
Co-simulation at Different Levels of Expertise with Maestro2

Simon Thrane Hansena,∗, Casper Thulea, Cláudio Gomesa, Kenneth Guldbrandt Lausdahla, Frederik Palludan
Madsena, Giuseppe Abbiatib, and Peter Gorm Larsena

aDepartment of Electrical and Computer Engineering, Aarhus University, Åbogade 34, Denmark
bDepartment of Civil and Architectural Engineering, Aarhus University, Inge Lehmanns Gade 10, Denmark

Abstract

When different simulation units are coupled together there are different choices to take, in particular regarding the
granularity of such a co-simulation. When prototyping systems, it is typically favourable to get an initial idea of
how a collection of simulation units work together without spending too much time setting up the orchestration.
However, the granularity of such a simulation may be far away from what is needed in relation to the purpose of the
simulation. In order to enable more flexibility and control over the co-simulation it is necessary to be able to steer the
orchestration in a more detailed manner. This paper presents an open source co-simulation orchestration engine based
on the Functional Mockup Interface standard but with a Domain Specific Language (DSL) enabling detailed control
between the individual simulation units. The same tool can thus be used right out of the box for low-granularity
co-simulation, and for high-granularity simulation the DSL enable a significant flexibility.

Keywords: co-simulation framework, domain specific language, functional mockup interface standard

1. Introduction1

Co-simulation is a technique for simulating complex2

systems by combining multiple simulation tools into a3

single simulation Kübler and Schiehlen (2000b); Gomes4

et al. (2018b)5

Interoperability between simulation tools is achieved6

through the use of Functional Mock-up Units (FMUs)7

defined by the Functional Mock-up Interface (FMI)8

standard Committee (2014, 2021). An FMU encapsu-9

lates a Simulation Unit (SU) by providing a standard-10

ised interface of inputs, outputs, and functions to let11

a co-simulation framework control the simulation of a12

coupled system of FMUs, referred to as a scenario. A13

scenario is obtained by coupling inputs and outputs of14

the FMUs in the scenario, as illustrated in Figure 1. A15

coupling denotes that the output FMU’s state influences16

the input FMU’s state. Figure 1 depicts a scenario with17

two coupled FMUs of a coupled mass-spring-damper,18

similar to a later example in Section 4.19

A co-simulation framework executes the scenario by20

computing the joint behaviour of the system by coor-21

dinating the execution of the FMUs in the scenario ac-22

∗Corresponding author
Email address: sth@ece.au.dk (Simon Thrane Hansen)

MSD1 MSD2

Figure 1: A co-simulation scenario with two SUs MSD1 and MSD2

representing a coupled mass-spring-damper system. The SUs are rep-
resented as rectangles, and the arrows f1 and f2 denote the connec-
tions between the SUs.

cording to an orchestration algorithm (OA). The OA de-23

scribes how stimuli are exchanged between the FMUs24

in the scenario and how the state of the FMUs evolves25

over the course of the co-simulation. Although the OA26

is not part of the FMI standard, it is a critical component27

of a co-simulation framework, as studies have shown28

that the OA can significantly affect the accuracy of29

co-simulation results Busch (2016); Kalmar-Nagy and30

Stanciulescu (2014); Schweizer et al. (2015); Arnold31

(2010); Gomes et al. (2018e); Schweizer et al. (2016);32

Andersson (2016); Hansen et al. (2021b). To obtain ac-33

curate co-simulation results, the OA must be tailored34

to the scenario and the characteristics of the FMUs it35

contains, as illustrated in Figure 2, which compares the36

results of two different OAs for the scenario presented37

in Figure 1 with its analytical solution. Both OAs are38

compliant with the FMI standard, but the results differ39

Preprint submitted to Simulation Modeling Practice and Theory January 19, 2024

c1 = d1 = m1 = 0.2 c2 = d1 = m1 = 0.2

Algorithm 3
Algorithm 2

Algorithm1
Algorithm2
Analytical Solution

Figure 2: Comparison of the results of two different OAs for the sce-
nario in Figure 1 with its analytical solution. The step size used in the
co-simulation is 0.1 s.

significantly.40

Figure 2 shows that the OA significantly affects the41

accuracy of the co-simulation results and suggests that42

the OA should be carefully designed to minimise the43

error in a co-simulation. Similar results have been44

reported in Busch (2016); Kalmar-Nagy and Stanci-45

ulescu (2014); Schweizer et al. (2015); Arnold (2010);46

Gomes et al. (2018e); Schweizer et al. (2016); An-47

dersson (2016); Hansen et al. (2021b), where the au-48

thors show empirically that co-simulation results can be49

highly sensitive to the order in which the FMUs are sim-50

ulated and how they exchange data.51

The sensitivity can be attributed to several factors,52

but can be summarised as follows: The discrete na-53

ture of co-simulation, where data is exchanged between54

FMUs at discrete points in time, called communication55

points, can be challenging for FMUs representing con-56

tinuous processes. Such FMUs typically rely on nu-57

merical solvers (variable step or fixed-step) to advance58

in simulated time and use a variety of approximation59

techniques, such as extrapolation and interpolation, to60

reason about the values of the FMU’s inputs between61

communication points Kübler and Schiehlen (2000a);62

Gomes et al. (2018b). The approximation techniques63

used by the FMUs impose constraints on the OA in-64

teractions, dictating the order in which the FMUs are65

simulated and how they exchange data to account for66

the characteristics of the FMUs Gomes et al. (2019b);67

Hansen et al. (2022b).68

To address these challenges and cater to a wide69

range of application domains, a co-simulation frame-70

work should strike a balance between allowing experts71

to customise the OA and providing synthesised OAs to72

new users, while trying to minimise the overhead of or-73

chestrating the co-simulation. This balance empowers74

experts to fine-tune the OA to minimise co-simulation75

error, while enabling new users to quickly start co-76

simulating without having to delve into intricate details.77

Unfortunately, to the best of our knowledge, there is78

a lack of open source co-simulation frameworks that79

offer such flexibility without compromising on usabil-80

ity and performance. As a result, users who wish81

to customise/fine-tune the OA to accommodate the id-82

iosyncrasies of the SUs, or researchers who wish to ex-83

periment with novel co-simulation algorithms, are left84

with having to develop their own OA from scratch using85

low-level co-simulation libraries. Developing an OA for86

a large scenario is a time-consuming task that requires87

the user to spend many hours laying the groundwork88

before they even reach the point where they can tune89

their co-simulation, as the user must code all interac-90

tions with the SUs.91

In summary, there is a need for a co-simulation92

framework that provides flexibility while maintaining93

customisability, expressiveness, verifiability, and speed.94

Such a framework should strike a balance between pro-95

viding experts with customisable OAs and providing96

new users with synthesised OAs, allowing different lev-97

els of granularity for co-simulation practitioners at all98

levels of expertise.99

Contribution. To address the above issues, we propose100

an open source co-simulation framework called Mae-101

stro2, which leverages the latest advances in OA synthe-102

sis Gomes et al. (2019b); Hansen et al. (2022b) to enable103

rapid development of customisable OAs and use code104

generation to enable high-performance co-simulations.105

Specifically, Maestro2 provides different levels of gran-106

ularity to describe the co-simulation scenario and the107

OA, ranging from a high level of granularity suitable108

for prototyping and new users, to a lower level DSL109

that describes the OA in detail, suitable for experts fine-110

tuning the OA to accommodate the idiosyncrasies of the111

FMUs.112

Thus, the main contribution of this manuscript is the113

co-simulation framework Maestro2, which enables the114

different levels of granularity to support co-simulation115

practitioners with different levels of expertise. The116

manuscript also presents the results of the application117

of Maestro2 in two case studies.118

Prior Work. This manuscript represents the complete119

implementation of the idea originally proposed in Thule120

et al. (2020) to maximise reuse among co-simulation121

frameworks. Since then, Maestro2 has been used in sev-122

eral case studies and research projects (see Section 4).123

2

Among other, Maestro2 has been used to experiment124

with different approaches for handling algebraic loops125

during the initialisation of a co-simulation Hansen et al.126

(2021c). While the above works introduce Maestro2,127

none of them introduces the Maestro2 approach in de-128

tail, showcasing how it empowers users of different lev-129

els of expertise and with different needs to perform co-130

simulations. The Maestro2 approach is the main contri-131

bution of this manuscript.132

Structure. The remainder of this manuscript is struc-133

tured as follows: The next section introduces the main134

concepts used throughout the manuscript, including the135

FMI standard, the concept of co-simulation, and the136

concept of orchestration algorithms. Then, Section 3137

presents the Maestro2 approach and how it enables dif-138

ferent levels of granularity. Section 4 summarises a case139

study where Maestro2 has been applied and Section 5140

discusses related work. Finally, Section 6 details future141

work and concludes the manuscript.142

2. Background143

This section serves as an introduction to the funda-144

mental concepts of co-simulation, the FMI standard,145

and OAs, and provides an overview of the problem146

we aim to address. However, due to the breadth147

and complexity of co-simulation and the FMI stan-148

dard, and the interested reader is referred to Gomes149

et al. (2018b,d) for a comprehensive introduction to150

co-simulation and Blochwitz et al. (2011); Committee151

(2014); Gomes et al. (2021b) for the FMI standard.152

The notation and definitions introduced in this section153

are adopted from Gomes et al. (2019a); Hansen and154

Ölveczky (2022).155

2.1. Co-simulation156

Co-simulation is a technique that enables the global157

simulation of a system composed of several black-box158

SUs, typically developed individually or exported from159

different tools (Kübler and Schiehlen (2000b); Gomes160

et al. (2018b)). An SU models the behaviour of a dy-161

namic system consisting of inputs and outputs, the state162

of the system, and a set of functions to provide stimuli163

to the system (by setting the inputs), to retrieve the state164

of the system (by getting the outputs), and to evolve the165

state of the system in simulated time (by stepping the166

model).167

The evolution of an SU is governed by a set of evolu-168

tion rules described by differential and algebraic equa-169

tions that define how the state of the system changes170

in response to stimuli and the current state of the sys-171

tem. The behaviour trace of an SU is a function that172

maps time to state, and the evolution rules are typically173

obtained using a numerical solver that discretizes the174

continuous-time model of the SU into a discrete-time175

model (a trace that maps time to state), allowing the176

simulation of the SU in discrete time steps.177

A formal definition of an SU is given in Definition 1,178

where the evolution rules are captured by the function179

doStepc, which advances the state of the SU in simu-180

lated time. In addition, the function doStepc returns a181

step size to accommodate those SUs that use numerical182

solvers with variable step lengths or implement error es-183

timation mechanisms. These SUs may conclude that a184

step size of H will result in an intolerable error.185

Definition 1. An SU with identifier c is represented by186

the tuple
〈
S c,Uc,Yc, setc, getc, doStepc

〉
, where:187

• S c represents the state space.188

• Uc and Yc the set of input and output variables,189

respectively.190

• setc : S c ×Uc ×V → S c and getc : S c ×Yc →V191

are functions to set the inputs and get the outputs,192

respectively (we abstract the set of values that each193

input/output variable can take asV).194

• doStepc : S c × R>0 → S c × R>0 is a function195

that instructs the SU to compute its state after a196

given time duration. If an SU is in state s(t)
c at time197

t, (s(t+h)
c , h) = doStepc(s(t)

