
����������
�������

Citation: Hansen, S.T.; Gomes,

C.Â.G.; Najafi, M.; Sommer, T.;

Blesken, M.; Zacharias, I.; Kotte, O.;

Mai, P.R.; Schuch, K.; Wernersson, K.;

et al. The FMI 3.0 Standard Interface

for Clocked and Scheduled

Simulations. Electronics 2022, 11, 3635.

https://doi.org/10.3390/

electronics11213635

Academic Editors: Martin Sjölund,

Peter Fritzson, Lena Buffoni, Adrian

Pop and Lennart Ochel

Received: 31 July 2022

Accepted: 1 October 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

The FMI 3.0 Standard Interface for Clocked and
Scheduled Simulations
Simon Thrane Hansen 1,* , Cláudio Ângelo Gonçalves Gomes 1 , Masoud Najafi 2, Torsten Sommer 3,
Matthias Blesken 4, Irina Zacharias 4, Oliver Kotte 5, Pierre R. Mai 6, Klaus Schuch 7, Karl Wernersson 8,
Christian Bertsch 5, Torsten Blochwitz 9 and Andreas Junghanns 10

1 Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark
2 Altair Engineering, 92160 Antony, France
3 Dassault Systemes GmbH, 10435 Berlin, Germany
4 dSPACE GmbH, 33102 Paderborn, Germany
5 Corporate Research, Robert Bosch GmbH, 70465 Stuttgart, Germany
6 PMSFIT, 85417 Marzling, Germany
7 AVL, 8020 Graz, Austria
8 Dassault Systemes AB, 223 63 Lund, Sweden
9 ESI ITI, 01067 Dresden, Germany
10 Synopsys, 10557 Berlin, Germany
* Correspondence: sth@ece.au.dk

Abstract: This paper presents an overview and formalization of the Functional Mock-up Interface
(FMI) 3.0. The formalization captures the new FMI 3.0 standard and is intended to be used as an
introduction for conceptualizing the use of clocks in the FMI standard to support the simulation
of event-based cyber-physical systems. The FMI 3.0 standard supports two kinds of clock-based
simulations: Synchronous Clocked Simulation to ensure predictable systems scheduling with mul-
tiple simultaneous events and scheduled execution to facilitate real-time simulations comprising
multiple black-box models by allowing fine-grained control over the computation time of submodels.
The formalization is a basis for developing tools for orchestrating, verifying and validating the
composition of multiple FMUs. The formalization is provided as an accessible VDM-SL specification.

Keywords: functional mock-up interface; synchronous clocks; reactive systems; real-time simulation;
scheduling; real-time operating system

1. Introduction

Modern cyber-physical systems (CPSs), such as, e.g., nuclear power plants, cars,
and airplanes, consist of cyber components (a controller) and physical components (a
plant) [1]. Modeling a CPS often spans different paradigms, including continuous-time,
modal models, and discrete events. Moreover, each subsystem is typically developed by
different specialized companies using different tools and formalisms [2].

As more and more Modeling and Simulation (M&S) tools are used in system-
engineering processes, it becomes clear that standards are needed to improve the in-
teroperability of such tools. The Functional Mock-up Interface (FMI) standard [3] aims
to enable the exchange and cooperative simulation of black-box models. Version 2.0 of
the standard strikes a balance between supporting the most common features across the
plethora of M&S tools and enabling efficient simulations of continuous systems. Its wide
adoption with more than 170 tools supporting the standard [4] has, however, placed pres-
sure in supporting two important use cases: simulation scenarios where time-based and
state events play a frequent role in synchronizing a subset of the participating models (e.g.,
controller code with tasks running at different rates); and scenarios where the goal is to
control the computation time of the different models, so that a real-time co-simulation can
be achieved.

Electronics 2022, 11, 3635. https://doi.org/10.3390/electronics11213635 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213635
https://doi.org/10.3390/electronics11213635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3796-4319
https://orcid.org/0000-0003-2692-9742
https://doi.org/10.3390/electronics11213635
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213635?type=check_update&version=2

Electronics 2022, 11, 3635 2 of 32

Developers of such systems have historically turned to other formalizations such as
Modelica [5], HLA [6] and DEVS [7,8] for simulation and modeling of such event-driven
systems since they support a natural mechanism for modeling and simulating continuous
systems with discrete events.

As the name suggests, DEVS (Discrete-Event System Specification) is a formalism
for modeling discrete-event systems composed of discrete-event submodels. DEVS lets
subcomponents trigger events on state transitions and propagate them to others using
connections between subcomponents. HLA (High-Level Architecture) is a modeling lan-
guage for discrete-event-based systems that greatly facilitates geographically distributed
simulations and provides, in contrast to FMI, a standardized run-time infrastructure (RTI)
to handle information exchange and synchronization between the different components.
There have been several attempts to integrate the previous FMI versions (and other sim-
ulation standards) into HLA to leverage the benefits of the standardized RTI [9–12] to
exchange data and synchronize events between FMUs. Nevertheless, these approaches are
not standardized and do not provide a formal semantics for the interaction between FMUs
and the RTI of HLA. Furthermore, these approaches do not provide the same fine-grained
control over the simulation as the FMI 3.0 standard. In the continuous time paradigm,
the Modelica language enables one to model an event-driven behavior using synchronous
clocks. Synchronous clocks are inspired by synchronous languages [13] that include clocks
to give the developers a fine-grained control over the execution of the simulation while
still having well-defined formal semantics. Synchronous clocks are Boolean variables
represented as input and output ports associated with a set of equations to be evaluated
at each clock tick. The ability to link equations directly to ports provides the user with
a fine-grained simulation control. Synchronous clocks can furthermore be connected to
model events spanning multiple components, and a similar concept of clocks has been
recently introduced in the Modelica language version 3.3 [5].

Despite the success and popularity of these formalisms, they make it difficult to couple
simulations of models produced in different tools, to protect their Intellectual Property (IP),
and to handle models with algebraic loops:

• HLA and DEVS: support a very elegant mechanism to handle discrete events, never-
theless it is complicated to incorporate efficient methods to solve algebraic loops that
span multiple simulation units. This means that such formalisms are not suitable to
simulate systems containing such feedback mechanisms (see [14] for more details).

• FMI 2.0: supports an efficient simulation of continuous systems, including algebraic
loops spanning multiple FMUs. However, its fundamental event mechanism does not
allow one to easily model multi-rate and real-time systems (which are more natural in
HLA and DEVS), where the orchestration of the system should adapt according to the
state of the system.

It is to address the above limitations that the FMI version 3.0 SC [15] has been proposed:
it supports the implementation of Synchronous Clocked (SC) co-simulations. FMI 3.0
extends the FMI 2.0 standard with the notion of clocks to provide an already efficient
method to conduct continuous-time co-simulations with a more elaborate notion of events.
The clocks are used to define the simulation unit reaction to specific time-based and event-
based behavior similarly to synchronous clocks in the Modelica language [5]. This enables
co-simulation practitioners to use FMI 3.0 standard to co-simulate systems with a more
complex interaction mechanism and to model systems with real-time behavior.

Contribution

This paper gives an overview of the FMI 3.0 support for two kinds of clock-based
simulations: Synchronous Clocked Simulation (SC) and Scheduled Execution (SE). The
paper provides a formal semantics of the two simulation modes, which tool vendors
and practitioners can use to implement and understand the new features of the FMI 3.0
standard. Synchronous Clocked Simulation aims at scenarios where the cause and exact
time of multiple simultaneous events can be unambiguously conveyed. At the same time,

Electronics 2022, 11, 3635 3 of 32

scheduled execution facilitates real-time simulation among black-box models by giving
practitioners a fine-grained control (compared to version 2.0 of the FMI standard) over
when specific tasks inside the black-box simulation unit can be executed.

1.1. Prior Work

This manuscript extends a prior paper [16] by introducing a formal semantics of the
FMI 3.0 standard. The formal semantics allow tool vendors and practitioners to obtain a
uniform and unambiguous understanding of the FMI 3.0 standard.

1.2. Structure

The next section introduces the common concepts and the interface elements that are
common to SC and SE. Section 3 details SC, along with a motivating example. Section 4
focuses on SE, following the same structure as Section 3. In Section 5, we discuss some of
the related works, and in Section 6 we summarize and conclude.

2. Common Interface and Concepts

This section introduces the concept of co-simulation, and gives an informal overview
of the different types of clocks and interfaces of FMI 3.0.

Co-simulation is a technique to combine multiple black-box simulation units to com-
pute the combined models’ behavior as a discrete trace. Simulation units are combined by
coupling outputs of one simulation unit to inputs of another to denote data dependencies
between the models. See [14,17], for an introduction. The simulation units, often developed
and exported independently from each other in different M&S tools, are coupled using an
orchestration algorithm, often developed independently as well, that communicates with
each simulation unit via its interface. This interface, an example of which is the FMI stand-
ard interface for co-simulation, comprises functions for setting/getting inputs/outputs and
computing the associated model behavior over a given time interval.

The FMI 3.0 defines three interface types: the Co-Simulation (CS), the Model Exchange
(ME), and the Scheduled Execution (SE). A simulation unit is in the context of FMI called a
Functional Mock-up Unit (FMU), implementing one or more of the three interfaces. An
FMU is a zip containing: binaries and/or source code implementing the API functions; mis-
cellaneous resources; and an XML file called the modelDescription, describing the variables,
model structure, and other metadata of the FMU.

For each interface type, the FMU may implement optional features, such as declaring
synchronous clocks (in the case of ME or CS), or scheduled execution clocks (in the case of
SE). Figure 1 summarizes the different interface types and the main concepts relevant to
this paper. All three interfaces (CS, ME, and SE) share common functionality, such as the
declaration and usage of variables and clocks.

The differences between the three interface types can be seen on the left-hand side of
Figure 1. The importer is the software that imports the FMU and interacts with the FMUs
through their interfaces. We distinguish between three importers, each corresponding to
one of the interface types, and each with different responsibilities. The ME importer often
needs to provide a differential equation (ODE) solver to compute the behavior of the model
and be able to handle events. In contrast, the CS importer does not need to provide an
ODE solver, because such a solver can be implemented inside the CS FMU. Finally, the SE
importer provides a task scheduler to determine precisely when each task implemented in
the FMU will be executed.

The ME and CS both contain mechanisms to communicate events to the importer, and,
as we detail later, both enable Synchronous Clocked (SC) simulation.

Electronics 2022, 11, 3635 4 of 32

package Synchronous Clocks interfacesME FMU

ME Importer

interface Model Exchange
ME Exporter

exports

interacts with

package Common Features

Variables

Clocks

<<refine>>

<<refine>>

interface Co-simulation

interface Scheduled Execution

<<refine>>CS FMU

CS Exporter

exports

ODE Solver Event Handler

<<import>>

Algebraic Eq.
Solver

CS Importer <<import>>

interacts with

Event HandlerAlgebraic Eq.
Solver

<<refine>>

<<refine>>

<<refine>>

<<refine>>

SE FMU

SE Exporter

exports

SE Importer <<import>>

interacts with

Task Scheduler

External FMI Standard

Events

ODE

Figure 1. Overview of relevant concepts. Please note that there might be domain-specific importers
which do not need an ODE solver because the supported FMUs do not contain continuous variables.
This figure attempts to illustrate the most common differences between the interface types.

Broadly speaking, a simulation involving multiple connected FMUs goes through
the following simulation modes. Note that this is a simplification of the states or modes
defined in the state diagrams of the FMI 3.0 standard:

Initialize—The FMUs are instantiated and their initial state/inputs/outputs/parameters
are calculated or set by the importer.
Step—The simulation is progressing in simulated time, and FMUs that represent ODEs are
being numerically integrated.
Event—The simulated time is stopped and events (e.g., clock ticks, parameter changes) are
being processed.
Terminate—The simulation has finished, and all resources are freed.

The Step and Event modes come after the Initialize mode and are interleaved.
In the following sub-sections, we introduce FMI 3.0 clocks. We specify how they

are declared, connected, and interacted with, as well as common constraints imposed
by the standard. These characteristics about clocks are common to the SC and SE clock
interpretations.

2.1. Clock Taxonomy

Clocks represent an abstraction of activities whose occurrence is tied to specific points
in time or specific states. They appear in many modeling formalisms for systems that
interact with the real world [5,13], where it is crucial to represent computations that happen
at different rates or as a result of conditions observed in the environment. Conceptually,
each clock represents a sequence of instants in time where the clock is active, called ticks.
From the entities that can interact with a clock, we highlight the FMU and the importer (recall
Figure 1). The FMU is the entity that declares and implements the behavior associated with
a given clock, while the importer is the entity that interacts with the clock. The activation
status of an input clock is determined by the importer, while the FMU itself determines the
activation status of an output clock.

Electronics 2022, 11, 3635 5 of 32

Clocks are declared in the modelDescription file and can be seen as a special variable
type. Each clock has specific attributes, among others, an identifier called the value
reference, a causality attribute (whether the clock is an input or output, as we will discuss
later), and an attribute intervalVariability (declaring the type of clock discussed later).
Dynamically, during the simulation, each clock can be either active or inactive (denoted as
the clock’s state). Depending on the clock type and causality, the importer can set or obtain
the state of a clock (see below).

