
International Journal on Software Tools for Technology Transfer (2022) 24:999–1024
https://doi.org/10.1007/s10009-022-00686-8

GENERAL

Special Issue: FMICS 2021

Verification and synthesis of co-simulation algorithms subject to
algebraic loops and adaptive steps

Simon Thrane Hansen1 · Casper Thule1 · Cláudio Gomes1 · Jaco van de Pol2 ·Maurizio Palmieri3 ·
Emin Oguz Inci5 · Frederik Madsen1 · Jesús Alfonso4 · José Ángel Castellanos4 · José Manuel Rodriguez4

Accepted: 19 October 2022 / Published online: 12 November 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Simulation-based analyses are becoming increasingly vital for the development of cyber-physical systems. Co-simulation is
one such technique, enabling the coupling of specialized simulation tools through an orchestration algorithm. The orchestrator
describes how to coordinate the simulation of multiple simulation tools. The simulation result depends on the orchestration
algorithm that must stabilize algebraic loops, choose the simulation resolution, and adhere to each simulation tool’s imple-
mentation. This paper describes how to verify that an orchestration algorithm respects all contracts related to the simulation
tool’s implementation and how to synthesize such tailored orchestration algorithms. The approaches work for complex and
adaptive co-simulation scenarios and have been applied to several real-world case studies.

Keywords Co-simulation · Model-checking · Cyber-physical systems · Formal methods

1 Introduction

Cyber-physical systems (CPSs) are omnipresent and part of
the critical infrastructure. A CPS is a hybrid system that
embodies physical processes controlled by digital devices.
CPSs are becoming increasingly complex and critical [1],
which leads to the desire for techniques to assist in their
development. Traditional modeling and simulation tech-
niques, where one algorithm describes an entire system, are
no longer sufficient to cope with the integrated development
processes of such systems [2], which consist of heteroge-
neous subsystems typically developed using different tools

B Simon Thrane Hansen
sth@ece.au.dk

1 DIGIT, Department of Electrical and Computer Engineering,
Aarhus University, Åbogade 34, 8000 Aarhus, Denmark

2 DIGIT, Department of Computer Science, Aarhus University,
Åbogade 34, 8000 Aarhus, Denmark

3 DII, Department of Information Engineering, University of
Pisa, Pisa, Italy

4 Department of Information Engineering, Instituto
Tecnologico de Aragon, Zaragoza, Spain

5 Department of Mechanical Engineering, KU Leuven,
Celestijnenlaan 300, 3001 Leuven, Belgium

and formalisms. Co-simulation is a technique enabling the
simulation of a complex CPS consisting of multiple black-
box simulation units (SUs), where each SU represents a
subsystem and can compute the behavior of that system [3,4].
Co-simulation allows iterative integration of constituents to
explore the global system behavior as a discrete trace without
violating the constituents’ intellectual property (IP) during
the entire development cycle.

An example of anSU is aFunctionalMock-upUnit (FMU)
defined by the Functional Mock-up Interface Standard [2]
(FMI),which inspires the notion of anSU in this paper. FMI is
a widely adopted standard used commercially and supported
by many tools [5].

An SU interacts with its environment through input and
output ports. A set of SUs can be composed into a scenario
by coupling the input ports to output ports. The syntax in
Fig. 1 is used to graphically present co-simulation scenarios.

A coupling connects one input port of an SU to an output
port of another SU. The coupling restriction states that the
value of an input and an output of a coupling must be the
same at all times. However, in reality, the coupling restric-
tions can only be satisfied at specific points in time called
communication points. Therefore, each SU makes its own
assumptions about the evolution of its input values between

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00686-8&domain=pdf

1000 S. T. Hansen et al.

fa g
b

r

d

Fig. 1 A co-simulation scenario with two SUs a and b. The dashed
arrows denote feed-through connections, the ports are represented as
small squares, the instrumentation of an input port is denoted by the
letters r (reactive) or d (delayed). The solid arrows f and g represent
couplings

the communication points, which can introduce errors in the
co-simulation [6].

The orchestrator is an algorithm interacting with the
SUs through their interfaces. The orchestrator computes the
behavior of a scenario as a discrete trace while it tries to sat-
isfy the coupling restrictions by exchanging values between
the coupled ports. The orchestrator aims to find the commu-
nication points that minimize the co-simulation error while
ensuring that the SUsmove in lockstep. The optimal commu-
nication points depend on the SUs [7–11]. An orchestrator is
in practice often referred to as an orchestration engine.

1.1 Problem definition

The overarching challenge of co-simulation is ensuring accu-
rate simulation results. The challenge is a consequence of
the nature of co-simulation being a black-box simulation
technique containing many potential error sources. The sim-
ulation result depends not only on the correctness of the
individual SUs but also on their orchestration [7,9,10]. For
example, if a mistake is made while coding the orchestra-
tion algorithm, it is challenging and costly to identify the
source of the bug from the inaccurate simulation result.
The error could have been introduced by one of the SUs,
the orchestration algorithm, or the chosen step duration
(simulation resolution). This is a significant challenge for
co-simulation practitioners typically domain experts such as
electrical, mechanical, and software engineers are not trained
in spotting such algorithmic errors. Furthermore, the FMI
Standard does not restrict or provide well-defined seman-
tics for the orchestration algorithm used to simulate a given
scenario [12].

The scenario in Fig. 1 can, for example, without the
contributions described in ourwork be simulated usingAlgo-
rithms 1 and 2 in Fig. 2, that both conform to the FMI
Standard. Even though the algorithms consist of the same
actions, they can lead to two utterly different simulation
results, as shown in Fig. 3. The only difference between the
two algorithms is their communication points. Algorithm 1
exchanges values between the ports ug and yg and u f and
y f after SU B has been stepped, but before stepping SU A.
Algorithm 2 exchanges values between the ports ug and yg
and u f and y f after stepping both SUs.

Obtaining an accurate co-simulation result requires an
algorithm tailored explicitly to the scenario [7–10]. Never-
theless, it is challenging to generate such tailored algorithms
based on the black-boxes/interfaces described by the FMI
standard.

The problem was addressed for a specific class of co-
simulation scenarios by adding contracts to the inputs of
an SU [7,8]. The developer of an SU can specify non-
confidential information about an SU’s input approximation
functions using contracts. The orchestrator uses the contracts
to determine the communication points that minimize the
co-simulation error [7,8,13] when generating a tailored algo-
rithm. Tailored algorithms can, in some cases, substantially
reduce the co-simulation error, as shown in Fig. 3. The plots
in Fig. 3 show two different simulations of the same scenario
with two different algorithms. The simulation results are
compared with an analytical solution.

Previous techniques for synthesizing tailored algorithms
[7,8] are limited to a particular class of co-simulation scenar-
ios, which are not subject to either algebraic loops or adaptive
steps: the so-called complex scenarios. Complex scenarios
are complicated to simulate because the orchestrator needs
to adapt to the observed behavior to obtain an accurate sim-
ulation result.

Complex scenarios are simulated using an iterative algo-
rithm [13]. The iterative algorithm solves algebraic loops
(cyclic dependencies between the SUs) and ensures that all
SUs agree on a step duration (step negotiation). Step negotia-
tion permits the SUs to implement error estimation and refuse
specific future state evaluations to minimize the simulation
error while ensuring that the SUs move in lockstep. None of
the existing techniques for synthesizing orchestration algo-
rithms supports adaptive scenarios where the most accurate
simulation results are achieved by changing the contracts of
the SUs during the simulation.

The two key problems we address in this paper (in addi-
tion to the formalization of co-simulation and co-simulation
algorithms) are:

• Given an orchestration algorithm P and a scenario S:
Determine if P is the correct orchestration algorithm to
simulate S without simulating the system.

• Given a scenario S: Synthesize a tailored orchestration
algorithm P for S, where S can be an arbitrary adaptive
scenario.

1.2 Contribution

The paper is an extended version of two previous papers [13,
14]. The paper in [14] describes how to verify orches-
tration algorithms, while an approach for synthesizing
implementation-aware orchestration algorithms is presented

123

Verification and synthesis of co-simulation... 1001

Algorithm 1

1: (s(H)
B

,H) ← stepB(s(0)
B

,H)

2: gv ← getB(s(H)
B

, yg)

3: s
(0)
A

← setA(s(0)
A

, ug, gv)

4: fv ← getA(s(0)
A

, yf)

5: s
(H)
B

← setB(s(H)
B

, uf , fv)

6: (s(H)
A

,H) ← stepA(s(0)
A

,H)

Algorithm 2

1: (s(H)
B

,H) ← stepB(s(0)
B

,H)

2: (s(H)
A

,H) ← stepA(s(0)
A

,H)

3: gv ← getB(s(H)
B

, yg)

4: s
(H)
A

← setA(s(H)
A

, ug, gv)

5: fv ← getA(s(H)
A

, yf)

6: s
(H)
B

← setB(s(H)
B

, uf , fv)

Fig. 2 Two algorithms conforming to the FMI Standard (version 2.0) of the scenario in Fig. 1

c1 = d1 = m1 = 0.2

Algorithm1
Algorithm2
Analytical Solution

Fig. 3 Simulation results from Algorithms 1 and 2 compared with an
analytical solution. The step size used in the co-simulation was 0.1 s

in [13]. This manuscript extends its predecessors by covering
adaptive scenarios and presenting verification and synthesis
of orchestration algorithms in a detailed, self-contained, and
integrated setting.

All of the techniques from the paper have been imple-
mented in a tool called the Scenario-Verifier. The Scenario-
Verifier enables co-simulation practitioners to verify that
their algorithm respects the contracts of the SUs and syn-
thesize tailored orchestration algorithms for a given scenario
subject to step negotiation, algebraic loops and dynamic con-
tracts. Our techniques cannot account for the numerical
aspect of the co-simulations, which is an inherent problem
for all general analytical techniques of co-simulation.

Another novel contribution is the integration of the
Scenario-Verifier with the orchestration engine Maestro
2 [15], which we believe to be one of the first connections
between a formal model and an orchestration engine.

The integration enables co-simulation practitioners to
simulate their co-simulation scenarios using a correct co-
simulation algorithm seemlessly.

