
SYNTHESIZING ORCHESTRATION ALGORITHMS FOR FMI 3.0

Simon Thrane Hansen
Cláudio Gomes
Zahra Kazemi

Department of Electrical and Computer Engineering
Aarhus University
Helsingforsgade 10

Aarhus, DENMARK
{sth, claudio.gomes, zka}@ece.au.dk

ANNSIM’23, May 23-26, 2023, Mohawk College, ON, CANADA; ©2023 Society for Modeling & Simulation International (SCS)

ABSTRACT

An essential part of building reliable cyber-physical systems is to be able to predict the behavior of such
systems using accurate simulations. Standards for describing the behavior of such systems and simulations
are evolving to facilitate a broader range of applications. The Functional Mockup Interface (FMI) standard
is no exception. FMI 3.0 introduces synchronous clocks to facilitate efficient and repeatable simulation of
event-driven systems. Nevertheless, the standard does not specify how to implement the synchronization of
models, and it is up to the tool vendors to implement the orchestration algorithm responsible for this task.
This paper presents the first approach to synthesizing the orchestration algorithm for FMI 3.0 supporting
synchronous clocks. A prototype implementation of the algorithm is presented.

Keywords: Functional Mockup Interface, synchronous clocks, reactive systems, scheduling.

1 INTRODUCTION

Cyber-physical systems (CPSs) are a vital part of modern society, with applications ranging from nuclear
power plants and airplanes to cars and other complex systems. These systems usually consist of both cyber
components (like controllers) and physical components, and their modeling and simulation often require
multiple paradigms, including continuous-time, modal models, and discrete events. However, the wide
variety of tools and formalisms used by different specialized companies to develop these systems can make
it challenging to achieve interoperability (Paris et al. 2019). To address this challenge, the Functional
Mockup Interface (FMI) Standard was developed to enable the exchange and cooperative simulation of
black-box models (Blockwitz et al. 2012) using a vendor-independent interface. The black-box models are
called Functional Mockup Units (FMUs) and describe the behaviour of a continuous subsystem as a discrete
trace. An FMU can be composed with other models using input and output variables to form a larger system.
Version 2.0 of the standard has been widely adopted, with more than 170 tools supporting it (FMI 2014),
which has placed a growing demand on the standard to support simulation of real-time and reactive systems.

The FMI 3.0 standard (Functional Mockup Interface Steering Committee 2021) introduces two notable
new features inspired by other simulation standards such as Modelica (Association 2021), DEVS (Zeigler
1976), and HLA (Dahmann 1997) to address these challenges: synchronous clocks (SC) for event-driven
synchronization and scheduled execution to provide real-time simulation capabilities. Our work focuses on



Hansen, Gomes, and Kazemi

the first of these features, SC (Elmqvist et al. 2012, Benveniste et al. 2003), which is a powerful feature
that allows FMUs to synchronize their execution based on the occurrence of time-based and state-based
events to simulate reactive systems. While FMI 3.0 provides a standardized interface for FMUs, it does
not specify how to implement their synchronization. Therefore, it is up to the tool vendors to implement
the orchestration algorithm responsible for this task. The question of how to implement the orchestration
algorithm is particularly challenging for SC, as the orchestration algorithm must be able to detect and devise
specific strategies for handling the different types of events that can occur in the system.

Contribution This paper presents what we believe to be the first approach for synthesizing orchestration
algorithms enabling simulations of SC FMUs following FMI 3.0. We propose a graph-based approach based
on earlier work on FMI 2.0, which we have extended to support the event-driven nature of FMI 3.0.

Related Work Synthesizing co-simulation algorithms for FMUs has been a topic of research for several
years and has been addressed in several works (Gomes et al. 2019, Galtier et al. 2015, Broman et al. 2015,
Hansen et al. 2021). These works have addressed the problem of synthesizing co-simulation algorithms for
FMUs using various graph-based approaches (Gomes et al. 2019, Galtier et al. 2015, Broman et al. 2015).
None of these approaches, however, support the event-driven nature of the FMI 3.0, making them unsuitable
for simulating SC FMUs. On the other hand, some works have been addressing simulations of event-based
systems with synchronous clocks in other simulation standards, such as Modelica, DEVS (Zeigler 1976).
Compared to SC, DEVS and HLA take a purely discrete event based approach, where continuous dynamics
are quantized (Kofman and Junco 2001, Zeigler and Lee 1998). However, this approach is not suitable for
simulating FMUs, as it does not offer mechanism to handle algebraic loops or to solve differential algebraic
equations, which occur commonly in numerical simulations.

Organization of the Paper The rest of the paper is organized as follows. Section 2 provides background
on the FMI 3.0 standard and the synchronous clocks feature and describes the challenges that arise when
simulating synchronous clocks FMUs. Section 3 presents the proposed approach for synthesizing orches-
tration algorithms for synchronous clocks simulations. Section 4 present the results of the validation of the
proposed approach. Finally, Section 5 concludes the paper and discusses future work and limitations.

2 BACKGROUND

This section provides background on the FMI 3.0 standard and the synchronous clocks feature and describe
the challenges of simulating synchronous clocks FMUs. Due to space limitations, we can only provide
a brief overview of these topics and refer the reader to FMI 3.0 (Functional Mockup Interface Steering
Committee 2021, Hansen et al. 2022) for more details. A general introduction to co-simulation is provided
in (Gomes et al. 2019). We admit that the notation and abbreviations that follows used in this section may be
hard to follow for new readers, and we, therefore, provide a brief introduction to the notation in Appendix A
on page 12. The nomenclature follows (Kubler and Schiehlen 2000).