There are two main types of clocks: time-based and triggered. Time-based clocks are
associated with an interval. The interval dictates the time duration (in simulated time units)
between the last tick and the next tick at any moment in simulated time. Such intervals can
be queried or set by the importer, depending on the clock’s interval attribute (see below).
In contrast, triggered clocks have no a priori known interval. The FMU or importer must
set/get the (activation) state of the clock depending on the system’s state. The importer
can activate a triggered input clock to tell the FMU about a change to the system caused by
one of the other FMUs. In comparison, an FMU can activate an output clock to highlight
an internal event to the rest of the system. The different clock types are listed in Table 1
according to who calculates the intervals and ticks the clock.

Table 1. Overview of clock types and their attributes.

Clock Type Period Interval Variability Interpretation

time-based

periodic

constant FMU declares period in XML.
fixed Importer sets the interval during Initialize.
calculated FMU calculates period in Initialize mode.

tunable
FMU calculates period in Event mode (CS) or
after executing model partition (SE).

aperiodic
changing FMU calculates interval after each clock tick.
countdown FMU calculates interval after an event.

triggered – triggered
There is no known interval. The clock ticks
unpredictably, either due to FMU current
state/inputs, or due to events.

Before discussing the causality of clocks, it is important to distinguish between the
entity that dictates the clock interval and the entity that activates the clock. This distinction
is important in the context of the FMI because the simulated time is a real-valued quantity,
represented by a finite-resolution variable. For example, the FMU may declare the interval
of a periodic clock in the XML, but it is the importer that will decide exactly at which
simulated time the input clock ticks. Due to numerical inaccuracies, it may happen that
the interval (in simulated time) between clock ticks does not match exactly the interval
declared by the FMU.

Time-based clocks are always input clocks since it is the importer who is responsible
for activating the clock (even though the clock interval can be decided by other entities, as
shown in Table 1). On the other hand, triggered clocks can be input or output clocks. The
importer is responsible for setting the activation state of the triggered input clock. In contrast,
the FMU controls the activation state of its output clocks; the importer can query these
output clocks to observe their state. The causality, therefore, plays a role in determining
how clocks can be connected and how they can be activated.

2.2. Clock Variables and Dependencies

An output clock can be connected to an input clock, just as a “normal” output port
can be connected with a “normal” input port. It is also possible to connect two input clocks
to the same clock source or even have one input clock connected to two different output
clocks. A connection from clock wc to clock vc means that whenever clock wc ticks, then
clock vc should also tick. For triggered clocks, that is relatively easy to enforce: whenever
an output clock activates, the connected input clock should be activated. For time-based

Electronics 2022, 11, 3635 6 of 32

clocks, the importer must take into account the intervalVariability attributes of the clocks and
decide whether such a connection makes sense or not.

FMUs can declare internal dependencies referred to as feedthrough between their output
and input variables in the modelDescription file. An output variable y depends on an input
variable u when the computation of y’s value requires the value of u is computed at the
same simulated time instance. For example, in Figure 2, the output port ym is computed
from, among other dependencies, the input port um. Please note that we denote input
variables both normal ports and clocks with u and output variables with y.

An output clock yc can also depend on one or more input clocks or variables. The
meaning is that the state of such input clocks or the value of the input variables is taken
into account when deciding whether the output clock yc will tick. For example, in Figure 2,
the output clock yc

m may tick when the input clock uc
m ticks, or because of a change on the

input port um. It is not necessarily the case that yc will tick whenever an input clock, that yc

depends on, ticks.
When a clock wc ticks (we use wc to denote a clock when its causality is irrelevant),

there is a set of variables whose values should be computed. We denote this set of variables
by “wc’s variables” or “clocked variables” when the specific clock is unimportant. FMI
imposes few constraints on the clocked variables. However, the FMU can declare in its
modelDescription, for each variable which clocks it depends on (usually not more than one)
using the attribute clocks. For example, in Figure 2, ym is computed when uc

m ticks. Clocked
variables can only be accessed when their associated clock is ticking; accessing the variables
of clock wc’s when wc is not ticking is undefined behavior. Please note that an output clock
can be a clocked variable that only can be accessed when its associated clock is ticking.
This can introduce cyclic dependencies between multiple clocks, which we must avoid for
all scenarios to achieve meaningful simulations. Clocked variables are introduced to give
the user a fine grain of control over the simulation because it allows the user to specify
precisely using the clocks attribute which variables need to be exchanged/recomputed
when a specific clock ticks.

m n

Legend:

 is computed from when ticks.

 may tick because of ticking
or changing value.

 is transitively connected to .

Figure 2. Example clock connections and dependencies. The symbols m and n refer to FMUs.

3. Synchronous Clocked Simulation

This section describes the Synchronous-Clock (SC) interpretation of the clocks in-
terface introduced in the previous section. This interpretation is inspired by the clock’s

Electronics 2022, 11, 3635 7 of 32

implementation in the Modelica specification [5] and existing synchronous-clock theories
such as [13]. Nevertheless, it is adapted to reflect the constraints of black-box co-simulation.
As such, we offer no guarantees of semantic equivalence.

We start by detailing the main simulation modes for CS and ME as if no clocks were
declared. To focus on the essential mechanisms, we abstract away from the ME and
CS interfaces and present them in a unified manner using set-theoretic constructs while
referring the reader to the FMI standard for more details.

3.1. Background on CS and ME

Following the superdense time formulation as in [18], the simulation time is a tuple
t = (tR, tI) where tR ∈ R≥0, tI ∈ N≥0. In Step mode, the real part of time tR is increasing
and tI = 0; during Event mode, the integer part of time tI is increasing while tR is held
constant. Figure 3 illustrates a possible trajectory for the values of a variable v in superdense
time from the importer’s perspective in Figure 3b which only can inspect the variable v
at discrete points in time. The continuous evolution of v is represented in Figure 3a.
The Step mode produces a continuous evolution of v, while the Event mode introduces
discontinuities in the calculation of v. Figure 3 also illustrates that the resolution/step size
of the simulation time is not uniform across the simulation; the first step is of size 0.7 and
the second step is of size 1.3.

We distinguish between discrete and continuous variables. Continuous variables are
those whose value changes continuously over time; a continuous variable can be defined
as a function of time, meaning it can only take a specific value at a given time tR. Discrete
variables are those whose value changes only at discrete points in time; discrete variables
can take multiple values at the same real part of time tR in Event mode. The different
values of a discrete variable can be distinguished by the integer part of time tI . We define
the following relations (= and <) between superdense time instances.

(tI1, tR1) < (tI2, tR2)⇔ tI1 < tI2 ∨ (tI1 = tI2 ∧ tR1 < tR2)

(tI1, tR1) = (tI2, tR2)⇔ tI1 = tI2 ∧ tR1 = tR2

3

(3,0)

(3,1)

(3,2)
(3,3)

(1.7,0)

Step Mode Step Mode

Event Mode

21 4

(a)

3

(3,0)

(3,1)

(3,2)
(3,3)

(1.7,0)

Step Mode Step Mode

21 4

(5,0)

(0,0)

Event Mode

(b)
Figure 3. An example of the variable trajectory of the variable v in superdense time. The continuous
evolution of v is represented in (a) as a line. The dots on the line represent the variable’s value and
the time points at which the variable v can be inspected. The yellow dots denote that the FMU is in
Event mode, while the black dots denote that the FMU is in Step mode. The evolution of v from the
importer’s perspective is represented in (b) as a set of discrete points. (a) Trajectory of the variable v in
superdense time. (b) Trajectory of the variable v from the importer’s perspective.

In Step mode, the FMU and importer cooperate in approximating the solution of a
system of differential equations described by the FMU. An example of this can be seen
in Figure 3a where the value of variable v is the approximated solution to such a system
of differential equations. In the case of ME, the FMU provides the derivatives, and the
importer provides the inputs and solver. In CS, the importer provides the inputs, and the
FMU provides the derivatives and solver (recall Figure 1).

Electronics 2022, 11, 3635 8 of 32

The importer may switch the FMU to Event mode if one or more of the following
situations occur. Note that there are other kinds of events, but for simplicity, we highlight
the main ones:

Time events—the simulated time t = (tR, 0) reached a specific point in time tR where an
event is happening (a clock is ticking). The time tR was known at the end of the last Event
mode;
State events—The value of some variable crossed a threshold that is known to the FMU;
Input events—The value of an input variable changed discretely, introducing a discontinuity.

The mechanism for detecting and communicating the occurrence of events is described
in FMI 3.0 [15] for both the ME and CS interfaces, so we will not discuss these mechanisms
here. It suffices to assert that the importer can determine that the FMU should switch to
Event mode at the appropriate simulated time.

During Event mode, the FMUs and importer cooperate in solving a set of algebraic
equations associated with the event that triggered the Event mode. To solve the equations,
the importer will typically construct a dependency graph between the output and input
variables, using the model structure declared by the FMU [19]. The FMU may be part
of a larger simulation model (scenario), where its inputs can depend on both external
entities as well as its own outputs. Therefore, the dependency graph may involve not
just the FMU variables but other relevant external variables. As a result, there might
exist cyclic dependencies between variables of the FMU. These manifest as non-trivial
strongly connected components in the dependency graph [20], indicating that the system
is represented as a non-linear equation that must be solved using traditional solution
techniques [14]. The importer solves such a system by setting and querying the variables of
the FMU. At the same time, the FMU recomputes any output variable that might change
due to new input values set by the importer. The critical consequence is that all variables of
the FMU have acquired a value that stabilizes the system of equations.

The FMU may remain in Event mode, and perform a new iteration to handle new
events. These new events may be caused by the importer or by a new value for some
variable. The FMI defines the mechanism by which the FMU or importer agrees that a new
event iteration is needed. Each new event iteration corresponds to one increment in the
integer part of the superdense simulated time. If no more event iterations are needed, Event
mode is finished and the FMU returns to Step mode.

Please note that in Event mode, as part of the procedure to solve non-linear equations,
there may be hundreds of iterations to converge and obtain a solution. These intermediate
values are not shown in Figure 3 and do not cause the integer part of the superdense time to
increment because they happen within one superdense time instant. Therefore in Figure 3
there are three event handling iterations. When switching back to Step mode, the FMU
informs the importer of the next time-based event (if such event is defined).

3.2. Limitations of FMI 2.0: Discerning Events

The basic event signaling mechanism offered by FMI 2.0 is adequate for most ap-
plications without simultaneously occurring events. However, they are insufficiently
expressive for simulations with many simultaneous events. We illustrate this with a simple
example shown in Figure 4, devised to motivate the need for clocks. The example shows a
closed-loop control system, where the CtrlFMU is specified as an FMU, and the remaining
submodels are specified in some other language. We sketch the CtrlFMU equations, but,
note that the importer has no access to these (it can only query the FMU for the values of the
output variables). The CtrlFMU, every 1/r seconds (we abuse the notation r to denote both
a clock r and its frequency), obtains a sample from the Plant (produced by the Sensor), and
calculates its next state, based on the previous state pre(u_r), the sampled value x_r, and
some dynamic configuration parameter a that is calculated by the Supervisor. The latter,
depending on the Plant dynamics (the sampling rate of which we ignore) may decide to
reconfigure the Controller.

Electronics 2022, 11, 3635 9 of 32

CtrlFMU

Sensor Plant

Actuation

u_r

a := Config(a_s)
a_r := sample a at rate r
u_r := NextState(pre(u_r), x_r, a_r)

x_r

x_r := sample x at rate r

u
u := Actuation(u_r)

x der(x) = f(x,u)

Supervisor

a_s := f(x) when g(x) = 0

a_s

Figure 4. Motivating example with supervisor controller.

Using only the basic event mechanism of FMI 2.0, it is cumbersome to simulate the
scenario in Figure 4, for the following reasons:

• It is not possible to let the CtrlFMU control the sampling rate of the system (r) based
on the state of the system. Instead, we must use a fixed sampling rate h to decide
when the importer should exchange values between the Plant and the CtrlFMU. The
importer only receives information about the next time event, after each Event mode of
the CtrlFMU.

• There is no way for the CtrlFMU to know which equations to compute during an Event
mode. For example, the CtrlFMU must rely on approximate floating-point comparisons
to figure out if it should compute the Config equation or not. Conversely, when a new
sample x_r is available and the x_s is unchanged, the CtrlFMU must know that the
Config equation must remain disabled.

• The Importer cannot infer which values it makes sense to exchange during an Event
mode. Instead, it must exchange all values that are relevant to the system, which will
result in a lot of redundant data exchange and a slow simulation.

Figure 5 shows how clocks address the limitations highlighted by the example in
Figure 4. By introducing a triggered input clock s and a time-based input clock r, it is clear
who is responsible for the unambiguous activation of the clocks. The Supervisor controls
the triggered clock s, and the importer controls the time-based clock r. The clocks define a
set of variables/equations to be solved when the clock ticks. This means no approximate
floating-point comparisons are needed to know which equations to solve when entering
Event mode. The importer can therefore infer from the set of active clocks which values it
makes sense to exchange during an Event mode.