c ,H) approximates the198

state s(t+h)
c of the corresponding model at time t+h,199

with h ≤ H.200

A collection of SUs can be coupled to form a co-201

simulation scenario by connecting the outputs of one202

SU to the inputs of another SU (see Definition 2). A203

coupling means that the state of one SU always depends204

on the state of another SU - this is called a coupling205

restriction and can be thought of as a system invariant,206

which says that the values of the coupled inputs and out-207

puts must always be equal. Nevertheless, the coupling208

restrictions are only satisfied at specific points in time,209

called communication points, when the SUs exchange210

data. The SUs try to compensate for the inconsistency211

between the communication points by making assump-212

tions about the evolution of the values on their inputs.213

Obviously, these assumptions can cause a significant er-214

ror in the co-simulation for large intervals between the215

communication points. In fact, they can be the main216

source of error (Arnold et al. (2014)), so it is essential to217

fine-tune the OA to account for the characteristics of the218

SUs. The characteristics of these approximation func-219

tions are captured by the function R, see Definition 2.220

3

The function R links each input to indicate whether the221

input SU expects the coupled output to be simulated be-222

fore or after the input SU itself.223

Definition 2 (Scenario). A scenario is a structure224

⟨C, L,R⟩, where225

• C is a finite set (of SU identifiers).226

• L is a function L : U → Y, where U =
⋃

c∈C Uc227

and Y =
⋃

c∈C Yc, and where L(u) = y means that228

the output y is coupled to the input u.229

• R : U → B is a predicate, which describes the230

SUs’ input approximation functions. R(u) = true231

means that SU c expect the SU d of the output y232

coupled to u to be simulated before c. similarly,233

R(u) = false means that SU c expect the SU d of234

the output y coupled to u to be simulated after c.235

To illustrate the concepts introduced in Definitions 1236

and 2, consider the scenario in Figure 3 and the cor-237

responding behavioural trace shown in Figure 4. The238

scenario consists of two SUs, a controller SU and239

a tank SU, and two couplings, one from the output240

valve state of the controller SU to the input valve241

state of the tank SU, and one from the output water242

level of the tank SU to the input water level of the243

controller SU. Each SU has some parameters (e.g. max244

level and min level) which are used to configure the245

simulation. The function R is omitted from the scenario,246

as it is not part of the FMI standard, and is discussed in247

Section 2.2.248

The controller SU is a simple controller that opens249

or closes a valve based on the current water level, and250

the tank SU is a simple tank that keeps track of the cur-251

rent water level based on the flow of water in and out252

of the tank through the valve. The behaviour trace of253

the scenario is in Figure 4 and is obtained by simulating254

the scenario from time 0 to 10 seconds. The trace is the255

function σ that maps time to the state of the scenario,256

i.e. σ(t) =
〈
s(t)

c | c ∈ C
〉
.257

The co-simulation error is the difference between the258

simulated behaviour of the scenario and its ideal be-259

haviour, i.e. the behaviour obtained by simulating the260

scenario with an infinitely small step size or by solving261

the differential equations analytically, which is gener-262

ally not possible.263

The simulation of a scenario is controlled by the OA,264

which is the algorithm coordinating the execution of the265

SUs in the scenario to obtain the joint behavioural trace266

of the system. The OA comprises multiple stages, in-267

cluding everything from loading the SUs to terminating268

the simulation and performing the co-simulation by in-269

voking the setc, getc, and doStepc functions defined270

Controller
SU

Tank SU

Y: valve

U: valve Y: level

U: level

P: maxlevelP: minlevel

P: initial levelP: Parameter
U: Input
Y: Output

Figure 3: The the co-simulation scenario of the water tank example
illustrated as a block diagram. The scenario is adapted from Mansfield
et al. (2017).

Figure 4: The behavioural trace of the Water Tank example shown
as a plot of the water level and valve state over time for a simulation
from 0 to 10 seconds with a step size of 0.1 seconds. The scenario is
adapted from Mansfield et al. (2017).

in Definition 1. The stages of a typical OA are sum-271

marised in Figure 5, the colours are used to visually272

distinguish the three overarching phases of the OA: ini-273

tialisation, simulation, and termination. The initial set274

of phases Start, Instantiate, Setup and Initialise are ex-275

ecuted once before the simulation starts and are respon-276

sible for loading the SUs, creating instances, setting ini-277

tial parameters, and computing the initial state of the278

SUs, respectively. The initialisation is followed by the279

simulation loop, which consists of the Step and Plotting280

stages, which are responsible for advancing the SUs in281

simulated time and reporting results. Finally, the stage282

Free releases resources and terminates the simulation.283

Many articles Broman et al. (2013a); Hansen et al.284

(2022b); Gomes et al. (2018a) on OAs do only consider285

the Initialise and Step stages, as these are the most crit-286

ical for the correctness of the co-simulation results and287

constitutes the phases where the OA interacts with the288

4

SUs using the setc, getc and doStepc functions de-289

fined in Definition 1. These phases are concerned with290

satisfying the coupling restrictions and ensuring that the291

SUs move in lockstep, i.e. that the SUs are synchronised292

with respect to simulated time.293

Instantiate Setup

Initialise Step

Plotting

Free

Figure 5: Generic OA structure. Each round rectangle represents a
stage in the execution of the OA. For instance, the plotting stage will
query the outputs of the SU and record them in a CSV file. Adapted
from Thule et al. (2020).

For a better understanding of the OA stages Ini-294

tialise and Step, consider the scenario in Figure 3. The295

parameters (minimum water level, maximum water296

level and initial level) of the SUs are set in the297

Initialise stage, after which the initial state of the SUs298

is calculated by calling the functions get and set to299

get the valve state output from the controller SU and set300

it to the valve state input on the water level SU. Then301

the water level output from the tank SU is assigned to302

the water level input on the controller SU. The simula-303

tion then begins. The outputs are retrieved and logged at304

time 0 in the Plotting step. The Step stage uses an algo-305

rithm similar to the algorithm shown in Algorithm 1 to306

compute new states for the SUs by calling the doStep307

function and to exchange data between the SUs by call-308

ing the get and set functions.309

Algorithm 1 Step algorithm for the watertank sce-
nario in Figure 3.

1: doStep(tank,0.1) ▷ Advance the tank SU by 0.1s
2: level′ ← getOut(tank,level) ▷ Get water level of tank
3: setIn(ctr,level,level’) ▷ Set water level on controller
4: doStep(ctr, 0.1) ▷ Advance the controller SU by 0.1s
5: valve′ ← getOut(ctr,valve) ▷ Get valve state of

controller
6: setIn(tank,valve,valve′) ▷ Set valve state on tank

310

Algorithm 1 shows the order in which the SUs are311

simulated and how and when data is exchanged between312

the SUs. The algorithm advances the tank SU by 0.1313

second, retrieves the water level from the tank SU, sets314

the water level on the controller SU, advances the con-315

troller SU by 0.1 second, retrieves the valve state from316

the controller SU, and sets the valve state on the tank317

SU. We have deliberately omitted the error handling and318

logging of the outputs for brevity, nevertheless a prac-319

tical implementation of co-simulation will have to deal320

with such things. The Plotting stage is employed be-321

tween each iteration of the Step stage to log the outputs322

of the SUs (valve state and water level) at the323

current communication point. This process is repeated324

until the simulation is terminated, which in this case is325

when the simulation time reaches 10 seconds. Once the326

simulation is finished, the Free stage is invoked to re-327

lease resources and terminate the simulation.328

Due to the numerous modelling and simulation tools329

that are capable of producing SUs, and the many ad-hoc330

co-simulation implementations (Gomes et al. (2018c)),331

the community has proposed a standard for the SU inter-332

face: the Functional Mockup Interface (FMI) Blochwitz333

et al. (2011); Committee (2014); Gomes et al. (2021b)334

standard to enable interoperability between SUs.335

2.2. The FMI Standard336

The Functional Mock-up Interface (FMI) standard is337

a tool-independent standard for the exchange of models338

and co-simulation, originally developed during the Eu-339

ropean ITEA2 project called MODELISAR (Blochwitz340

et al. (2011)). The standard provides and describes a341

complied C-interfaces, the structure of a static descrip-342

tion file, called ModelDescription, and a way of packag-343

ing these into a zip file according to a predefined struc-344

ture. Consequently, a component that implements the345

C-interfaces according to the rules of the FMI standard,346

compiles its model into a dynamic/shared library, pro-347

vides a ModelDescription and packages these into a zip348

file according to a predefined structure, is called a Func-349

tional Mock-up Unit (FMU). FMUs can be exported350

from a variety of modelling and simulation tools, such351

as Dymola Brück et al. (2002), OpenModelica Fritz-352

son (2015), and Simulink. They can be imported into353

a co-simulation framework, such as INTO-CPS Larsen354

et al. (2016), to be integrated with other FMUs in a co-355

simulation scenario. This summarises the main purpose356

of the FMI standard, which is to enable interoperability357

between modelling and simulation tools by providing a358

standardised interface for SUs, which is essential for the359

simulation of CPSs.360

The ModelDescription file defines the interface of the361

FMU and contains, among other things, information362

about its inputs, outputs and parameters, called Scalar-363

Variables. Each ScalarVariable has a type, an identi-364

fier, a causality, and a variability constraining how the365

value of the ScalarVariable can be obtained and changed366

during the simulation using a set of functions, defined367

by the FMI standard, analogous to the setc, getc, and368

doStepc functions defined in Definition 1. The FMI369

standard defines a set of functions for getting and set-370

ting the values of ScalarVariables, e.g. fmi2GetReal371

5

for Real and fmi2GetInteger for Integer. The FMI372

standard also defines a function to advance the state of373

the FMU in simulated time, e.g. fmi2DoStep.374

Algorithm 1 shows how these FMI functions can be375

used to simulate the scenario in Figure 3. In Algorithm 1376

we have deliberately chosen to simulate the tank SU be-377

fore the controller SU to minimise the co-simulation er-378

ror. However, the FMI standard does not provide any379

means to specify such constraints, so the definition of380

a scenario according to the FMI standard does not in-381

clude the function R. Consequently, a co-simulation382

framework compliant with the FMI standard must ei-383

ther simulate the SUs in an arbitrary order or provide a384

mechanism for the user to specify the order in which the385

SUs are simulated. Our co-simulation framework pro-386

vides the latter approach, thus providing the user with387

more control over the co-simulation, which is essential388

for fine-tuning the OA to minimise the co-simulation er-389

ror.390

The FMI standard for co-simulation aims to capture391

the common denominator of co-simulation and there-392

fore strives for simplicity. However, this simplicity393

comes at a cost, as numerous studies (Gomes et al.394

(2019b); Oakes et al. (2021); Gomes et al. (2018e);395

Schweizer et al. (2015); Gomes et al. (2018a); Hansen396

et al. (2022b)) have shown how the accuracy of co-397

simulation results can be improved by tailoring the OA398

to the specific scenario by incorporating domain knowl-399

edge/implementation details of the SUs. For example,400

the OA can be adapted to take into account the imple-401

mentation of the SUs, e.g. whether an SU interpolates402

or extrapolates an input, which is not captured by the403

standard.404

By including such details, the OA can be adapted to405

improve the accuracy of the co-simulation results, as we406

show in Section 4. By incorporating such details, the407

OA can be customised to improve the accuracy of the408

co-simulation results, as we show in Section 4. Another409

limitation of the standard is in the context of network410

simulation, where the FMI export tool for the ns-3 net-411

work simulator supports simulation of purely discrete412

behaviour as it allows progression with 0 time (CES413

et al. (2021)), which is disallowed by the FMI standard1.414

Our goal is to provide a co-simulation framework415

that leverages both the strength of the FMI infrastruc-416

ture and community while at the same time providing a417

framework more flexible than the FMI standard, which418

has to target a vast audience. We aim to provide a frame-419

work that can be customised to support advanced co-420

simulation based studies by incorporating experimental421

1Section 4.4.2, page 105 (FMI (2020)).