The benefits of the integration with Maestro 2 have been
explored using two real-world case studies in Sect. 7. The
case studies show how formal methods can add value to the
co-simulation toolchain by letting the co-simulation practi-
tioners focus on the individual subsystems instead of their
orchestration.

1.3 Structure

Section 2 gives some necessary background onmodel check-
ing and co-simulation. Section 3 to 5 gives an overview of
different types of co-simulation scenarios simple, complex
and adaptive, respectively. Each section concentrates on a
specific class of co-simulation scenarios and describes the
approach for verifying the orchestration algorithm of such
scenarios in UPPAAL. The sections extend each other, so the
length of the section is inversely proportional to the section
number. Section 6 describes the synthesis of an orchestration
algorithm for all of the described scenario classes. Section 7
introduces two case studies where the approaches have been
utilized. Section 8 discusses related work, Sect. 9 gives some
concluding remarks.

2 Preliminaries

This section shortly describes the preliminaries of the work.
We refer interested readers to the cited material for more
information.

2.1 The FMI standard

The FMI standard [2] describes how to implement compos-
able SUs. The SUs can be created using different tools and
techniques and be composed into a scenario to explore their
global behavior as the result of a co-simulation.

This work focuses on co-simulations of scenarios com-
posed of SUs described by Definition 1, which is based on
[16,17].

123

1002 S. T. Hansen et al.

Definition 1 (SimulationUnit) AnSUwith identifier c is rep-
resented by the tuple

〈Sc,Uc,Yc,setc,getc,stepc〉 ,

where:

• Sc is a set, denoting the state space of the SU.
• Uc and Y are sets, of input and output ports, respectively.
The union VARc = Uc ∪ Yc of the inputs and outputs is
called the ports of the SU.

• V is a set, intuitively denoting the values that a variable
can hold.VT = R≥0×V is the set of timestamped values
exchanged between input and output ports.

• The functionssetc : Sc×Uc×VT → S andgetc : Sc×
Yc → VT sets an input and gets an output, respectively.

• stepc : Sc ×R>0 → Sc ×R>0 is a function; it instructs
the SU to compute its state after a given duration. If an SU
is in state s(t) at time t then, (s(t+h)

c , h) = step(s(t)
c , H)

denotes the state s(t+h)
c of the SU at time t + h, where

h ≤ H .

The state of SU c at time t is denoted s(t)
c . The function

stepc returns a step duration (h ∈ R>0) because some SUs
implement error estimation and may conclude that taking a
step size of H will result in an intolerable error meaning the
SU takes a smaller step than planned.

The FMI standard describes some state-changing func-
tions that are not included in Definition 1. An example is the
Terminate-function that tells an SU the simulation has ended.
We do not treat them in this paper; nevertheless, they are still
being enforced by our formal model. A collection of coupled
SUs forms a scenario:

Definition 2 (Scenario) A scenario S is a tuple

S � 〈C, L, M, R, F〉 ,

where

• C is a finite set (of SU identifiers).
• L is a function L : U → Y , where U = ⋃

c∈C Uc

and Y = ⋃
c∈C Yc, and where L(u) = y means that the

output y is coupled to the input u.
• M ⊆ C denotes the SUs that implement error estimation.
• R : U → B is a predicate, which describes the SUs’
input approximation functions. R(u) = true means
that the function step assumes that the timestamp tc of
the SU c of the u is smaller than the timestamp tv of the
timestamped value 〈tv, v〉 set on the input u . We call an
input port u reactive if R(u), and delayed otherwise.

• F is a family of functions {Fc : Yc → P(Uc)}c∈C .
The statement uc ∈ Fc(yc) says that the input uc feeds

through to the output yc of the same SU. It means
that there exists v1, v2 ∈ VT and sc ∈ Sc, such that
getc(setc(sc, uc, v1), yc)
= getc(setc(sc, uc, v2),
yc).

Definition 2 extends the FMI 2.0 standard for co-simulation
[2] with feed-through and reactivity constraints to cover a
broader class of co-simulation scenarios.

2.2 Notation and abbreviations

Most of the notation used in this paper is based on the notation
from [3,4]. We use the convention that capital letters denote
a set and lowercase letters denote a member of a set. For
example, Uc denotes the input ports of the SU c where u ∈
Uc. A table of the most common abbreviations is found in
Sect. A on page 40

2.3 Model checking

Model checking [18,19] is a technique for automated ver-
ification of complex reactive systems such as hardware
components, embedded controllers, and network protocols.
The technique works by expressing the specification of a
system using logical formulas.

The model of this paper is developed using the tool
UPPAAL.UPPAAL is amodel checker developedbyUppsala
University andAalborgUniversity [20]. It is based on the the-
ory of timed automata [21]. Interested readers are referred to
[20,22] for more details on UPPAAL. Every UPPAALmodel
is characterized by:

• a finite set of locations with one initial location;
• a finite set of transitions connecting locations;
• a finite set of variables;
• a finite set of actions performed on the variables when
executing a transition;

• a finite set of predicates, called guards allowing the exe-
cution of a transition;

• a finite set of synchronization channels.

A sequence of transition executions represents the evolu-
tion of the model. Each transition can be labeled with one or
more actions, a guard, and a synchronization. The state of a
model is given by the current location and the current values
of the variables.

It is possible to combine more models to build a complex
one. The composition between twomodels is modeled by the
existence of two transitions, one for each of the two models,
labeled with the same synchronization channel. Two tran-
sitions labeled with the same synchronization channel can
be executed only if the guards on each of them, if any, are

123

Verification and synthesis of co-simulation... 1003

satisfied. The following additional features of UPPAAL are
used:

• Committed locations that can be used to force no delay in
a location, i.e., the next transitionmust change the current
location;

• Location invariants, i.e., conditions that must hold while
the model is in a specific location.

Graphically, an input action is denoted by a question mark
(?), and an output action is by an exclamation mark (!), an
example is presented in Fig. 5 on page 15.

Uppaal is chosen due to its graphical user interface,
simplicity in the model creation, and powerful simulator/de-
bugger. The notion of time is not utilized in this work,
meaning that thework canbe replicated in othermodel check-
ers.

3 Simple co-simulation scenarios

This section introduces simple co-simulation scenarios and
orchestration algorithms. A co-simulation scenario is simple
if it is not complex (see Sect. 4) or adaptive (see Sect. 5).
This means that a simple scenario is not subject to either
step negotiation, algebraic loops, or changing coupling and
reactivity constraints. The scenario in Fig. 1 is simple.

Section 3.1 introduces co-simulation algorithms and
defines the SU actions in the abstract state space. Section 3.2
follows with a formal definition of a correct orchestration
algorithm. Section 3.3 presents the UPPAALmodel to verify
co-simulation algorithms in a fully automated fashion.

3.1 Orchestration algorithms for simple scenarios

A co-simulation scenario is orchestrated by an orchestra-
tion engine, executing an orchestration algorithm, which
describes when future states are calculated and how values
are exchanged between the SUs. An orchestration algorithm
consists of an initialization procedure and a co-simulation
step procedure. The initialization and co-simulation step pro-
cedures are both a sequence of the SUoperations (set,get,
and step).

The initialization procedure sets up the system such that
it is ready for simulation. The initialization procedure ini-
tializes the scenario by setting all parameters of the SUs and
calculating an initial value for all ports and SUs [23].

The co-simulation step simulates the scenario; it does so
by moving all SUs from an initial state with the timestamp
t to a future state with the timestamp t + H . All coupling
restrictions must be satisfied at the initial and final state.

An orchestrator runs a co-simulation by iteratively apply-
ing the co-simulation step until the simulation reaches the

end time where the orchestrator terminates the simulation.
Therefore, a co-simulation algorithm is entirely determined
by its initialization and co-simulation step procedure.

This work concentrates on the co-simulation step, which
we refer to as the algorithm in the paper. The initialization
can be derived using the presented method.

In order to formally define a co-simulation algorithm, we
introduce the abstract co-simulation state that the algorithm
operates on. An example of an abstract co-simulation state
is shown in Example 1.

Definition 3 (Abstract SU State) The observable abstract
state sR of an SU c in a scenario S is an element of the
set SR

c = R≥0 × SR
Uc

× SR
Yc

× SR
Vc
, where:

• SR
Uc

: Uc → R≥0 is a function mapping each input port
to a timestamp.

• SR
Yc

: Yc → R≥0 is a function mapping each output port
to a timestamp.

• SR
Vc

: VARc → V is a function mapping each port to a
value.

The first component of the abstract state denotes the current
time of the SU.

We use the abstract state sRc of an SU c instead of the
internal state sc since the latter is non-observable. The
orchestrator can only observe the SU as a black-box via its
interface, which means that the numerical behavior of the
SU cannot be predicted by the orchestrator. The state of a
co-simulation scenario is the combination of the states of its
subcomponents:

Definition 4 (Abstract Co-simulation State) The abstract co-
simulation state sRS of a scenario S = 〈C, L, M, R, F〉 is an
element of the set SR

S = time × SR
U × SR

Y × SR
V where:

• time : C → R≥0 is a function, where time(c) denotes
the current simulation time of SU c. We denote by a time
value t ∈ R≥0 the function λc.t , which we use if all SUs
are at the same time.

• SR
U = ∏

c∈C SR
Uc

maps all inputs of the scenario to a
timestamp.

• SR
Y = ∏

c∈C SR
Yc

maps all outputs of the scenario to a
timestamp.

• SR
V = ∏

c∈C SR
Vc

maps all ports of the scenario to a value.

Example 1 The initial co-simulation state of the scenario in
Fig. 1 is: sRB × sRA , where s

R
A = 〈

0, {ug → 0}, {y f → 0}, _〉,
and sRB = 〈

0, {u f → 0}{yg → 0}, _〉. The valuation of the
ports is not described (indicated by _) since we cannot say
anything concrete about these values.

123

1004 S. T. Hansen et al.

An algorithm P operates on the abstract co-simulation
state sRS . A co-simulation step P is a sequence of opera-
tions that takes a co-simulation from one consistent state to
another consistent state. We write s

P−→ s′ if executing the

co-simulation step P from the initial state s results in the
final state s′.