Electronics 2022, 11, 3635 10 of 32

CtrlFMU

Sensor Plant

Actuation

u_r

a := Config(a_s)
a_r := sample a at rate r
u_r := NextState(pre(u_r), x_r, a_r)

x_r

x_r := sample x at rate r

u
u := Actuation(u_r)

x der(x) = f(x,u)

Supervisor

a_s := f(x) when g(x) = 0

a_s clock s

clock r

Figure 5. Clocked version of Figure 4.

We have motivated the need for synchronous clocks and will now describe the se-
mantics of the SC interface described in the FMI standard [15]. However, we need to
introduce some terminology and notation first.

3.3. Notation

Most of the set and relation notation we use is commonly known. We briefly introduce
some less-known notation that we borrow from the Event-B method [21].

The complement −c of a set c ⊆ Γ refers to the complement within the type, i.e.,
−c = Γ \ c. Define domain restriction c C R by {(x, y) | (x, y) ∈ R ∧ x ∈ c}, domain
subtraction cC−R by (−c)CR, range restriction RB c by (cCR−1)−1 and range subtraction
R B− c by R B (−c). The converse relation R−1 of the relation R is defined by swapping
the elements in the relation. If R ⊆ X × Y then R−1 = {(y, x) ∈ Y× X | (x, y) ∈ R}. The
relational/functional image R[c] is defined by ran (c C R), where ran denotes the range of
a relation. The operations are exemplified on the relation R = {(1, 2), (2, 3), (3, 4)} below:

{1}C R = {(1, 2)}
R B {4} = {(3, 4)}
dom(R) = {1, 2, 3}

R−1 = {(2, 1), (3, 2), (4, 3)}

{1}C− R = {(2, 3), (3, 4)}
R B− {4} = {(1, 2), (2, 3)}
ran(R) = {2, 3, 4}

The notation and nomenclature to describe the FMUs follows the notation from [14,19].
The abbreviations denoting the different sets of variables can be seen in the back matter.

3.4. Synchronous Clocks Semantics

The interface of an SC FMU is described in Definition 1.

Electronics 2022, 11, 3635 11 of 32

Definition 1 (SC FMU Instance). An SC FMU instance with identifier m is represented by
the tuple:

〈Sm, Um, Ym, Uc
m, Yc

m, setm, getm, setc
m, getc

m, commitc
m,

stepTm, stepEm, nextTm, VP
m , FC

m , Vc
m, Dm〉

where:

• Sm represents the abstract set of possible FMU states. A given state sm ∈ Sm of m represents
the complete internal state of m: active clocks, active equations, current mode (Step or Event
mode) current valuations for input and output variables, etc. The state of an SC FMU is
defined in Definition 3.

• Um and Ym represent the set of input and output variables, respectively. A variable v ∈
Um ∪ Ym is discrete if Discrete(v) = true, and continuous if Discrete(v) = false. The sets
UD

m = {um ∈ Um | Discrete(m)} and YD
m = {um ∈ Um | Discrete(m)} are the set of

discrete input and output variables, respectively.
• Uc

m and Yc
m represent the set of input and output clocks, respectively. The set UTC

m denotes
the time-based clocks, note that UTC

m ⊆ Uc
m. The set of triggered input clocks are described by

Uc
m \UTC

m .
• setm : Sm ×Um ×V → Sm and getm : Sm ×Ym → Sm ×V are functions to set the inputs

and obtain the outputs, respectively (we abstract the set of values that each input/output
variable can take as V). Both setm and getm return a new state because both can trigger the
computation of equations, essentially changing the state of the FMU.

• setc
m : Sm × Uc

m × B → Sm and getc
m : Sm × Yc

m → Sm × B are the functions that
(de-)activate the input clocks and query the output clocks (returning the activation status),
respectively, and B denotes the Boolean set.

• stepTm : Sm×R≥0 → Sm×R≥0×B is a function representing the Step mode computation.
If m is in state sm at simulated time (tR, 0), (sm

′, h, b) = stepTm(sm, H) approximates
the state sm

′ of m at time (tR + h, 0), with h ≤ H. When b = true, we know that the
importer and m have agreed to interrupt the Step mode prematurely, and m is ready to go
into Event mode.

• stepEm : Sm → Sm × B represents one superdense time iteration of the Event mode. If m
is in state sm at time (tR, tI), then (sm

′, b) = stepEm(sm) represents the computation of
m’s internal superdense step transition, where sm

′ represents the state at (tR, tI + 1) and b
informs the importer whether one more Event iteration is needed.

• nextTm : Sm ×UTC
m → R≥0 ∪ {NaN} is the function that allows the importer to query

the time of the next clock tick. This function is only applicable to tunable, changing, and
countdown clocks, and the returned value is calculated according to the clock type as discussed
in Table 1. The value NaN can be returned for countdown clocks, and it means that the clock
currently has no schedule.

• VP
m : WC

m → 2YD
m is a function linking a clock with its variables. The clock partition is the set

of discrete output variables that can only be observed when the clock is active.
• FC

m : Yc
m → 2Uc

m is a function, linking an output clock with the input clocks that can influence
the state of the output clock. It describes when the input clock uc

m ∈ Uc
m influences the state

of the output clock yc
m ∈ Yc

m. This means that there exists state of the FMU sm and of the
output clock yc

m such that updating the input clock uc
m changes the state of yc

m. Formally,
getc

m(set
c
m(sm, uc

m, v1), yc
m) 6= getc

m(sm, yc
m).

• Vc
m : (YD

m ∪UD
m)→ 2Yc

m is a function linking a discrete variable with the set of output clocks
it can influence.

• Dm : Ym → P(Um) is a function that describes for each given output port ym which inputs
that that can influence the value of the output port y. The notation um ∈ Dm(ym) means that
the input um feeds through to the output ym of the same FMU m. Please note that the input
and output variables do not need to be of the same data type.

The functions Vc
m, VP

m , FC
m can be inferred from the modelDescription file.

Electronics 2022, 11, 3635 12 of 32

The major differences between the interface in Definition 1 and the FMI interface are
as follows:

• There is no explicit representation of the state. Most FMI functions take an FMU in-
stance as an argument, and the manipulations to the instance are performed implicitly.
We choose to make the state explicit to explicitly convey which functions change the
state of the FMU instance.

• The FMI describes the callback functions by which, in CS, the FMU and importer may
decide when to prematurely terminate the invocation to stepTm. For ME, the importer
is responsible for implementing stepTm (recall Figure 1) using the derivatives that are
provided by the FMU.

• We abstract from the data type of the ports in the formalization to use one common
set and get action for all data types. The FMI standard describes a specific get and set
function for each data type.

• There is a mismatch between some of the function names. For example, the FMI stand-
ard calls the function stepE for fmi3UpdateDiscreteStates. Nevertheless, we believe that
a reader of the formalization should be able to map the used function names to the
FMI standard.

We now present the semantics of each function implemented in an FMU instance m,
with a focus on the clock functions before we address the composition of FMUs. We have im-
plemented the semantics in VDM-SL [22]. The VDM model is available at (https://github.
com/INTO-CPS-Association/FMI-VDM-Model/tree/master/fmi3/clock-model, accessed
on 30 October 2022).

3.5. Composing SC FMUs

SC FMUs can be coupled to form a scenario by connecting outputs of one FMU to
inputs of other FMUs. An example of such a scenario is shown in Figure 5. Definition 2
formalizes how SC FMUs can be composed.

Definition 2 (SC Scenario). A scenario is a structure
〈
M, L, LC,M, F

〉
where:

• M is a finite set (of FMU identifiers).
• L is a function L : U → Y, where U =

⋃
m∈M Um and Y =

⋃
m∈M Ym, and where L(u) = y

means that the output y is coupled to the input u. Please note that the function is not
necessarily injective and that the output variable y and the input variable u must be of the
same data type and belong to two different FMUs.

• LC is a function LC : UC
T → YC, where UC

T =
⋃

m∈M(Uc
m \UTC) and YC =

⋃
m∈M Yc

m. The
notation LC(uc) = yc means that the output clock yc is connected to the input clock uc. Please
note that yc and uc should belong to two different FMUs.

• M ⊆ M denotes the FMUs that may prematurely terminate the invocation to stepTm in
Step mode. This set can be inferred from the modelDescription file, where the attribute
mightReturnEarlyFromDoStep is used to specify if an FMU may prematurely terminate
the invocation to stepTm.

To present the semantics of the actions, we need to formalize the state of an SC FMU
instance. We define a so-called run-time state that abstracts the state of the FMU instance.
The abstraction allows us to represent the state of an FMU without considering concrete
port values and behavior, which is not relevant to the semantics of the actions since these are
hidden from the importer and determined by the implementor of the FMU. The observable
state is furthermore what an importer running a simulation can infer about the state of an
SC FMU.

Definition 3 (Run-time State of an SC FMU). Given an SC FMU m as defined in Definition 1,
the run-time state of m is a member of the set SR

m = (R≥0,N)×Mode× SR
Um
× SR

Ym
× SR

Uc
m
×

SR
Yc

m
× SR

WC
m

, where:

• (R≥0,N) is the superdense time of the FMU. We write s(tR ,tI)
m to indicate the FMU m is at

time (tR, tI).

https://github.com/INTO-CPS-Association/FMI-VDM-Model/tree/master/fmi3/clock-model
https://github.com/INTO-CPS-Association/FMI-VDM-Model/tree/master/fmi3/clock-model

Electronics 2022, 11, 3635 13 of 32

• Mode is the simulation mode of the FMU. An FMU can be in one of the following modes: INIT,
EVENT, and STEP. We omit the Terminate mode, since it is irrelevant for the semantics.

• SR
Um

: Um → (R≥0,N) ∪ {NaN}, SR
Ym

: Ym → (R≥0,N) ∪ {NaN}, sR
Uc

m
: Uc

m →
(R≥0,N) ∪ {NaN}, and sR

Yc
m

: Yc
m → (R≥0,N) ∪ {NaN} are functions mapping a vari-

able to a timestamp denoting the time when the variable was last updated. The notation
sR

Um
(um) = NaN indicates the input port um has never been set.

• SR
WC

m
is a set describing the active clocks of the FMU. Notice, clocks can only tick in Event

mode, meaning Mode 6= EVENT =⇒ sR
WC

m
= ∅.

The run-time state sR
m ∈ SR

m (introduced in Definition 3) of an FMU differs from
the actual state of the FMU sm ∈ Sm introduced in Definition 1. We identify each
port/variable with a timestamp to track when the port was last activated (updated or
queried). This information ensures that a port will not be exercised twice in the same
superdense time instance.

Example 1 (Initial Run-time State of CtrlFMU). The initial run-time state of the CtrlFMU in
Figure 5 is defined as follows:

sR
Ctrl = ((0, 0), INIT,{uas 7→ NaN, uxr 7→ NaN}, {yur 7→ NaN},

{uc
s 7→ NaN, uc

r 7→ NaN}, ∅, ∅).

All variables are mapped to NaN to indicate that they have never been updated. The FMU is
in the Initialize mode, and no clocks are currently active. Note the property t > NaN holds for all
superdense times t ∈ (R≥0,N). The initial run-time state of the port variables can be inferred from
the modelDescription file using the attribute initial. The initial. attribute can, for example,
indicate that the initial state of an input should be (0,0), meaning that no action should be performed
on the port during initialization.

The co-simulation state is, as defined in Definition 4, the combination of the state of all
the FMUs in the scenario.

Definition 4 (SC Co-simulation State). Given a co-simulation scenario
〈
M, L, LC,M

〉
, as

defined in Definition 2. The co-simulation state is a member of the set SR
S = time×Mode× SR

U ×
SR

Y × SR
UC × SR

YC × SR
WC where:

• time : M→ (R≥0,N) is a function, where time(c) denotes the current superdense simulation
time of FMU c. We denote by a time value t ∈ (R≥0,N) the function λm.t, which we use if
all FMUs are at the same time.

• Mode : M → Modes is a function, where Mode(m) denotes the mode of the FMU m. We
denote by a value mode ∈ Modes the function λm.mode, which we use if all FMUs are in the
same mode.

• SR
U = ∏m∈M SR

Uc
, SR

Y = ∏c∈M SR
Yc

, sR
UC = ∏m∈M SR

Uc
m

, and sR
YC = ∏m∈M SR

Yc
m

are functions
mapping a variable to a timestamp denoting the time when the variable was last updated.

• SR
WC =

⋃
m∈M SR

WC
m

is the set of all active clocks in the scenario.

3.6. The Semantics of the Actions

This section presents the semantics of the actions described in Definition 1. The
semantics are inspired by [23,24]. Due to space limitations, we cannot cover all the actions
of the FMI standard, but only those described in Definition 1, which we believe are the
most relevant.

We write s P−→ s′ if executing the action P from the run-time state s results in the

run-time state s′. We use the notation v′ to indicate a change to the variable v.
We have divided the semantics of port actions (get and set) into two categories:

(1) continuous ports and (2) discrete ports to make the semantics more readable.
All continuous actions are performed when the FMU is either in Step mode or Initialize

mode, where the integer part of the superdense time tI is zero.