FMI is a standard for describing composable self-contained executable subsystems called FMUs (Blockwitz
et al. 2012). FMUs communicate with their environment through port variables (continuous, discrete, or
clock inputs/outputs), which are connected to ports of other FMUs to denote dependencies/coupling restric-
tions between them. FMI 3.0, includes features to support event-based simulation using the synchronous
clocks feature, which allows FMUs to trigger events at specific times (time-based events) or under certain
conditions (state-based events). A clock is a discrete boolean variable used to trigger events and synchronize
the execution of FMUs - the importer is responsible for activating input clocks, and the FMU is responsible
for activating its output clocks. An event is a request from the FMU to the importer to temporarily stop the
simulation and apply a specific event handling algorithm to update the FMU state and to exchange data with
other FMUs to solve the event. The strategy for solving the event is not specified by the FMI standard but
can, using the techniques described in this paper, be inferred from the FMU interface. FMI 3.0 defines two



Hansen, Gomes, and Kazemi

types of clocks: time-based clocks and state-based clocks. While the FMI standard describes the functions
available for simulation orchestration, it does not specify when or how to use them, which is the paper’s
focus. The interface of an SC FMU is summarized in Definition 1.

Definition 1 (SC FMU Instance). An SC FMU instance with identifier m is represented by the tuple:

⟨Sm,Um,Ym,Uc
m,Y

c
m,setm,getm,set

c
m,get

c
m,stepTm,stepEm,nextTm,V P

m ,F
C
m ,V c

m,Dm⟩

where:

• Sm represents the abstract set of possible FMU states. A given state sm ∈ Sm of m represents the com-
plete internal state of m: active clocks, active equations, current mode (Step or Event mode) current
valuations for input and output variables, etc. The state of an SC FMU is defined in Definition 3.

• Um and Ym represent the set of input and output variables, respectively. A variable v ∈ Um ∪Ym
is discrete if Discrete(v) = true, and continuos if Discrete(v) = false. The sets UD

m = {um ∈Um |
Discrete(m)} and Y D

m = {um ∈Um | Discrete(m)} are the set of discrete input and output variables.
• Uc

m and Y c
m represent the set of input and output clocks, respectively. The set UTC

m denotes the time-
based clocks, note that UTC

m ⊆Uc
m. The set of triggered input clocks are described by Uc

m \UTC
m .

• setm : Sm×Um×V → Sm and getm : Sm×Ym → Sm×V are functions to set the inputs and get
the outputs, respectively (we abstract the set of values that each input/output variable can take as
V ). Both setm and getm return a new state because both can trigger the computation of equations,
essentially changing the state of the FMU.

• setc
m : Sm×Uc

m×B→ Sm and getc
m : Sm×Y c

m→ Sm×B are the functions that (de-)activate the input
clocks and query the output clocks for its activation status, respectively, and B is the boolean set.

• stepTm : Sm×R≥0→ Sm×R≥0×B is a function representing the Step mode computation. If m is in
state sm at simulated time (tR,0), (sm

′,h,b) = stepTm(sm,H) approximates the state sm
′ of m at time

(tR + h,0), with h ≤ H. When b = true, we know that the importer and m have agreed to interrupt
the Step mode prematurely, and m is ready to go into Event mode.

• stepEm : Sm→ Sm×B represents one super-dense time iteration of the Event mode. If m is in state
sm at time (tR, tI), then (sm

′,b) = stepEm(sm) represents the discrete state computation m, where sm
′

represents the new state at (tR, tI +1) and b states whether an event has occurred.
• nextTm : Sm×UTC

m →R≥0∪{NaN} is the function that allows the importer to query the time of the
next clock tick. This function is only applicable to a subset of time-based clocks. The value NaN can
be returned for countdown clocks, and it means that the clock currently has no schedule.

• V P
m : WC

m → 2Y D
m is a function linking a clock with its variables. The clock partition is the set of

discrete output variables that can only be observed when the clock is active.
• FC

m : Y c
m→ 2Uc

m is a function, linking an output clock with the input clocks that can influence the state
of the output clock. It denotes when the input clock uc

m ∈Uc
m affects the state of the output clock yc

m ∈
Y c

m. This means that there exists state of the FMU sm and of the output clock yc
m such that updating

the input clock uc
m changes the state of yc

m. Formally, getc
m(set

c
m(sm,uc

m,v1),yc
m) ̸= getc

m(sm,yc
m).

• V c
m : (Y D

m ∪UD
m )→ 2Y c

m is a function describing influence of discrete variable on output clocks.
• Dm : Ym→P(Um) is a function that describes for each output port ym the set of input ports um that

can influence the value of the output port ym. The type of the connected variables can be different.

Due to space limitations, we omit the formal definition of the functions and refer the reader to the standard
and (Hansen et al. 2022) for more details.

Definition 2 (Scenario). A scenario is a structure
〈
M,L,LC,M ,F

〉
where:

• M is a finite set (of FMU identifiers).



Hansen, Gomes, and Kazemi

• L is a function L : U → Y , where U =
⋃

m∈MUm and Y =
⋃

m∈MYm, and where L(u) = y means that
the output y is coupled to the input u. Note that the function is not necessarily injective and that the
output variable y and the input variable u must be of the same type and belong to different FMUs.

• LC is a function LC : UC
T → YC, where UC

T =
⋃

m∈M(U
c
m \UTC) and YC =

⋃
m∈MY c

m. The notation
LC(uc) = yc states that the output clock yc is connected to the input clock uc.

• M ⊆M denotes the FMUs that may prematurely terminate the invocation to stepTm in Step mode.
The run-time state of an FMU is a syntactic abstraction that captures its state during simulation. This
abstraction serves as a concise and implementation-neutral representation of the FMU’s state, achieved by
disregarding the internal representation of the FMU.

Definition 3 (Run-time State of an SC FMU). Given an SC FMU m as defined in Definition 1, the run-time
state of m is a member of the set SR

m = (R≥0,N)×Mode×SR
Um
×SR

Ym
×SR

Uc
m
×SR

Y c
m
×SR

WC
m

, where:
• (R≥0,N) is the super-dense time of the FMU. We write s(tR,tI)m to indicate the FMU m is at time (tR, tI).
• Mode is the simulation mode of the FMU. An FMU can be in one of the following modes: INIT,

EVENT, and STEP. We omit the Terminate mode, since it is irrelevant for the semantics.
• SR

Um
: Um→ (R≥0,N)∪{NaN}, SR

Ym
: Ym→ (R≥0,N)∪{NaN}, sR

Uc
m

: Uc
m→ (R≥0,N)∪{NaN}, and

sR
Y c

m
: Y c

m→ (R≥0,N)∪{NaN} are functions mapping a variable to a timestamp denoting the last time
it was set. The value NaN indicates that the corresponding variable has never been set.