Definition 5 (Co-simulation Step) A co-simulation step P is
a sequence of SU actions. A co-simulation step P is con-
sistent if it takes a consistent co-simulation state to another
consistent co-simulation state. The state of the co-simulation
is consistent if all input ports have a source, and all coupled
ports have the same value. Formally:

〈
t, sRU , sRY , sRV

〉
P−→

〈
t ′, sRU

′
, sRY

′
, sRV

′〉

�⇒
(
consistent(

〈
t, sRU , sRY , sRV

〉)

�⇒
(
consistent

(〈
t ′, sRU

′
, sRY

′
, sRV

′〉) ∧ t ′ > t)
)

where consistent is defined as:

consistent(
〈
t, sRU , sRY , sRV

〉
)

� (∀u ∈ U ∃y ∈ Y · L(u) = y)

∧ (∀u , y · L(u) = y �⇒ sRV (u) = sRV (y))

The plots in Fig. 3 showwhy we need a tailored algorithm
to simulate a scenario. Although the algorithmsAlgorithms 1
and 2 lead to different simulation results they both satisfy
Definition 5. To differentiate between them, we need to con-
sider the semantics of the SU actions.

An implementation-aware algorithm is one of the precon-
ditions for obtaining accurate simulation results, which we
consider to be the ultimate objective of the orchestration algo-
rithm. An algorithm is tailored to the scenario if it respects
Definition 2 and the SU semantics described below.

Definition 6 (Get Action) Obtaining a value from an out-
put port y of an SU at time t using the action, get(s(t), y)
changes the state of the SU according to:

sR
get(s(t),y)−−−−−−→ (v, sR

′
) �⇒ preGet(y, sR)

∧ postGet(y, sR, sR
′
, v)

Where:

preGet
(
y,

〈
t, sRU , sRY , sRV

〉)

� sRY (y) < t ∧ ∀u ∈ F(y) · sRU (u) = t

The precondition (above) states that no value must have been
obtained from the output y since the SU was stepped, for-
mally described as sRY (y) < t . Furthermore, it requires that

all the inputs that feed through to y have been updated, so
they are at time t . The postcondition (below) ensures that the
output is advanced to time t and that we have obtained the
value of the output.

postGet(y,
〈
t, sRU , sRY , sRV

〉
,
〈
t, sRU , sRY

′
, sRV

〉
, 〈tv, x〉)

� sRY
′
(y) = t

∧ ∀ym ∈ (Y \ y) · sRY ′
(ym) = sRY (ym)

∧ tv = t ∧ sRV (y) = x

The get(s(t), y) action also gives us a value 〈tv, x〉 that
we can set on an input port using the set action described
next in Definition 7.

Definition 7 (Set Action) Setting a value 〈tv, x〉 on the input
port u of an SU using set(s(t), u , 〈tv, x〉) updates the time
and value of the input port u such that it matches 〈tv, x〉,
formally:

sR
set(s(t),u ,v)−−−−−−−−→ sR

′ �⇒ preSet(u , v, sR)

∧ postSet(u , v, sR, sR
′
)

where:

preSet
(
u , 〈tv, x〉 ,

〈
t, sRU , sRY , sRV

〉)
� sRU (u) < tv

∧ ((R(u) ∧ tv > t) ∨ (¬R(u) ∧ tv = t))

The precondition says that the input must not have been
assigned a new value since the SU was stepped, formally
sRU (u) < tv . Furthermore, it ensures that reactive inputs
(R(u)) are set with a value with a timestamp larger than
timestamp of the SU. Delayed inputs (¬R(u)) should be set
with a value with the same timestamp as the SU. The post-
condition (below) ensures the value and time of the input u
is updated so it matches the value assigned on the input.

postSet(u , 〈tv, x〉 ,
〈
t, sRU , sRY , sRV

〉
,
〈
t, sRU

′
sRY , sRV

′〉
) � tv

= sRU
′
(u) ∧ (∀um ∈ (U \ u) · sRU ′

(u)

= sRU (u)) ∧ sRV
′
(u) = x ∧ tv = t

The precondition preSet is not needed and could be
caught by the precondition preStep. However, experience
shows that incorrect algorithms are easier to correct if we
detect the violation of an input contract once we try to set the
value.

Definition 8 (Step Computation) Stepping an SU using
step(s(t), H) advances the state of the SU by H ∈ R>0,

123

Verification and synthesis of co-simulation... 1005

formally:

sR
step(s(t),H)−−−−−−−−→ sR

′ �⇒ preStep(H , sR)

∧ postStep(H , sR, sR
′
)

where:

preStep
(
H ,

〈
t, sRU , sRY , sRV

〉)

� ∀u ∈ U · ((R(u) ∧ t + H = sRU (u))

∨ (¬R(u) ∧ t = sRU (u)))

The precondition (above) states that all the SU’s inputs
have been updated according to their reactivity constraints.
All reactive inputs are at time t + H and all delayed inputs
are at time t . The postcondition ensures that the time of the
SU advances by the step duration H and that new values have
been calculated on the ports.

postStep
(
H ,

〈
t, sRU , sRY , sRV

〉
,
〈
t ′, sRU , sRY , sRV

′〉)

� t + H = t ′

Note that we, for now, assume that an SU will accept all
step durations. Step rejection is described in Sect. 4 on page
16.

3.2 Correct orchestration algorithms

An algorithm P must satisfy Definition 5 while respecting
the semantics.We use Dijkstra’s weakest precondition calcu-
lus [24] to check if all actions of P are enabled. The weakest
precondition calculus takes a predicate defining the final state
and a program that must terminate in a state satisfying the
predicate. The weakest precondition calculus uses backward
reasoning and the semantics of the operations to calculate the
weakest predicate/precondition that defines the initial state,
such that all executions of the program from a state defined
by the precondition results in a state defined by the postcon-
dition.

We use the weakest precondition calculus to define that
an algorithm P respects the semantics of Definitions 6 to 8
and Definition 5:

Definition 9 (Consistent Co-simulation Step) A co-
simulation step P is consistent/correct if it takes an initial
consistent co-simulation state at time t to a future consistent
co-simulation state at time t + H while respecting the SU
semantic.

consistent
〈
t, sRU , sRY , sRV

〉
) �⇒ wp(P,consistent

〈
t + H , sRU

′
, sRY

′
, sRV

′〉
) ∧ H > 0

An algorithm P is tailored to the scenario if it respects the
semantics of Definitions 6 to 8 and Definition 5.

Example 2 For example, Algorithm 1 is a tailored algorithm.
On the other hand, Algorithm 2 is not a tailored algorithm
since it violates Definition 9. The stepA operation on line
2 is not enabled since the precondition preStepA is not
respected by the state sRA = 〈

0, {ug → 0}, {y f → 0}, _〉 that
does not contain {ug → H}. Intuitively, we step SU A with-
out having provided it with a value on the reactive input ug;
this is an apparent violation of the precondition preStepA.

Definition 9 says that a correct algorithm transforms the
scenario from one consistent state to another consistent state,
where the only difference between the initial and final state
is the timestamp of the state.

This enables inductive reasoning to show that if an algo-
rithm P satisfies Definition 9, then we can assume that all
future executions of P from a consistent will reach a consis-
tent final state. We use UPPAAL to establish the inductive
step. We start from a consistent state and use UPPAAL to
interpret the algorithm P to see if the execution of P reaches
a final state. The base case is to show that the algorithm can
establish a consistent. The proof can be found in [4]. Induc-
tive reasoning allows us to verify infinite co-simulations in
UPPAAL.

3.3 Verification of orchestration algorithms in
UPPAAL

We use UPPAAL to prove that a given orchestration algo-
rithm P for the scenario S respects Definition 9. Before
defining the UPPAAL model, we briefly describe the overall
idea of using UPPAAL to verify orchestration algorithms.
The UPPAAL model is a part of a tool-chain called the
Scenario-Verifier that allows co-simulation practitioners to
verify an orchestration algorithm of a scenario described in
the domain-specific language (DSL) defined by the grammar
in Sect. B.

The UPPAAL model is automatically instantiated from
the provided scenario and algorithm. All scenarios described
in the grammar (including those in the paper) can be automat-
ically instantiated and verified in UPPAAL. We use model
checking because it is a fully automatic verification method,
which is an absolute must in the context of co-simulation
where practitioners come from a wide range of backgrounds.
Furthermore, we believe model checking is ideal for veri-
fying orchestration algorithms since it allows us to specify
non-deterministic SU behavior, and, under the assumptions
that will be illustrated throughout the paper, the verification
problem is always finite.

123

1006 S. T. Hansen et al.

3.3.1 The UPPAALmodel

The UPPAAL model1 is a formalization of a co-simulation.
The UPPAAL model formalizes the co-simulation as a set
of SUs described as timed automata (TA) orchestrated by
an orchestrator described as another TA. The orchestrator
exchanges data between the SUs and asks them to com-
pute future states by interpreting the provided orchestration
algorithm. The UPPAAL model is designed such that all the
violations of the semantics of the SUs lead to a deadlock. This
allows us to automatically verify orchestration algorithms in
UPPAAL.

The model consists of four templates:

• The SU template that formalizes the interface of an SU
described in Definition 1 on page 6.

• The Orchestrator template interprets the provided algo-
rithm and exercise the SUs accordingly.

• TheStepNegotiation template is used to verify step nego-
tiation procedures.

• The Fixed Point template is used to verify fixed-point
iteration procedures.

The templates of theSUand theOrchestrator are described
in this section. In contrast, the other templates are described
in Sect. 4.

The Scenario-Verifier instantiates the UPPAAL model
based on the provided scenario and algorithm by instanti-
ating one SU template for each SU in the scenario, and one
of the other templates per scenario. The data of the scenario
(couplings, feed-through, etc.) and the orchestration algo-
rithm are globally defined and automatically generated by
the tool.

3.3.2 The orchestrator template

The orchestrator sequentially interprets the orchestration
algorithm and exercises the SUs accordingly. In UPPAAL,
an orchestration algorithm is interpreted as a sequence of
SU-actions executed in the provided order. The orchestrator
delegates actions to the SUs using channel synchroniza-
tion (su[activeSU]!) and sharedvariables (action and
var). The orchestrator has one channel per SU to ensure that
only one SU receives and synchronizes on a given action
request.

