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ABSTRACT

In non-iterative serial co-simulation, the solution sequence of the systems is ordered either ad-hoc or based
on the solution priorities. The selection of the priorities determines which systems approximate the up-
coming inputs from connected systems. This input estimation causes an error on the time integration of
the states. This article discusses indicators to estimate the extent of input estimation contribution on the
overall state calculation error and addresses to the question if the solution sequence has an influence on the
state evolution. Moreover, a temporal analysis of this effect is studied to predict when to flip the sequence
at an interface between two systems on a linear numerical example. In conclusion, an adaptive algorithm
which switches the co-simulation sequence run-time based on the input estimation accuracy is proposed and
validated with a parameter study.

Keywords: co-simulation, solution sequence, input estimation, state-space models.

1 INTRODUCTION

Co-simulation is a technique where the systems are divided into subsystems (Kübler and Schiehlen 2000),
based on accuracy, engineering domain, or IP protection concerns (Gomes et al. 2018). Each subsystem is
solved by a dedicated solver and the input/outputs at the interfacing connections are coupled in run-time.
Although the systems are solved independently between data exchange points, the frequency and the type
of coupling has a key role in terms of the accuracy of the solution.

In this paper, we will focus on the serial solutions with Gauss-Seidel coupling algorithms (Bastian et al.
2011). In the serial approach, the subsystems are solved sequentially and the subsystems are coupled after
each solution. The subsystem that completes its solution and sends the output data to the connecting sub-
systems. The input data are updated only at the communication points. If the communication step size is
long with respect to the frequency of system dynamics, the accuracy of the solution reduces due to the usage
of outdated inputs. The problem can be remedied by increasing the frequency of communication at time
periods where input/output signals are volatile. However, increasing the number of communication points
increases the time to solution significantly.
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Another way to reduce the solution error is to predict the input values and their trajectories until the next
communication point. An accurate estimation of the inputs will lead to accurate solutions. When there
is no information about the input values in the next communication point, the history of inputs is used to
extrapolate the upcoming input values. The subsystems solved later in the solution sequence receives the
input of the next communication points and able to interpolate the inputs for estimation.

Researchers have shown empirically in (Gomes et al. 2019) that co-simulation results can be highly sensitive
to which subsystem is solved first. Earlier, the works study the stability of different co-simulation algorithms
(Arnold 2010, Schweizer, Li, and Lu 2015, Busch 2016, Schweizer, Lu, and Li 2016, Andersson 2016,
Gomes et al. 2018). In Section 2, we present an empirical evidence of this effect.

In this paper, we show the difficulties of predicting the best solution sequence and propose a new orches-
tration algorithm that adaptively adjusts the solution sequence to minimize the co-simulation error. The
algorithm is restricted to co-simulations involving two subsystems, and it uses our extension of the well-
known error estimation technique called Milne’s Device, from traditional numerical simulations (Fatunla
2014). We show that it performs well with a simple, yet representative running example.

In Section 2, we show that it is possible to reduce the error by changing the solution sequence, and introduce
our research question: what determines the best sequence in a connection between two subsystems? In
Section 3, show that the best sequence changes over time. In Section 4, different error estimators are tested
and our adaptive algorithm is proposed. Section 5 describes the related work, and Section 6 summarizes and
discusses the main contributions and limitations of our work.

2 THE EFFECT OF THE SOLUTION SEQUENCE SELECTION

In this section, we investigate the effect of the solution sequence on co-simulation error. The user must
assign a solution sequence at the beginning of the serial co-simulation. A two-system architecture, with
two possible solution sequences, will be considered to simplify the problem and focus the attention on
a single connection. The system that is solved first extrapolates the inputs, whereas the system that is
solved last interpolates the inputs. The system that interpolates the inputs will produce more accurate results
than the other owing to better estimation of the inputs, as Figure 1a illustrates. If the solution sequence is
reversed, this trend will also be reversed. The above motivates an important question: are the two algorithms
equivalent in terms of introduced co-simulation error? If not, which one is better?
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Figure 1: (a) Linear extrapolation vs interpolation, (b) Linear example: two-mass-spring-damper system.