• SR
WC

m
is a set describing the active clocks of the FMU. Notice, clocks can only tick in Event mode.

The co-simulation state is the combination of the run-time states of the FMUs in a scenario.

Definition 4 (SC Co-simulation State). Given a co-simulation scenario as defined in Definition 2. The
co-simulation state is a member of the set SR

S = time×Mode×SR
U ×SR

Y ×SR
UC ×SR

YC ×SR
WC , where:

• time : M→ (R≥0,N) is a function, where time(c) is a function denoting the current super-dense
simulation time of FMU c. The time value t ∈ (R≥0,N) is denoted by λm.t, which is used if all
FMUs are at the same time.

• Mode : M→Modes is a function, where Mode(m) denotes the mode of the FMU m. We denote by a
value mode ∈Modes. The function λm.mode, which we use if all FMUs are in the same mode.

• SR
U = ∏m∈M SR

Uc
, SR

Y = ∏c∈M SR
Yc

, sR
UC = ∏m∈M SR

Uc
m
, and sR

YC = ∏m∈M SR
Y c

m
are functions mapping a

variable to a timestamp denoting the time when the variable was last updated.
• SR

WC =
⋃

m∈M SR
WC

m
is the set of all active clocks in the scenario.

Definition 5 (Consistent State). The co-simulation state of a given scenario is consistent if:

Consistent(
〈
t,Modes,sR

U ,s
R
Y ,s

R
UC ,sR

YC ,sR
WC

〉
)≜ (∀u,y ·L(u) = y =⇒ sR

V (u) = sR
V (y))

∧ (∀uc ∈UC,∃yc ∈ YC ·LC(uc) = yc)∧ (∀uc,yc ·LC(uc) = yc =⇒ sR
UC(uc) = sR

YC(yc))

Informally, a consistent state is a state where all coupled input and output variables have the same value
and all FMUs are in the same simulation mode and synchronized at the same time t.

The importer simulates the scenario by executing the orchestration algorithm, which consists of an initial-
ization procedure and a co-simulation step procedure. The initialization procedure sets up and connects the
FMUs, while the co-simulation step procedure is responsible for simulating the scenario over time by mov-
ing the scenario from a consistent state at time t to a future consistent state at time t +h (see Definition 6).
This is done by exchanging values between continuous port variables, computing future states for all FMUs,
choosing the appropriate step duration h, and solving all events occurring in the interval [t; t + h[. The or-
chestration algorithm is designed to maintain consistency in the co-simulation state by satisfying coupling
restrictions and ensuring that the FMUs move in lock-step. The co-simulation step is executed repeatedly
until the simulation ends. We write s P−→ s′ if executing the action P in the state s results in the state s′.



Hansen, Gomes, and Kazemi

Definition 6 (Co-Simulation Step of an SC Scenario). A co-simulation step P is a sequence of FMU actions
to simulate the scenario by moving it from one consistent state at time t to a consistent state at time t +h:〈

t,sR
U ,s

R
Y ,s

R
UC ,sR

YC ,sR
V ,sR

WC

〉
P−→

〈
t ′,sR

U
′
,sR

Y
′
,sR

UC
′
,sR

YC
′
,sR

V
′
,sR

WC
′
〉

=⇒

(Consistent(
〈

t,sR
U ,s

R
Y ,s

R
UC ,sR

YC ,sR
V ,sR

WC

〉
) =⇒ (Consistent(

〈
t ′,sR

U
′
,sR

Y
′
,sR

UC
′
,sR

YC
′
,sR

V
′
,sR

WC
′
〉
)∧ t ′ ≥ t))

Definition 2 extends the definition of a co-simulation step for the FMI 2.0 (Hansen et al. 2022) to support
the event-driven nature of FMI 3.0. This means that the co-simulation step is responsible for computing the
next state of the scenario and detecting and handling events. Nevertheless, the co-simulation step is still a
sequence of FMU actions.

The step procedure is computed as the topological ordering of a graph where the actions in Definition 1 form
the nodes of the graph and the edges represent the dependencies between the FMU actions (see Definition 7).
The graph-based approach originates in (Gomes et al. 2019, Broman et al. 2015) and was further developed
in (Hansen et al. 2022) to cover scenarios with cyclic dependencies and step restrictions.

Controller

a

Supervisor

Plant
a

r

x

x

x

(a) Example of a scenario composed of three SC
FMUs. The arrows represent the coupling restric-
tions, while the dashed arrows represent the cou-
plings between clocks. The clocks variables are rep-
resented using internal arrows.

Plant Supervisor

doStepT_SUP(H)doStepT_Plant(H)

set_SUP(u_X)get_Plant(y_x)

Controller

doStepT_CTR(H)

set_CTR(u_X)

(b) The step operation graph of the scenario in Fig. 1a
built using the rules in Definition 7.

Figure 1: Example of a scenario and its step operation graph.

Definition 7 (Step Operation Graph). Given a co-simulation scenario defined in Definition 2, we de-
fine the step operation graph where each node represents an operation setm(_,um,_), stepTm(_,H), or
getm(_,ym), of some fmu m ∈M, ym ∈ Ym, and um ∈Um. The edges are created according to the rules:

1. For each m ∈M and um ∈Um, if L(um) = yd , add an edge getd(_,yd)→ setm(_,um,_);
2. For each m ∈M and ym ∈ Ym, add an edge stepTm(_,H)→ getm(_,ym);
3. For each m ∈M and um ∈Um, if Rm(um) = true, add an edge setm(_,um,_)→ stepTm(_,H);
4. For each m ∈M and um ∈Um, if Rm(um) = false, add an edge stepTm(_,H)→ setm(_,um,_);
5. For each m ∈M and (um,ym) ∈ Dm, add an edge setm(_,um,_)→ getm(_,ym).