Electronics 2022, 11, 3635 14 of 32

The importer uses a schedule to track when to tick the different time-based clocks. The
schedule links a time-based clock with the time tR when the clock should be ticked. We use
the following notation to denote the schedule of all time-based clocks:

Schedule : UTC → R≥0,

where UTC =
⋃

m∈M UTC
m and Schedule(uc) denotes the real part of the superdense time

to tick the input clock uc ∈ UTC. The time-based clock uc is the next clock to tick if
∀t ∈ ran(Schedule) · Schedule(uc) ≤ t. The importer uses the schedule to ensure that an
FMU will never be progressed to a time t2 skipping a time-based event at time t1, where
t1 < t2. The importer should not only ensure that no time-based events are skipped. It
should also detect when an FMU activates an output clock to indicate an internal event. An
FMU may, in Event mode, decide to activate an output clock if any of the variables, both
regular ports and clocks that affect the output clock, are updated or as a part of a state event.
These connections between variables and output clocks are defined in the modelDescription
file and can be seen in Definition 1. In Event mode, if a clock wc

m is (in-)active at superdense
time (tR, tI), then the importer must ensure that all other clocks that are connected to wc

m
must also be (in-)active for the time (tR, tI). Therefore, the importer must query triggered
output clocks to monitor their state. We use the set Wc

P to denote all potentially active
clocks. The set Wc

P consists of all the clocks that the importer either knows or suspects to
be active. The rationale for using the set Wc

P is that the importer can use this set to detect
when an output clock might have changed its state. This means that if we experience a
change in the set Wc

P, the importer should query the output clocks ((Wc
P
′ \Wc

P) ∩ YC) to
ensure that all connected clocks tick simultaneously. If the set Wc

P is empty, the importer
can safely assume that all events have been solved and return the FMUs to Step mode. The
importer can furthermore use the set after one event iteration to conclude if another event
iteration is needed or if it should bring the FMUs to Step mode.

It is outside the scope of this manuscript to describe how to compute the schedule or
the set of potentially active clocks since these are not directly related to the semantics of the
actions. Nevertheless, the changes to schedule and the set of potentially active clocks are
explicitly described in the postcondition of the actions to indicate the actions affecting them.
An importer computes the schedule for all time-based clocks as a part of the initialization.

To avoid clutter in the semantics of the actions, we omit the identifier of the FMU
when the identifier is implicit. This means that the action Pm on FMU m is represented as P
instead of Pm. The identifier is also omitted from the run-time state since all actions only
affect the run-time state of a single FMU.

Definition 5 (Obtaining a value of a Continuous Output Port). We can obtain a value from
a continuous output port y of an SC FMU at time t = (tR, 0) using the action get(s(t), y). The
action is defined as:

sR get(s(t),y)−−−−−−→ (v, sR ′) =⇒ preGet(y, sR) ∧ postGet(y, sR, sR ′)

where:

preGet(y,
〈

t, Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
) , sR

Y(y) < t

∧ ¬Discrete(y) ∧Mode ∈ {INIT, STEP}
∧ ∀u ∈ (F(y) \UD) · sR

U(u) = t

The precondition (above) states that no value must have been obtained from the output port
y since the value of y was computed, formally described as sR

Y(y) < t. Furthermore, the value of
a continuous output port can only be obtained if the FMU is in the mode INIT or STEP. All the
continuous input ports feeding through to the output port y must be set at the time of the FMU t.

Electronics 2022, 11, 3635 15 of 32

The postcondition (below) advances the output to the time of the FMU, which means we can
only perform one get action per output per superdense time instance. Notice that the action affects
nothing other than the output port y.

postGet(y,
〈

t, Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
,〈

t, Mode, sR
U , sR

Y
′
, sR

Uc , sR
Yc , sR

WC

〉
) , sR

Y
′
(y) = t

∧ ∀ym ∈ (Y \ y) · sR
Y
′
(ym) = sR

Y(ym)

After a value v is obtained from a continuous output port, it can be set on a connected
continuous input port u using the action set(s(t), u, v), which is defined as:

Definition 6 (Setting a Continuous Input Port). We can set a continuous input port u of an SC
FMU at time t = (tR, 0) to the value v = 〈tv, val〉 using the action, set(s(t), u, v). The effect of
the action on the state of the FMU is:

sR set(s(t),u ,〈tv ,val〉)−−−−−−−−−−→ sR ′ =⇒ preSet(u, sR, tv) ∧ postSet(u, sR, sR ′, tv)

where:

preSet(u,
〈

t, Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC ,

〉
, tv) , sR

U(u) < t

∧Mode ∈ {INIT, STEP} ∧ ¬Discrete(u) ∧ tv = t

The precondition (above) states that no value must have been assigned to the continuous input
port u since the FMU was stepped, formally described as sR

U(u) < t. The input port should be set
with a value with the same timestamp as the FMU.

The postcondition (below) advances the input port to the timestamp of the assigned value. All
the other input ports are unaffected.

postSet(u,
〈

t, Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
,〈

t, Mode, sR
U
′
, sR

Y , sR
Uc , sR

Yc , sR
WC

〉
, tv) , sR

U
′
(u) = tv

∀um ∈ (U \ u) · sR
U
′
(um) = sR

U(um)

When all input and output ports of an FMU have been exchanged such that connected
ports have the same value, we can use the stepTm action to compute the next state of the
FMU m at a future point in time. The semantic of the function stepTm is specified next:

Definition 7 (Computing a Future State). Computing the state at time (tR + h, 0) of an SC
FMU currently at time (tR, 0) can be done using the action: stepT(s(tR ,0), h), which changes the
state of the FMU according to:

sR stepT(s(tR ,0),h)−−−−−−−−−→ (sR ′, h′, b) =⇒ preStepT(sR, h) ∧ postStepT(sR, sR ′, h, b)

where:

preStepT(
〈
(tR, 0), Mode, sR

U , sR
Y , sR

Uc , sR
Yc , sR

WC

〉
, h) , Mode = STEP∧ h > 0

∧ ∀u ∈ (U \UD) · sR
U(u) = (tR, 0)

∧ ∀y ∈ (Y \YD) · sR
Yc(y) = (tR, 0)

∧ ∀t ∈ ran(Schedule) · t ≥ tR + h

The precondition (above) states that the step size must be positive, that the FMU must be in
Step mode, and that all the FMU’s continuous input ports have been set with a value computed at

Electronics 2022, 11, 3635 16 of 32

the current FMU time (tR, 0). Furthermore, all continuous output ports must have been queried at
time (tR, 0). Another requirement is that the step size must be smaller than the time until the next
event, formally ∀t ∈ ran(Schedule) · t ≥ tR + h to ensure that the FMU is not stepped past the
next time-based event.

The postcondition (below) ensures that the state is advanced to a future time in the interval
[tR, tR + h]. The Boolean return variable b denotes if an event has occurred. If an event has occurred
(b = true), the state is advanced to the time of the event (tR + h′, 0), which can be anywhere in
the interval [tR, tR + h]. If no event has occurred (b = false), the state is advanced to the time
(tR + h, 0). Furthermore, a state event activates at least one output clock, which the importer must
query to determine how to solve the triggered event. This is why the set of potentially activated
clocks Wc

P is updated in the case of an event with all the output clocks of the FMU. We also need
to account for time-based events occurring at the new time tR + h′ of the FMU. Notice that the
action does not change the simulation mode of the FMU. As discussed in Section 3.1, the causes of
b = true can be many.

postStepT(
〈
(tR, 0), Mode, sR

U , sR
Y , sR

Uc , sR
Yc , sR

WC

〉
,〈

(tR + h′, 0), Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
, h, b) , Mode = STEP∧ h′ ≥ 0

∧ (b = false =⇒ h = h′ ∧Wc
P
′ = Wc

P)

∧ (b = true =⇒ h′ ≤ h ∧Yc ⊆Wc
P
′ ∧Wc

P ⊂Wc
P
′)

∧ dom((ScheduleB {tR + h′})) ⊆Wc
P
′

We require that all continuous output and input ports of an FMU must be at the current
time of the FMU to perform the stepT action. This ensures that the new state is calculated
using new input values and that the importer knows all output values of the previous state,
so they can be shared with connected FMUs allowing these FMUs to be stepped.

3.6.1. Discrete Actions

Discrete variables only change their value at discrete time points, and they can take
multiple values at the same real part of the superdense time. An SC FMU exposes certain
methods to query and update its discrete variables and interact with its clocks. These
actions can only be performed when the FMU is in the Initialize mode or Event mode. In
Event mode, the FMU m in state sm ∈ Sm may activate any triggered output clock yc

m ∈ Yc
m,

a fact that can be communicated to the importer via the function call getc
m(sm, yc

m). We
highlight this in the semantics by updating the set of potentially active clocks Wc

P in the
postcondition of the discrete set and get action, defined next.

Definition 8 (Obtaining a value of a Discrete Output Port). We can obtain a value from a
discrete output port y of an SC FMU at time t = (tR, tI) using the action, get(s(t), y). The effect
of the action:

sR get(s(t),y)−−−−−−→ (v, sR ′) =⇒ preGet(y, sR) ∧ postGet(y, sR, sR ′)

where:

preGet(y,
〈

t, Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
) ,

sR
Y(y) < t ∧Discrete(y) ∧Mode ∈ {INIT, EVENT}
∧Mode = EVENT =⇒ (dom((VP B {y})) ∩ sR

WC) 6= ∅

∧ ∀u ∈ (F(y) ∩UD) · ∃m ∈ M · L(u) ∈ sR
WC

m
=⇒ sR

U(u) = t

∧Mode = INIT =⇒ ∀u ∈ F(y) · sR
U(u) = t

Electronics 2022, 11, 3635 17 of 32

The precondition (above) states that no value must previously have been obtained from the
discrete output port y in the current superdense time t, formally sR

Y(y) < t. We also require
that we be allowed to observe the output value by requiring the FMU to be in either Event or Init
mode. If the FMU is in Event mode, there must be at least one of the clocks with y in its partition
(dom(VP B {y}) ∩ sR

WC 6= ∅) that is active, and that all active discrete inputs feeding through to y
have been set at the current time t. If the FMU is in Init, we require that all the inputs that feed
through to y have been set at the current time instance, so they are at time t.

The postcondition (below) advances the time of the output port to the time of the FMU t.
The action can, in Event mode, furthermore affect a set of output clocks that the output port y is
connected (Vc(y)). The reason for this is that invocations of the get action in Event mode on an
output port trigger a computation that can cause an internal event. An FMU will, in the case of an
internal event caused by get, activate some of its output clocks associated with the output port y.
The importer cannot, in general, infer whether an event occurred or not, so the safe approach is to
query all potentially activated output clocks. This is highlighted by ensuring that all output clocks
associated with the output port y are in the set of potentially active clocks Wc

P in the postcondition.

postGet(y,
〈

t, Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
,〈

t, Mode, sR
U , sR

Y
′
, sR

Uc , sR
Yc , sR

WC

〉
, v) , sR

Y
′
(y) = t

∧ ∀ym ∈ (Y \ y) · sR
Y
′
(ym) = sR

Y(ym)

∧Mode = EVENT =⇒ Wc
P ⊆Wc

P
′ ∧Vc(y) ⊆Wc

P
′

Definition 9 (Setting a Value on a Discrete Input Port). We can set a value v = (tv, val) on
a discrete input port u of an SC FMU at time t = (tR, tI) using the action, set(s(t), u, v). The
action is defined as:

sR set(s(t),u ,(tv ,v))−−−−−−−−−→ sR ′ =⇒ preSet(u, sR, tv) ∧ postSet(u, sR, sR ′, tv)

where:

preSet(u,
〈

t, Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
, tv) ,

t = tv ∧ sR
U(u) < tv ∧Discrete(u) ∧Mode ∈ {INIT, EVENT}

The precondition (above) states that no value must previously have been set on the discrete
input port u in the current superdense time t, formally sR

U(u) < t. We also require that the FMU is
in either Event or Init mode.

The postcondition (below) advances the time of the input port to the timestamp of the assigned
value. The action can, in Event mode, furthermore affect the output clocks that u is associated with,
which is the reason the set Wc

P is updated to contain the output clocks Vc(u).

postSet(u,
〈

t, Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
,〈

t, Mode, sR
U
′
, sR

Y , sR
Uc , sR

Yc , sR
WC

〉
, tv) , sR

U
′
(u) = tv

∧ ∀um ∈ (U \ u) · sR
U
′
(um) = sR

U(um)

∧Mode = EVENT =⇒ Wc
P ⊆Wc

P
′ ∧Vc(u) ⊆Wc

P
′

The precondition of the discrete get action relies on the clock partitions (VP) and
particularly the activation status of the clocks activating the given output port. Any input
clock uc

m ∈ Uc
m that needs to be ticked (according to the interval information), is activated

by the importer, through the function call setc
m(sm, uc

m, true).

Electronics 2022, 11, 3635 18 of 32

Definition 10 (Setting an Input Clock). Setting the state of an input clock uc of an SC FMU
at time t = (tR, tI) to the value b using the action, setc(s(t), uc, b) changes the state of the FMU
according to:

sR setc(s(t),uc ,b)−−−−−−−−→ sR ′ =⇒ preSetC(uc, sR, b) ∧ postSetC(uc, sR, sR ′, b)

where:

preSetC(uc,
〈

t, Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
, b)) , Mode = EVENT ∧ sR

Uc(uc) < t

∧ uc ∈ UTC =⇒ b = true∧ Schedule(uc) = tR

The precondition (above) states that the FMU must be in Event mode. Furthermore, it restricts
that the input clock must not have been assigned to the value of b before in the same superdense
time instance t. We distinguish between time-based and triggered clocks. Time-based clocks can
only be activated if their schedule/interval dictates that they must be ticked at the current time
(Schedule(uc) = tR).