Consider the system consisting of two linear mass-spring-damper subsystems, illustrated in Figure 1b, to
make the explanation concrete. The two mass-spring-dampers (MSD) are connected to rigid walls and
coupled with a spring-damper. Subsystem 1, MSD1, acts as an inert system by inputting the coupling force
from Subsystem 2, MSD2, and outputting displacement and velocity to Subsystem 2. The parameters of the
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MSD1 are m1 = 1kg, c1 = 1N/m, d1 = 1Ns/m denoting the mass, the spring and the damper of subsystem 1,
respectively. The parameters of the MSD2 are m2 = 1kg, c2 = 1N/m, d2 = 1Ns/m, cc = 1N/m, dc = 1Ns/m
denoting the mass, the spring and the damper of subsystem 2, and the spring and the damper connecting the
two masses, respectively. The given parameter values will be denoted as the parameter set A.

As the springs and the dampers of subsystems are linear, the dynamics of the systems are formulated with a
linear state-space representation. This means each sub-system can be formulated as

ẋ = Ax+Bu, y =Cx+Du, (1)

where x,u and y denotes the state, input and output vectors, respectively.

The system can be co-simulated by the two possible solution sequence algorithms: (i) MSD1 → MSD2
(MSD1 solved before MSD2), and (ii) MSD2 → MSD1, shown in Figure 2. By strongly coupling inputs
and outputs of the systems and substituting them into subsystem state-space equations in Equation (1), we
can obtain the analytical solution of the system and use it as the reference solution for error calculation. The
states of MSD1 and MSD2 are the displacements x1,x2 and the velocity v1,v2 of the mass on the left and
right, respectively. For this given example, the mass on the left is perturbed by 1m initially, so the initial
conditions of the given example are x1 = 1m, v1 = 0m/s, x2 = 0m, v2 = 0m/s.

Algorithm 1 MSD1→MSD2
1: doStep(S1,H)
2: x1

′← getOut(S1,x1)
3: v1

′← getOut(S1,v1)
4: setIn(S2,x1,x1

′)
5: setIn(S2,v1,v1

′)

6: doStep(S2,H)
7: Fk

′← getOut(S2,Fk)
8: setIn(S1,Fk,Fk

′)

Algorithm 2 MSD2→MSD1
1: doStep(S2,H)
2: Fk

′← getOut(S2,Fk)
3: setIn(S1,Fk,Fk

′)

4: doStep(S1,H)
5: x1

′← getOut(S1,x1)
6: v1

′← getOut(S1,v1)
7: setIn(S2,x1,x1

′)
8: setIn(S2,v1,v1

′)

At time t:
doStep(S1,H): Calculates the states of

S1 up to time t +H
getOut(S1,y): Gets the latest y value

in S1 as output
setIn(S1,u,y): Sets the latest y value

to u value in S1

Figure 2: Possible algorithms.

Figure 3a shows the absolute error in v1 for the two algorithms shown in Figure 2 with respect to the ana-
lytical solution, εx = |x− xref |, and clearly indicates that one algorithm is superior to the other for the given
example. Figure 3a motivates the need for choosing the right algorithm, but, as one can see from the results
at around time 1.8, there are brief moments where the title of best algorithm changes. In fact, by changing
the parameters of the system (m1 = 100kg, cc = 100Ns/m), we obtain results that emphasize the impor-
tance of adaptively choosing the right algorithm, see Figure 3b. Let the modified set of parameter values be
the parameter set B. The best algorithm with minimum co-simulation error fluctuates at the beginning, but
decisively becomes MSD1→MSD2 sequence for the parameter set B after 2.3 seconds.

Not only are the system parameters influential on the results, but also the determination of the initial condi-
tions. If we set the initial conditions differently, such as perturbing the initial location of the m2 instead of
m1, [x1,x2] = [0,1]m, the state error changes significantly, see Figure 4. In summary, the system parameters
and the initial conditions are both highly effective on the results and the selection of the best co-simulation
sequence because they change system dynamics.

3 ERROR ESTIMATION

The state errors in the previous section show the need for adaptive master algorithms based on comparing
the results of different co-simulation sequences with the analytical solution of the system. In this section,
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(a) Parameter set A.
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(b) Parameter set B.