An example of a scenario composed of SC FMUs is shown in Fig. 1a, its associated orchestration algorithm
is shown in Algorithm 1 and the corresponding step operation graph is shown in Fig. 1b. Algorithm 1 is an
optimization that takes advantage of the fact that the FMUs are independent and can be executed in parallel.

The step procedure in Algorithm 1 is used to simulate an event-driven system in FMI 3.0, as described in
Fig. 1a. However, it only covers a partial implementation of the procedure, as it does not specify how to
detect and handle events, which are a crucial aspect of the co-simulation algorithm. In FMI 3.0, simulations
are event-driven, meaning that the step procedure can be interleaved with an event-handling procedure that



Hansen, Gomes, and Kazemi

Algorithm 1 The co-simulation step procedure of the scenario in Fig. 1a.

1: (s(h)CT RL,s
(h)
SUP,s

(h)
PLANT )← (stepTCT RL(s

(0)
CT RL,h),stepTSUP(s

(0)
SUP,h),stepTPLANT (s

(0)
PLANT ,h)) ▷ Compute the new state of the FMUs.

2: (s(h)PLANT ,x)← getPLANT (s
(h)
PLANT ,yx) ▷ Read the output of the plant.

3: (s(h)SUP,s
(h)
CT RL)← (setSUP(s

(h)
SUP,ux,x),setCT RL(s

(h)
CT RL,ux,x)) ▷ Set the input of the supervisor and the controller.

allows the importer to resolve detected events. The event handling procedure is discussed in more detail in
Section 3.2, but it involves bringing relevant FMUs into Event mode and computing the values of affected
discrete variables. Discrete variables can only be changed during the event handling procedure, as they
cannot change in Step mode. The simulation time in FMI 3.0 follows a super-dense time formulation (Lee
and Zheng 2005), with a tuple t = (tR, tI) where tR is the real part of time, and tI is the integer part. During
Step mode, tR increases while tI remains at 0, and during Event mode, tI increases while tR remains constant.
The super-dense time allows a discrete variable to take multiple values at the same real-time instant during
the event handling procedure. The following section covers how the importer detects events, computes the
step size, and handles events to complete the partial co-simulation step procedure in Algorithm 1.

3 ORCHESTRATION ALGORITHMS

In this section, we present how the approach for synthesizing orchestration algorithms presented in the
previous section can be extended to support the FMI 3.0 standard. We can due to space constraints only
present the orchestration algorithm for the step mode of the FMI 3.0 standard. Nevertheless, the initialization
phase is similar to the initialization phase of the FMI 2.0 standard (Hansen et al. 2022, Hansen et al. 2020)
with the only difference being that the FMI 3.0 importer must compute a schedule for all time-based clocks.

3.1 Co-simulation step

The approach presented in Definition 7 is a good starting point for synthesizing the co-simulation step of
the FMI 3.0 standard. Nevertheless, the approach is not sufficient as it does not account for the event-driven
nature of the FMI 3.0 standard. To account for the event-driven nature of the FMI 3.0 standard, the co-
simulation step can be divided into three subsequent phases: event detection and event handling, step size
computation, and co-simulation step execution. The following sections describe the two first of these phases,
while the third phase is similar to the co-simulation step of the FMI 2.0 present in the previous section.

3.1.1 Detecting Events

The importer detects events and computes the set of affected FMUs by checking the state of the FMUs
and the schedule of the time-based clocks. Assuming that the schedule of all time-based clocks is stored
in the map Schedule, linking all time-based clocks to the next time they should be ticked. The im-
porter can detect all time-based clocks that should be ticked (WTicking) at a given time tR using WTicking =
dom(Schedule�TR). State-based events are detected by stepping the FMUs using the function stepT as
described in Definition 1 and checking the event indicator. Assuming that the importer stores the FMUs that
have triggered an event in the set MA, and that the importer has computed the set of ticking clocks WTicking.
An event is detected if either WTicking ̸= /0 or MA ̸= /0. Their union (MA∪WTicking) is referred to as the “event
cause”, which is used to determine the event resolution strategy, as described in Section 3.2.



Hansen, Gomes, and Kazemi

3.2 Handling Events

The importer resolves events by bringing the relevant FMUs into Event mode, exercising them according to
an appropriate event strategy, and returning them to Step mode. This process may need to be repeated until
all events are resolved. An event strategy consists of steps to resolve an event, including activating clocks,
computing discrete equations, sharing data, and updating discrete states. When selecting an event strategy,
the importer must consider the event cause, which may be state-based, time-based, or a combination thereof.
All possible combinations of event causes, represented as the non-empty powerset of the union of output
clocks and time-based clocks (Ec =P(UTC∪YC)), must be considered as only FMUs can determine which
output clocks are activated during the event resolution. We use the notation EA to denote an event cause
EA ∈ Ec. Input clocks are ignored as their connected output determines their activation status. The event
strategy is calculated using a graph-based approach based on the following three sets of clocks: Active
clocks: (W c

A) is the set of clocks the importer knows to be active. Potentially active clocks: (W c
P) is the set

of clocks that can either be active or inactive. Inactive clocks: (W c
I ) is the set of clocks that the importer

knows to be inactive. Next, we demonstrate how these sets are calculated and how they are used to construct
the event-strategy graph using the rules in Definition 8. A concrete example of the approach is provided
in Section 3.2.3. The set of active clocks W c

A consists of the clocks present in the event cause and the input
clocks to which they are connected: W c

A = EA∪ dom(LC �EA), where the set EA is the set of clocks in the
event cause. The potentially active clocks W c

P are the clocks that could be activated while solving the current
event. This set is computed using the following recurrence relation:

W c
P0 = {yc | m ∈M∧ yc ∈ Y c

m \W c
A ∧W c

A ∩ (Y c
m∪Uc

m) ̸= /0}
W c

Pn+1 =W c
Pn∪dom(LC �Wc

Pn)∪{yc | m ∈M∧ yc ∈ Y c
m \W c

A ∧W c
A ∩ (Y c

m∪Uc
m) ̸= /0}

The initial set W c
P0 consists of the output clocks of FMUs that have an active clock. This set is iteratively

expanded to include transitively connected clocks until a fixed point is reached, which account for all possi-
ble combinations of output clocks that may be activated during event resolution. The set of inactive clocks,
W c

I , is simply the clocks that are neither active nor potentially active. The importer must bring all relevant
FMUs into Event mode. An FMU is relevant if it has a clock in the set of active or potentially active clocks.
The three sets allow the importer to compute the event strategy graph using the rules in Definition 8.