The postcondition (below) ensures that the input clock is advanced to time t and that the
activation status of the clock is set to b. It also updates the set of active clocks, according to the
new activation status of the clock. The action can be due to clock feedthrough FC affect other clocks,
which we highlight by updating the set of potentially active clocks to include the affected output
clocks FC(uc).

postSetC(uc,
〈

t, Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
,〈

t, Mode, sR
U , sR

Y , sR
Uc
′
, sR

Yc , sR
WC
′〉

, b) , Mode = EVENT ∧ sR
Uc(uc)

′
= t

∧ (b = true↔ uc ∈ sR
WC
′
) ∧ ∀i ∈ (Uc \ {uc}) · sR

Uc
′
(i) = sR

Uc(i)

∧ FC(uc) ⊆Wc
P
′ ∧Wc

P ⊆Wc
P
′

Recall that the activation state of an output clock is completely determined by the
FMU, and thus we can only observe the activation status by querying the output clock
using the getc action.

Definition 11 (Querying an Output Clock). We can obtain the activation state of an output
clock yc of an SC FMU at time (tR, tI) using the action, getc(s(tR ,tI), yc):

sR getc(s(tR ,tI),yc)−−−−−−−−→ (b, sR ′) =⇒ preGetC(yc, sR) ∧ postGetC(yc, sR, sR ′, b)

where:

preGetC(yc,
〈
(tR, tI), Mode, sR

U , sR
Y , sR

Uc , sR
Yc , sR

WC

〉
) , Mode = EVENT

∧ sR
Yc(yc) < (tR, tI) ∧ yc ∈Wc

P ∧ ∀uc ∈ (FC(yc) ∩Wc
P) · sR

Uc(uc) = (tR, tI)

The precondition (above) states that the output clock yc has not been queried since the FMU
was stepped, formally sR

Yc(yc) < (tR, tI) and the clock is potentially active (yc ∈ Wc
P). We also

require that all potentially active clocks feeding through to the output clock yc have been set since
the FMU was stepped.

Electronics 2022, 11, 3635 19 of 32

The postcondition (below) ensures that the output clock is advanced to time (tR, tI) and that
the set of active clocks is updated according to the activation status of the clock.

postGetC(yc,
〈
(tR, tI), Mode, sR

U , sR
Y , sR

Uc , sR
Yc , sR

WC

〉
,〈

(tR, tI), Mode, sR
U , sR

Y , sR
Uc , sR

Yc
′
, sR

WC
′〉
) , sR

Yc
′
(yc) = t ∧ b↔ yc ∈ sR

WC
′

∧ ∀i ∈ (Yc \ {yc}) · sR
Yc
′
(i) = sR

Yc(i)

When the event has been solved, we update the state of the FMU using the stepE

action. An event is solved when all potentially active output clocks have been queried,
connected input clocks updated, all equations associated with the active clocks have been
computed, and their result has been exchanged with relevant FMUs.

Definition 12 (Discrete Step). We update the state of an SC FMU in Event mode at time (tR, tI)
using the action, stepE(s(tR ,tI)) to compute a new state at the next superdense time instance
(tR, tI + 1). The change to the run-time state is described by:

sR stepE(s(tR ,tI))−−−−−−−−→ (sR ′, b) =⇒ preDoStepE(sR) ∧ postDoStepE(sR, sR ′, b)

where:

preDoStepE(
〈
(tR, tI), Mode, sR

U , sR
Y , sR

Uc , sR
Yc , sR

WC

〉
) , Mode = EVENT

∧ ∀y ∈ ran(VP B sR
WC) · sR

Y(y) = (tR, tI)

∧ ∀yc ∈ (Wc
P ∩Yc) · sR

Yc(yc) = (tR, tI)

∧ ∀uc ∈ (Wc
P ∩Uc) · sR

Uc(uc) = (tR, tI)

The precondition (above) states that the FMU must be in Event mode. Furthermore, all output
ports associated with an active clock (ran(VP B sR

WC)) mare computed at the current time t. We
also require that all potentially active clocks have been queried or updated at the current superdense
time instance.

The postcondition (below) moves the FMU to time (tR, tI + 1). The returned variable b
indicates whether an event has occurred or not. If an event has occurred (b = true), we update the
set of potentially active clocks with all the output clocks of the FMU to highlight that a new event
iteration is required. Please note that all clocks are made inactive during the step (sR

WC
′
= ∅). If no

event has occurred (b = false), it is safe to conclude that none of the clocks of the FMU are in the set
of potentially active clocks.

postDoStepE(
〈
(tR, tI), Mode, sR

U , sR
Y , sR

Uc , sR
Yc , sR

WC

〉
,〈

(tR, tI + 1), Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC
′〉

, b) , Mode = EVENT ∧ sR
WC
′
= ∅

∧ b = true =⇒ (Yc ⊆Wc
P
′ ∧Wc

P ⊆Wc
P
′)

∧ b = false =⇒ (Yc ∩Wc
P
′) = ∅

In Event mode, after a call to stepEm, at superdense time (tR, tI), m must be able
to inform the importer of the time of the next tick of each time-based clock uc

m ∈ UTC
m

that is tunable, changing, or countdown. This is done through the function nextTm. The
importer uses this information to schedule the next Event mode. If nextTm returns 0, then
the importer must do a new event iteration.

Electronics 2022, 11, 3635 20 of 32

Definition 13 (Obtaining the Schedule of a Time-based Clock). We can obtain the next time to
tick a time-based clock uc of an SC FMU at time (tR, tI + 1) using the action, nextT(s(tR ,tI+1), uc).
The change to the run-time state is described by:

sR nextT(s(tR ,tI+1),uc)−−−−−−−−−−−→ (sR ′, t) =⇒ preNext(sR, uc) ∧ postNext(sR, sR ′, uc, t)

where:

preNext(
〈
(tR, tI + 1), Mode, sR

U , sR
Y , sR

Uc , sR
Yc , sR

WC

〉
, uc) , Mode = EVENT ∧ sR

WC = ∅

∧ (uc ∈ Uc
countdown ∨ (uc ∈ Uc

tunable ∪Uc
changing =⇒ uc ∈WtR ,tI

A))

∧ ∀v ∈ U · sR
U(v) < (tR, tI + 1) ∧ ∀v ∈ Y · sR

Y(v) < (tR, tI + 1)

∧ ∀v ∈ Uc · sR
Uc(v) < (tR, tI + 1) ∧ ∀v ∈ Yc · sR

Yc(v) < (tR, tI + 1)

The precondition (above) states that the FMU must be in Event mode and that all clocks are
inactive. The FMU must just have been stepped, which means that the current time of the FMU
(tR, tI + 1) is newer than the timestamp of all its variables. We can ask an input clock uc about its
schedule if it satisfies one of the following conditions: 1. uc is a countdown clock (uc

m ∈ Uc
countdown);

or 2. uc is a tunable or changing clock (uc
m ∈ Uc

tunable ∪Uc
changing), active in the superdense time

(tR, tI) that was just concluded. The set Wt
A denotes the set of clocks that are active at time t.

The postcondition (below) computes the interval t to the next tick of the input clock uc. If
t = 0, the clock should be ticked immediately, indicating that a new event iteration is required. If
t > 0, we update its schedule with the current interval. If t = NaN the clock does not currently
have a scheduled event, we indicate by setting its schedule to ∞.

postNext(
〈
(tR, tI), Mode, sR

U , sR
Y , sR

Uc , sR
Yc , sR

WC

〉
,〈

(tR, tI), Mode, sR
U , sR

Y , sR
Uc , sR

Yc , sR
WC

〉
, uct) , Mode = EVENT

∧ t = 0 =⇒ uc ∈Wc
P
′ ∧Wc

P ⊂Wc
P
′

∧ t > 0 =⇒ uc /∈Wc
P
′ ∧Wc

P
′ = Wc

P ∧ Schedule(uc) = tR + t

∧ t = NaN =⇒ uc /∈Wc
P
′ ∧Wc

P
′ = Wc

P ∧ Schedule(uc) = ∞

Simulation Algorithms

The actions described in Definition 1 can be composed to form orchestration algorithms.
An orchestration algorithm describes the behavior of the importer during the simulation;
when and how it should exchange data between the FMUs. The orchestration algorithm is
composed of three procedures:

• Initialization procedure: the importer initializes the FMUs by setting the initial values
of all variables and calculating the schedule of all time-based clocks to establish a
consistent state at the beginning of the simulation at time (0, 0). A consistent state is
defined in Definition 14.

• Co-simulation procedure: the importer simulates the scenario by moving it from a
consistent state at (tR, 0) to a consistent state at time (tR + h, 0).

• Clocked Simulation procedure: the importer ticks the timed-based clocks, query the
potentially activate output clocks and computes the active Event mode equations.

Electronics 2022, 11, 3635 21 of 32

Definition 14 (Consistent State). A co-simulation state of a given scenario is consistent if it
satisfies the following conditions:

Consistent(
〈

t, Modes, sR
U , sR

Y , sR
UC , sR

YC , sR
WC

〉
) ,

(∀u, y · L(u) = y =⇒ sR
V (u) = sR

V (y))

∧ (∀uc ∈ UC, ∃yc ∈ YC · LC(uc) = yc)

∧ (∀uc, yc · LC(uc) = yc =⇒ sR
UC (uc) = sR

YC (yc))

Informally, a consistent state is a state where all coupled input and output variables have the
same value. All SUs most also be in the same simulation mode and synchronized at the same time t.

Example 2. The co-simulation procedure of the scenario in Figure 5 is shown in Algorithm 1. We
have, for clarity, not included the aspect/procedure of finding a step size to which all FMUs agree.
Neither has the aspect of event detection and handling been included. The method of finding an
appropriate step size can trivially be incorporated using the approach described in [19].

Algorithm 1 Co-simulation Procedure

1: (s(t+h)
Ctrl , t, ECtrl)← stepTCtrl(s

(t)
Ctrl, h)

2: (s(t+h)
Plant , h, EPlant)← stepTPlant(s

(t)
Plant, h)

3: (s(t+h)
Sup , h, ESup)← stepTSup(s

(t)
Sup, h)

4: vx ← getPlant(s
(t+h)
Plant , yx)

5: s(t+h)
Ctrl ← setCtrl(s

(t+h)
Ctrl , ux, vx)

Generic Clocked Simulation Algorithm

Since the paper focuses on introducing the novel features of the FMI 3.0, mainly clocks,
we will briefly describe the approach for solving an event.

The following summarizes the Event mode algorithm coordinating the simulation
with multiple FMU instances, with connected inputs/outputs and clocks. Let M denote the
set of FMU instances participating in the simulation. We assume that one FMU instance
m ∈ M or the importer has requested to enter Event mode. Therefore, we assume that every
other instance m′ ∈ M∧m′ 6= m has been stepped up to the same superdense time (tR, 0).
In the following, we use “_” to denote a non-important argument.

1. Every m ∈ M enters Event mode (superdense time instant is tI = 0);
2. Activate any time-based clocks scheduled to tick at (tR, 0), by invoking setc

m′(_, wc
m′)

for any input clock wc
m′ ∈WC

m′ and any instance m′ ∈ M;
3. Construct and solve system of equations for tI :

(a) For all yc
m ∈ Yc

m of any instance m ∈ M, forward activation state of triggered
clocks:

i. Invoke getc
m(_, yc

m), and setc
m′(_, uc

m′) or getc
m′(_, yc

m′), for any other
clock uc

m′ ∈ Uc
m′ or yc

m′ ∈ Yc
m′ and instance m′ ∈ M that is transitively

connected to yc
m or has become active as a result of the clock activations

in a way that satisfies the semantics defined above.

(b) Invoke getm′(_, ym′) and setm′(_, um′ , _) in an appropriate order (defined by
the semantics), for any instance m′ ∈ M. Please note that multiple appropriate
orders of the same actions may exist. Nevertheless, all appropriate orders lead
to the same result.

4. Invoke stepEm(_) for m ∈ M (signals end of Event iteration tI).
5. Schedule clocks by invoking nextTm on every relevant clock, for m ∈ M.
6. If any m ∈ M wishes to repeat the event iteration, or if a clock returned a zero interval,

go to Step 3 (start iteration tI + 1).

Electronics 2022, 11, 3635 22 of 32

The goal of Step 3 is to solve the system of equations that became active due to the
clock activations. There are no guarantees that such a system has a solution, or that the clock
activations will stabilize. Future work includes a more sophisticated generic algorithm and
method to derive such generic algorithms.