The orchestrator is created according to the FMI stan-
dard [2], such that it initializes, simulates, and terminates
the scenario. Fig. 4 shows the UPPAAL template of the
orchestrator; more specifically, it shows how it interprets
and runs the co-simulation step. It sends action requests

1 The model is available online: https://github.com/INTO-CPS-
Association/Scenario-Verifier.

to SUs using the channel su[activeSU]! and waits
for a confirmation that the action was successfully per-
formed on the broadcast channel actionPerformed?.
The Orchestrator then selects the next action in the algorithm
using the function selectNextAction(). This pattern
is repeated until the entire algorithm has been interpreted, i.e.
!AlgorithmDone(). The edges to the states FindStep
andSolveAlgebraicLoop are only relevant for complex
scenarios, whichmeans that wewill not treat them in this sec-
tion.The samegoes for the stateSelectMaxStepSize. In
case the Orchestrator has performed the entire co-simulation
step (AlgorithmDone()), reached the end time of the
simulation (time >= end), and established a consistent
co-simulation state (ConsistentState) the Orchestra-
tor goes to the Termination state. The transition from
the state Simulate to the state SelectMaxStepSize
makes a non-deterministic choice that enables verification of
adaptive scenarios, which we discuss in Sect. 5.

A correct orchestration algorithm ensures that the orches-
trator reaches the state Termination while an incorrect
hits a deadlock.

3.3.3 The SU template

The SU template abstracts an SU by defining its interface and
life-cycle. The state of the SU in UPPAAL is defined in Def-
inition 3. The SU template is depicted in Fig. 5. The figure
shows the interface of the SU when it is in simulation
mode. The outgoing edges of the Simulation state show
different actions that the Orchestrator can invoke on the SU
by synchronizing on the channel su[id]. The incoming
edge to the Simulation state is used to synchronize on
the channel actionPerformed to confirm that the SU
successfully performed the requested action, enabling the
Orchestrator to issue a new action request. The precon-
ditions of the actions described in Definitions 6 to 8 on
pages 10–11 are encoded in UPPAAL as invariant func-
tions of specific states as shown in Fig. 5 by the functions
preSet, preGet and preStep. The actions described
by setValue, getValue and step in the figure changes
the state of the SU according to Definitions 6 to 8 on pages
10–11.

The invariant function ensures that a simulation in
UPPAAL respects the defined semantics. A violation of an
invariant function results in a deadlock since the SU cannot
synchronizewith the orchestrator, enabling us to detect errors
in the orchestration algorithm in UPPAAL by checking for
deadlocks.

3.4 Checking an algorithm in UPPAAL

A correct algorithm correctly instantiates, simulates, and ter-
minates all SUs meaning that the Orchestrator reaches the

123

https://github.com/INTO-CPS-Association/Scenario-Verifier.
https://github.com/INTO-CPS-Association/Scenario-Verifier.

Verification and synthesis of co-simulation... 1007

Fig. 4 A part of the
Orchestrator template in
UPPAAL

Fig. 5 A part of the SU template in UPPAAL

state Terminated. If the Orchestrator reaches the state Ter-
minated it means that the algorithm respects the semantics
(preconditions) since no deadlocks are detected. Further-
more, it shows that a consistent co-simulation state is
established by theOrchestrator using the algorithm. All tran-
sitions are guarded except one identity transition in the trap
state Terminated in the Orchestrator-template. This ensures
that all semantical violations result in a deadlock; further-
more, no deadlock can occur if the Orchestrator-template
reaches the state Terminated.

The correctness of an algorithm is checked using the CTL
formula:

A♦Orchestrator.Terminated (1)

The formula ensures that the orchestrator always even-
tually (A♦) reaches the state Terminated, implying that the
co-simulation algorithm terminates in a final consistent state.
Since the final state is consistent, and the simulation starts
in a consistent state, UPPAAL can check if the algorithm

123

1008 S. T. Hansen et al.

respects Definition 9. The initial state and the final state of
the simulation differ only by their timestamp, which allows
us to use inductive reasoning to establish the correctness of
the algorithm for all future co-simulation steps starting from
a consistent state as stated in the previous section. We do
not check explicitly for deadlocks since the formula Eq. (1)
implies that the model is deadlock free.

Looking back at Algorithms 1 and 2 on page 4, we see that
Algorithm 2 violates preStep when it tries to step the SU
A in line 2, since no value is provided for the reactive input
ug . Thus, the SU cannot synchronize with the orchestrator,
resulting in a deadlock that falsifies the formula in Eq. (1).
Algorithm 1 satisfies the CTL formula and therefore also
Definition 9.

4 Complex co-simulation scenarios

This section describes complex scenarioswhich are an exten-
sion of the simple scenarios.Complex scenarios are subject to
algebraic loops or step negotiation (seeDefinition 12). Exam-
ples of complex scenarios are presented in Fig. 6a and b.

Before describing the orchestration algorithms of complex
scenarios (Sect. 4.3), we provide some background on them.
Finally, Sect. 4.4 presents a technique to verify orchestration
algorithms of complex scenarios in UPPAAL. The technique
has been implemented in the Scenario-Verifier.

4.1 Algebraic loops

An algebraic loop states that the value of a port depends on
itself. Real-world examples of systems with algebraic loops
include the correct initialization of a suspension system of
a car or a system consisting of multiple connected spring
dampers [23]. The scenario in Fig. 6a shows the scenario of
a suspension system with an algebraic loop.

An algebraic loop in a co-simulation scenario is a conse-
quence of the contracts, feed-through, and couplings between
the SUs. There exist two kinds of algebraic loops, as identi-
fied in [3, Fig. 5 and 6]:

• Feed-through loops—happens due to feed-through con-
straints that indicates that an output port is explicitly
dependent on an input port. A feed-through loop exists
if we have a sequence of get and set actions PFA

between multiple SUs such that there exists an output
port y ∈ Y which is sensitive to the number of execu-

tions of PFA:

〈
t, sRU , sRY , sRV

〉
PFA−−→

〈
t, sRU

′
, sRY

′
, sRV

′〉

P+
FA−−→

〈
t, sRU

′
, sRY

′
, sRV

′′〉

�⇒ ∃y ∈ Y · sRV
′
(y)
= sRV

′′
(y)

• Reactivity loops—happens due to reactivity constraints
that indicates that an output port is explicitly dependent
on a state computation of another SU. A reactivity loop
exists if we have a sequence of get, set and step
actions PRA between multiple SUs such that there exists
an output port y ∈ Y which is sensitive to the number of
executions of PRA:

〈
t, sRU , sRY , sRV

〉
PRA−−→

〈
t, sRU

′
, sRY

′
, sRV

′〉

∧
〈
t, sRU , sRY , sRV

〉
PRA−−→

〈
t, sRU

′
, sRY

′
, sRV

′〉

They differ in nature, but the way to simulate them and
their impact on the scenario are very similar. The scenario in
Fig. 6a contains a feed-through loop, while the scenario in
Fig. 8b on page 26 contains a reactivity loop. An algebraic
loop can be a combination of the two described kinds.

The orchestrator solves an algebraic loop using a tech-
nique called fixed point iteration (see Algorithm 5 on page
25 for an example). The fixed point iteration is an iterative
approach aiming to find a fixed point for all the ports in the
loop using an iterative search. The set algebraicS denotes all
ports of a scenario that are a part of an algebraic loop.

4.2 Step negotiation

Step negotiation is a consequence of SUs rejecting to perform
a step of the desired duration. Step negotiation is the process
for detecting step rejections and ensuring that all SUs move
in lockstep by negotiating an appropriate step duration. A
step rejection is defined in Definition 10 and can be triggered
by:

1. Events occurring inside the SU leading to discontinuous
changes to its outputs (e.g., a collision);

2. Conservative numerical error control schemes that adjust
the step size based on how quickly the state of the SU
changes over time. When the error is too large, these
schemes ask the orchestrator for a smaller step duration
and to repeat the step procedure [25, Sect. 3.9].

123

Verification and synthesis of co-simulation... 1009

Fig. 6 Complex co-simulation
scenarios

(a) (b)

Definition 10 (Step rejection) An SU m rejects a step if the
following can happen:

stepm(sm, H) = 〈_, h〉 , where h < H

A step rejection means that we should adjust the step
duration for all the SUs in the scenario to ensure they move
in lockstep. We can adjust the step duration during the co-
simulation as we discover step rejections. However, this does
not help us ifwe have stepped someSUswith the original step
duration of, for example, 5 and now discover a step rejection
meaning that one SU is at time 3. The only way to handle
this is to restore the SUs at time 5 to their original state and
ask them to step with the new and smaller duration 3.

The set M (defined in Definition 2 on page 6) contains all
the SUs that may reject a step. Step rejections need special
attention since they can result in a co-simulation step where
the SUs do not move in lockstep, resulting in a violation of
Definition 9 on page 12. Step negotiation is needed if M
= ∅
- indicating that at least one SU could reject a step. A step
duration is acceptable if all SUs accept it:

Definition 11 (Acceptable step) A step duration h ∈ R>0 is
accepted if:

∀c ∈ C · stepc(s(t)
c , h) = 〈_, h〉

Step negotiation can, in some cases, be avoided by choos-
ing an appropriate fixed step duration that can be used
throughout the simulation. However, an appropriate step
duration can be hard to determine for a complex CPS
described as the composition of black-boxSUs. Furthermore,
a fixed duration can be inefficient for stiff systems where the
optimal step duration varies over time due to rapid and unpre-
dictable state changes [25].

4.3 Orchestration algorithms for complex scenarios

This section describes how complex scenarios are simulated.

Definition 12 (Complex Scenario) A scenario S is complex
if M
= ∅ ∨ algebraicS
= ∅.

Complex scenarios are challenging to simulate because
the orchestration algorithm needs to adapt to the behavior
of the SUs to satisfy the constraints associated with each
SU, account for possible step rejections, and solve algebraic
loops.

Since the internal state of an SU is hidden from the orches-
trator, it cannot accurately predict the behavior of the SUs.
The orchestrator can only experiment and see how the SUs
react to different step sizes and input values. The orchestrator
performs such experiments using a valuation to see if any of
the SUs rejects a given step size and check if all algebraic
loops have been solved.A valuation (Definition 13) describes
the step duration of the simulation and the values to solve
the algebraic loops. If the experiment fails, the orchestra-
tor backtracks the simulation to perform a new experiment
using a different valuation from the same initial state. The
experiment is repeated until the SUs are in lockstep, and all
algebraic loops are solved. Therefore, we call algorithms for
complex scenarios iterative algorithms.