Definition 8 (Event Graph). Given a co-simulation scenario
〈
M,L,LC,M ,F,R,V P

, FC
〉
, and an event with

the following clock configuration ⟨W c
A ,W

c
P ,W

c
I ⟩. We define the event graph where each node represents an

operation setc
m(_,u

c
m,_), setm(_,um,_), getm(_,ym), or getc

m(_,y
c
m) of some fmu m∈M, ym ∈Ym, yc

m ∈Y c
m,

uc
m ∈Uc

m, and um ∈Um. The edges are formed by the following rules:

1. For each yc ∈W c
P ∪W c

A and uc ∈UC where LC(uc) = yc add an edge getc(_,yc)→ setc(_,uc,_);
2. For each uc ∈W c

P ∪W c
A and yc ∈ YC where uc ∈ FC(yc) add an edge setc(_,uc,_)→ getc(_,yc);

3. For each y ∈Y D and u ∈UD where V P(y)∩ (W c
P ∪W c

A) ̸= /0∧L(u) = y add an edge get(_,y)→ set(_,u,_);
4. For each y ∈ ran(V P � (W c

P ∪W c
A)) and input clock uc ∈ dom(Wc

P∪Wc
A � y) add an edge setc(_,uc,_)→

get(_,y);
5. For each y ∈ ran(V P � (W c

P ∪W c
A)) and output clock yc ∈ dom(Wc

P∪Wc
A � y) add an edge getc(_,yc,_)→

get(_,y);
6. For each yc

m1 ∈ Y c
m1 and uc

m2 ∈ UTC
m2 where yc

m1 ∈W c
P ∪W c

A and uc
m2 ∈W c

P ∪W c
A and m1 ̸= m2 add an edge

getc(_,yc
m1)→ setc(_,uc

m2,_).

Rules 1 and 2 connect active or potentially active clocks connected by the clock coupling function LC or the
feedthrough clock function FC to ensure clocks are triggered in the correct order. The third rule connects
discrete inputs and outputs connected by the coupling function L and in the clock partition of an active or
potentially active clock to ensure correct computation order. The fourth and fifth rules connect active or
potentially active clocks to variables in their clock partition to ensure a clock is activated before its partition
variables are computed. The sixth rule ensures that state-based events are handled before timed-based events



Hansen, Gomes, and Kazemi

by connecting the triggered clocks to timed-based clocks of other FMUs. The actions (stepE and nextT)
are not part of the event graph because they are always executed after an event iteration. The event graph
accounts for the importer’s inability to assume anything about the potentially active clocks. The import must
account for both the fact that an output clock yc ∈W c

P can turn out to be active or inactive and adjust the sets
W c

A ,W
c
P and W c

I and therefore also the event graph according to the observed behaviour.

The event graph is created based on the “worst-case” scenario, where all potentially active clocks become
active. For example, assuming that the clock yc ∈W c

P is active, it is removed from the set W c
P and added

to the set of W c
A together with all input clocks connected to it. Since the event graph is created based on

the set W c
P ∪W c

A , we do not need to adjust the event graph. Contrary, if the clock yc ∈W c
P is inactive such

that yc ∈W c
I , we need to adjust the event graph by removing the clock yc from the set W c

P , whereafter we
recalculate the sets W c

P and W c
I before constructing a new event graph g1 using the rules in Definition 8 with

the updated sets. The graph g1 is used to compute the event strategy for the case where the clock is inactive.

All getc actions of output clocks in W c
P are so-called “split actions” since they “split” the event graph in two,

one where the clock is active and one where it is inactive. A split action resembles a conditional statement,
which allows the importer to react to the observed behaviour; see Algorithm 3 for an example.

3.2.1 Algorithm for Synthesizing the Event Strategy

Algorithm 2 Algorithm for Synthesizing the Event Strategies
1: for all EA ∈ Ec do
2: (W c

A ,W
c
I ,W

c
P)← computeClocks(EA) ▷ Compute the different sets of clocks

3: eventGraph← createGraph(W c
A ,W

c
P ,W

c
I ) ▷ Create event graph

4: sccs← tarjan(eventGraph) ▷ Sort the event graph
5: AE ← Synthesize(W c

A ,W
c
P ,W

c
I , [],sccs) ▷ Compute the event strategy

6: M←M∪⟨E 7→ AE ⟩ ▷ Add the event strategy to the map
7: end for
8: procedure SYNTHESIZE(W c

A ,W
c
P ,W

c
I ,A,sccs)

9: if sccs = [] then
10: returnA ▷ Return the event strategy
11: else
12: scc← head(sccs)
13: if scc = getc then ▷ A split action!
14: Aa← Synthesize(W c

A ∪ scc,W c
P \ scc,W c

I , [], tail(sccs)) ▷ Assuming scc ∈W c
A

15: eventGraph← createGraph(W c
A ,W

c
P \ scc,W c

I ∪ scc) ▷ Create a new graph.
16: eventGraphR← (eventGraph∪ scc)\A ▷ Remove existing actions.
17: sccsI ← tarjan(eventGraphR) ▷ Sort the new graph.
18: Ai← Synthesize(W c

A ,W
c
P \ scc,W c

I ∪ scc, []) ▷ Assuming scc ∈W c
I

19: A←A⊕Case(scc,Aa,Ai) ▷ Make a split action.
20: return A
21: else ▷ A non-split action!
22: A←A⊕ scc ▷ Add the action to the event strategy
23: return Synthesize(W c

A ,W
c
P ,W

c
I ,A, tail(sccs)) ▷ Treat next node.