4. Scheduled Execution

Scheduled Execution (SE) facilitates real-time simulation in the context of FMI. SE
simulations and SC simulations have many similarities: they use the same clock types, as
introduced in Section 2; directly connected clocks (e.g., yc

m and uc
n in Figure 2) tick at the

same simulated times (although the corresponding equations can be executed at different
wall-clock times, see below); after a clock tick, there may be more clock ticks, either at the
current time or some future time. Nevertheless, there are also notable differences between
the two types of simulations:

• The timebase of SE is continuous, whereas the timebase of SC is superdense, where
the time is a combination of a real part and a discrete part.

• Each active SE input clock wc represents a task that needs to be executed. In contrast,
in SC, wc merely enables a set of equations that are subsequently solved. Consequently,
it means that only one input clock can be activated at a time.

• In SE, there is a clear distinction between the wall-clock time and the simulated time.
For example, two clocks may tick at the same simulated time tR ∈ R≥0 (because they
are connected or have the same period), but their corresponding tasks will execute at
different wall-clock times. However, the two tasks will be computed with simulated
time tR.

• In SE, the execution of a task can be pre-empted by a higher priority task. This has
the necessary consequence that the importer must be able to infer when a task can and
cannot be pre-empted.

• In SE, there is no distinction between discrete and continuous variables.

4.1. An Illustrating Example

Figure 6 shows an abstract example, where an FMU declares three input clocks
(uc

m, vc
m, wc

m) and one output clock (yc
m). Each input clock, when ticked, instructs the

importer, who acts as a task scheduler (recall Figure 1), to execute the corresponding model
partition (defined next) as soon as possible.

A model partition, or just partition, represents code that should be executed when
input clock ticks. Partitions contain arbitrary code that reads the inputs of the FMU, writes
to the FMU’s local variables (which can be shared among tasks) and outputs, and potentially
triggers output clocks or updates the interval of other input clocks. The inputs to each
partition are set immediately before executing that partition as part of its corresponding
task. In Figure 6, the input clock uc

m’s partition reads and writes the shared variable xm,
and either updates the interval of vc

m or activates/ticks the output clock yc
m.

We stress the distinction between a model partition and a task: the former represents
code that is executed within the context of the latter. Therefore, a task T contains code
that sets the inputs of the FMU, activates the model partition P, which indirectly activates
an input clock, and reads the updated outputs. Such a task will be denoted as “P’s task”.
For example, in Figure 6, when execution Partition 1’s task, the importer sets the values for
input um before executing the code of Partition 1.

In SE, there is a need for a function that the importer invokes, to tell the FMU to execute
a partition, this function indirectly triggers the input clock uc of the partition. Consequently,
the function setc is not used in SE. Nevertheless, the function getc is still used to inform
the importer that a task should be scheduled.

In Figure 6, input clock uc
m ticks every 10ms and input clocks wc

m ticks every 50ms,
so every so often, the two clocks will tick simultaneously. However, since tasks cannot
run in parallel, the scheduler/importer must schedule the task sequentially according to
their priority. As a result, the FMU must declare a priority level for each input clock using

Electronics 2022, 11, 3635 23 of 32

the attribute priority in the modelDescription file. In Figure 6, uc
m’s task (the one executing

Partition 1) should be executed before wc
m’s (Partition 3), since the input clock uc

m has a
higher priority than wc

m.

m

when :

 if (...) then
 setInterval()
 else
 tick()
 ...

Clock attributes:
 - Period 10ms, Priority 1
 - Countdown, Priority 2
 - Period 50ms, Priority 3
 - Triggered, Priority --

Partition 1

Task 1when :

when :

Local vars:

Partition 2

Partition 3

Figure 6. Motivating example, where an FMU declares three input clocks (uc
m, vc

m, wc
m), one output

clock (yc
m), three input ports (um, vm, wm), and one output port (ym).

Output clocks, in SE, are never directly associated with a partition. Instead, these can
be connected to input clocks (including the ones of the owning FMU) to indicate that a task
should be scheduled.

Because tasks can be pre-empted, certain operations, such as updating a shared
variable, must be atomic (see example below). As such, the FMU must inform the importer
when it should not be interrupted to prevent mixed resource access that would create
inconsistent values. The FMI standard provides a mechanism called locking and strongly
encourage disjoint partitions to solve this problem.

Since partitions can trigger and update the interval of other clocks, there must be
a mechanism for the FMU, in the middle of the calculation of a partition, to inform the
importer that a clock has ticked or has a new interval, so that the importer can schedule the
corresponding tasks. This information is in FMI communicated as a callback function.

Figure 7 illustrates a possible execution trace of the tasks corresponding to the parti-
tions declared in Figure 6. At the initial wall-clock time t0, Task 1 and Task 3 are scheduled
to execute. Since Task 1 has a higher priority, it runs first, and Task 3 is delayed. When
executing Task 1, the FMU informs the importer that vc

m’s task (Task 2) should be scheduled
to run at wall-clock time t2. At wall-clock time t2, Task 1 is still executing, so Task 2 is
delayed until wall-clock time t3 since Task 1 has higher priority than Task 2. At t3, Task 2
starts executing (it has a higher priority than Task 3), but note that the activation time of
Task 2 is still its original scheduled time t2. This is where the wall-clock time t3 differs from
the simulated time t2. At t4, Task 2 is pre-empted by Task 1. Finally, after being delayed
substantially, Task 3 gets to execute, with its simulated time t0.

Electronics 2022, 11, 3635 24 of 32

Wall-clock time (ms)

activate(,)

Ta
sk

 2

setInterval(,)

schedule Task 2 delay

delayed

suspend

activate(,)
activate(,) activate(,)

Ta
sk

 3
Ta

sk
 1

Legend:
 - Wall-clock time
 - Simulated time

Figure 7. Example execution trace of Figure 6.

It is the implementor’s responsibility of an SE FMU to ensure that all tasks are
schedulable and can meet their deadlines. The importer only needs to ensure that the
tasks are scheduled in the correct order.

4.2. Scheduled Execution Semantics

The following formalization is a simplification to highlight the main functions of the
SE interface defined in the FMI standard. The main concepts being formalized are tasks,
clocks, and activation of model partitions.

Definition 15 (SE FMU Instance). An SE FMU instance with identifier m is represented by the
tuple:

〈Sm, Um, Ym, Uc
m, Yc

m, setm, getm, getc
m, activatem, nextTm, taskPrioritym, Tm, Tc

m〉

where:

• Sm, Um, Ym, Uc
m, and Yc

m, are defined as in Definition 1.
• setm : Sm ×Um × V → Sm and getm : Sm × Ym → V are functions to set the inputs and

get the outputs, respectively. In contrast with the SC FMU in Definition 1, getm does not
alter m’s state because any non-trivial computation of outputs should be done in the partitions
associated with the input clocks, executed through the invocation of the activatem function.
Please note that we do not divide the variables into continuous and discrete variables in SE.

• getc
m : Sm × Yc

m → Sm × B queries the output clocks. Please note that in contrast to SC,
getc

m(_, yc
m) changes the state of m, because it automatically de-activates yc

m (the justification
is provided below). The clocks can again be either time-based or triggered.

• activatem : Sm ×Uc
m ×R≥0 → Sm ×R≥0 ×B is a function representing the computation

of a partition. If m is in state s(t)m at wall-clock time t, (s(t
′)

m , t′, b) = activatem(sm, uc
m, ti)

represents three successive steps: the activation of the input clock uc
m, the computation of

the partition associated with the input clock uc
m, and de-activation of clock uc

m. In the new
state s(t

′)
m , clock uc

m is inactive. The returned variables b and t′ denotes if the partition was
pre-empted and the time it was pre-empted or completed.

• nextTm : Sm ×Uc
m → R≥0 ∪ {NaN} is the function that allows the importer to query the

time of the next clock tick. It is defined as in Definition 1.
• taskPrioritym : Uc

m → N is an injective function that determines the unique priority of
each task. The priority of a task is fixed during the simulation.

• Tm : Uc
m → 2Um∪Ym links a task/input clock with the set of variables (its partition) describing

the input ports the task relies on and the output ports the task produces. It is strongly
recommended that output and input variables are assigned uniquely to a model partition to

Electronics 2022, 11, 3635 25 of 32

avoid data inconsistencies. We assume that all inputs and outputs are a part of a partition
(ran(Tm) = Um ∪Ym).

• Tc
m : Uc

m → 2Yc
m links a task with a set of output clocks that can be activated by the task. We

assume that all output clocks are a part such partition (ran(Tc
m) = Yc

m), since they otherwise
never would be activated by the FMU.

• Tu
m : Uc

m → 2Uc
m links a task with a set of time-based input clocks. The set of input clocks

denotes the clocks whose schedule may be affected by the computation of a specific partition.

The functions Tm, Tc
m, Tu

m can be inferred from the modelDescription file of the FMU m.
Please note that each task is triggered by the activation of an input clock, which is the reason
for defining the functions Tc

m, Tm, Tu
m, and taskPrioritym in terms of the input clocks.

4.3. Composing SE FMUs

SE FMUs can as SC FMUs be coupled to form a scenario by connecting outputs of one
FMU to inputs of another FMU.

Definition 16 (SE Scenario). A scenario of SE FMUs is a structure
〈
M, L, LC〉 where M, L, and

LC are defined as in Definition 2.

4.4. SE Semantics

We now present the semantics of the actions in Definition 15 to ensure a consistent
interpretation. We start by introducing the run-time state of an SE FMU in Definition 17,
which we modify using the actions described in Definition 15. The run-time state of an SE
FMU differs from the run-time state of an SC FMU to be able to keep track of the current
running partition. Furthermore, we can make some simplifications since the time of the
SE is not superdense, meaning we do not need to keep track of the simulation mode of a
given FMU.

Definition 17 (SE Run-time State). Given an SE FMU m as defined in Definition 15, the run-time
state of FMU m is a member of the set: R≥0 × SR

Um
× SR

Ym
× SR

Uc
m
× SR

Yc
m
× SR

apm
, where:

• R≥0 is an abstraction of the current time of the FMU m. The time is set by the importer to
inform the FMU about the time on an event.

• SR
Um

, SR
Ym

, and SR
Yc

m
are defined in Definition 3.

• SR
Uc

m
: Uc

m → R≥0 is a function linking each task/input clock with the last time its task was
successful executed.

• SR
apm

denotes the input clock associated with the partition currently being computed in m. The
notation sR

apm
= uc denotes that the task/computation associated with the input clock uc is

running. The notation sR
apm

= uc furthermore means that the input clock uc is active. We use
the notation sR

apm
= None to illustrate that no partition is being computed, which results in

the absence of an associated input clock.

The semantics of the functions that appear in both the SE and SC interface are actually
different not only because they operate on a different state space, but also because their
semantics are different. For example, we need to include the aspect of preemptive tasks
and model partitions in the SE semantics.

The importer stores such as in the SC simulations the schedule of the timed-based
clocks in the function Schedule. The function links each time-based clock with the next
time instance the clock should tick.

A task/partition that is scheduled to time ti, due to the priorities chosen and con-
sequent delays incurred, may only execute at a later wall-clock time tj > ti. We say that the
model partition associated with the time-based input clock uc is schedulable or computable
at the current time tj if Schedule(uc) ≤ tj. When task(uc

m) is executed, it should set
the relevant input ports (Tm(uc

m) ∩Um) through the function setm, activate the partition
through the function activatem(_, uc

m, ti), and possibly read the calculated output ports
(Tm(uc

m) ∩ Ym), through the function getm. Notice that we do not explicitly define the

Electronics 2022, 11, 3635 26 of 32

notion of a task in the formalization. Instead, we have an explicit notion of the computation
of a partition (SR

apm
).

Definition 18 (Setting a Value at an Input Port). An input port u can be set to a value v =
(tv, val) at a given time t using the action set(s(t), u, v). The action is defined as follows:

sR set(s(t),u ,(tv ,val))−−−−−−−−−−→ sR ′ =⇒ preSet(u, sR, tv) ∧ postSet(u, sR, sR ′, tv)

where:

preSet(u,
〈

t, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap

〉
, tv) , sR

U(u) < t∧

∀task ∈ (T B u) · taskPriority(sR
ap) ≤ taskPriority(task)

The precondition (above) states that an input port u can be set if it has not yet been set
(sR

U(u) < t). Another requirement is that no partition is currently being computed that has a higher
priority that the task associated with the input port.

The postcondition (below) states that the value of the input port u is set and that the time of
the input port u is updated to the time tv of the assigned value.

postSet(y,
〈

t, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap

〉
,
〈

t, sR
U
′
, sR

Y , sR
Uc , sR

Yc , sR
ap

〉
) ,

t = sR
U
′
(u) ∧ ∀i ∈ U \ u · sR

U
′
(i) = sR

U(i)

Please note that the FMI standard forbids to call getm after an setm on the SE FMU m
without an activatem call in between. The standard also requires that the getm and setm
functions are considerably faster than the activatem function. We will therefore describe
the semantics of the activatem action next.