features and research results to support co-simulation422

practitioners at all levels of expertise. In the long term,423

we aim to improve the co-simulation support for the fol-424

lowing simulation activities, each of which places spe-425

cific requirements on the co-simulation frameworks.426

Optimisation/DSE: Co-simulations are run as part of427

an optimisation loop, for example, in a Design428

Space Exploration (DSE) approach . This includes429

decision support systems, used, for example, in a430

digital twin (Glaessgen and Stargel (2012)) setting,431

where a modelled system is updated based on the432

operating system. Some of the specific require-433

ments include: the ability to define co-simulation434

stop conditions, the ability to compute sensitivity,435

high performance, fully automated configuration,436

faster than real-time computation.437

Certification: Co-simulation results can be used as a438

part of a certification endeavour. Requirements in-439

clude fully transparent, and formally certified, syn-440

chronisation algorithms.441

X-in-the-loop: Co-simulations include simulators that442

are constrained to progress in sync with the wall-443

clock time, because they represent human opera-444

tors or physical subsystems.445

Fault Injection: Co-simulations provide an additional446

test environment where all sorts of scenarios can447

be tested. Fault injection is a specific type of448

test where faults and other irregularities are in-449

jected into the system to investigate the system’s450

behaviour under such conditions.451

Last but not least, co-simulation tools have differ-452

ent audiences ranging between researchers, students,453

and industry from different domains. Each audience454

has different requirements and expectations from a co-455

simulation tool. At the same time, students and re-456

searchers are interested in transparency and customi-457

sation possibilities, while the industry is interested in458

plug-and-play, stable, scalable, and mature solutions459

with consumable interfaces. Consequently, we believe460

that the co-simulation framework, presented in the next461

section, meets the needs of all audiences by providing462

a low-level interface for students and researchers and a463

high-level interface for industry.464

3. Co-simulation with Maestro2465

This section describes the guiding principles behind466

Maestro2, namely the separation of concerns between467

the specification of a co-simulation and the execution of468

a co-simulation. The separation of concerns is achieved469

through the use of a Domain Specific Language (DSL)470

called MaBL, which specifies a co-simulation scenario471

6

that can be analysed, verified and optimised prior to ex-472

ecution. The section begins with a brief introduction to473

the Maestro2 framework before introducing the MaBL474

DSL and how it is used to describe and analyse a co-475

simulation scenario. Finally, the section shows how476

Maestro2 uses code generation to provide a performant477

and flexible co-simulation engine.478

3.1. Maestro2479

Maestro2 is a co-simulation framework based on the480

FMI standard. It is written in Java and is available as481

open source software (https://github.com/INTO-482

CPS-Association/maestro). Co-simulation is per-483

formed by executing a MaBL specification, a “C-like”484

DSL for specifying co-simulation scenarios. The speci-485

fication describes all the steps of the OA (see Figure 5),486

the FMUs involved and the connections between them.487

The general idea behind the invention and use of MaBL488

is to separate the specification of the OA from the ex-489

ecution of the OA. This need arises from the desire to490

analyse, verify and optimise the OA prior to execution,491

which was identified based on the experience with Mae-492

stro1 (Thule et al. (2019)).493

The Maestro2 approach, illustrated in Figure 6, can494

be summarised as follows: The user can either write a495

MaBL specification manually or generate it using one496

of the approaches described in Section 3.3. The MaBL497

specification is then fine-tuned and analysed by a range498

of expansion plugins, which also can be used to ex-499

pand the specification with additional functionality. Fi-500

nally, the MaBL specification is executed using either501

the MaBL interpreter or a code generator, which gener-502

ates a high-performance co-simulation engine in C++.503

Although Figure 6 depicts the Maestro2 approach as a504

linear process, it is possible to jump back and forth be-505

tween the different phases to fine-tune the specification.506

The following sections detail the different phases of507

the Maestro2 approach, starting with the specification508

phase. Nevertheless, before diving into these phases, we509

take a look at the MaBL DSL, the common denominator510

of the Maestro2 approach.511

3.2. Maestro Base Language (MaBL)512

The MaBL DSL is a “C-like” language that is used513

to specify a co-simulation scenario. A MaBL specifi-514

cation is a collection of modules, functions, and anno-515

tations that describe the OA. In the following, we give516

a brief introduction to the MaBL DSL using a series of517

small didactic examples. The reader can consult the on-518

line documentation for a more detailed description of519

the MaBL DSL (Association (d)).520

Each MaBL specification must contain a entity called521

simulation, which is the entry point of the specifica-522

tion. The simulation block (line 8 in Listing 1) con-523

tains a set of imports (lines 9-10), which are used to524

import so-called runtime modules, and a set of anno-525

tations (lines 11-13), which are used to configure the526

simulation environment available to expansion plugins527

within the simulation, which are described below. Run-528

time modules are treated in Section 3.2.1, whereas ex-529

pansion plugins are described in Section 3.3.1.530

A module definition can also be part of a MaBL531

file, as exemplified by module DataWriter in List-532

ing 1 line 1− 6, which also includes yet another module533

(DataWriterConfig) in line 2.534

Listing 1: MaBL Specification Structure
535

1 module DataWriter536

2 import DataWriterConfig;537

3 {538

4 DataWriterConfig writeHeader(string headers539

↪→ []) ;540

5 ...541

6 }542

7543

8 simulation544

9 import FMI2;545

10 import Logger;546

11 @Framework(”FMI2”);547

12 @FrameworkConfig(”FMI2”, ”{...\”connections548

↪→ \”:{\”{ crtl }. crtlInstance . valve \”:[\”{549

↪→ wt }. wtInstance . valvecontrol \”],...}”) ;550

13 {551

14 // Simulation code goes here552

15 }553
554

MaBL is a statically and strongly typed language555

that incorporates the type system of the FMI 2.0 stan-556

dard (Real, Integer, Boolean, String). It ex-557

tends this type system with the Array type and intro-558

duces the FMI2 type to represent an FMU. Additionally,559

runtime modules can introduce new types.560

MaBL provides a range of built-in functions, includ-561

ing load and unload, which facilitate the loading and562

unloading of runtime modules, respectively. In terms563

of non-module functions, MaBL follows a minimalis-564

tic approach, offering basic arithmetic operations such565

as +, -, *, /, and fundamental Boolean operators566

such as ==, !=, !, >=, <=, <, >, &&, ||. Fur-567

thermore, MaBL offers standard control flow constructs568

such as if-else, while, try-finally to describe569

the OA.570

7

https://github.com/INTO-CPS-Association/maestro
https://github.com/INTO-CPS-Association/maestro
https://github.com/INTO-CPS-Association/maestro

Generates

Scenario-Verifier

MaBL

SpecificationGeneratesConfiguration

Writes & Fine-tunes

Expands & Analyses

Expansion
PluginsCo-simulation Practitioner

Interpreter

Code
Generation

Executed by Simulation ArtifactsProduce

Figure 6: The Maestro2 is centred around the MaBL DSL. Maestro2 provides different approaches to generate a MaBL specification to enable co-
simulation practitioners of different levels of expertise. A MaBL specification can be analysed by a range of expansion plugins. Finally, Maestro2
offers two approaches to execute a MaBL specification, namely the MaBL interpreter and a code generator.

3.2.1. Runtime Modules571

More advanced features and functionality are typ-572

ically implemented as runtime modules, which are573

loaded and executed during the execution of a MaBL574

specification through function calls.575

A runtime module is a dynamically linked library that576

exposes a set of functions that can be called from MaBL577

to perform specific tasks that are not natively supported.578

For example, the FMI2 runtime module provides the579

FMI2 interface and offers various runtime module op-580

tions. The “regular” runtime module unpacks an FMU,581

loads its dynamically linked library, and invokes its582

functions. On the other hand, the JFMI2 module allows583

loading an entity by specifying the class name instead584

of the FMU path. This is particularly useful for proto-585

typing, as it enables development in other JVM-based586

languages such as Java, Kotlin, or Scala, bypassing the587

need for compilation into shared libraries and packages.588

Another example of a runtime module is the Fault In-589

jection module, which allows faults to be injected into590

the simulation with minimal effort. Specifically, the591

module wraps around an FMU and intercepts all data592

to and from the FMU, allowing it to modify the data593

before it is passed to the FMU based on a given config-594

uration (Frasheri et al. (2021)).595

3.3. Generation of Specifications596

To cater for users with different levels of expertise,597

Maestro2 offers a variety of approaches to generating a598

MaBL specification as illustrated in Figure 6. The most599

basic approach is to manually write the specification in600

MaBL, which is a viable option for small specifications601

Minimal Maximal

Minimal

Maximal

Configuration

Scenario-Verifier

MaBL API MaBL

Workload

C
us

to
m

iz
ab

ili
ty

Figure 7: The different approaches to generate a MaBL specification
in terms of workload and customizability.