24: end if
25: end if
26: end procedure

The synthesis of an event strat-
egy for a specific event cause
is presented in Algorithm 2.
This algorithm employs the sets
W c

A ,W
c
P , and W c

I and begins by
computing the event graph of
the given event cause EA. Sub-
sequently, Tarjan’s algorithm is
used to sort the event graph
to determine the order of ac-
tions. The SYNTHESIZE pro-
cedure is then utilized to syn-
thesize the event strategy by
recursively processing the ac-
tion sequence sccs, accounting
for split actions with the con-
ditional statement in Line 13.
For split actions, where an out-
put clock can be active or in-
active, two event strategies AA
and AI are generated by calling
SYNTHESIZE recursively with
the two corresponding event
graphs. The two event strategies are combined using a “conditional” action" in Line 19 to produce the
final event strategy. All other actions are handled in the else branch (Lines 22 and 23) by adding the action
to the event strategy before moving on to the next action. The event strategies are stored in the map M
(Line 6) and retrievable by their event cause.



Hansen, Gomes, and Kazemi

3.2.2 Updating the schedule and discrete states

After executing the event strategy, the importer needs to update the schedule of all affected time-based clocks
using the nextT-action. The affected time-based clocks are a subset of the timed-based clocks belonging to
a relevant FMU. The importer should also update the states of all activated FMUs using the stepE-action
while monitoring if any of them invoke an event. If an event is invoked, the importer should update the set
MA accordingly. Once all FMUs have been stepped, the importer updates the superdense time and checks
if any events have been invoked. If an event has occurred, a new event iteration is needed, and the importer
must decide the next event strategy to execute by looking up the event strategy in the map M using the event
cause as key. If no events have been invoked, the importer brings all FMUs back to simulation mode and
performs the remaining part of the co-simulation step, which is already explained in Section 3.1.

3.2.3 An Example of Computing the Event Strategy

Algorithm 3 The Event Strategy for the event en-
trance {yc

s ,u
c
r} of the scenario in Fig. 1a

1: bs← getc
SUP(s

(t)
SUP,y

c
s)

2: if bs then ▷ Check if clock yc
s is active

3: a_sv← getSUP(s
(t)
SUP,ya_s)

4: s(t)CT RL← setc
CT RL(s

(t)
CT RL,u

c
s ,defined)

5: s(t)CT RL← setCT RL(s
(t)
CT RL,ua_s,a_sv)

6: end if
7: s(t)CT RL← setc

CT RL(s
(t)
CT RL,u

c
r ,defined) ▷ Activate clock.

8: s(t)PLANT ← setc
PLANT (s

(t)
PLANT ,u

c
r ,defined) ▷ Activate clock.

9: u_rv← getCT RL(s
(t)
CT RL,yu_r)

10: s(t)PLANT ← setPLANT (s
(t)
PLANT ,u

c
u_r,u_rv)

The approach is illustrated using the scenario
in Fig. 1a, a scenario with different types
of clocks that the importer must account for.
We start by calculating the set Ec of all pos-
sible event causes for the scenario: Ec =
{{uc

r ,y
c
s},{uc

r},{yc
s}}. The next step is to com-

pute the event strategy for each event entrance.
We will showcase the approach of computing
an event strategy for the event entrance defined
by the following set of clocks {yc

s ,u
c
r}. The ini-

tial sets of clocks are W c
A = {uc

r}W c
P = {uc

r ,y
c
s}

W c
I = /0. The event graph seen in Fig. 4 on

page 13 is computed using the rules in Defini-
tion 8. The graph is a DAG where the event
strategy is the topological ordering of the graph. The set of potentially active clocks contains an output
clock (yc

s), indicating that we need to account for the fact that the clock yc
s can turn out to be either active or

inactive when we query it - resembling a conditional statement in the event strategy shown in Algorithm 3.
The other event strategies for the scenario is shown in Algorithms 4 and 5 on page 12.

4 VALIDATION

The approach is validated through a case study of Dynamic State Estimation (DSE) in power systems. DSE
is a crucial task for improving the stability, control, and performance of protection systems in power systems,
which consist of interconnected physical and cyber components with real-time data from Phasor Measure-
ment Units (PMUs) and Remote Terminal Units (RTUs) transmitted to a central control centre at various
scan rates. Synchronizing this large amount of data is challenging due to the size of the power grid. DSE ad-
dresses this issue by dividing the computational burden between multiple computational centres. However,
different centres may use different solvers and time scales for their algorithms, making the orchestration of
these algorithms a critical task (Aweya and Al Sindi 2013).

The case study is an IEEE 14-bus power system (Christie 2023) with constant loads partitioned into five
subsystems each has an PMU installed to send measurements to the two DSE centres (DSE1 and DSE2)
at different rates. DSE1 and DSE2 use different solvers to estimate the state variables of angular rotor
positions and angular frequencies of the power system, and the results are sent to a Frequency Controller



Hansen, Gomes, and Kazemi

(FC) responsible for adjusting the input power to the generators to stabilize the power system frequency.
The FMI representation comprises eight SC FMUs as shown in Fig. 2.

Powersystem 1PM

PM

1e-3
C2C1

PM PM

TC1

TC1

TC2

TC2

Controller Powersystem 2

PM

Powersystem 3

PM

Powersystem 4

PM

Powersystem 5

PM

DSE 1 DSE 2
1e-3

Figure 2: The power system represented in FMI 3.0. Two time-based clocks are connected to the DSE
centers to sample the power system at a rate determined by the timed-based clocks C1 and C2. There are
two discrete connections (one in each direction) between the DSE centers to enable a distributed estimation
of the state variables. The data flow between the DSE centers is triggered using a triggered clock to ensure
only relevant data is being transmitted. The data is sent to the controller using a discrete connection, which
is the reason for the connection (data and clock) between the DSE centers and the controller.