Definition 19 (Computing a Partition). A partition T(uc) of an input clock uc of an SE FMU at
time t can be calculated at the simulated time tR using the action, activate(s(t), uc, tR):

sR activate(s(t),uc ,tR)−−−−−−−−−−−→ (sR ′, t′, b) =⇒

preActivate(uc, sR, tR) ∧ postActivate(uc, sR, sR ′, t′, b)

where:

preActivate(uc,
〈

t, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap

〉
, tR) , sR

ap 6= uc ∧ tR ≤ t

∧ uc ∈ UTC =⇒ Schedule(uc) ≤ tR

∧ ∀u ∈ (T(uc) ∩U) =⇒ sR
U(u) ≥ tR

∧ sR
ap 6= None =⇒ taskPriority(uc) > taskPriority(sR

ap)

∧ locked(sR
ap) = false

The precondition (above) requires that the partition associated with the input clock uc is
not currently being computed (sR

ap 6= uc) and the simulated time tR to active the clock is not
in the future (tR ≤ t). If the input clock is a time-based clock (uc ∈ UTC), its schedule is
checked to ensure that the partition is schedulable. If a partition is currently being computed
(sR
ap 6= None), we need to ensure that the computed partition is not locked and the priority of

the currently computing partition is lower than the priority of the partition we want to compute
((taskPriority(uc) > taskPriority(sR

ap))) to ensure we do not interrupt a higher priority
computation. To ensure that the partition can be computed using the correct input values, we require
that all task inputs (T(uc) ∩U) must be set, such that they are defined at the simulated time of the
event (set to a value at time tR).

Electronics 2022, 11, 3635 27 of 32

The postcondition (below) updates the time of the FMU to tR + t; the timestamp where the
partition computation was interrupted or done. The variable b denotes whether the task was
interrupted or not. If the computation of the partition was not interrupted (b = false), we know
that no partition is currently being executed and that the partition associated with uc is no longer
schedulable/computable, which we ensure by setting its schedule to ∞. The timestamp of the
input clock uc is updated to the time of the FMU to indicate that the partition of uc has been
successfully computed. We also respect the lock of a task, ensuring that a locked task/partition
cannot be interrupted. If the computation was interrupted (b = true), the computation of uc is still
computable/schedulable, so we do not change the schedule of the task, since the computation must be
resumed such that its outputs can be properly computed. An interruption also means that another
partition is running (sR

ap 6= None∧ sR
ap 6= uc).

postActivate(uc,
〈

tR, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap

〉
,〈

tR + t, sR
U , sR

Y
′
, sR

Uc
′
, sR

Yc , sR
ap
′〉

, t, b) ,

∧ b = true =⇒ locked(uc) = false∧ sR
ap
′ 6= None∧ sR

Uc
′
= sR

Uc ∧ sR
ap
′ 6= uc

∧ b = false =⇒ sR
ap
′
= None∧ Schedule(uc) = ∞ ∧ sR

Uc
′
(uc) = tR + t

Unless otherwise stated by the FMU or importer, a partition/task can be pre-empted
at any moment. To allow the FMU to inform its environment that the currently executing
task (sR

ap) should not be pre-empted, FMI defines two functions: lockP and unlockP that
the FMU and importer can invoke. The function lockP informs the environment that a
task cannot be pre-empted until the function unlockP is invoked. We denote that a task is
locked by the function locked : UC → B, where locked(uc) = true if the task of uc cannot be
pre-empted.

After a partition has been computed using the activate function, the computed
output values can be obtained using the action get, which is defined as follows:

Definition 20 (Obtaining a Value of an Output Port). A value of an output variable y of an SE
FMU at time t is obtained by the action get(s(t), y). The action is defined as follows:

sR get(s(t),y)−−−−−−→ (sR ′, v) =⇒ preGet(y, sR) ∧ postGet(y, sR, sR ′)

where:

preGet(y,
〈

t, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap ,
〉
) , y /∈ T(sR

ap)

∃uc ∈ dom(T B {y}) · sR
Uc(uc) > sR

Y(y)

The precondition (above) states that the value of the output port y has not been obtained since
it was computed. We ensure this by requiring that the time of y is less than the time of the input
clock uc associated with the partition of y. This means that the task computing the value of the
output port y has been computed at least once since the output port was last queried. Furthermore,
we require no currently active task is updating the output port y, formally y /∈ T(sR

ap). The last
check can be ignored if all partitions are disjoint.

The postcondition (below) states that the value of the output port is obtained and that time of
the output port y is updated and that nothing else is changed.

postGet(y,
〈

t, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap

〉
,
〈

t, sR
U , sR

Y
′
, sR

Uc , sR
Yc , sR

ap

〉
) ,

t = sR
Y
′
(y) ∧ (sR

Y
′
(y)B− {y}) = (sR

Y
′
(y)B− {y})

Scheduling Tasks

In SE, the importer operates as a scheduler of tasks to activate the model partitions
according to a dynamic schedule. As summarized in Table 1, clocks can be ticked by
the FMU or the importer. The FMU activates output clocks while the importer activates

Electronics 2022, 11, 3635 28 of 32

input clocks. Nevertheless, we focus on input clocks since these are the ones that are
associated with a partition (when an output clock ticks, the importer is responsible for
ticking all connected input clocks and scheduling the computation of the corresponding
model partitions). Right after invoking (sm

′, true) = getc
m(_, yc

m) on an output clock yc
m

that is active, the clock yc
m should be inactive in state sm

′ to ensure that the importer only
schedules partitions/tasks that are associated with the output clock yc

m via a clocked
connection once.

Since an input clock, uc
m may tick, the importer must be able to pre-empt the computa-

tion of partition to schedule a computation with a higher priority. Moreover, the schedule of
certain time-based input clock can change during an activatem computation. The importer,
therefore, implements a function updatem : Sm → Sm that an FMU can invoke (in the FMI
standard, this is implemented as a callback mechanism) to signal that the status and interval
of a time-based input clock uc

m has changed. The importer, inside updatem, may consult
these changes (through the functions getc

m and nextTm), and schedule the corresponding
tasks accordingly.

The time at which the importer schedules a given task(uc
m) is computed according to:

the input clock uc
m’s declared interval; the function nextTm; or through the getc

m′(_, yc
m′)

function of some other output clock yc
m′ and FMU instance m′ connected to the input clock

uc
m. In the last case, task(uc

m) is scheduled to execute as soon as possible, according to the
priorities known to the importer.

Definition 21 (Getting the State of an Output Clock). Getting the state of the output clock yc

of an SE FMU at time t using the action, getc(s(t), yc) changes the state of the FMU according to:

sR getc(s(t),yc)−−−−−−−→ (sR ′, b) =⇒ preGetC(yc, sR) ∧ postGetC(yc, sR, sR ′)

where:

preGetC(yc,
〈

t, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap

〉
) , ∃uc ∈ dom((Tc B {yc})) · sR

Uc(uc) > sR
Yc(yc)

The precondition (above) requires that the output clock yc has not been queried since it was
computed as a part of an active task. We ensure this by requiring that at least one of the input clocks
(Tc B {yc}) associated with a task that can tick the output clock yc has been activated since the last
time the output clock was queried.

The postcondition (below) updates the timestamp of the output clock yc. It also makes the
output clock yc inactive, which is required to ensure that the importer only schedules tasks that are
associated with the output clock yc via a clocked connection one time.

postGetC(yc,
〈

t, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap

〉
),〈

t, sR
U , sR

Y , sR
Uc , sR

Yc
′
, sR
ap

〉
) , sR

Yc(yc)
′
= t ∧ (sR

Yc
′
C− yc) = (sR

Yc C− yc)

Since the computation of a partition can change the interval of a time-based input
clock the importer must be able to dynamically obtain the interval of a time-based input
clock through the function nextT(s(t), uc). The function is known as a part of callback
triggered by the FMU to inform the importer that the interval of an input clock has changed.
Please note that the callback function is known as part of the computation of a partition, so
it is not necessary to invoke the nextT function explicitly. The function nextT(s(t), uc) is
defined next.

Definition 22 (Scheduling a task). The action nextT(s(tR), uc) retrieves the interval to the next
tick of the clock uc. The action is defined as:

sR nextT(s(tR),uc)−−−−−−−−→ (sR ′, t) =⇒ preNext(uc, sR) ∧ postNext(uc, sR, sR ′, t)

Electronics 2022, 11, 3635 29 of 32

where:

preNext(uc,
〈

tR, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap

〉
) , Schedule(uc) = ∞ ∨ uc ∈ Tu(sR

ap)

The precondition (above) states that the interval of the input clock uc should be unknown
(denoted in our semantics by ∞) or that it should be the case that the interval of the input clock uc

might have been changed by the current running task.
The postcondition (below) updates the schedule of the input clock uc to reflect the next event of

the clock. If the function returns NaN, meaning that the task of the input clock uc has no current
schedule, we set its schedule to NaN.

postNext(uc,
〈

tR, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap

〉
,
〈

tR, sR
U , sR

Y , sR
Uc , sR

Yc , sR
ap

〉
, t) ,

t 6= NaN =⇒ Schedule(uc) = t + tR

∧t = NaN =⇒ Schedule(uc) = NaN

Generic Scheduled Execution Algorithm

We have now described the primary actions of an SE FMU. The following paragraph
will shortly describe how these actions can be composed to form an orchestration algorithm
used to simulate an SE scenario defined in Definition 16.

Let M denote a set of FMU instances, assumed to be initialized.

1. Schedule task(uc
m), for all uc

m ∈ Uc
m and all m ∈ M, if interval of uc

m is constant, fixed,
or calculated;

2. When updatem(_) is invoked, do:

(a) Lock pre-emption with lockP;
(b) If (_, true) = getc

m(_, yc
m), schedule task(uc

m′) for any clock uc
m′ that is transit-

ively connected to yc
m.

(c) For all uc
m ∈ Uc

countdown

i. (_, t) = nextTm(_, uc
m)

ii. If t 6= NaN, then schedule the task for clock uc
m at time t.

(d) Unlock pre-emption with unlockP;

3. Each task task(uc
m) is implemented as:

(a) Set the inputs of m using setm (locking pre-emption with lockP and unlockP

if needed);
(b) Invoke activatem(_, uc

m, ti), where ti is the simulated time that task(uc
m) was

scheduled to execute.
(c) Get the outputs of m using getm (locking pre-emption with lockP and unlockP

if needed);

5. Related Work

Synchronous clocks are one of the solutions proposed to tackle the more general
challenge of co-simulating hybrid systems. Other proposals have been made in the state of
the art, but none of them tackle the problem of discerning different simultaneous events in
the context of co-simulation. For instance, ref. [25] proposes a master algorithm for hybrid
co-simulation. The proposal includes support for absent signals, mandatory implement-
ation of rollback, zero duration step size, co-simulation FMUs supporting feedthrough,
and predictable step sizes. However, it excludes algebraic loops, due to the introduced
non-determinism. Our proposed interfaces enable algebraic loop resolution, even when
clocks are involved, but does not provide guarantees of convergence.

An extensive study of hybrid system simulation challenges was carried out in [26],
and includes, for example, the possibility of an event iteration driving the system into
chattering. And [27–29] focus such discussion in the context of the FMI standard, providing
solutions to some of these challenges. These works complement ours by helping importers

Electronics 2022, 11, 3635 30 of 32

assess whether a given simulation scenario is well behaved. We refer the reader to [17] for
more references in co-simulation of hybrid systems.

The goal of this paper is to describe the main mechanisms standardized in the FMI
standard that enable synchronous clocked simulation and scheduled execution. We can
therefore highlight related work that share the same goals.

Regarding SC simulation, we highlight the work in [30,31] that introduces the syn-
chronous clocks constructs used in the Modelica language, specified in [5]. Such work, and
references thereof on synchronous languages [13,32], were used as basis for the definition
of the SC approach described here. The main difference is that an SC clock does not enforce
a partition on the equations that can be written by it. These differences make it more
difficult to ensure well-formedness of co-simulation scenarios, but provide more flexibility,
reflecting the heterogeneous use cases of FMI.

In the domain of scheduled execution, we highlight the OSEK/VDX [33] and AUTO-
SAR standards, which enable different suppliers to develop and test software independ-
ently, and subsequently integrated the different applications. Such work complements
the SE interface by standardizing the importer environment, where FMU SE instances
can execute.

Formal semantics of the FMI 1.0 and FMI 2.0 have previously been studied in [23,34].
Cavalcanti et al. [34] claim to provide the first behavioral semantics of FMI 1.0. The
operational semantics of FMI 2.0 has been studied in [23,35]. Our work extends previous
work by treating the FMI 3.0 standard, which is a superset of the previous FMI standards.

6. Conclusions

This paper summarizes the results of the FMI project developing black-box simulation
units with synchronous clocks to provide a suitable event mechanism for simulating
continuous systems with an event-driven nature in the FMI universe. The Modelica
language inspired the introduction of synchronous clocks into the FMI standard. The
paper presents formal semantics for two new interfaces of the FMI 3.0 standard to ensure
a precise and unambiguous conceptualization of the new interfaces that can serve as a
basis for implementing the supporting tools to ensure a continued industrial adaption of
the new version of the FMI standard. The semantics also strives towards a more unified
understanding of well-formed scenarios and FMI-based simulations, which will be studied
in future work. Future work also includes the development of concrete tools based on sound
approaches for synthesizing orchestration algorithms, which will enable co-simulation
practitioners to use formal methods in the secret ninja style enabling practitioners to
leverage recent advantages of modern SMT-solvers to verify their use of the FMI standard.