and experienced users. However, writing a large sce-602

nario manually is a tedious task, so it is desirable to603

generate the specification from other sources. Maestro2604

offers the following approaches to generating a MaBL605

specification (based on the amount of work required606

(from most to least)): (i) Expansion Plugins, (ii) MaBL607

API, (iii) OA using the Scenario-Verifier, and (iv) Con-608

figuration.609

These approaches vary in the degree of customisabil-610

ity and effort required to generate the specification, as611

illustrated in Figure 7. The expansion plugins are de-612

liberately not included in the figure, as they are not a613

8

standalone approach, but rather a set of plugins that can614

be used to extend a MaBL specification generated us-615

ing one of the other approaches. Nevertheless, all ap-616

proaches are described below.617

3.3.1. Expansion Plugins618

MaBL specifications can be populated using an ad-619

vanced set of expansion features called expansion plug-620

ins, which are community developed plugins that gener-621

ate MaBL based on a given set of parameters provided622

by the user and the scenario at hand. A MaBL speci-623

fication can contain expand constructs, which are used624

to invoke expansion plugins. Maestro2 will then invoke625

the expansion plugin and replace the expand construct626

with the MaBL generated by the corresponding expan-627

sion plugin. MaBL expansion plugins serve two pur-628

poses: 1. to generate MaBL based on a given set of629

parameters to reduce the amount of manual work re-630

quired to create a MaBL specification, and 2. to extend631

the Maestro2 framework with new functionality such632

as fault injection and design space exploration Ejersbo633

et al. (2023); Pierce et al. (2022); Frasheri et al. (2021).634

An example of the application of expansion plug-635

ins is the Initializer plugin (Hansen et al. (2021c))636

shown in Listing 2. The Initializer defines a func-637

tion called initialize which is called in line 3 us-638

ing the expand. The plugin generates the necessary639

FMI calls to initialise the FMUs in the simulation in640

MaBL, based on the connections and dependencies be-641

tween the FMUs. Listing 2 also shows the @Config642

annotation, which is used to provide additional infor-643

mation to the expansion plugin, which it can use to gen-644

erate the MaBL. The configuration in Listing 2 specifies645

the values of the parameters maxLevel and minLevel646

of the Controller FMU.647

Listing 2: MaBL Expansion
648

1 @Config(”{\”parameters \”:{\”{ crtl }. crtlInstance649

↪→ .maxlevel \”:1,\”{ crtl }. crtlInstance .650

↪→ minlevel \”:1}}”) ;651

2 Initializer .expand initialize (components,652

↪→ START TIME, END TIME);653
654

Expansion plugins can be chained together, so the655

MaBL generated by the Initializer plugin can con-656

tain additional expand constructs, which are then ex-657

panded by other plugins. This feature, while power-658

ful, should be used with care to avoid potential infi-659

nite loops. However, when used properly, it allows660

complex scenarios to be created with minimal effort,661

and allows expansion plugin authors to leverage exist-662

ing functionality. To avoid invalid MaBL specifica-663

tions, the Maestro2 framework performs a type check664

on the resulting MaBL specification after each exten-665

sion plugin is applied. However, it is important to note666

that the expansion plugins are not limited to generating667

MaBL, but can also perform other tasks such as veri-668

fying the modelDescription of an FMU, as done by the669

ModelDescriptionVerifier plugin. Once a fully ex-670

panded MaBL specification without expand constructs671

has been generated, it can be fine-tuned manually if nec-672

essary before execution.673

Commonly Used Expansion Plugins. Maestro2 is sup-674

plied with a number of commonly used extension plug-675

ins to minimise the amount of manual work involved in676

the creation of a MaBL specification.677

Initializer (Hansen et al. (2021c)) generates678

the initialisation code for a co-simulation scenario in679

MaBL. The plugin leverages state of the art algo-680

rithms for synthesizing the initialisation algorithm of a681

co-simulation scenario potentially containing algebraic682

loops (Hansen et al. (2021c); Gomes et al. (2019a);683

Hansen et al. (2022b)). Concretely, the plugin builds684

a dependency graph of the FMUs in the scenario and685

employs graph-based reasoning to determine the order686

in which the FMUs should be initialised based on the687

interconnections between the FMUs and their contracts.688

The plugin contains an optional feature of verifying the689

calculated initialisation order against the verifier imple-690

mented in Gomes et al. (2019a).691

JacobianStepBuilder produces the MaBL neces-692

sary to perform Step stage of the OA based on the Ja-693

cobian iteration method. Jacobian iteration performs a694

simulation step by prompting all FMUs to progress in695

time, retrieves the necessary outputs, and sets the nec-696

essary inputs (Gomes et al. (2018d)). The plugin can,697

similarly to Maestro1, be tailored to use different meth-698

ods for dynamically determining the step size when per-699

forming a simulation with a variable step size (Thule700

et al. (2019)). The current implementation supports the701

following methods:702

Zero Crossing: Synchronise the FMUs at a point in703

time where a given signal is zero or two signals704

intersect.705

Bounded Difference: The bounded difference con-706

straint bounds the difference between two signals707

or two consecutive observations of the same signal708

by a pre-defined value.709

Sampling Rate: Ensures that all FMUs synchronise at710

pre-determined points in time.711

FMU Max Step Size: First proposed in Broman et al.712

(2013a) this constraint attempts to avoid the need713

9

for rollbacks. It requires the FMUs to implement714

a non-FMI function getMaxStepSize that returns715

the maximum step that the given FMU can perform716

at the given point in time.717

The main difference between this plugin and its coun-718

terpart in Maestro1 is that the functionality is now re-719

alised via MaBL and associated runtime modules, while720

it was previously implemented directly in Scala.721

Stabilisation is another commonly used feature to en-722

sure that the co-simulation converges to a steady state.723

This is accomplished by performing multiple iterations724

of a given step until convergence is achieved or the725

maximum attempts are reached. Concretely, the plu-726

gin performs a simulation step, checks if the simula-727

tion has converged, and if not, it rolls back the FMUs728

to their previous state and performs another simulation729

step with the output values from previous iteration.730

ModelDescriptionVerifier is a verification plu-731

gin. A verification plugin does not generate MaBL. In-732

stead, it has access to the AST of the MaBL specifi-733

cation and can perform various checks on the specifi-734

cation. The ModelDescriptionVerifier plugin ver-735

ifies the ModelDescription files of the FMUs against736

a formal model of the FMI standard implemented in737

VDM-SL via the tool VDMCheck (Battle et al. (2020)).738

Moreover, the plugin verifies that all FMUs are properly739

unloaded after the simulation has finished by analysing740

the MaBL AST.741

More information about the expansion plugins avail-742

able in Maestro2 can be found in the online documen-743

tation (Association (d)). The online documentation also744

contains a guide for creating new expansion plugins to745

enable expert users to extend the Maestro2 framework746

with new functionality.747

3.3.2. MaBL API748

One approach to generating a MaBL specification is749

to use the MaBL API, a Java API that can be used to750

generate a MaBL specification programmatically. This751

approach is typically used by the expansion plugins752

(e.g. Initialization and JacobianStepBuilder) to gener-753

ate MaBL, but users can also use it to generate a MaBL754

specification. Specifically, the MaBL API hides the755

complexity of the underlying MaBL syntax and allows756

the user to generate a MaBL specification using a high-757

level API, without having to worry about error handling,758

AST generation, and other complexities of the MaBL759

language.760

An example of the MaBL API is shown in List-761

ing 3, which is used by the Initialization plugin762

to change the mode of an FMU to Initialisation763

Mode. Although the example is simple, it still empow-764

ers the user as they do not have to worry about the com-765

plexities of handling all the possible return values of the766

FMI function enterInitializationMode. Instead,767

the user can concentrate on the task at hand, which is768

to change the mode of an FMU to Initialization769

Mode.770

Listing 3: FMU instance function call using MaBL API
771

1 fmuInstanceVariable . enterInitializationMode ()772
773

Another valuable feature of the MaBL API is the774

ability to programmatically link one FMU’s output to775

another FMU’s input. The MaBL API will, based on776

these couplings, generate the necessary MaBL code to777

exchange the data between the linked ports.778

The MaBL API provides complete flexibility to the779

user, allowing them to create a MaBL specification tai-780

lored to their needs, such as the adaptive co-simulation781

scenario described in Section 4. However, this expres-782

siveness comes at the cost of increased complexity, as783

the user has to deal with all the intricacies of the simu-784

lation.785

3.3.3. Scenario-Verifier786

The third approach to generating a MaBL specifi-787

cation is to use the Scenario-Verifier (Hansen et al.788

(2021b,a, 2022b)), which is a tool for synthesising and789

verifying OAs for co-simulation scenarios described in790

a high-level DSL similar to Definition 2.791

The Scenario-Verifier uses the latest advances in OA792

synthesis (Hansen et al. (2021c); Gomes et al. (2019a);793

Hansen et al. (2022b)) and constraints declared by the794

R function to synthesise an OA tailored to a given co-795

simulation scenario, subject to both step rejections and796

algebraic loops Kübler and Schiehlen (2000b), while797

ensuring that the OA respects the implementation de-798

tails of the scenario and correctly implements the FMI799

standard. The Scenario-Verifier synthesises an OA that800

employs a stabilisation algorithm to handle algebraic801

loops and a step size adjustment algorithm to handle802

step rejections. As a result, a co-simulation practitioner803

does not need to worry about the intricacies of the OA804

of such complex scenarios, as the Scenario-Verifier will805

synthesise an OA that ensures a co-simulation where806

all FMUs move in lockstep and algebraic loops are sta-807

bilised.808

Furthermore, the tool can verify a given OA against809

the FMI standard and the scenario description. Con-810

cretely, the tool uses a symbolic formalisation of the811

FMI standard and the OA in the model checker UP-812

PAAL (Behrmann et al. (2006)) to verify that the OA813

10

respects the implementation details of the scenario and814

correctly implements the FMI standard. For example,815

the tool verifies that the OA solves the FMUs in an816

optimal order that respects the implementations of the817

FMUs, that all FMUs move in lockstep, and that alge-818

braic loops are stabilised. Errors in the OA are reported819

to the user in the form of a trace, which can be visually820

inspected to debug the OA.821

However, it is essential to note that the Scenario-822

Verifier tool only synthesises the Initialise and Step823

stages of the OA in DSL format. Consequently, it is824

used in conjunction with the MaBL API and expansion825

plugins to generate the remaining stages of the OA and826

translate the DSL into MaBL.827

This approach is recommended for users with little828

experience with MaBL and co-simulation in general, as829

it requires almost no effort to start a co-simulation. Nev-830

ertheless, the Scenario-Verifier also provides a number831

of advanced features for expert users to fine-tune the OA832

by providing additional constraints and expectations to833

the tool.834

3.3.4. Configuration835

The last approach to generating a MaBL specifi-836

cation is to use a configuration file called the multi-837

model (Larsen et al. (2016)). The multi-model is a838

JSON file that details the FMUs involved in the co-839

simulation, the connections between them, and the840

parameters of the FMUs. The configuration file is841

then used to generate a MaBL specification using842

the MaBL API, using both the Initializer and843

JacobianStepBuilder expansion plugins. Neverthe-844

less, the configuration file can also be used to gener-845

ate a MaBL specification using the Scenario-Verifier846

tool, which requires some minor modifications to the847

multi-model by Maestro2 to make it compatible with848

the Scenario-Verifier tool.849

This approach is recommended for users with little850

experience with MaBL and co-simulation in general, as851

it requires the least effort to start a co-simulation. The852

configuration file can be generated by other tools, such853

as the INTO-CPS Application (Macedo et al. (2020)).854

3.4. Execution855

The final step in the Maestro2 approach is to execute856

the MaBL specification generated in the previous step.857

Maestro2 provides two execution modes: interpretation858

and code generation for executing a MaBL specifica-859

tion.860

The interpretation mode is based on an interpreter861

written in Java, which is the default execution mode of862

Maestro2 as it is the most convenient for development863

and debugging purposes. Nevertheless, in order to min-864

imise the overhead of the co-simulation framework, a865

code generator that translates a MaBL specification into866

C++ code has been implemented as well. The code gen-867

erator is based on the Java interpreter, and thus the gen-868

erated code is functionally equivalent to the interpreted869

code. The code generator offers a significant perfor-870

mance improvement over the Java interpreter as shown871

in Figure 8. The comparison in Figure 8 is based on872

100 co-simulations of the water tank scenario described873

in Figure 3. Each simulation has a different end time,874

starting with an end time of 1s for simulation 1 and in-875

creasing by one for each simulation so that the last sim-876

ulation (number 100) has an end time of 100s. All these877

100 co-simulations were run on Maestro1 (the prede-878

cessor of Maestro2, see Section 5), Maestro2 with the879

Java interpreter, and the code-generated C++ version of880

Maestro2.881

The execution time of the various co-simulations is882

shown in Figure 8. The figure shows two plots, one883

including the time taken to load FMUs and one without884

the time taken to load the FMUs, telling the same story.885

The time taken to generate the specification and compile886

the C++ code is not included in the figure, as it is a one-887

time cost.888

The figure shows that the C++ code generated by889

Maestro2 is significantly faster than the interpreter890

(maestro2) and Maestro1. The optimisation of the891

generated code is amplified as the simulation time in-892

creases, as the simulation loop is the primary time ex-893

penditure as the simulation time grows. As the fig-894

ure shows, the interpreter (maestro2) is faster than895

Maestro1. This is because Maestro1 performs various896

lookups during runtime, whereas Maestro2 performs897

these lookups during compilation.898

However, the performance gain of the code gener-899

ated does come at a cost in terms of expressivity, as900

it requires used runtime modules to be ported to C++,901

as only the MaBL specification is translated to C++.902

Nevertheless, some runtime modules have already been903

ported to C++, such as the FMI2 runtime module, the904

DataWriter module, and the MEnv module, to test and905

validate the approach.906

Although the execution times in Figure 8 are small,907

and you might think that the performance gains it not908

worth the effort, it is essential to note that the perfor-909

mance gain is amplified when performing DSE. A DSE910

study consists of a series of co-simulations with dif-911

ferent parameters to find the optimal solution. Thus912

the performance gain is amplified as the number of co-913

simulations increases.914

11

0 20 40 60 80 100
End time (s)

0

500

1000

1500

Ti
m

e
 (

m
s)

Without loading of FMUs

0 20 40 60 80 100
End time (s)

1000

2000

3000
With loading of FMUs

maestro1 (coe)
maestro2
cpp codegen

Figure 8: Performance comparison of Maestro, Maestro2 Interpreter and Maestro2 Code Generated version. In the left figure the time for loading
the FMUs is subtracted from the total simulation time. In the right figure it is included.