The case study is a good candidate for validating the proposed algorithm as it is a realistic scenario with
a complex interaction including both state-based and time-based events, and different rates of communi-
cation between the FMUs. The orchestration algorithm must account for different rates in the system -
the DSEs have different rates controlled by their connected timed-based clock. Additionally, event-based
communication is employed between the DSEs and the FC to reduce the unnecessary data transmission.

We simulated the scenario using virtual FMUs (Scala classes implementing the FMI 3.0 SC API) rather than
compiled FMUs, due to the lack of tool support for the FMI 3.0. The virtual FMUs share the same API as
compiled FMUs and can be used similarly. The simulation results shown in Fig. 3 were validated against a
reference model developed by a domain expert.

The reference model, the prototype implementation and the virtual FMUs and more details on the case
study are available at https://github.com/SimplisticCode/ANNSIM_Reprod. The results demonstrate that
the proposed algorithm can accurately simulate a complex system with different simulation rates, and event-
based communication and behavior. The quality of the reference model is beyond the scope of this work.

5 SUMMARY

This paper presented what we believe to be the first approach for synthesizing orchestration algorithms for
synchronous clocks simulations according to the FMI 3.0 standard. The proposed algorithms are graph-
based and are based on earlier work on the FMI 2.0 standard, which has been extended to support the
event-driven nature of the FMI 3.0 standard. The methods have been implemented in the FMI 3.0 reference
implementation and have successfully simulated several FMUs with synchronous clocks. Nevertheless,
the developed tool is still a prototype and is not ready for industrial use yet. Future work will focus on
extending the algorithms to support the scheduled execution feature of the FMI 3.0 standard and to facilitate
the integration of the algorithms into existing simulation tools.

https://github.com/SimplisticCode/ANNSIM_Reprod


Hansen, Gomes, and Kazemi

0 1 2

Time [s]

0

1

2

(a) Each color shows the estimated angular ve-
locity of different synchronous machines 1 to 5
computed by the DSE centres.

0 1 2

Time [s]

- 3

- 2

- 1

0

1

(b) Each color shows the estimated angular ve-
locity of different synchronous machines 1 to 5
computed by the DSE centres.

0 1 2

Time [s]

0

1

2

3

4

5

6

7

8

9

(c) Each color shows the calculated input me-
chanical power of different synchronous ma-
chines 1 to 5.

0 1 2

Time [s]

(d) Each color shows a different of the Runge-
Kutta parameters that the DSE center uses to
calculate the state variables and send to the con-
troller for it to calculate the input mechanical
power .

Figure 3: Simulation results of the powersystem in FMI 3.0 SC. Each subfigure shows the results of a
different simulation parameter and each line represents a different FMU/Generator.



Hansen, Gomes, and Kazemi

ACKNOWLEDGMENTS

The authors are grateful to the Poul Due Jensen Foundation, which has supported the establishment of the
Centre for Digital Twin Technology at Aarhus University. The authors would like to thank the anonymous
reviewers for their helpful comments.

AUTHOR BIOGRAPHIES

SIMON THRANE HANSEN is a PhD student at Aarhus University, Denmark. His research interests lie
in the area of co-simulation and formal verification. His email address is sth@ece.au.dk.

CLÁUDIO GOMES is an assistant professor at Aarhus University. He received his PhD at the University of
Antwerp, for his work on the foundations of co-simulation. His email address is claudio.gomes@ece.au.dk.

ZAHRA KAZEMI is a postdoctoral researcher at Aarhus University She received her PhD at Shiraz Uni-
versity for her work in Control Engineering. Her email address is zka@ece.au.dk.

A NOTATION

We borrow some notation from the Event-B method that may be less familiar. The complement −c of a set
c ⊆ Γ is defined as the set of elements in Γ that are not in c. We define the domain restriction c�R as the
subset of R consisting of all pairs (x,y) such that x∈ c and (x,y)∈R. The domain subtraction c�−R is defined
as the complement of c within the domain of R, i.e., (−c)�R. The range restriction R� c is defined as the
inverse of the domain restriction of the inverse of R on c, i.e., (c�R−1)−1. Similarly, the range subtraction
R�− c is defined as the range restriction of the complement of c, i.e., R� (−c). The relational image R[c] is
defined as the range of the domain restriction of R on c, i.e., ran,(c�R), where ran denotes the range of a
relation. The operations are exemplified on the relation R = {(1,2),(2,3),(3,4)} below:

{1}�R = {(1,2)}
R�{4}= {(3,4)}
dom(R) = {1,2,3}

R−1 = {(2,1),(3,2),(4,3)}

{1}�−R = {(2,3),(3,4)}
R�−{4}= {(1,2),(2,3)}

ran(R) = {2,3,4}

B EVENT STRATEGIES

This appendix presents the two event strategies for the scenario Fig. 1a.

Algorithm 4 The Event Strategy for the event en-
trance {uc

r} of the scenario in Fig. 1a.

1: s(t)CT RL← setc
CT RL(s

(t)
CT RL,u

c
r ,defined) ▷ Activate clock.

2: u_rv← getCT RL(s
(t)
CT RL,yu_r)

3: s(t)PLANT ← setPLANT (s
(t)
PLANT ,u

c
u_r,u_rv)

Algorithm 5 The Event Strategy for the event en-
trance {yc

s} of the scenario in Fig. 1a.