Figure 3: Error in state variable v1 with respect to different system parameters.

we find an error estimator in order to evaluate how the states are affected by the sequence selection. The
input error with respect to the analytical solution is calculated as εu = |u− uref |, where u and uref are the
input value at a certain time in co-simulation solution and analytical solution, respectively.

In order to examine the effect of the inputs to the subsystems, we need to make the input values of the
two subsystems comparable. The normalization is an alternative that makes the values dimensionless, and
thus comparable, however, the effect of the rate of change in inputs to the evolution of the states cannot be
measured by normalization. For this reason, we convert the inputs to a unidimensional external force value
for each system, fext in Equation (2) to compare the input values at the each side of the connection and
measure their effect on the states.

miẍi +diẋi + cixi = ( fext)i where i = [1,2]. (2)

The input value for the MSD1 subsystem is the force value directly outputted by the MSD2 subsystem,
Fdirect = Fc, and the input value for the MSD2 subsystem is calculated indirectly from the outputted states
of MSD1 multiplied with the coupling parameters, Findirect = dcv1 +ccx1. When we calculate the input error
for both co-simulation sequences with system parameter set B in Figure 5, a good correlation with state
errors is observed in Figure 3b. However, obtaining an analytical solution is either impossible or infeasible
in most practical applications. Therefore, we must devise another way to estimate the error.

In the previous section, we indicated that the major difference between the two subsystems is how the inputs
are estimated within a communication time step. As the input error with respect to the analytical solution
has a good correlation with state errors, we can estimate the co-simulation error with the accuracy of the
input estimation for each co-simulation algorithm. As we use linear extrapolation/interpolation through the
communication step, the input estimation error is calculated by

εn = un− ūn(un−1,un−2), (3)

where un and ūn the actual input and the estimated input at nth communication time step. The linear input
estimation, ūn, is done in the previous communication point, tn−1 by taking un−1 and un−2 into consideration
for extrapolation. For interpolation, there is no estimation error because the estimated input is equal to the
actual input, ūn = un. Only comparison to be made is between the extrapolation errors of the two solution
sequence algorithms MSD1→MSD2 and MSD2→MSD1, see Figure 6a.
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(a) x1 = 1, x2 = 0 in m.
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Figure 4: Error in state variable v1 in parameter set B, with respect to different initial conditions.
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Figure 5: Analytical error of the inputs converted to force.

The above-mentioned input estimation error formula might be a good local estimator, however, it does not
estimate how these local errors accumulate and affect state calculation in (1). Therefore, we need a better
global estimation technique for co-simulation error. To obtain the global input estimation error, we use a
similar technique to global truncation error in (Süli and Mayers 2003) as follows:

e0 = ε0, e1 = ε1H0 + e0J(H0), · · · en = εnHn−1 + en−1J(Hn−1), (4)

where en denotes the global input estimation error at tn. The parameters Hn and εn denotes the communica-
tion step size between [tn, tn+1] and local input estimation error at tn calculated in Equation (3), respectively.
Jn represents the Jacobian at tn which is the partial derivative of the solution xn+1 to Equation (1) over the
interval tn→ tn+1, with respect to input vector, J(Hn) =

∂xn+1
∂un

= BHn.

The global input estimation error is shown for the linear example for the parameter set B in Figure 6b. As
can be seen, the global error is a better estimate of the error in Figure 3b than the local error. It also provides
a better match with the analytical input errors, see Figure 5, when estimating the extrapolation errors. As
the input estimation error is fluctuating, a linear Savitzky–Golay filter with a window size of 50 data points
is used to smoothen the global input estimation error plot (Savitzky and Golay 1964). The filtered global
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input estimation error of MSD2→MSD1 begins to exceed MSD1→MSD2 sequence at t = 3.4s which is
fairly close prediction to co-simulation error with t = 2.3s.
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(a) Local input estimation error.
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(b) Global input estimation error.

Figure 6: Input estimation error for parameter set B.

4 OPPORTUNITY COST FOR DETERMINATION OF THE SOLUTION SEQUENCE

In the previous section, we presented an error estimator, the global input estimation error, to predict when to
switch the solution sequence to reduce the state error. However, the simulation has to be run for each possible
co-simulation sequence to be able to predict the sequence and when to switch. We need a methodology that
starts from an initial sequence and decides to switch or stay at a co-simulation sequence by estimating
the change in accuracy for each scenario. In this section, we will introduce a method that calculates the
opportunity cost of switching the sequence and decides the co-simulation sequence at run-time.