3.5. Utilizing Maestro2915

Maestro2 offers two interfaces for interacting with916

the framework: a Command Line Interface (CLI) and a917

REST interface. Both interfaces offer similar function-918

ality and strike a balance between new functionality and919

compatibility with Maestro1 to ensure a smooth transi-920

tion.921

The CLI offers a minimalistic interface for interact-922

ing with Maestro2, which is useful for scripting and au-923

tomation as it does not require running a web server.924

The CLI is used by the INTO-CPS DSE functional-925

ity (Bogomolov et al. (2020)).926

The REST interface allows Maestro2 to function as927

a web server, enabling cloud support and remote ac-928

cess. It offers the flexibility of accessing Maestro2’s929

functionality through HTTP requests. The REST inter-930

face is used by applications like the INTO-CPS Appli-931

cation Macedo et al. (2020). Additionally, the REST in-932

terface supports live-streaming of data via web sockets,933

enabling real-time data updates as the simulation pro-934

gresses. This feature involves adding an extra listener to935

the DataWriter runtime module, as briefly demonstrated936

in Listing 1. It showcases the possibilities of combining937

MaBL with runtime modules.938

The interfaces are not covered in detail here, but the939

interested reader can refer to the online documenta-940

tion (Association (d)) for more information on their us-941

age and capabilities.942

4. Case Studies943

This section presents two case studies that illustrate944

how Maestro2 can be used to tackle a broad variety945

of co-simulation scenarios. This section provides a946

brief overview of the case studies, the essential chal-947

lenges that cannot be solved by a standard co-simulation948

framework, and the role of Maestro2 in tackling these949

challenges. More details about the case studies can be950

found in the corresponding references.951

4.1. Adaptive Mass-Spring-Damper Co-simulation952

The adaptive mass-spring-damper case study, de-953

tailed in Inci et al. (2021) and illustrated in Figure 9,954

consists of two linear mass-spring-damper subsystems,955

connected to rigid walls and coupled with a spring-956

damper. The system is simulated with two FMUs (MSD1957

and MSD2) as shown in Figure 11, one for each mass-958

spring-damper subsystem. Subsystem 1, MSD1, acts as959

an inert system by inputting the coupling force from960

Subsystem 2, MSD2, and outputting displacement and961

velocity to Subsystem 2.962

Figure 9: Double mass-spring-damper.

Although the system may initially appear simple, it963

poses challenges when accuracy is critical, as demon-964

strated in Inci et al. (2021). Their work demonstrates965

that achieving accurate results for this system requires966

the use of an adaptive co-simulation algorithm, which967

dynamically changes the order of actions in the algo-968

rithm employed in the Step stage of the co-simulation.969

Changing the order of actions affects the sequence in970

which FMUs are simulated and how they communicate971

with each other. Specifically, the system depicted in972

Figure 9 can, according to the FMI standard, be sim-973

ulated using the two algorithms described in Figure 10.974

Algorithm 2 simulates MSD1 first, followed by MSD2,975

while Algorithm 3 simulates MSD2 first, followed by976

MSD1. The two algorithms can, in fact, be synthesised977

by Maestro2 using the Scenario-Verifier tool.978

12

In Inci et al. (2021) it is suggested that instead of979

choosing one of the algorithms a priori, it is better to980

choose the algorithm that minimises the error at each981

co-simulation step (i.e., adaptive co-simulation). The982

error is estimated by comparing the results of the two al-983

gorithms at each co-simulation step against a reference984

solution obtained by solving the system of equations an-985

alytically. To estimate the error and determine the algo-986

rithm, an additional FMU called SwitchingDecision987

is employed as shown in Figure 11.988

The adaptive co-simulation algorithm uses the989

judgement on the output best order of the990

SwitchingDecision FMU to decide which algo-991

rithm to use at each co-simulation step. Concretely,992

the adaptive co-simulation algorithm starts by employ-993

ing Algorithm 2 to simulate the system for a single994

co-simulation step and then uses the best order995

output of the SwitchingDecision FMU to decide996

which algorithm to use at the next co-simulation step to997

minimise the co-simulation error.998

Role of Maestro2. Maestro2 provides the necessary999

functionality to implement adaptive co-simulation.1000

Concretely, MaBL allows the user to implement the1001

adaptive co-simulation algorithm in Figure 11 by using1002

a conditional statement to decide between Algorithm 21003

and Algorithm 3, in Figure 10 based on the best order1004

output of the SwitchingDecision FMU. Furthermore,1005

MaBL support for declaring new variables to store vari-1006

ables between co-simulation steps, facilitating the im-1007

plementation of the adaptive co-simulation algorithm.1008

Finally, Maestro2’s performance made the running time1009

difference between the adaptive and static algorithms1010

negligible.1011

The errors of the adaptive co-simulation algorithm1012

are compared with those of the static algorithm in Fig-1013

ure 12. As can be seen, the adaptive algorithm attempts1014

to follow the best sequence at any given time, thus free-1015

ing the user from determining which algorithm to em-1016

ploy at a specific time.1017

4.2. Hardware-in-the-loop Co-Simulation1018

The second case study showcases the use of Maestro21019

in a hardware-in-the-loop co-simulation scenario, where1020

the numerical simulation of a system is coupled with a1021

physical system. Hardware-in-the-loop co-simulation is1022

a common practice in seismic testing of civil engineer-1023

ing structures (McCrum and Williams (2016)).1024

The reported case study, detailed in Gomes et al.1025

(2021a), consists of a physical cantilever beam coupled1026

to a linear spring, as illustrated in Figure 13. The can-1027

tilever beam is excited by a sinusoidal loading applied1028

via an electric linear actuator to study the dynamic re-1029

sponse in terms of displacement (u) of the beam to seis-1030

mic excitations provided by the linear spring. Figure 131031

shows a picture of the experimental setup, along with1032

a simplified version of the system, as depicted in the1033

left part of the figure. Finally, the right part of the fig-1034

ure provides a schematic overview of the experimental1035

setup.1036

Hardware-in-the-loop co-simulation is enabled by us-1037

ing a hybrid testing setup depicted in Figure 14. The hy-1038

brid testing (HT) setup comprises a three subsystems,1039

modelled as distinct FMUs, as shown in Figure 14.1040

The HT setup consists of a physical substructure (PS),1041

and a numerical substructure (NS) simulated by a finite1042

element (FE) software, and an FMU that couples the1043

two substructures to enforce compatibility between the1044

physical and numerical substructures (Coupling). The1045

PS structure is equipped with several sensors and actu-1046

ators, which are connected to a data acquisition system1047

on an industrial PC via EtherCAT. The sensors and ac-1048

tuators are used to measure the response of the PS and1049

to provide the excitation to the NS.1050

Role of Maestro2. There are two challenges in this1051

case:1052

1. Mistakes in the co-simulation could lead to physi-1053

cal consequences on the connected hardware. Here1054

Maestro2 support for static analysis plays a crucial1055

role to prevent these.1056

2. One of the main challenges in this case study is1057

the need to synchronise the numerical and phys-1058

ical substructures. This is achieved by using a1059

custom orchestration algorithm implemented in1060

MaBL. Concretely, the orchestration algorithm en-1061

sures that the Coupling FMU is simulated after the1062

other two FMUs.1063

A video of the experiment is available online, see Asso-1064

ciation (2021).1065

5. Related Work1066

Co-simulation is a large field and challenging to1067

cover thoroughly, with co-simulation frameworks being1068

a moving target. For this reason, we introduce some1069

of the existing co-simulation frameworks and compare1070

them to our contribution in Table 1, on the item where1071

Maestro2 is most novel: its capability for extensive cus-1072

tomization while maintaining robust verification capa-1073

bilities. For surveys on the co-simulation topic, we refer1074

13

Algorithm 2 MSD1→MSD2
1: doStep(S 1,H)
2: x1

′ ← getOut(S 1,x1)
3: v1′ ← getOut(S 1,v1)
4: setIn(S 2,x1,x1

′)
5: setIn(S 2,v1,v1′)

6: doStep(S 2,H)
7: Fk

′ ← getOut(S 2,Fk)
8: setIn(S 1,Fk,Fk

′)

Algorithm 3 MSD2→MSD1
1: doStep(S 2,H)
2: Fk

′ ← getOut(S 2,Fk)
3: setIn(S 1,Fk,Fk

′)

4: doStep(S 1,H)
5: x1

′ ← getOut(S 1,x1)
6: v1′ ← getOut(S 1,v1)
7: setIn(S 2,x1,x1

′)
8: setIn(S 2,v1,v1′)

At time t:
doStep(S 1,H): Advances the state of

FMU S 1 by H
getOut(S 1,y): Returns the output y of

the FMU S 1
setIn(S 1,u,y): Assigns the input u of the

FMU S 1 to the value y

Figure 10: Possible algorithms. Adapted from Inci et al. (2021). Both algorithms are valid according to the FMI standard and can be used to
simulate the system depicted in Figure 9.

Table 1: Overview of co-simulation frameworks and their customization options.
Tool FMI Compiled Interpreted License Customizations
DACCOSIM NG
Evora Gomez et al. (2019)

Yes No Yes Open Source Step size

Dymola Brück et al. (2002) Yes Yes No Proprietary Step size
FIDE Cremona et al. (2016) No2 Yes No Proprietary Step size
VICO Hatledal et al. (2021) Yes No Yes Open Source Step size, Runtime behavior through coded

extensions.
C2WT Neema et al. (2014) No3 No Yes Proprietary Step size
FMPy Yes No Yes Open-Source Full customization by coding interaction

with FMUs in Python.
OMSimulator Ochel et al.
(2019)

Yes No Yes Open-Source Step size, Algebraic loop solver.

Van Acker et al. (2015) Yes Yes No Open-Source Step-size.
Maestro1 Yes No Yes Open-Source Step-size, Algebraic loop solver.
Maestro2 Yes Yes Yes Open-Source Full customization using domain specific

language.

v1, x1
MSD1

Fk
MSD2

error_fk_direct: Real error_fk_indirect: RealSwitchingDecision

priority: Bool priority: Bool
best_order : bool

Figure 11: Co-simulation scenario. Adapted from Inci et al. (2021).

the reader to Gomes et al. (2018b); Hafner and Popper1075

(2017); Palensky et al. (2017) for related surveys.1076

Maestro1 Thule et al. (2019), the predecessor of Mae-1077

stro2, was developed during the INTO-CPS project (As-1078

sociation (c); Larsen et al. (2016)) and is an FMI-based1079

co-simulation orchestration engine. It can perform co-1080

simulations with a fixed algorithm and lacks the cus-1081

tomisation and verification abilities of Maestro2. DAC-1082

COSIM Galtier et al. (2015); Evora Gomez et al. (2019)1083

has been rebuilt as DACCOSIM NG, and extended with1084

additional features, such as the capability of packaging1085

multiple FMUs, including a scenario into a single FMU,1086

referred to as Matryoshka FMU (Evora Gomez et al.1087

(2019)). Another interesting FMI-based co-simulation1088

framework is VICO (Hatledal et al. (2021)). VICO1089

runs on the Java Virtual Machine and is thereby cross-1090

platform. It supports the FMI companion standard1091

System Structure and Parameterisation (Jochen Köhler1092

et al. (2016); Association (e)) for defining the structure1093

of a co-simulation. It strongly focuses on the possi-1094

bility of composition through a clear separation of ob-1095

jects composed solely of data and systems that act on1096

such objects. This is referred to as Entity-Component-1097

System (Martin (2007)). The promise of this approach1098

is supporting runtime behaviour change and simplicity1099

of use. Furthermore, it features built-in 3D graphics1100

and plotting capabilities. While this shares the goals1101

of Maestro2, the approach is different. One could, for1102

14

0 2 4 6 8 10
t [s]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

[m
/s
]

MSD1->MSD2
MSD2->MSD1
Adaptive

0 2 4 6 8 10
t [s]

s1->s2

s2->s1

Figure 12: On the top, error in v1 for adaptive and static co-simulation
sequences. At the bottom, sequence changes of the adaptive co-
simulation (corresponds to the best order output in Figure 11). Re-
produced from Inci et al. (2021).