1: bs← getc
SUP(s

(t)
SUP,y

c
s)

2: if bs then ▷ Check if clock yc
s is active

3: a_sv← getSUP(s
(t)
SUP,ya_s)

4: s(t)CT RL← setc
CT RL(s

(t)
CT RL,u

c
s ,defined)

5: s(t)CT RL← setCT RL(s
(t)
CT RL,ua_s,a_sv)

6: end if

REFERENCES

Modelica Association 2021. “Modelica Language Specification Version 3.5”. Online at https://modelica.
org/documents/MLS.pdf.

mailto://sth@ece.au.dk
mailto://claudio.gomes@ece.au.dk
mailto://zka@ece.au.dk
https://modelica.org/documents/MLS.pdf
https://modelica.org/documents/MLS.pdf


Hansen, Gomes, and Kazemi

Plant

Supervisor

getC_SUP(yc_s)

setC_CTR(uC_r)
get_SUP(y_as)

set_Plant(u_r)

Controller

set_CTR(u_as)

setC_CTR(uC_r)

setC_CTR(uc_s)

get_CTR(y_r)

Figure 4: Event graph for the event cause {yc
s ,u

c
r} of the scenario in Fig. 1a. The synthesized event strategy

is shown in Algorithm 3. The different colors in the graph is used to distinguish crossing edges. The edge
between the clock yc

s in the supervisor and the clock uc
r in the controller and in the plant ensures that the

equation inside the supervisor is executed before the equations inside the controller and the plant.

Aweya, J., and N. Al Sindi. 2013. “Role of Time Synchronization in Power System Automation and Smart
Grids”. In 2013 IEEE ICIT.

Benveniste, A., P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. 2003. “The Syn-
chronous Languages 12 Years Later”. Proceedings of the IEEE vol. 91 (1).

Blockwitz, T., M. Otter, J. Åkesson, M. Arnold, C. Clauss, H. Elmqvist, M. Friedrich, A. Junghanns,
J. Mauss, D. Neumerkel, H. Olsson, and A. Viel. 2012. “Functional Mockup Interface 2.0: The Standard
for Tool independent Exchange of Simulation Models”. In Proc. 9th International Modelica Conference,
Linköping University Electronic Press.

Broman, D., L. Greenberg, E. A. Lee, M. Masin, S. Tripakis, and M. Wetter. 2015. “Requirements for
Hybrid Cosimulation Standards”. In Proc. HSCC ’15, ACM, ACM New York, NY, USA.

Richard D. Christie 2023, March. “Power Systems Test Case Archive - UWEE”. [Accessed 8. Mar. 2023].

Functional Mockup Interface Steering Committee 2021. “Functional Mock-up Interface for Model Ex-
change, Co-Simulation, and Scheduled Execution”.

Dahmann, J. S. 1997. “High Level Architecture for Simulation”. In DIS-RT, IEEE Computer Society.

Elmqvist, H., M. Otter, and S. E. Mattson. 2012. “Fundamentals of Synchronous Control in Modelica”. In
Linköping Electronic Conference Proceedings, Linköping University Electronic Press.

FMI 2014. “Functional Mock-up Interface Tools”. Online https://fmi-standard.org/tools/.

Galtier, V., S. Vialle, C. Dad, J.-P. Tavella, J.-P. Lam-Yee-Mui, and G. Plessis. 2015. “FMI-based distributed
multi-simulation with DACCOSIM”. In SpringSim (TMS-DEVS), edited by F. Barros, M. H. Wang,
H. Prähofer, and X. H. 0002, SCS/ACM.

Gomes, C., L. Lucio, and H. Vangheluwe. 2019. “Semantics of Co-Simulation Algorithms with Simulator
Contracts”. In Proc. ACM/IEEE MODELS’19, edited by L. Burgueño, A. Pretschner, S. Voss, M. Chau-
dron, J. Kienzle, M. Völter, S. Gérard, M. Zahedi, E. Bousse, A. Rensink, F. Polack, G. Engels, and
G. Kappel. , IEEE.

Gomes, C., C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe. 2019. “Co-Simulation”. ACM Comput-
ing Surveys vol. 51 (3).

https://fmi-standard.org/tools/


Hansen, Gomes, and Kazemi

Hansen, S. T., C. Gomes, P. G. Larsen, and J. van de Pol. 2021. “Synthesizing Co-Simulation Algorithms
with Step Negotiation and Algebraic Loop Handling”. In Proc. ANNSIM’21, edited by C. R. Martin,
M. J. Blas, and A. Inostrosa-Psijas, IEEE.

Hansen, S. T., C. G. Gomes, M. Najafi, T. Sommer, M. Blesken, I. Zacharias, O. Kotte, P. R. Mai, K. Schuch,
K. Wernersson, C. Bertsch, T. Blochwitz, and A. Junghanns. 2022, January. “The FMI 3.0 Standard
Interface for Clocked and Scheduled Simulations”. Electronics vol. 11 (21).

Hansen, S. T., C. Thule, and C. Gomes. 2020. “An FMI-Based Initialization Plugin for INTO-CPS Maestro
2”. In SEFM’2020 Collocated Workshops., edited by L. Cleophas and M. Massink, Springer.

Hansen, S. T., C. Thule, C. Gomes, J. van de Pol, M. Palmieri, E. O. Inci, F. Madsen, J. Alfonso, J. Á.
Castellanos, and J. M. Rodriguez. 2022. “Verification and synthesis of co-simulation algorithms subject
to algebraic loops and adaptive steps”. STTT vol. 24 (6).

Kofman, E., and S. Junco. 2001. “Quantized-State Systems: A DEVS Approach for Continuous System
Simulation”. SIMULATION vol. 18 (3).

Kubler, R., and W. Schiehlen. 2000. “Two Methods of Simulator Coupling”. Mathematical and Computer
Modelling of Dynamical Systems vol. 6 (2).

Lee, E. A., and H. Zheng. 2005. “Operational Semantics of Hybrid Systems”. In Proc. HSCC 2005, LNCS,
Springer Berlin Heidelberg.

Paris, T., J. Wiart, D. Netter, and V. Chevrier. 2019. “Teaching co-simulation basics through practice”. In
Proc. SummerSim’19, edited by U. Durak, ACM.

Zeigler, B. P. 1976. Theory of Modeling and Simulation. John Wiley, Hoboken, NJ, USA.

Zeigler, B. P., and J. S. Lee. 1998, August. “Theory of Quantized Systems: Formal Basis for DEVS/HLA
Distributed Simulation Environment”. In Enabling Technology for Simulation Science II, Volume 3369.
Orlando, FL, United States, SPIE 3369.


