
never coincide, if their initial values do not coincide.

*
odeInvC

Γ ∧ T ′
c(t1) < 0 ⊢ [ODE& ev]∆

. . .
Γ ∧ T ′

c(t1) < 0 ⊢ [ODE& ev ∧∆]P
dC

Γ ∧ T ′
c(t1) < 0 ⊢ [ODE& ev]P

∗

To prove the remaining proof obligation, the evolution domain constraint is
unpacked to generate two subgoals, one for the case that Th(t1) > Tc(t1) holds
initially and the other for Th(t1) = Tc(t1). In the first case differentially cutting
Th > Tc enables the automation of odeInvC to show the invariance properties
automatically. In the second case, as T ′

c(t1) < 0 and Th(t1) = Tc(t1), it is possible
to distinguish based on the asymptotic behaviour of the controlled temperature
and the heat sink temperature Tc > Ts. Again, the automation of odeInvC closes
the remaining goals.

odeInvC
Γ ∧ T ′

c(t1) < 0 ∧ Th(t1) > Tc(t1) ⊢ [ODE& ev ∧∆ ∧ Th > Tc]P
dC +odeInvC

Γ ∧ T ′
c(t1) < 0 ∧ Th(t1) > Tc(t1) ⊢ [ODE& ev ∧∆]P

odeInvC
Γ ∧ T ′

c(t1) < 0 ∧ Th(t1) > Tc(t1) ⊢ [ODE& ev ∧∆ ∧ Tc > Ts]P
dC +odeInvC

Γ ∧ T ′
c(t1) < 0 ∧ Th(t1) = Tc(t1) ⊢ [ODE& ev ∧∆]P

This process shows how closing one main subgoal of the proof is a complex
process where differential cuts need to be found creatively to simplify the system
and make the necessary information available to KeYmaera X. Once the goal
is simplified, the tactic odeInvC is able to close complex goals automatically,
saving time and effort.



22 C. Isasa, N. Abou El Wafa, C. Gomes, P. Gorm Larsen, A. Platzer

*
o
d
e
I
n
v
C

Γ
⊢
[O

D
E
&
(ev

∧
P
)](T

′c
=

0
...)

*

T
′c (t

1 )
=

0
∧
···⊢

(T
′c (t

1 )
=

0
∨
T

′c
<

0
)

d
W

Γ
∧
T

′c (t
1 )

=
0
⊢
[O

D
E
&
ev]P

*

T
′c (t

1 )
>

0
∧
T

′c (t
1 )

≤
0
∧
···⊢

...
U
n
p
ack

Γ
∧
T

′c (t
1 )

>
0
⊢
[O

D
E
&
ev]P

∗
cu
t

Γ
⊢
[O

D
E
&
ev]P

d
C

Γ
⊢
[O

D
E
&
ev](T

′c
=

0
→

(T
c
≤

E
(T

h
,in

it )∧
E
(T

h
,in

it )
≤

T
m
a
x ))

F
ig
.
4
.
F
ra
g
m
en

t
o
f
th
e
ex
p
la
in
ed

p
ro
o
f.


	Safe Temperature Regulation:  Formally Verified and Real-World Validated