example, consider composing a co-simulation through1103

VICO and then use the MaBL API to generate the ex-1104

ecution of the composed co-simulation. The compo-1105

sitional features could also be implemented as a run-1106

time plugin. Van Acker et al. (2015) presents a mod-1107

elling language to model a co-simulation setup and a re-1108

lated transformation to an optimised master algorithm1109

ready for execution. Thus, it is similar in nature to1110

some of the concepts of Maestro2 and the Scenario Ver-1111

ifier. One difference is, for example, that it does not1112

contain an interpreter or a plugin structure. The AVL1113

Model.CONNECT co-simulation tool is a professional1114

tool focusing primarily on the automotive market. It1115

does support FMI, and its strength seems to be its abil-1116

ity to carry out Hardware-In-the-Loop simulations. We1117

have not been able to find indications that it supports1118

the level of customizability we demonstrate with Mae-1119

stro2. For more related FMI-based tools, the reader is1120

referred to the tools page on the FMI-website (Com-1121

mittee), where several FMI-enabled importing tools are1122

listed.1123

Crucially, Maestro2 also targets verification efforts,1124

ideally both at the FMU and orchestration level, and1125

as such, contributions within this area are of interest as1126

well. The tool VDMCheck (Battle et al. (2020)), is an1127

example of FMU verification. It verifies the ModelDe-1128

scription file of an FMU, and has explicit support within1129

Maestro2. This can be applied directly, as it does not1130

require user interaction. Gomes et al. (2018a) consid-1131

ers adapting simulators to correct interaction assump-1132

tions based on a different environment. Their approach1133

is to create a new FMU, referred to as external FMU1134

that encloses one or more FMUs, referred to as internal1135

FMUs. Via a DSL called baseSA it is possible to create1136

rules for mapping actions applied to the external FMU1137

to actions applied to the internal FMUs and interaction1138

between the internal FMUs. This is applied through a1139

sound definition of hierarchical simulators that leaves1140

the internal FMUs unmodified and thus improves mod-1141

ularity and preserves transparency. MaBL is capable1142

of representing a semantically equivalent set of opera-1143

tions, and as such, MaBL and Maestro could function1144

as an execution engine for baseSA, if one was inclined1145

to write such an expansion plugin. However, it does not1146

feature the FMU-generation capabilities that generalise1147

the approach in Gomes et al. (2018a) to all FMI-based1148

orchestration engines. The Scenario Verifier (Hansen1149

et al. (2021b)) described in Section 3.3.3 is an example1150

of a tool that calculates and verifies an FMI-based co-1151

simulation OA based on constraints and expectations of1152

the enclosed FMUs. Enriching the environment of such1153

an OA has been proven possible, see Section 3.3.3, to1154

create an executable co-simulation in MaBL. The last1155

example of tooling to be considered in this publication1156

related to verifying the behaviour of a co-simulation and1157

its constituents is within the domain of Test Automa-1158

tion in Ouy et al. (2017). Here, a Test FMU is created1159

in order to stimulate the system under test according to1160

system requirements, whereas other FMUs represent the1161

system under test. An external tool then evaluates the1162

outputs of the test FMU in order to determine whether1163

the system under test expressed correct behaviour.1164

6. Concluding Remarks1165

This paper introduced Maestro2, a co-simulation1166

framework designed for running FMI-based co-1167

simulations. The key contribution of this work is the1168

Maestro2 approach, which leverages the MaBL DSL to1169

empower users in customizing the OA and minimizing1170

co-simulation errors.1171

Maestro2 offers different levels of automation for de-1172

scribing the co-simulation scenario and the OA, catering1173

to both prototyping needs and expert-level fine-tuning.1174

The framework utilizes code generation techniques to1175

ensure minimal overhead and high performance for co-1176

simulation practitioners.1177

With its plugin architecture, Maestro2 enables users1178

to extend the framework with new capabilities, such1179

as incorporating new FMU types, supporting additional1180

logging formats, and integrating new verification tools.1181

The framework’s effectiveness has been demon-1182

strated through multiple case studies and research1183

15

Real System HS Setup HS Setup Diagram

Prototype
Structure

W
al

l

beam Mass

...

Complex structure

Mass

...

Complex structure

Simulated

u

Prototype
Structure

Simulated

Figure 13: Experimental setup installed at the Dynamisk LAB of Aarhus University. Adapted from Gomes et al. (2021a).

PSFMU (CS)NSFMU (CS)

Test Setup
FE

Software Outputs:

Inputs:

Dependencies: None

Inputs:

Outputs:

Dependencies: None

Coupling

Inputs:

Outputs:

Dependencies:

Figure 14: Co-simulation scenarios that implements the setup described in Figure 13. The dashed boxes represent the fact that NSFMU (respectively
PSFMU) communicate with a FE Software (resp. the Test Setup), when the fmi2DoStep function is invoked.

projects (see Section 4), showcasing its capabilities in1184

tackling real-world problems.1185

To our knowledge, Maestro2 is the only open-source1186

co-simulation framework that offers a balance between1187

flexibility, usability, and performance. However, we ac-1188

knowledge the presence of open challenges highlighted1189

by the case studies, including the need for a more user-1190

friendly interface for the MaBL DSL and further en-1191

hancements to the verification capabilities of the frame-1192

work. Addressing these challenges will be crucial for1193

advancing the framework and improving its usability in1194

practical applications.1195

Future work will focus on these challenges and ex-1196

plore promising directions to enhance Maestro2.1197

Future Work. Maestro2 provides, due to its plugin-1198

based architecture, a solid foundation for future work.1199

Some of the most promising directions for future work1200

are: Supporting the newest version of the FMI stan-1201

dard (Junghanns et al. (2021); Hansen et al. (2022a))1202

to enable co-simulation of a broader range of systems,1203

such as hybrid and reactive systems. This work has al-1204

ready been initiated, and MaBL is currently being ex-1205

tended to support the new features of the FMI standard.1206

The work is expected to be completed during 2023,1207

making Maestro2 one of the first co-simulation frame-1208

works to support the new version of the FMI standard.1209

Furthermore, we plan to extend Maestro2 to be ap-1210

plicable in the context of digital twin engineering,1211

more specifically, the incubator project (Feng et al.1212

(2021a,b)), some initial results of which are presented1213

in (Association (b,a)). We expect this will lead to new1214

interfaces and functionality, such as the possibility of1215

changing the simulation algorithm or replacing FMUs1216

at runtime due to external changes while still preserving1217

the benefits of calculating a specification before execu-1218

tion.1219

Finally, we plan to extend the verification capabili-1220

ties of Maestro2 to permit verification of the final MaBL1221

specification using the Scenario Verifier (Hansen et al.1222

(2022b)). This is an appealing challenge, as it be-1223

comes available to all other tools using MaBL/Maestro21224

as their execution target. Possible verification efforts1225

include verifying that the MaBL specification is well-1226

formed, deterministic, and adheres to the FMI standard.1227

Nevertheless, the verification efforts must be carefully1228

considered, as the verification capabilities are poten-1229

tially at odds with the customizability of MaBL em-1230

powering experts to fine-tune the OA to minimise co-1231

simulation error.1232

Acknowledgments1233

This research was funded by a number of externally1234

funded research projects including DiT4CPS, UPSIM,1235

16

Figure 15: Numerical results as reported in Gomes et al. (2021a). The full video can be seen online Association (2021).

HUBCAP and AgroRobottiFleet. Furthermore, we are1236

grateful to the Poul Due Jensen Foundation, which has1237

supported the establishment of the Center for Digital1238

Twin Technology at Aarhus University.1239

References1240

Andersson, C., 2016. Methods and Tools for Co-Simulation of Dy-1241

namic Systems with the Functional Mock-up Interface. Ph.D. the-1242

sis. Lund University.1243

Arnold, M., 2010. Stability of Sequential Modular Time Integra-1244

tion Methods for Coupled Multibody System Models. Journal of1245

Computational and Nonlinear Dynamics 5, 9. doi:10.1115/1.1246

4001389.1247

Arnold, M., Clauß, C., Schierz, T., 2014. Error Analysis and Er-1248

ror Estimates for Co-simulation in FMI for Model Exchange and1249

Co-Simulation v2.0, in: Progress in Differential-Algebraic Equa-1250

tions, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 107–1251

125. doi:10.1007/978-3-662-44926-4_6.1252

Association, I.C., a. Digital twin tutorial. URL: https://1253

sites.google.com/view/fm2021tutorialdt/home. visited1254

July 11th, 2023.1255

Association, I.C., b. Fm workshops and tutorials. URL: http://1256

lcs.ios.ac.cn/fm2021/workshops-and-tutorials/. vis-1257

ited July 11th, 2023.1258

Association, I.C., c. Integrated tool chain for model-based design1259

of cpss. URL: https://cordis.europa.eu/project/id/1260

644047. visited July 11th, 2023.1261

Association, I.C., d. Maestro2 documentation. URL:1262

https://into-cps-maestro.readthedocs.io/en/1263

latest/user/index.html. visited July 11th, 2023.1264

Association, I.C., 2021. Hybrid testing experiment video. URL:1265

https://youtu.be/-VkrQJaUo1o. visited July 11th, 2023.1266

Association, M., e. SSP standard website. URL: https://ssp-1267

standard.org/. visited July 11th, 2023.1268

Battle, N., Thule, C., Gomes, C., Macedo, H.D., Larsen, P.G., 2020.1269

Towards a Static Check of FMUs in VDM-SL, in: FM 2019 In-1270

ternational Workshops, Springer International Publishing, Porto,1271

Portugal. pp. 272–288. doi:10.1007/978-3-030-54997-8_18.1272

Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P.,1273

Yi, W., Hendriks, M., 2006. UPPAAL 4.0, in: QEST 2006, IEEE1274

Computer Society. pp. 125–126. doi:10.1109/QEST.2006.59.1275

Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauss, C.,1276

Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M., Neidhold,1277

T., Neumerkel, D., Olsson, H., Peetz, J.V., Wolf, S., 2011. The1278

Functional Mockup Interface for Tool independent Exchange of1279

Simulation Models, in: Proc. of the 8th International Modelica1280

Conference, Linköping University Electronic Press; Linköpings1281

universitet, Dresden, Germany. pp. 105–114. doi:10.3384/1282

ecp11063105.1283

Bogomolov, S., Fitzgerald, J., Foldager, F., Larsen, P.G., Pierce, K.,1284

Stankaitis, P., Wooding, B., 2020. Tuning Robotti: the Machine-1285

assisted Exploration of Parameter Spaces in Multi-Models of a1286

Cyber-Physical System, in: Fitzgerald, J.S., Oda, T. (Eds.), Proc.1287

of the 18th International Overture Workshop, Overture. pp. 50–64.1288

Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Masin, M., Tri-1289

pakis, S., Wetter, M., 2013a. Determinate composition of FMUs1290

for co-simulation, in: 2013 Proc. (EMSOFT), IEEE. pp. 1–12.1291

doi:10.1109/EMSOFT.2013.6658580.1292

Broman, D., Derler, P., Eidson, J.C., 2013b. Temporal Issues in1293

Cyber-Physical Systems. J. Indian Inst. Sci. 93, 389–402.1294

Brück, D., Elmqvist, H., Mattsson, S.E., Olsson, H., 2002. Dymola1295

for multi-engineering modeling and simulation, in: Proc. of mod-1296

elica, Citeseer.1297

Busch, M., 2016. Continuous approximation techniques for co-1298

simulation methods: Analysis of numerical stability and local er-1299

ror. Journal of Applied Mathematics and Mechanics 96, 1061–1300

1081. doi:10.1002/zamm.201500196.1301

17

http://dx.doi.org/10.1115/1.4001389
http://dx.doi.org/10.1115/1.4001389
http://dx.doi.org/10.1115/1.4001389
http://dx.doi.org/10.1007/978-3-662-44926-4_6
https://sites.google.com/view/fm2021tutorialdt/home
https://sites.google.com/view/fm2021tutorialdt/home
https://sites.google.com/view/fm2021tutorialdt/home
http://lcs.ios.ac.cn/fm2021/workshops-and-tutorials/
http://lcs.ios.ac.cn/fm2021/workshops-and-tutorials/
http://lcs.ios.ac.cn/fm2021/workshops-and-tutorials/
https://cordis.europa.eu/project/id/644047
https://cordis.europa.eu/project/id/644047
https://cordis.europa.eu/project/id/644047
https://into-cps-maestro.readthedocs.io/en/latest/user/index.html
https://into-cps-maestro.readthedocs.io/en/latest/user/index.html
https://into-cps-maestro.readthedocs.io/en/latest/user/index.html
https://youtu.be/-VkrQJaUo1o
https://ssp-standard.org/
https://ssp-standard.org/
https://ssp-standard.org/
http://dx.doi.org/10.1007/978-3-030-54997-8_18
http://dx.doi.org/10.1109/QEST.2006.59
http://dx.doi.org/10.3384/ecp11063105
http://dx.doi.org/10.3384/ecp11063105
http://dx.doi.org/10.3384/ecp11063105
http://dx.doi.org/10.1109/EMSOFT.2013.6658580
http://dx.doi.org/10.1002/zamm.201500196