The input estimation error is calculated only at the first solved subsystem that extrapolates the inputs for
estimation. For the subsystem solved last, which interpolates the inputs within communication steps, a
hypothetical error is calculated as if the subsystem were extrapolating the inputs, see Figure 7. With the
help of this error, we can evaluate and compare the opportunity cost of the scenarios, to switch or to stay.

u

tti-1 ti ti+1

hypothetical estimation
current estimation 

ε

For interpolating system

current estimation
hypothetical estimation 

For extrapolating system

ui-1

ui
ui+1 = (uint)i+1

(uext)i+1

Figure 7: Hypothetical input estimation error when switching the sequence.

Suppose that we select MSD1 → MSD2 solution sequence in linear example in ??. In this case, MSD1
subystem extrapolates the force input, Fc, from MSD2 subsystem and MSD2 subsystem interpolates the
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displacement vector, [x1,v1], from MSD1 subsystem. For this solution sequence, the actual input estimation
error comes from the extrapolation error inflicted at the coupling force, Fc. The selected hypothetical error
occurs at the displacement vector assuming that we switch the solution sequence. To make the actual and
the hypothetical error comparable, we convert the motion values to forces by multiplying with the coupling
parameters as in Equation (2).

The input estimation errors are calculated based on the opportunity cost approach for each co-simulation
sequence, see Figure 8. The method is validated as the hypothetical error matches with the actual of the
other co-simulation sequence for both algorithms. The method gives fluctuating advice between the two
algorithms at the beginning, but it leans towards the MSD1→MSD2 sequence after 4 s.
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t [s]
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10 3

lo
g 

F(
N)

MSD1->MSD2 F direct (Actual)
MSD2->MSD1 F indirect (Actual)
MSD1->MSD2 F indirect (Hypo)
MSD2->MSD1 F direct (Hypo)

Figure 8: Opportunity cost calculation for each co-simulation sequence.

An adaptive algorithm that switches the co-simulation sequence is developed based on the accuracy of
the estimators shown in Section 3. The algorithm compares the actual and the hypothetical error at each
communication point and switches to the alternative sequence if the hypothetical error is lower than the
actual error. The switching operation is done by determining the priority of the subsystems at each end of
the connection and passing the solution sequence to the master orchestrator, see Figure 9. When we run
the linear example with the adaptive algorithm for the parameter set B, the results show that the adaptive
algorithm switches to the solution sequence with lower state error and avoids instability, see Figure 10.

v1, x1
MSD1

Fk
MSD2

error_fk_direct: Real error_fk_indirect: RealSwitchingDecision

priority: Bool priority: Bool
best_order : bool

Figure 9: Adaptive algorithm that switches the co-simulation sequence at a connection.
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Figure 10: Adaptive co-simulation sequence algorithm for parameter set B.

Considering the effect of the system parameters and initial conditions on the best co-simulation sequence, we
did an extensive parameter study to validate the adaptive algorithm. In order to cover a wide spectrum, each
parameter was randomly sampled three times, between [0.1,1.0] (for masses) or [0,1.0] (for other system
parameters), totalling 38 = 6,561 experiments. Each experiment comprises three co-simulations: two with
static alternative solution sequences, and one with the adaptive algorithm. The analytical error is computed
once as a reference for the scoring.

The accuracy of the best co-simulation sequence selected by the adaptive algorithm at each time step is
scored by the following formula

(εsol)n =
∣∣(v1sol)n− (v1ref )n

∣∣
(εmin)n = min((εsol)n), where sol = [MSD1→MSD2, MSD2→MSD1, adap]

(εmax)n = max((εsol)n), where ref = [analytical]

score = mean
(
(εmax)n− (εadap)n

(εmax)n− (εmin)n

)
.

(5)

The scoring is maximum (=1) when the adaptive algorithm always selects the best co-simulation sequence.