Definition 13 (Valuation) The valuation is a tuple
〈H ,guess〉, denoting the step duration H ∈ R>0. The
function guess : Ualgebraic → VT , where Ualgebraic =
algebraicS ∩ U links all inputs of the algebraic loops with
a timestamped value that tries to solve the algebraic loop. A
general algorithm for finding a correct valuation is shown in
Algorithm 3.

Algorithm 3 Finding a Correct Valuation.
1: sR0 ← sR � Save the SUs.
2: Converged ← false � The experiment has not converged.
3: vi ← v0 � Use the initial value in the first iteration.
4: while !Converged do � Start the experient

5:
〈
vi+1, s

R ′〉 ← RunAlgori thm(PS , vi , s
R)

6: Converged ← CheckConv(vi , vi+1)

7: if Converged then

8: return
〈
vi+1, s

R ′〉 � The experiment converged, so we return.

9: else
10: sR ← sR0 � Restore the SUs and try again
11: vi ← vi+1 � Try with the updated valuation.
12: end if
13: end while

Algorithm 3 starts by saving the SUs such that they can
be restored later and computes an initial valuation v0 =
〈H0,guess0〉 using the strategy described below.

H0 = The chosen step duration H for the simulation

(2)

guess0 = {(u → val) | u ∈ Ualgebraic ∧ val ∈ VT
∧ L(u) = y ∧ val =

〈
t, sRV (y)

〉
} (3)

123

1010 S. T. Hansen et al.

The initial step duration is defined as a parameter of the
co-simulation. Equation (3) explains that each input in the set
Ualgebraic is associated with the current value of its coupled
output.

The orchestrator then runs the experiment using the algo-
rithm PS with the current valuation vi to see how the SUs
react The subscript notation ∗i describes the values of the
valuation at the i th search attempt/experiment. Note that
PS ⊆ P , where P is the orchestration algorithm of the
scenario. An execution of PS transforms the current val-
uation vi = 〈Hi ,guessi 〉 to a new valuation vi+1 =〈
Hi+1,guessi+1

〉
where Hi+1 is the smallest step duration

accepted by an SU during the execution of PS as seen in
Eq. (4). The function guessi+1 has the same domain as
guessi , but the range is updated such that the inputs are
mapped to the new value of the coupled output as seen in
Eq. (5). This is the standard approach for solving algebraic
loops using the most recent value as a guess [3]. An exam-
ple of the process for updating the step duration is shown in
Example 3.

(〈Hi ,guessi 〉 ,
〈
t, sRU , sRY , sRV

〉
)

PI−→ (
〈
Hi+1,guessi+1

〉
,

×
〈
time′, sRU

′
, sRY

′
, sRV

′〉
)

�⇒ Hi+1 = h where: h ∈ R>0 ∧ ∀c ∈ C · h ≤ time′(c)
(4)

∧ guessi+1 = {(u → val) | u ∈ Ualgebraic ∧ val ∈ VT
∧ L(u) = y ∧ val =

〈
sRY

′
(y), sRV

′
(y)

〉
} (5)

Then the experiment is finished, the orchestrator checks if
the SUs are in lockstep and if all algebraic loops are solved by
comparing the valuations vi and vi+1 to see if the simulation
has converged according to Definition 14.

Definition 14 (Correct Valuation) Two valuations v j =
〈H1,guess1〉 and v j+1 = 〈H2, guess2〉 of the same sce-
nario S are correct if:

v j ≈ v j+1 � H1

= H2 ∧ (∀i ∈ dom(guess).guess1[i] ≈ guess2[i]),

where guess1[i] = 〈t1, v1〉 and guess2[i] = 〈t2, v2〉.
When 〈t1, v1〉 ≈ 〈t2, v2〉, if:

| v1 − v2 | ≤ ε ∧ t1 = t2

Epsilon ε is a constant defined by the co-simulation practi-
tioner.

Definition 14 says that the simulation has converged, e.g.,
the experiment succeeds if all SUs accepted the step and a
fixed-point was established on all algebraic loops.

If the experiment fails, the orchestrator backtracks the sim-
ulation to the initial co-simulation state and tries again using
the new and updated valuation. We assume that all SUs of a
complex scenario allow their state to be restored, which is an
optional feature in the FMI standard.

Assumption 1 All SUsC of a complex scenario S allow their
state to be restored.

Example 3 (Finding for an Acceptable Step Duration) Con-
sider Algorithm 4 that is the procedure to negotiate a step
between the SUs C and D. Assuming that the scenario starts
fromaconsistent state,where sRC = 〈

t, {ug → s}, {yz → s}, _〉,
and sRD = 〈

t, {uz → s}{y f → s},
_〉. The initial valuation is 〈H ,∅〉.

The states of the SUs after one iteration of the algorithm
are sRC = 〈HC , _, _, _〉 and sRD = 〈HD, _, _, _〉, where the
SUs either have taken the same step (HC = HD) or to dif-
ferent steps (HC
= HD). If the SUs are synchronized, an
acceptable step has been found. Otherwise, the initial state is
restored and a new search attempt is initiated with an updated
valuation v1 = 〈min(HC , HD),∅〉.

Algorithm 4 Step negotiation Procedure of the scenario in
Fig. 6b.
1: SaveSUs � Save the SUs
2: while !Step_found do

3: (s
(t+hD)

D , hD) ← stepD(s(t)D , h)

4: gv ← getD(s
(t+hD)

D , yg)

5: s(t)C ← setC (s(t)C , uG ,Gv)

6: (s
(t+hC)

C , hC) ← stepC (s(t)C , hD)

7: Step_found ← hC == hD
8: if !Step_found then � Check for convergence
9: h ← min(hC , hD) � Update the step duration
10: RestoreSUs
11: end if
12: end while

The valuation is only relevant for complex scenarios since
all valuations for simple scenarios are correct because simple
scenarios are not subject to either algebraic loops or step
rejections.

On the other hand, the valuation is crucial for simulating
complex scenarios since the orchestrator may have to deal
with incorrect valuations. It can be the case that no correct
valuation exists, these scenarios are typical a consequence of
an error in one of the SUs. A scenario can only be correctly
simulated if a correct valuation exists since an execution that
uses an incorrect valuation does not respect the semantics.

A complex scenario is correctly simulated if the orches-
trator can find a correct valuation that can take the scenario
from a consistent initial state to a consistent final state as
stated by Definition 15.

123

Verification and synthesis of co-simulation... 1011

Definition 15 An algorithm P is correct for the complex sce-
nario S if:

consistent
(〈
t, sRU , sRY , sRV

〉)

�⇒ wp
(
P,consistent

(〈
t + H , sRU

′
, sRY

′
, sRV

′〉))

∧ H > 0 ∧ v = 〈H ,guess〉
∧ ∀u ∈ dom(guess) · guess(u) ≈ sRV

′
(u)

We have now presented the general approach for finding
a correct valuation to satisfy the constraints of a complex
scenario. Next, we introduce the approach for verifying such
scenarios in UPPAAL.

4.4 Verifying complex simulation scenarios in
UPPAAL

This section presents the approach for verifying complex
simulation scenarios in UPPAAL by extending/updating the
approach presented in Sect. 3.3.

The UPPAALmodel still verifies the algorithm by instan-
tiating the scenario and verifying that its algorithm respects
all the constraints of the scenario and reaches a consistent
final state.

An orchestration engine must find a correct valuation in
each co-simulation step since the valuation depends on the
current state of the system. However, this is not the case for
the UPPAAL model that takes place in the state space of the
abstraction defined in Definition 4 on page 9, where the only
difference between two consistent states is their timestamp
as shown in Definition 9.

The abstraction allows us to conclude that if we can use
the search procedure PS to find a correct valuation from one
consistent state, we can use PS to find a correct valuation
from any consistent state. The limitations of this choice are
discussed in Sect. 4.6.

The following paragraphs describe the extensions of the
UPPAAL model described in Sect. 3.3 on page 12 to cover
complex scenarios.

4.4.1 Avoiding false positives

The UPPAALmodel presented in Sect. 3.3 on page 12 dead-
locks on all violations of a precondition and interprets the
orchestration algorithm as incorrect. This approach is too
strict for complex scenarios and will make the UPPAAL
model discover false positives since all search attempts using
an incorrect valuation violates at least one precondition
since the algorithm of complex scenarios only respect the
semantics using a correct valuation. Therefore, it is wrong
to immediately declare an algorithm of a complex scenario
incorrect, if we have not found a correct valuation.

An example of a false positive can be seen in Algorithm 4.
The false positive arises when SU C cannot step as far as SU
D, resulting in a simulation where the SUs are not synchro-
nized. This would have been a mistake in the co-simulation.
However, the backtracking and the next iteration of the algo-
rithm will ensure they move in lockstep by negotiating a
proper step.

The UPPAAL model ignores such false positives by
temporarily disabling the preconditions/invariant functions
preSet, preGet and preStep by setting a global flag
while searching for a correct valuation.

The global flag is set by the function disableChecks,
which is called on the transitions to the states FindStep
and SolveAlgebraicLoop in Fig. 4. The transition to
FindStep activates the FindStep template on the chan-
nel findStepChan. Once the model has found a correct
valuation, the checks are re-enabled. An extra iteration is per-
formed to verify that the algorithm is correct, e.g., it respects
the semantics using a given valuation to reach a consistent
final state.

4.4.2 Verifying a step negotiation procedure

UPPAAL verifies a step negotiation to ensure that the algo-
rithm will be able to find an acceptable step duration (see
Definition 11 on page 18) using the supplied algorithm. Fur-
thermore, it ensures that all preconditions are satisfied using
the found step duration. The FindStep template depicted in
Fig. 7 is responsible for verifying the step negotiation proce-
dure.