CES, A., Widl, E., Strasser, T.I., 2021. Erigrid/ns3-fmi-export: v1.1.1302

URL: https://doi.org/10.5281/zenodo.4638103, doi:10.1303

5281/zenodo.4638103. the time progression of 0 is mentioned1304

in the readme.md file.1305

Committee, F.S., . Fmi website. URL: https://fmi-standard.1306

org/tools/. visited July 11th, 2023.1307

Committee, F.S., 2014. Functional Mock-up Interface for Model Ex-1308

change and Co-Simulation. https://fmi-standard.org/downloads/.1309

Committee, F.S., 2021. Functional Mock-up Interface for Model1310

Exchange, Co-Simulation, and Scheduled Execution. https://fmi-1311

standard.org/downloads/.1312

Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tri-1313

pakis, S., 2017. Hybrid co-simulation: it’s about time. Software &1314

Systems Modeling doi:10.1007/s10270-017-0633-6.1315

Cremona, F., Lohstroh, M., Tripakis, S., Brooks, C., Lee, E.A., 2016.1316

FIDE, in: Proc. of the 31st Annual ACM Symposium on Applied1317

Computing, ACM. doi:10.1145/2851613.2851677.1318

Ejersbo, H., Lausdahl, K., Frasheri, M., Esterle, L., 2023. fmiSwap:1319

Run-time Swapping of Models for Co-simulation and Digital1320

Twins. arXiv preprint arXiv:2304.07328 .1321

Evora Gomez, J., Cabrera, J.J.H., Tavella, J.P., Vialle, S., Kremers, E.,1322

Frayssinet, L., 2019. Daccosim NG: co-simulation made simpler1323

and faster, in: Linköping electronic conference proceedings, pp.1324

785–792. doi:10.3384/ecp19157785.1325

Feng, H., Gomes, C., Thule, C., Lausdahl, K., Iosifidis, A., Larsen,1326

P.G., 2021a. Introduction to Digital Twin Engineering, in: Mar-1327

tin, C.R., Blas, M.J., Psijas, A.I. (Eds.), 2021 ANNSIM, Virginia,1328

USA. pp. 19–22.1329

Feng, H., Gomes, C., Thule, C., Lausdahl, K., Sandberg, M., Larsen,1330

P.G., 2021b. The incubator case study for digital twin engineering.1331

arXiv:2102.10390.1332

FMI, 2020. Functional Mock-up Interface for Model Exchange and1333

Co-Simulation. Standard 2.0.2. URL: https://fmi-standard.1334

org/downloads/.1335

Frasheri, M., Thule, C., Macedo, H.D., Lausdahl, K.G., Larsen, P.G.,1336

Esterle, L., 2021. Fault injecting co-simulations for safety, in: Pro-1337

ceedings of the Fifth International Joint Conference on System Re-1338

liability and Safety, 2021. ICSRS 2021, pp. 24–26. Accepted for1339

publication in 5th International Conference on System Reliability1340

and Safety.1341

Fritzson, P., 2015. Principles of Object-Oriented Modeling and Sim-1342

ulation with Modelica 3.3: A Cyber-Physical Approach. IEEE1343

Press. 2 ed., Wiley. doi:10.1002/9781118989166.1344

Galtier, V., Vialle, S., Dad, C., Tavella, J.P., Lam-Yee-Mui, J.P.,1345

Plessis, G., 2015. FMI-Based Distributed Multi-Simulation with1346

DACCOSIM, in: Spring Simulation Multi-Conference, Society for1347

Computer Simulation International, Alexandria, Virginia, USA.1348

pp. 804–811.1349

Glaessgen, E., Stargel, D., 2012. The Digital Twin Paradigm for Fu-1350

ture NASA and U.S. Air Force Vehicles, in: Structures, Structural1351

Dynamics, and Materials Conference: Special Session on the Dig-1352

ital Twin, American Institute of Aeronautics and Astronautics, Re-1353

ston, Virigina. pp. 1–14. doi:10.2514/6.2012-1818.1354

Gomes, C., Abbiati, G., Larsen, P.G., 2021a. Seismic Hybrid Test-1355

ing using FMI-based Co-Simulation, in: Proc. of the 14th Inter-1356

national Modelica Conference, Linköping University Electronic1357

Press, Linköpings Universitet, online. pp. 287–295.1358

Gomes, C., Lucio, L., Vangheluwe, H., 2019a. Semantics of1359

Co-simulation Algorithms with Simulator Contracts, in: 20191360

ACM/IEEE 22nd International Conference on Model Driven Engi-1361

neering Languages and Systems Companion (MODELS-C), IEEE,1362

Munich, Germany. pp. 784–789. doi:10.1109/MODELS-C.2019.1363

00124.1364

Gomes, C., Meyers, B., Denil, J., Thule, C., Lausdahl, K.,1365

Vangheluwe, H., De Meulenaere, P., 2018a. Semantic Adaptation1366

for FMI Co-simulation with Hierarchical Simulators. SIMULA-1367

TION 95, 1–29. doi:10.1177/0037549718759775.1368

Gomes, C., Najafi, M., Sommer, T., Blesken, M., Zacharias, I., Kotte,1369

O., Mai, P., Schuch, K., Wernersson, K., Bertsch, C., Blochwitz,1370

T., Junghanns, A., 2021b. The FMI 3.0 Standard Interface for1371

Clocked and Scheduled Simulations, in: Proc. of the 14th Inter-1372

national Modelica Conference, Linköping University Electronic1373

Press, Linköpings Universitet, online. pp. 27–36. doi:10.3384/1374

ecp2118127.1375

Gomes, C., Oakes, B.J., Moradi, M., Gamiz, A.T., Mendo, J.C.,1376

Dutre, S., Denil, J., Vangheluwe, H., 2019b. HintCO - Hint-Based1377

Configuration of Co-Simulations, in: International Conference on1378

Simulation and Modeling Methodologies, Technologies and Ap-1379

plications, Prague, Czech Republic. pp. 57–68. doi:10.5220/1380

0007830000570068.1381

Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.,1382

2018b. Co-simulation: A Survey. ACM Computing Surveys 51,1383

49:1–49:33. doi:10.1145/3179993.1384

Gomes, C., Thule, C., DeAntoni, J., Larsen, P.G., Vangheluwe, H.,1385

2018c. Co-simulation: The Past, Future, and Open Challenges,1386

in: ISOLA 2018, Springer Verlag, Limassol, Cyprus. pp. 504–520.1387

doi:10.1007/978-3-030-03424-5_34.1388

Gomes, C., Thule, C., Larsen, P.G., Denil, J., Vangheluwe, H.,1389

2018d. Co-Simulation of Continuous Systems: A Tutorial. Tech-1390

nical Report arXiv:1809.08463. University of Antwerp. Belgium.1391

arXiv:1809.08463.1392

Gomes, C., Thule, C., Lausdahl, K., Larsen, P.G., Vangheluwe, H.,1393

2018e. Stabilization Technique in INTO-CPS, in: 2nd Workshop1394

on Formal Co-Simulation of Cyber-Physical Systems, Springer,1395

Cham, Toulouse, France. pp. 45–51. doi:10.1007/978-3-030-1396

04771-9_4.1397

Hafner, I., Popper, N., 2017. On the terminology and structur-1398

ing of co-simulation methods, in: Proceedings of the 8th In-1399

ternational Workshop on Equation-Based Object-Oriented Mod-1400

eling Languages and Tools, ACM, New York, NY, USA. pp.1401

67–76. URL: https://doi.org/10.1145/3158191.3158203,1402

doi:10.1145/3158191.3158203.1403

Hansen, S.T., Gomes, C., Larsen, P.G., Van de Pol, J., 2021a. Syn-1404

thesizing co-simulation algorithms with step negotiation and al-1405

gebraic loop handling, in: Martin, C.R., Blas, M.J., Psijas, A.I.1406

(Eds.), 2021 ANNSIM, pp. 1–12. doi:10.23919/ANNSIM52504.1407

2021.9552073.1408

Hansen, S.T., Gomes, C., Palmieri, M., Thule, C., van de Pol, J.,1409

Woodcock, J., 2021b. Verification of co-simulation algorithms sub-1410

ject to algebraic loops and adaptive steps, in: Lluch Lafuente, A.,1411

Mavridou, A. (Eds.), FMICS 2021, Springer International Publish-1412

ing, Cham. pp. 3–20.1413

Hansen, S.T., Gomes, C.G., Najafi, M., Sommer, T., Blesken, M.,1414

Zacharias, I., Kotte, O., Mai, P.R., Schuch, K., Wernersson, K.,1415

Bertsch, C., Blochwitz, T., Junghanns, A., 2022a. The FMI 3.01416

Standard Interface for Clocked and Scheduled Simulations. Elec-1417

tronics 11, 3635.1418

Hansen, S.T., Ölveczky, P.C., 2022. Modeling, algorithm synthesis,1419

and instrumentation for co-simulation in maude, in: Bae, K. (Ed.),1420

Rewriting Logic and Its Applications, Springer International Pub-1421

lishing, Cham. pp. 130–150.1422

Hansen, S.T., Thule, C., Gomes, C., 2021c. An FMI-Based Initializa-1423

tion Plugin for INTO-CPS Maestro 2, in: Cleophas, L., Massink,1424

M. (Eds.), SEFM 2020 Collocated Workshops, Springer Interna-1425

tional Publishing, Cham. pp. 295–310.1426

Hansen, S.T., Thule, C., Gomes, C., van de Pol, J., Palmieri, M., Inci,1427

E.O., Madsen, F., Alfonso, J., Castellanos, J.Á., Rodriguez, J.M.,1428

2022b. Verification and synthesis of co-simulation algorithms sub-1429

ject to algebraic loops and adaptive steps. STTT 24, 999–1024.1430

Hatledal, L.I., Chu, Y., Styve, A., Zhang, H., 2021. Vico: An1431

18

https://doi.org/10.5281/zenodo.4638103
http://dx.doi.org/10.5281/zenodo.4638103
http://dx.doi.org/10.5281/zenodo.4638103
http://dx.doi.org/10.5281/zenodo.4638103
https://fmi-standard.org/tools/
https://fmi-standard.org/tools/
https://fmi-standard.org/tools/
http://dx.doi.org/10.1007/s10270-017-0633-6
http://dx.doi.org/10.1145/2851613.2851677
http://dx.doi.org/10.3384/ecp19157785
http://arxiv.org/abs/2102.10390
https://fmi-standard.org/downloads/
https://fmi-standard.org/downloads/
https://fmi-standard.org/downloads/
http://dx.doi.org/10.1002/9781118989166
http://dx.doi.org/10.2514/6.2012-1818
http://dx.doi.org/10.1109/MODELS-C.2019.00124
http://dx.doi.org/10.1109/MODELS-C.2019.00124
http://dx.doi.org/10.1109/MODELS-C.2019.00124
http://dx.doi.org/10.1177/0037549718759775
http://dx.doi.org/10.3384/ecp2118127
http://dx.doi.org/10.3384/ecp2118127
http://dx.doi.org/10.3384/ecp2118127
http://dx.doi.org/10.5220/0007830000570068
http://dx.doi.org/10.5220/0007830000570068
http://dx.doi.org/10.5220/0007830000570068
http://dx.doi.org/10.1145/3179993
http://dx.doi.org/10.1007/978-3-030-03424-5_34
http://arxiv.org/abs/1809.08463
http://dx.doi.org/10.1007/978-3-030-04771-9_4
http://dx.doi.org/10.1007/978-3-030-04771-9_4
http://dx.doi.org/10.1007/978-3-030-04771-9_4
https://doi.org/10.1145/3158191.3158203
http://dx.doi.org/10.1145/3158191.3158203
http://dx.doi.org/10.23919/ANNSIM52504.2021.9552073
http://dx.doi.org/10.23919/ANNSIM52504.2021.9552073
http://dx.doi.org/10.23919/ANNSIM52504.2021.9552073