Limitations

Despite the paper’s focus on precision, the FMI standard document continuously
improves and therefore remains the source of truth. We refer the reader to [36] for an
account of essential features developed for the FMI 3.0 standard. Regarding the limitations
of the interface itself, it is intentional that the orchestration algorithm is underspecified,
as it not part of the standardization efforts. Continued work focuses on designing valid
orchestration algorithms, which usually constitute intellectual property for the companies
supporting the FMI interface.

Author Contributions: Thearticle was structured and mainly written by S.T.H. and C.Â.G.G. but
resulted from close collaboration between all the authors. The scheduled execution material was
prepared with M.B. and I.Z. The material on synchronous clocks was prepared together with O.K.,
A.J., T.S., P.R.M., K.S., K.W., C.B. and T.B. M.N. has provided continuous support for the structure and
content of the article. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Electronics 2022, 11, 3635 31 of 32

Acknowledgments: Simon Thrane and Cláudio Gomes are grateful to the Poul Due Jensen Found-
ation, which has supported establishing a new Centre for Digital Twin Technology at Aarhus Uni-
versity. Furthermore, we would like to thank the following people for their input and support:
Stefan Hallerstede, Peter Gorm Larsen, and Jaco van de Pol. Finally, we are thankful to the Modelica
association for its continued support of the FMI Project.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
SC Synchronous clocks
SE Scheduled Execution
ME Model Exchange
CS Co-simulation
U Inputs
Y Outputs
Uc Input clocks
Yc Output clocks
F Feedthrough
M The set of FMUs that may prematurely terminate a step
L Coupling
LC Clock Coupling

References
1. Cremona, F.; Lohstroh, M.; Tripakis, S.; Brooks, C.; Lee, E.A. FIDE. In Proceedings of the 31st Annual ACM Symposium on

Applied Computing, Pisa, Italy, 4–8 April 2016. [CrossRef]
2. Paris, T.; Wiart, J.; Netter, D.; Chevrier, V. Teaching co-simulation basics through practice. In Proceedings of the SummerSim’19,

Berlin, Germany, 22–24 July 2019; Durak, U., Ed.; ACM: New York, NY, USA, 2019.
3. 2.0, F. Functional Mock-up Interface for Model Exchange and Co-Simulation. Available online: https://fmi-standard.org/

downloads/ (accessed on 30 October 2022).
4. FMI. Functional Mock-up Interface Tools. Available online: https://fmi-standard.org/tools/ (accessed on 30 October 2022).
5. Modelica Association. Modelica—A Unified Object-Oriented Language for Systems Modeling. Available online: https:

//modelica.org/documents/MLS.pdf (accessed on 30 October 2022).
6. Dahmann, J.S. High Level Architecture for Simulation. In Proceedings of the DIS-RT, Eilat, Israel, 9–10 January 1997; pp. 9–14.
7. Tendeloo, Y.V.; Vangheluwe, H. Discrete Event System Specification Modeling and simulation. In Proceedings of the WSC,

Gothenburg, Sweden, 9–12 December 2018; pp. 162–176.
8. Zeigler, B.P. Theory of Modeling and Simulation; John Wiley: Hoboken, NJ, USA, 1976.
9. Awais, M.U.; Mueller, W.; Elsheikh, A.; Palensky, P.; Widl, E. Using the HLA for Distributed Continuous Simulations. In

Proceedings of the 2013 8th EUROSIM Congress on Modelling and Simulation, Cardiff, Wales, UK, 10–13 September 2013;
pp. 544–549. [CrossRef]

10. Awais, M.U.; Palensky, P.; Elsheikh, A.; Widl, E.; Stifter, M. The high level architecture RTI as a master to the functional mock-up
interface components. In Proceedings of the ICNC, San Diego, CA, USA, 28–31 January 2013; pp. 315–320.

11. Zacharewicz, G.; Giambiasi, N.; Frydman, C.S. GDEVS/HLA Environment: A Time Management Improvement. In Proceedings
of the 17th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, Paris, France, 11–15 July
2005.

12. Yilmaz, F.; Durak, U.; Taylan, K.; Oğuztüzün, H. Adapting Functional Mockup Units for HLA-compliant Distributed Simulation.
In Proceedings of the 10th International Modelica Conference, Lund, Sweden, 10–12 March 2014; pp. 247–257. [CrossRef]

13. Benveniste, A.; Caspi, P.; Edwards, S.; Halbwachs, N.; Le Guernic, P.; de Simone, R. The Synchronous Languages 12 Years Later.
Proc. IEEE 2003, 91, 64–83. [CrossRef]

14. Kübler, R.; Schiehlen, W. Two Methods of Simulator Coupling. Math. Comput. Model. Dyn. Syst. 2000, 6, 93–113. [CrossRef]
15. 3.0, F. Functional Mock-Up Interface for Model Exchange, Co-Simulation, and Scheduled Execution. Available online: https:

//fmi-standard.org/downloads/ (accessed on 15 May 2022).
16. Gomes, C.; Najafi, M.; Sommer, T.; Blesken, M.; Zacharias, I.; Kotte, O.; Mai, P.R.; Schuch, K.; Wernersson, K.; Bertsch, C.; et al. The

FMI 3.0 Standard Interface for Clocked and Scheduled Simulations. In Proceedings of the 14th International Modelica Conference,
Linköping, Sweden, 20–24 September 2021; Sjölund, M., Buffoni, L., Pop, A., Ochel, L., Eds.; Modelica Association and Linköping
University Electronic Press: Linköping, Sweden, 2021; Number 181 in Linköping Electronic Conference Proceedings. [CrossRef]

http://doi.org/10.1145/2851613.2851677
https://fmi-standard.org/downloads/
https://fmi-standard.org/downloads/
https://fmi-standard.org/tools/
https://modelica.org/documents/MLS.pdf
https://modelica.org/documents/MLS.pdf
http://dx.doi.org/10.1109/EUROSIM.2013.96
http://dx.doi.org/10.3384/ecp14096247
http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
https://fmi-standard.org/downloads/
https://fmi-standard.org/downloads/
http://dx.doi.org/10.3384/ecp2118127

Electronics 2022, 11, 3635 32 of 32

17. Gomes, C.; Thule, C.; Broman, D.; Larsen, P.G.; Vangheluwe, H. Co-Simulation: A Survey. Acm Comput. Surv. 2018, 51, 1–33.
[CrossRef]

18. Lee, E.A.; Zheng, H. Operational Semantics of Hybrid Systems. In Hybrid Systems: Computation and Control; LNCS; Springer:
Berlin/Heidelberg, Germany, 2005; Volume 3414. [CrossRef]

19. Hansen, S.T.; Gomes, C.; Larsen, P.G.; van de Pol, J. Synthesizing Co-Simulation Algorithms with Step Negotiation and Algebraic
Loop Handling. In Proceedings of the Annual Modeling and Simulation Conference (ANNSIM’21), Virtual, 28 January 2021;
Martin, C.R., Blas, M.J., Inostrosa-Psijas, A., Eds.; IEEE: Piscataway, NJ, USA, 2021.

20. Tarjan, R. Depth-First Search and Linear Graph Algorithms. In Proceedings of the 12th Annual Symposium on Switching and
Automata Theory (Swat 1971), East Lansing, MI, USA, 13–15 October 1972; Volume 1. [CrossRef]

21. Abrial, J.R. Modeling in Event-B—System and Software Engineering; Cambridge University Press: Cambridge, UK, 2010.
22. Fitzgerald, J.; Fitzgerald, J.S. Validated Designs for Object-Oriented Systems; Springer: London, UK, 2005.
23. Hansen, S.T.; Gomes, C.; Palmieri, M.; Thule, C.; van de Pol, J.; Woodcock, J. Verification of Co-simulation Algorithms Subject to

Algebraic Loops and Adaptive Steps. In Proceedings of the FMICS’21, Paris, France, 24–26 August 2021; Lluch Lafuente, A.,
Mavridou, A., Eds.; LNCS; Springer: Cham, Switzerland, 2021; Volume 12863.

24. Broman, D.; Brooks, C.X.; Greenberg, L.; Lee, E.A.; Masin, M.; Tripakis, S.; Wetter, M. Determinate composition of FMUs for
co-simulation. In Proceedings of the EMSOFT’13, Montreal, QC, Canada, 29 September–4 October 2013; Ernst, R., Sokolsky, O.,
Eds.; IEEE: Piscataway, NJ, USA, 2013.

25. Cremona, F.; Lohstroh, M.; Broman, D.; Di Natale, M.; Lee, E.A.; Tripakis, S. Step Revision in Hybrid Co-Simulation with FMI. In
Proceedings of the 14th ACM-IEEE International Conference on Formal Methods and Models for System Design, Kanpur, India,
18–20 November 2016.

26. Mosterman, P.J.; Biswas, G. A Comprehensive Methodology for Building Hybrid Models of Physical Systems. Artif. Intell. 2000,
121, 171–209. [CrossRef]

27. Tripakis, S. Bridging the semantic gap between heterogeneous modeling formalisms and FMI. In Proceedings of the 2015
International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2015, Samos,
Greece, 19–23 July 2015; Soudris, D., Carro, L., Eds.; IEEE: Piscataway, NJ, USA, 2015. [CrossRef]

28. Broman, D.; Greenberg, L.; Lee, E.A.; Masin, M.; Tripakis, S.; Wetter, M. Requirements for Hybrid Cosimulation Standards. In
Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, HSCC ’15, Seattle, WA, USA,
14–16 April 2015; ACM: New York, NY, USA, 2015. [CrossRef]

29. Liboni, G.; Deantoni, J.; Portaluri, A.; Quaglia, D.; De Simone, R. Beyond Time-Triggered Co-Simulation of Cyber-Physical Systems
for Performance and Accuracy Improvements. In Proceedings of the 10th Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, Manchester, UK, 22–24 January 2018.

30. Otter, M.; Thiele, B.; Elmqvist, H. A Library for Synchronous Control Systems in Modelica. In Proceedings of the 9th International
Modelica Conference, Munich, Germany, 3–5 September 2012. [CrossRef]

31. Elmqvist, H.; Otter, M.; Mattsson, S.E. Fundamentals of Synchronous Control in Modelica. In Proceedings of the 9th International
Modelica Conference, Munich, Germany, 3–5 September 2012. [CrossRef]

32. Colaço, J.L.; Pouzet, M. Clocks as First Class Abstract Types. In Embedded Software; LNCS; Alur, R., Lee, I., Eds.; Springer:
Berlin/Heidelberg, Germany, 2003; Volume 2855. [CrossRef]

33. ISO 17356-3:2005. Road Vehicles—Open Interface for Embedded Automotive Applications—Part 3: OSEK/VDX Operating
System (OS). Available online: https://www.iso.org/standard/40079.html (accessed on 15 December 2020).

34. Cavalcanti, A.; Woodcock, J.; Amálio, N. Behavioural Models for FMI Co-simulations. In Proceedings of the ICTAC’16, Taipei,
Taiwan, 24–31 October 2016; LNCS; Sampaio, A., Wang, F., Eds.; Springer: Cham, Switzerland, 2016; Volume 9965.

35. Gomes, C.; Lucio, L.; Vangheluwe, H. Semantics of Co-Simulation Algorithms with Simulator Contracts. In Proceedings of the
ACM/IEEE MODELS’19, Munich, Germany, 15–20 September 2019; Burgueño, L.; Pretschner, A., Voss, S., Chaudron, M., Kienzle,
J., Völter, M., Gérard, S., Zahedi, M., Bousse, E., Rensink, A., et al., Eds.; IEEE: Piscataway, NJ, USA, 2019.

36. Junghanns, C.; Blochwitz, T.; Bertsch, C.; Sommer, T.; Wernersson, K.; Pillekeit, A.; Zacharias, I.; Blesken, M.; Mai, P.; Schuch, K.;
et al. TThe Functional Mock-up Interface 3.0-New Features Enabling New Applications In Proceedings of the 14th International
Modelica Conference, Online, 20–24 September 2021; Linköping University Electronic Press, Linköpings Universitet: Linköping,
Sweden, 2021.

http://dx.doi.org/10.1145/3179993
http://dx.doi.org/10.1007/978-3-540-31954-2_2
http://dx.doi.org/10.1109/SWAT.1971.10
http://dx.doi.org/10.1016/S0004-3702(00)00032-1
http://dx.doi.org/10.1109/SAMOS.2015.7363660
http://dx.doi.org/10.1145/2728606.2728629
http://dx.doi.org/10.3384/ecp1207627
http://dx.doi.org/10.3384/ecp1207615
http://dx.doi.org/10.1007/978-3-540-45212-6_10
https://www.iso.org/standard/40079.html

	Introduction
	Prior Work
	Structure

	Common Interface and Concepts
	Clock Taxonomy
	Clock Variables and Dependencies

	Synchronous Clocked Simulation
	Background on CS and ME
	Limitations of FMI 2.0: Discerning Events
	Notation
	Synchronous Clocks Semantics
	Composing SC FMUs
	The Semantics of the Actions
	Discrete Actions

	Scheduled Execution
	An Illustrating Example
	Scheduled Execution Semantics
	Composing SE FMUs
	SE Semantics

	Related Work
	Conclusions
	References