The FindStep template executes the step negotiation pro-
cedure by exercising the SUs through the channel fmu
[activeSU]!. When all actions in the iterative algorithm
have been executed (AlgorithmDone), UPPAAL checks
whether a correct valuation has been identified using the
function loopConverged following Definition 14. If a
correct valuation has been found, the model reactivates the
preconditions using the function UpdateIsExtra. Then it
backtracks the involved SUs to ensure that all search attempts
start from the same state before initiating a new search
attempt with an updated valuation. The algorithm describes
how the simulation should be backtracked and when the SUs
states should be saved and restored. Note that preconditions
are only checked using a convergent/correct valuation. This
ensures that the model does not discover false positives since
it only considers the semantics of a correct valuation.

To enable step rejections in UPPAAL, we assume that an
SU has a maximal step hMax , which is the largest step that
the SU can take. An SU will reject all steps larger than hMax

and accepts all positive step durations smaller or equal to its
maximal step:

123

1012 S. T. Hansen et al.

Definition 16 [Maximal Step] A step hMax ∈ R>0 is maxi-
mal for an SU m if:

∀h ∈ R>0·
(h < hMax �⇒ stepm(sm, h) = 〈_, h〉)∧
(h > hMax �⇒ stepm(sm, h) = stepm(sm, hMax))

The UPPAAL model selects a maximal step in the set
{1, 2} for each SU in M as a non-deterministic choice (see
setStepSize in Fig. 4). The values of the set are not
related to the real maximal step of the SU. The important
information is that the set contains two ordered elements,
and the SUs that randomly select 1 will reject the step. The
two elements enable the UPPAAL model to exhibit non-
deterministic behavior (step rejections) while keeping the
model’s state space as small as possible.

Assumption 2 An SU c where c /∈ M has a maximal step
larger than any SU d where d ∈ M .

Themaximal step for all SUs not inM is 2 in the UPPAAL
model, which means they will never reject a step.

Definition 16 and the strategy for updating the step dura-
tion in Eq. (4) allows us to deduce that the step negotiation
always terminateswithin two iterations. The reason is that the
step duration of the first iteration H1 is always an accepted
step duration since all SUs return a step duration h smaller or
equal to their maximal step. This means that ∀c ∈ C · H1 ≤
hMax .

4.4.3 Verifying a fixed-point procedure

Scenarios with algebraic loops are simulated using a fixed-
point iteration procedure (see Algorithm 5 for an example)
that solves the algebraic loops by finding fixed points on
the involved ports. The fixed-point procedure is verified in
UPPAAL by the AlgebraicLoop template, which is almost
identical to the StepFinder template.

Algebraic loops are a consequence of the numerical aspect
of the coupled SUs, which we have abstracted from in our
formalization.

The abstractionmeans that we using a correct search algo-
rithm can find the fixed points of an algebraic loopwithin two
iterations.

Example 4 Consider Algorithm 5; the abstract state of the
SUs A and B before the FP procedure (line 1) are sRA =〈
s, {u f → s}, {yx → s}, _〉, and sRB = 〈

s, {ux → s}{y f → s}, _〉,
respectively. The valuation is initially given by v0 =
〈H , { fval → s}{xval → s}〉, which will violate the precon-
ditions of the set actions in lines 3 and 4 on the reactive
inputs ux and u f and therefore also the step actions of the
two SUs. However, these violations will not result in an error

Algorithm 5 Step procedure for the scenario in Fig.8b.

1: (s(s)Av
, s(s)Bv

) ← (s(s)A , s(s)B) � Save A and B

2: while !conv do � FP procedure

3: s(s)A ← setA(s(s)A , u f , fval) � Informed Guess

4: s(s)B ← setB (s(s)B , ux , xval) � Informed Guess

5: (s(s+h)
A , h), ← stepA(s(s)A , h)

6: (s(s+h)
B , h), ← stepB (s(s)B , h)

7: xvala ← getA(s(s+h)
A , yx)

8: fvala ← getB (s(s+h)
B , y f)

9: conv ← CheckConv((fvala , fval), (xvala , xval))
10: if !conv then
11: (s(s)A , s(s)B) ← (s(s)Av

, s(s)Bv
) � Restore A and B

12: end if

13: (fval , xval) ← (fvala , xvala) � Update the informed guesses x and f
14: end while

15: (s(s+h)
C , h),← stepC (s(s)C , h)

16: jval ← getC (s(s+h)
C , y j)

17: s(s+h)
B ← setB (s(s+h)

B , u j , jval)

in UPPAAL, since we have disabled the checks. The valua-
tion after running one iteration of the search (line 13) v1 =
〈H , { fval → s + H}{xval → s + H}〉. Since v0
≈ v1, we
backtrack theSUs to the initial state and runs the search again.
The valuation after running the second iteration of the search
(line 13)v2 = 〈H , { fval → s + H}{xval → s + H}〉,where
v1 ≈ v2, e.g., the valuation is correct. A correct valuation
respects the reactive inputs ux and u f .

4.5 Nested complex scenarios

A complex scenario can be subject to both algebraic loops
and step rejections; such a scenario is called a nested complex
scenario, Fig. 8a shows an example.

A nested complex scenario is simulated using a nested
search. The outer search establishes the step duration using
step negotiation, while the inner search solves the alge-
braic loops using fixed-point iteration. The transition to
SolveAlgebraicLoop in Fig. 7 on page 23 activates the
SolveAlgebraicLoop template, which synchronizes on the
channel solveAlgebraicLoopChan. This allows us to
verify nested complex scenarios in UPPAAL.

The algorithm to simulate the scenario in Fig. 8a is shown
in Sect. C. Algorithm 7 is too complex to be analyzed with
a simple visual inspection, showing the necessity of the
UPPAAL model created in this paper. The tool can analyze
the algorithm in a few seconds.

4.6 Limitations of the UPPAALmodel

The UPPAAL model can only be used to analyze the cor-
rectness of the algorithms concerning the semantics, not the
numerical aspect of the simulation. This is because the
UPPAAL model does not know the numerical properties of
the simulation, which is the case for all general analyses of

123

Verification and synthesis of co-simulation... 1013

Fig. 7 FindStep template

(b)
(a)

Fig. 8 Two complex co-simulation scenarios

co-simulations and orchestration engines. Consequently, the
UPPAALmodel cannot infer if a convergent valuation exists.
We, therefore, decided to take the safe choice and delegate
the problem of finding a convergent valuation for algebraic
loops to the orchestration engine that performs the simulation
using the verified algorithm. This means that the orchestra-
tion engine should take the appropriate measures to detect
and handle such cases; a typical approach uses a finite num-
ber of search attempts to see if a convergent valuation can be
established and aborts if it is not the case.

Nevertheless, co-simulation practitioners benefit from the
UPPAALanalysis because it helps discovering unstable solu-
tions caused by wrong co-simulation algorithms.

Assumptions 2 and 1 restrict the behavior of the SUs,
restricting the use of the tool to a particular class of scenarios.
We believe that the Assumption 1 is necessary and the only
way to treat complex co-simulation scenarios generally. In
practice, all complex scenarios violating these assumptions
would be hard to simulate. It would require many simula-

tions and extensive bookkeeping to find and keep track of
the correct valuations to simulate the system properly.

5 Adaptive co-simulation scenarios

This section introduces adaptive scenarios with adaptive
reactivity and couplings, where the reactivity and couplings
can change during the simulation. Adaptive scenarios were
introduced by Inci et al. in [26] tominimize the co-simulation
error by dynamically choosing the co-simulation step. This
means that the orchestrator simulates the scenario by execut-
ing different co-simulation step procedures. For example, a
trace of a simulation of an adaptive scenario could be:

sR
P1−→ sR1

P2−→ sR2
P3−→ sR3

where P1, P2, and P3 shows three different co-simulation
steps. The orchestrator dynamically selects the algorithm
such that the chosen algorithm results in the smallest pos-

123

1014 S. T. Hansen et al.

sible simulation error. The co-simulation shown by the trace
above is correct if the initial state sR is consistent and the
algorithms P1, P2, and P3 are correct such that the states sR1 ,
sR2 , and sR3 are consistent states.

Adaptive scenarios are not simulated differently from sim-
ple and complex scenarios. The difference is that the orches-
trator dynamically chooses the appropriate co-simulation
step procedure during the simulation.

The dynamical co-simulation step selection is outside the
scope of this work since the step selection depends on the
numerical aspects of the simulation. Ourwork is about ensur-
ing that all possible choices (co-simulation procedures) the
orchestration engine could make are correct. Inci et al. [26]
select the appropriate co-simulation step by comparing the
analytical solution against the expected simulation results
produced by different algorithms. Then, they select the algo-
rithmwith the smallest discrepancy to the analytical solution.

Nevertheless, the verification technique described in
Sects. 3 and 4 still applies to adaptive scenarios. The fol-
lowing paragraphs describe the technique.

To adequately describe adaptive scenarios, we change the
definition of a scenario from Definition 2 to Definition 17.

Definition 17 (Adaptive Scenario) An adaptive scenario SA
is a tuple

〈C,A, M, F〉 ,

where:

• A is a function A : I → L × R mapping an adaptation
identifier to its connections and contracts. L and R are as
in Definition 2.

• M , C , and F are defined similarly as in Definition 2.

The most significant difference between Definition 2 and
Definition 17 is an extra level of indirection such that an
adaptation specifies the changeable aspects of the scenario
(couplings and reactivity constraints). We use the syntax in
Fig. 9a to present an adaptive scenario where all inputs are
reactive in adaptation 1 and delayed in adaptation 2. The
scenario in Fig. 9a represents a system consisting of two lin-
earmass-spring-damper subsystems and originates from [26]
where more details of the system can be found. Figures 9b
and 9c show the two adaptations of the scenario.

All previously described scenarios in the paper are adap-
tive scenarios with only one adaptation. This means that the
extension of this section is backwards compatible. An adap-
tive scenario has N adaptations where | I |= N , which can
be seen as N distinct scenarios. An adaptive scenario can
contain both simple and complex adaptations.

To properly simulate an adaptive scenario with N adapta-
tions, we need N correct algorithms. Different algorithms are
placed in a map PI : I → Algori thm where each identifier
a ∈ I of an adaptation selects the algorithm Pa to simulate the

corresponding adaptation. We can now formulate the criteria
for the correct simulation of an adaptive scenario.

Definition 18 (Correct Algorithm)Anadaptive scenarioS =
〈C,A, M, F〉 is simulated correctly by the corresponding
algorithm in PI concerning Definition 15.