entity-component-system based co-simulation framework. Sim-1432

ulation Modelling Practice and Theory 108, 102243. doi:https:1433

//doi.org/10.1016/j.simpat.2020.102243.1434

Inci, E.O., Gomes, C., Croes, J., Thule, C., Lausdahl, K., Desmet, W.,1435

Larsen, P.G., 2021. The effect and selection of solution sequence1436

in co-simulation, in: Martin, C.R., Blas, M.J., Psijas, A.I. (Eds.),1437

2021 ANNSIM, Virginia, USA. pp. 1–12.1438

Jochen Köhler, Hans-Martin Heinkel, Pierre Mai, Jürgen Krasser,1439

Markus Deppe, Mikio Nagasawa, 2016. Modelica-Association-1440

Project “System Structure and Parameterization” – Early Insights,1441

Tokyo, Japan. pp. 35–42. doi:http://dx.doi.org/10.3384/1442

ecp1612435.1443

Junghanns, A., Blochwitz, T., Bertsch, C., Sommer, T., Wernersson,1444

K., Pillekeit, A., Zacharias, I., Blesken, M., Mai, P., Schuch, K.,1445

Schulze, C., Gomes, C., Najafi, M., 2021. The Functional Mock-1446

up Interface 3.0 - New Features Enabling New Applications, in:1447

Proc. of the 14th International Modelica Conference, Linköping1448

University Electronic Press, Linköpings Universitet, online.1449

Kalmar-Nagy, T., Stanciulescu, I., 2014. Can complex systems really1450

be simulated? Applied Mathematics and Computation 227, 199–1451

211. doi:10.1016/j.amc.2013.11.037.1452

Kübler, R., Schiehlen, W., 2000a. Modular Simulation in Multi-1453

body System Dynamics. Multibody System Dynamics 4, 107–127.1454

doi:10.1023/A:1009810318420.1455

Kübler, R., Schiehlen, W., 2000b. Two Methods of Simulator Cou-1456

pling. Mathematical and Computer Modelling of Dynamical Sys-1457

tems 6, 93–113. doi:10.1076/1387-3954(200006)6:2;1-M;1458

FT093.1459

Larsen, P.G., Fitzgerald, J., Woodcock, J., Fritzson, P., Brauer, J.,1460

Kleijn, C., Lecomte, T., Pfeil, M., Green, O., Basagiannis, S.,1461

Sadovykh, A., 2016. Integrated tool chain for model-based de-1462

sign of Cyber-Physical Systems: The INTO-CPS project, in:1463

2nd International Workshop on Modelling, Analysis, and Con-1464

trol of Complex CPS (CPS Data), IEEE, Vienna, Austria. pp. 1–6.1465

doi:10.1109/CPSData.2016.7496424.1466

Macedo, H.D., Rasmussen, M.B., Thule, C., Larsen, P.G., 2020. Mi-1467

grating the INTO-CPS Application to the Cloud, in: Sekerinski,1468

E., Moreira, N., Oliveira, J.N., Ratiu, D., Guidotti, R., Farrell, M.,1469

Luckcuck, M., Marmsoler, D., Campos, J., Astarte, T., Gonnord,1470

L., Cerone, A., Couto, L., Dongol, B., Kutrib, M., Monteiro, P.,1471

Delmas, D. (Eds.), FM 2019 International Workshops, Springer1472

International Publishing, Cham. pp. 254–271.1473

Mansfield, M., Gamble, C., Pierce, K., Fitzgerald, J., Foster, S., Thule,1474

C., Nilsson, R., 2017. Examples Compendium 3. Technical Re-1475

port. INTO-CPS Deliverable, D3.6.1476

Martin, A., 2007. Entity systems are the future of mmog develop-1477

ment - part 1. URL: http://t-machine.org/index.php/1478

2007/09/03/entity-systems-are-the-future-of-mmog-1479

development-part-1/. (Accessed on 06/23/2021).1480

McCrum, D.P., Williams, M.S., 2016. An overview of seismic hybrid1481

testing of engineering structures. Engineering Structures 118, 240–1482

261. doi:10.1016/j.engstruct.2016.03.039.1483

Neema, H., Gohl, J., Lattmann, Z., Sztipanovits, J., Karsai, G.,1484

Neema, S., Bapty, T., Batteh, J., Tummescheit, H., Sureshkumar,1485

C., 2014. Model-based integration platform for fmi co-simulation1486

and heterogeneous simulations of cyber-physical systems, in: The1487

10th International Modelica Conference 2014, Modelica Associa-1488

tion, Lund, Sweden.1489

Oakes, B.J., Gomes, C., Holzinger, F.R., Benedikt, M., Denil,1490

J., Vangheluwe, H., 2021. Hint-Based Configuration of Co-1491

simulations with Algebraic Loops, in: Simulation and Modeling1492

Methodologies, Technologies and Applications. Springer Interna-1493

tional Publishing, Cham. volume 1260, pp. 1–28. doi:10.1007/1494

978-3-030-55867-3_1.1495

Ochel, L., Braun, R., Thiele, B., Asghar, A., Buffoni, L., Eek, M.,1496

Fritzson, P., Fritzson, D., Horkeby, S., Hällquist, R., Kinnander,1497

Å., Palanisamy, A., Pop, A., Sjölund, M., 2019. OMSimulator - in-1498

tegrated FMI and TLM-based co-simulation with composite model1499

editing and SSP, in: Linköping Electronic Conference Proc.,1500

Linköing University Electronic Press. doi:10.3384/ecp1915769.1501

Ouy, J., Lecomte, T., Foldager, F.F., Henriksen, A.V., Green,1502

O., Hallerstede, S., Larsen, P.G., Couto, L.D., Antonante, P.,1503

Basagiannis, S., Falleni, S., Ridouane, H., Saada, H., Zavaglio,1504

E., König, C., Balcu, N., 2017. Case Studies 3, Pub-1505

lic Version. Technical Report. INTO-CPS Public Deliverable,1506

D1.3a. URL: https://into-cps.org/fileadmin/into-1507

cps.org/Filer/D1.3a_Case_Studies.pdf.1508

Palensky, P., Van Der Meer, A.A., Lopez, C.D., Joseph, A., Pan, K.,1509

2017. Cosimulation of intelligent power systems: Fundamentals,1510

software architecture, numerics, and coupling. IEEE Industrial1511

Electronics Magazine , 34–50doi:10.1109/MIE.2016.2639825.1512

Pierce, K., Lausdahl, K., Frasheri, M., 2022. Speeding up de-1513

sign space exploration through compiled master algorithms, in:1514

Macedo, H., Pierce, K. (Eds.), Proc. of the 20th International Over-1515

ture Workshop, pp. 66–81. doi:10.48550/arXiv.2208.10233.1516

20th Overture Workshop ; Conference date: 05-07-2022 Through1517

05-07-2022.1518

Schweizer, B., Li, P., Lu, D., 2015. Explicit and Implicit Cosimulation1519

Methods: Stability and Convergence Analysis for Different Solver1520

Coupling Approaches. Journal of Computational and Nonlinear1521

Dynamics 10, 051007. doi:10.1115/1.4028503.1522

Schweizer, B., Lu, D., Li, P., 2016. Co-simulation method for solver1523

coupling with algebraic constraints incorporating relaxation tech-1524

niques. Multibody System Dynamics 36, 1–36. doi:10.1007/1525

s11044-015-9464-9.1526

Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G., 2019.1527

Maestro: The INTO-CPS co-simulation framework. Simula-1528

tion Modelling Practice and Theory 92, 45–61. doi:10.1016/j.1529

simpat.2018.12.005.1530

Thule, C., Palmieri, M., Gomes, C., Lausdahl, K., Macedo, H.D.,1531

Battle, N., Larsen, P.G., 2020. Towards Reuse of Synchronization1532

Algorithms in Co-simulation Frameworks, in: Software Engineer-1533

ing and Formal Methods, Springer International Publishing, Oslo,1534

Norway. pp. 50–66. doi:10.1007/978-3-030-57506-9_5.1535

Van Acker, B., Denil, J., Meulenaere, P.D., Vangheluwe, H., 2015.1536

Generation of an Optimised Master Algorithm for FMI Co-1537

simulation, in: Symposium on Theory of Modeling & Simulation-1538

DEVS Integrative, Society for Computer Simulation International1539

San Diego, CA, USA, Alexandria, Virginia, USA. pp. 946–953.1540

19

http://dx.doi.org/https://doi.org/10.1016/j.simpat.2020.102243
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2020.102243
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2020.102243
http://dx.doi.org/http://dx.doi.org/10.3384/ecp1612435
http://dx.doi.org/http://dx.doi.org/10.3384/ecp1612435
http://dx.doi.org/http://dx.doi.org/10.3384/ecp1612435
http://dx.doi.org/10.1016/j.amc.2013.11.037
http://dx.doi.org/10.1023/A:1009810318420
http://dx.doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
http://dx.doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
http://dx.doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
http://dx.doi.org/10.1109/CPSData.2016.7496424
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://dx.doi.org/10.1016/j.engstruct.2016.03.039
http://dx.doi.org/10.1007/978-3-030-55867-3_1
http://dx.doi.org/10.1007/978-3-030-55867-3_1
http://dx.doi.org/10.1007/978-3-030-55867-3_1
http://dx.doi.org/10.3384/ecp1915769
https://into-cps.org/fileadmin/into-cps.org/Filer/D1.3a_Case_Studies.pdf
https://into-cps.org/fileadmin/into-cps.org/Filer/D1.3a_Case_Studies.pdf
https://into-cps.org/fileadmin/into-cps.org/Filer/D1.3a_Case_Studies.pdf
http://dx.doi.org/10.1109/MIE.2016.2639825
http://dx.doi.org/10.48550/arXiv.2208.10233
http://dx.doi.org/10.1115/1.4028503
http://dx.doi.org/10.1007/s11044-015-9464-9
http://dx.doi.org/10.1007/s11044-015-9464-9
http://dx.doi.org/10.1007/s11044-015-9464-9
http://dx.doi.org/10.1016/j.simpat.2018.12.005
http://dx.doi.org/10.1016/j.simpat.2018.12.005
http://dx.doi.org/10.1016/j.simpat.2018.12.005
http://dx.doi.org/10.1007/978-3-030-57506-9_5

	1 Introduction
	2 Background
	2.1 Co-simulation
	2.2 The FMI Standard

	3 Co-simulation with Maestro2
	3.1 Maestro2
	3.2 Maestro Base Language (MaBL)
	3.2.1 Runtime Modules

	3.3 Generation of Specifications
	3.3.1 Expansion Plugins
	3.3.2 MaBL API
	3.3.3 Scenario-Verifier
	3.3.4 Configuration

	3.4 Execution
	3.5 Utilizing Maestro2

	4 Case Studies
	4.1 Adaptive Mass-Spring-Damper Co-simulation
	4.2 Hardware-in-the-loop Co-Simulation

	5 Related Work
	6 Concluding Remarks