We kept the score of the 6561 simulations with the adaptive algorithm using the local and global input
estimation error as the indicator of the state errors. The mean and median score using the global input
estimation error are 0.985 and 0.987, respectively, with a standard deviation of 9.4e-3, whereas the mean
and median score using the local input estimation error are 0.154 and 0.136, respectively, with a standard
deviation of 9.9e-2. The parameter study results show that although the adaptive algorithm using local input
estimation error performs poorly, the adaptive algorithm using global input estimation error successfully
selects the best solution sequence at any time during the simulation.
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5 RELATED WORK

Many works exist that share our goal: reducing the co-simulation error by changing the co-simulation
sequence or communication step size. We can classify these works into two main sets: the algorithms that
adapt depending on the co-simulation error measured during the co-simulation (adaptive), and those that
optimally configure the co-simulation settings before running it (non-adaptive).

The majority of adaptive co-simulation methods include master algorithms that adjust the communication
step size based on some error metric, in contrast to our algorithm which adjusts the co-simulation sequence.
They can be grouped according to the approach that they follow to estimate the error:

Richardson extrapolation: The essential idea is to compare the results of two co-simulations: one that runs
twice the frequency of the other (Arnold et al. 2014, Arnold et al. 2014, Galtier et al. 2015).
Multi-Order Input Extrapolation: The outputs of two different order input approximation methods are
compared (Busch and Schweizer 2011, Inci et al. 2019).
Parallel Embedded Method: Runs a traditional adaptive step size numerical method in parallel with the
co-simulation (Hoepfer 2011). The purpose is to piggyback on the auxiliary method for the decisions on the
step size.
Conservation Laws: The local error is estimated based on the deviation from a conservation law in physics
at power bonds. The magnitude of the energy residual at the start and at the end of a co-simulation step
serves as an estimate of the local error (Sadjina and Pedersen 2016, Benedikt et al. 2013). An advantage
shared with our proposed technique is that it does not require a rollback.

In the category of non-adaptive master algorithms, notable works are presented in (Benedikt and Holzinger
2016, Holzinger and Benedikt 2019b, Holzinger and Benedikt 2019a, Oakes et al. 2021, Gomes et al. 2019,
Hansen et al. 2021). Here, the main theme is to formulate a constrained optimization problem of which the
cost function is an approximation of the error made by a specific choice of co-simulation algorithm. While
these works differ from our work, it is worth noting that they can be used with our proposed method to
combine some offline reasoning with online adaptation.

6 CONCLUSION AND DISCUSSION

We showed that the solution sequence of a serial co-simulation has a high impact on the accuracy of the sim-
ulation and that the best solution sequence is not static, but changes over simulated time. These phenomena
are caused by the selection of the input estimation method, which system is interpolating or extrapolating.
Therefore, we used input estimation error as an indicator of co-simulation error. In order to take the input
estimation error into account in state calculation and accumulate the effect of the input estimation error, we
formulate the global input estimation error. Using this error indicator, we developed an adaptive algorithm
that switches the solution sequence by comparing the actual error and the hypothetical error. A parameter
study is carried out in a large set of simulations to validate the robustness and the accuracy of the proposed
algorithm with different system parameter values. The results show that the proposed algorithm has high
accuracy switching to the best solution sequence consistently. The reproducibility package for this paper is
available online1.

Our proposed algorithm, implemented in the MaestroV2 framework (Thule et al. 2020)2, always takes
a predictable amount of wall clock time to advance in simulated time. The disadvantage is that there is
a minimum bound on the error because changing the order does not replace the benefits of adjusting the
communication step size. Hence, a practical implementation would use to combine both kinds of algorithms.

1https://overture.au.dk/digitaltwin/papers/2021.ANNSIM.AdaptiveMasterMSDResults.zip
2https://github.com/INTO-CPS-Association/maestro

https://overture.au.dk/digitaltwin/papers/2021.ANNSIM.AdaptiveMasterMSDResults.zip
https://github.com/INTO-CPS-Association/maestro
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Moreover, the error calculation requires the nature of the couplings between subsystems to be known, and
that the Jacobian of the subsystems are provided.

We only focused on the solution sequence at a single interface between two subsystems. As future work,
we plan on tackling realistic co-simulation scenarios with multi-physics subsystems, and extending the joint
spectral radius analysis to study the stability of adaptive MAs, as was done in (Gomes et al. 2018, Gomes
et al. 2018).
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