5.1 Verification of adaptive scenarios in UPPAAL

The verification approach for simple and complex scenarios
also applies to adaptive scenarios. The technique is to verify
each adaptation individually using the previously described
techniques, such that we can verify the scenario and its algo-
rithms against Definition 18.

TheUPPAALmodel verifies each adaptation individually.
It uses a non-deterministic choice enabling quantification
over different adaptations. The non-deterministic choice,
config:int[nConfig-1], is shown in Fig. 4 on page
14, where the model selects an adaptation (config) and
instantiates the adaptation using the function takeStep.
The function takeStep updates the scenario to the cho-
sen adaptation by changing the adaptive parts (couplings,
algorithm, and reactivity). The adaptive parts are placed in
a dictionary that links each adaptation with its correspond-
ing parts. This structure makes it easy to change between
different adaptations. The chosen adaptation is stored in a
global variable in UPPAAL, which allows all TA to adapt to
the current adaptation. An example of this is the reactivity
constraints of an SU, which are stored in a dictionary, where
the current adaptation selects the reactivity constraints to con-
sider.We only change the adaptations between co-simulation
steps. TheCTL formula inEq. (1) ensures that all adaptations
are verified.

5.2 General remarks on the UPPAALmodel

The state-space of the UPPAAL model is always finite. The
number of transitions in the UPPAAL model is linear to
the number of actions in the orchestration algorithm. The
following equation computes the number of actions in the
co-simulations step: | U | + | Y | + | C | for simple
scenarios. This number can be multiplied by three to get the
number of actions/transitions UPPAAL needs to consider for
a complex scenario.

The verification in UPPAAL has certain limitations, pri-
marily consequences of the nature of co-simulation. They
exist for all formalizations of co-simulation, which con-
sider the SUs as black boxes. The black boxes are necessary
because they protect the model’s IP, an absolute must from
an industrial viewpoint. However, from a verification per-
spective, it means that the verification cannot account for the
numerical aspect of the system because the numerical aspect
of the individual SU, in general, is unknown.

123

Verification and synthesis of co-simulation... 1015

Fig. 9 An adaptive
co-simulation scenario with two
adaptations

(a)

(b) (c)

5.2.1 Debugging algorithm errors

When an algorithm is deemed incorrect by UPPAAL, the
user can understand the error by analyzing the provided
counter-example. However, counter-examples can be hard
to understand/debug for an average user unfamiliar with the
model checking technique. The Scenario-Verifier mitigates
this problem by interpreting and visualizing the counter-
example as an animation, using a graphical representation
familiar to most co-simulation practitioners. The animation
visualizes the trace of the simulation leading to the error.
The trace shows the co-simulation state during the simula-
tion and some metadata describing the simulation time and
orchestration algorithm that is being verified. The trace also
describes a set of possible actions—the SU actions that are
currently enabled. A deadlock/counter-example is reached if
the orchestrator tries to perform a non-enabled action. Fig-
ure 10 shows a counter-example.

6 Synthesizing Orchestration Algorithms

One challenge is to verify that an algorithm P of a given
scenario S is the optimal algorithm to simulate S, another
challenge is to find P based on S.

This section addresses the synthesizing challenge for sim-
ple, complex, and adaptive scenarios. All algorithms in the
paper have been synthesized using the described approach
by the Scenario-Verifier.

We start by summarizing the previouswork in this domain.
Gomes et al. [17] present a graph-based approach where
orchestration algorithms can be extracted as a topological
order.

Definition 19 (Step Operation Graph) Given a co-
simulation scenario 〈C, L, M, F, R〉, we define the step
operation graph where each node represents an operation
setc(_, uc, _), stepc(_, H), or getc(_, yc), of some SU
c ∈ C , yc ∈ Yc, and uc ∈ Uc. The edges are formed by the
following rules:

R1 For each c ∈ C and uc ∈ Uc, if L(uc) = yd , add an edge
getd(_, yd) → setc(_, uc, _);

Fig. 10 An algorithmic error highlighted by the animation. The error
is found in an algorithm simulating the scenario in Fig. 8a

R2 For each c ∈ C and yc ∈ Yc, add an edgestepc(_, H) →
getc(_, yc);

R3 For each c ∈ C and uc ∈ Uc, if Rc(uc) = true, add an
edge setc(_, uc, _) → stepc(_, H);

R4 For each c ∈ C and uc ∈ Uc, if Rc(uc) = false, add
an edge stepc(_, H) → setc(_, uc, _);

R5 For each c ∈ C and (uc, yc) ∈ Fc, add an edge
setc(_, uc, _) → getc(_, yc).

The rule R4 does not represent a data dependency; it is
used to ensure that the synthesized algorithm respects the
delayed inputs. The approach works for simple scenarios,
but not for complex scenarios since it does not address the
challenge of finding a correct valuation. We show how to

123

1016 S. T. Hansen et al.

Fig. 11 Step operation graph of the scenario in Fig. 8b

extend the approach to complex and adaptive scenarios in
the next section.

6.1 Synthesizing algorithms for complex scenarios

This section addresses the synthesis of algorithms for com-
plex scenarios. Orchestration algorithms for complex sce-
narios should find the correct valuation using an iterative
algorithm as discussed in Sect. 4 to satisfy the constraints of
the scenario.

There exist two different kinds of complex scenarios: alge-
braic loops and step negotiation. We start by describing how
we can use the same approach to synthesize algorithms for
both before addressing their differences.

We extend the graph-based approach to synthesize algo-
rithms for complex scenarios by ensuring that the iterative
algorithms can be identified as non-trivial strongly con-
nected components (SCC) in the graph. We use Tarjan’s
algorithm [27] to find both SCCs and their topological order
in linear time.

Once a non-trivial SCC is discovered, the next challenge is
transforming the non-trivial SCC into an algorithm. The gen-
eral technique is to make the non-trivial SCC into a directed
acyclic graph (DAG) by removing specific edges. We start
with addressing algebraic loop solvers before addressing step
negotiation; finally, we address adaptive scenarios.

6.1.1 Algebraic loops

A non-trivial SCC in the graph of Definition 19 highlights an
algebraic loop. An example of an algebraic loop in the graph
is shown in Fig. 11, the non-trivial SCC is highlighted in
yellow. The non-trivial SCC highlights the set of operations
that must be iteratively executed to solve the algebraic loop.
Even though there exists two different kinds of algebraic
loops we describe them as one, since the same approach can
be used to synthesize algorithms for both.

To generate the operations that comprise each iteration
of the algebraic loop solver, we make the graph of the non-

trivial SCC into a DAG using reductions. A reduction is a
technique for reducing the number of edges in the non-trivial
SCC 〈V , E〉, where V is the vertices of the SCC and E is the
edges.

We can remove edges from the SCC graph by substituting
these data dependencies with informed guesses. This corre-
sponds to the technique described inSect. 4with the valuation
that contains an informed guess for all inputs in an algebraic
loop.

Definition 20 (Non-trivial SCC Reduction) Given a non-
trivial SCC SCC = 〈V , E〉 in the graph of Definition 19,
we define the reduction of SCC as the set of edges ER such
that S can be reduced to a DAG by removing ER .

The Scenario-Verifier supports two different reduction
schemes: maximal and minimal. A reduction scheme r is
maximal if it removes all edges created by couplings that are
a part of an algebraic loop:

〈V , E〉 r−→ 〈V , E \ ER〉 �⇒
ER ⊆ E ∧ (dom(ER) ∪ ran(ER)) ⊆ algebraicS
∧ (dom(E) ∪ ran(E)) ∩ algebraicS = ∅

A reduction scheme r is minimal if it removes the fewest
number of edges to make the graph into a DAG. A minimal
reduction would, for example, only remove the blue edge
from the non-trivial SCC in Fig. 11. The maximal reduction
would, in contract, remove both the red edge and blue edge
from the non-trivial SCC in Fig. 11.

Once we have made the graph into a DAG, we transform
it into an algorithm by topologically sorting the graph and
transforming each vertex into the action it represents. The
synthesizing algorithm is shown in Algorithm 6.

6.1.2 Step negotiation

Step negotiation performs an iterative search for a step dura-
tion that all SUs accept. The technique is described in detail
in Sect. 4.2.

A step rejection can affect more than the rejecting SU. All
SUs stepped before the step rejection need to be backtracked.
We keep track of the SUs that should be backtracked in case
of a step rejection in the set B. The set B is calculated using
the following recurrence relation:

B0 = M (6)

Bj+1 = Bj ∪ {c | d ∈ Bj ∧ c /∈ Bj ∧ R(ud) ∧ yc ∈ Yc

∧ L(ud) = yc} (7)

The set B is in each iteration updated such that all SUs
c /∈ B having a reactive coupling to an input of SU d where

123

Verification and synthesis of co-simulation... 1017

Fig. 12 A scenario needing step
negotiation

(a)

(b)

d ∈ B is added to the set. Figure 12a graphically presents
the process for calculating B. The update process continues
until a fixed point is reached.

The graph in Definition 19 is extended with the rules in
Definition 21 to incorporate that all SUs in the set B should
be a part of the step negotiation.

Definition 21 (Step Negotiation extension of Definition 19)
The step operation graph is extended with the following
edges:

R6 For each c ∈ C and d ∈ C where c
= d and c ∈ B and
d ∈ B add an edge fromstepc(_, H) → stepd(_, H);

R7 For each c ∈ C and d ∈ C where c ∈ B and d /∈ B add
an edge from stepc(_, H) → stepd(_, H).

RuleR6 introduces a non-trivial SCC in the graph between
all the SUs in B, making it possible to identify the need for
step negotiation in the graph. Step negotiation should be per-
formed if the graph contains a non-trivial SCC satisfying
Definition 22. The rule R7 ensures that the step negotiation
procedure is executed first in the co-simulation step. Execut-
ing it first reduces the number of SUs that need to be restored
if an SU rejects a step.

The graph of scenario Fig. 6b on page 16 evolves to the
cyclic graph presented in Fig. 12b by applying the rules from
Definition 21.

Definition 22 (Step-finding SCC) A step-finding SCC is an
SCC in the extended step operation graph with an edge from
one stepc(_, _) node to another stepd(_, _) node.

The step negotiation procedure is derived from the non-
trivial SCC satisfying Definition 22 by removing the edges
introduced by Definition 21.

This yields a new graph equivalent to the original graph
but with the edges removed. The new graph can either be a
DAG or a cyclic graph. If the graph is a DAG, the graph is
topologically sorted, and the algorithm is derived from the

topological sort. Then, each vertex is transformed into the
action it represents. If the graph is cyclic, we have identi-
fied a nested complex scenario. An algorithm for a nested
complex scenario is derived by synthesizing the step nego-
tiation procedure and then creating the fixed-point iteration
procedure of the algebraic loop inside the step negotiation
as seen in Algorithm 6 that shows a generic algorithm for
synthesizing orchestration algorithms. The save and restore
operations are omitted in the algorithm for clarity.

Algorithm 6 Synthesizing an Orchestration Algorithm for
scenario S.
1: graph ← createGraph(S) � Create the graph from the scenario.
2: sccs ← tarjan(graph) � Obtain a topological ordered set of SCCs.
3: A ← [] � Create an empty list for the algorithm.
4: for all scc ∈ sccs do
5: switch scc do
6: case StepFindingSCC(scc) � The SCC is a step-finding SCC.
7: sccR ← removeEdges(scc) � Remove edges added by Def 21.

8: sccsR ← tarjan(sccR) � Sort the reduced scc.

9: if nonTrivial(sccsR) then

10: scc ← sccsR � The SCC shows an algebraic loop.

11: goto 18
12: else � The SCC is not a nested complex scenario.
13: for all act ∈ sccsR do � Add the actions to the algorithm.

14: A ← Append(A, actionOf (act))
15: end for
16: end if
17: case AlgebraicLoop(scc) � The SCC is an algebraic loop.
18: sccR ← reduce(scc) � Reduce the SCC by reduction.

19: sccsR ← tar jan(sccR) � Sort the reduced scc.

20: for all act ∈ sccsR do � Add the actions to the algorithm.

21: A ← Append(A, actionOf (act))
22: end for
23: case _ � The SCC is trivial.
24: A ← Append(A, actionOf (scc)) � Add the action to the list.

25: end for

The synthesizer uses a topological order of the SCCs to
create the algorithm. The topological order is not necessarily
unique, which means that Algorithm 6 can synthesize mul-
tiple algorithms for the same scenario. All the synthesized
algorithms are correct and will lead to the same simulation.
Nevertheless, different algorithms can still lead to different
performance and memory usage. This aspect can make one
algorithm more suitable than another.

123

1018 S. T. Hansen et al.

6.2 Synthesizing algorithms for adaptive scenarios

An adaptive scenario can, as described in Sect. 5 on page 26,
be regarded as multiple distinct scenarios, where each adap-
tation is a distinct scenario that should be simulated using
its orchestration algorithm. Therefore, we can use the above
techniques to synthesize algorithms for adaptive scenarios
by treating each adaptation separately.

6.3 Verification of synthesized algorithms

TheScenario-Verifier uses the above techniques to synthesize
implementation-aware orchestration algorithms for simple,
complex, and adaptive scenarios. The Scenario-Verifier can
both synthesize and verify orchestration algorithms enabling
us to use the UPPAAL model described in Sects. 5 to 3
to verify the synthesized algorithms automatically. This
connection between the synthesizer and verifier enables
extensive testing of both techniques. A scenario-generator
was created to generate hundreds of test scenarios, which we
could use to test the techniques. All generated algorithms are
correct by construction.

The Scenario-Verifier has been integrated into the orches-
tration engine Maestro 2 [15] to enable co-simulation practi-
tioners to simulate their scenarios using an implementation-
aware orchestration algorithm. We choose Maestro 2 as the
orchestration engine due to its performance and extensibility,
allowing users to provide their own orchestration algorithms.

7 Case study

This section describes two case studies where the quality of
the simulation result relies on the orchestration algorithm.
The case studies have been simulated in Maestro V2 using
a synthesized and verified orchestration algorithm from the
Scenario-Verifier. The domain experts produced the simu-
lations by describing the reactivity constraints/contracts of
the co-simulation scenario and used the Scenario-Verifier to
synthesize and verify the orchestration algorithm. They veri-
fied the simulation results againstmonolithic baselines. This
section aims not to dive deep into different systems (readers
interested in the systems are referred to the cited materials)
but to show the applicability of the techniques.

7.1 Skyhook active suspension system

The first case study is a distributed model of a skyhook active
suspension system. The suspension system consists of an
automotive damper system that in real-time communicates
with a quarter car model running on a server placed in a
different location. The simulation is a part of a real-time
environment where the damper model is substituted for a

test bench, making it necessary to include special modules to
compensate for communication delays [28]. Figure 13 shows
the configuration of the system and the communication delay.

The scenario is represented in Fig. 14b as the five SUs
from Fig. 13: quarter car, damper, delay, sender, and receiver.
The quarter car and damper represents continuous com-
ponents system, while the sender, delay and receiver are
discrete components. The sender tries to forecast the state
of the system using a model of the quarter car. The receiver
builds up an interpolation table with possible values based
on the predictions sent by the sender. In consequence, this
leads to a scenario that is very susceptible to the orchestration
algorithm since the receiver needs to be executed after the
sender in order to compile the interpolation table. Similarly,
the damper needs the interpolation table to predict a value
and should therefore be executed after the receiver.

The simulation results are shown in Fig. 14a. The results
were produced byMaestro 2 using a synthesized and verified
orchestration algorithm created from the system configura-
tion shown in Fig. 14b. The results show that the system
can be simulated accurately if the orchestration algorithm
respects the constraints of the scenario, which allows the
sender to forecast the state of the system and the receiver
to build up an interpolation table. The code to perform the
simulation is available at https://github.com/SimplisticCode/
CosimulationCaseStudies/tree/master/journal_paper_experi
ments/delay_compensator_case_study.

7.2 Simplified full vehicle model: co-simulation of
longitudinal and vertical dynamics models

The second example, a simplified full vehicle model, is
decomposed into two subsystems: (i) longitudinal vehicle
dynamics and (ii) vertical vehicle dynamics.

The longitudinal vehicle dynamics model is a simplified
drivetrain model, see Fig. 15 with the parameters defined in
Tables 1 and 2 on page 42.

The torque on the wheels is translated into longitudinal
forces by a linear tyre model formula:

Fw = Tw/rw, (8)

where Fw denotes the tyre forces at two wheels driving the
vehicle ahead and Tw denotes the sum of the torque in left
and right axles.

The vertical vehicle dynamics model is a linear quar-
ter car model combined with the road profile, see Fig. 16.
The parameters of the vertical vehicle dynamics model are
defined in Table 3 on page 43. The road profile is a peri-
odic bumpy road with a smooth surface. The front and rear
suspensions are excited by the vertical displacement, zg , and
velocity, żg .

123

https://github.com/SimplisticCode/CosimulationCaseStudies/tree/master/journal_paper_experiments/delay_compensator_case_study
https://github.com/SimplisticCode/CosimulationCaseStudies/tree/master/journal_paper_experiments/delay_compensator_case_study
https://github.com/SimplisticCode/CosimulationCaseStudies/tree/master/journal_paper_experiments/delay_compensator_case_study

Verification and synthesis of co-simulation... 1019

Fig. 13 Skyhook active
suspension system

Fig. 14 Simulation of the Skyhook active suspension system

Fig. 15 Longitudinal vehicle dynamics model

The suspension is also sprung by the collision of the
wheels to the speed bump, see Fig. 17a. The vertical compo-
nent of the inelastic collision force, FN , applied directly to
the unsprung mass

FN = 0.7 ∗ (2 ∗ mw) ∗ v ∗ cos(θ) (9)

where 0.7 is the elasticity coefficient of the collision, and v is
the longitudinal speed of the vehicle. The horizontal reaction
force which is propagated back to the drivetrain model is the

superposition of the horizontal component of the inelastic
collision force is applied back to the drivetrain model and
the gravitational force due to the inclination of the speed
bump:

FR =0.7 ∗ (2 ∗ mw) ∗ v ∗ sin(θ)

+
(
mv + 2 ∗ mw

2

)

∗ g ∗ sin(θ) (10)

where g = 9.81m/s2 denotes the gravity.
The scenario is similar to the scenario in Fig. 1 on page 2.

The vertical dynamics depend on the longitudinal dynamics,
which means that it needs to be coupled with the longitu-
dinal dynamics using a delayed connection, allowing the
vertical dynamic to react to the longitudinal dynamic. The
reaction force caused by the bumps instantly changes the ver-
tical velocity of the vehicle, which wemodel using a reactive
connection. This means that scenario

Given the mentioned conditions and system parameters,
we used the Scenario-Verifier to synthesize and verify an
orchestration algorithm which we have used to simulate the
system using Maestro 2 with a fixed step duration of 0.001s,
and eachFMU is solved by the variable step 4th orderRunge–
Kutta solver.

123

1020 S. T. Hansen et al.

Fig. 16 Vertical vehicle dynamics model

Fig. 17 Simulation of the simplified vehicle model

The simulation results are shown in Fig. 17bwhere we can
see how the speed bumps affect the vertical acceleration and
velocity of the car. The synthesized orchestration algorithm
ensures an instant change in the vertical acceleration once
the vehicle collides with the speed bump. The vertical accel-
eration is then propagated back to the longitudinal dynamics,
thereby changing the vehicle’s velocity. Therefore, the sce-

nario is a clear example of a scenario where the reactivity
constraints are necessary to ensure an accurate simulation.

8 Related work

The semantics of co-simulation was studied in [13,14,16,
17,29]. The paper [17] formally describes FMI-based co-

123

Verification and synthesis of co-simulation... 1021

simulation scenarios and places several correctness criteria
on the co-simulation algorithms to generate and verify them.
In addition, this paper extends their work by treating co-
simulation scenarios subject to algebraic loops and adaptive
steps. Thule et al. [30] studied how a co-simulation scenario’s
characteristics can be used to choose the correct simulation
strategy for a given co-simulation algorithm. Orchestration
algorithms of complex scenarios are described and synthe-
sized in [13]. However, the paper lacks verification of these
complex orchestration algorithms.

Broman et al. [16] place constraints on the co-simulation
scenario to avoid algebraic loops and achieve deterministic
co-simulation results. Furthermore, they propose a generic
orchestration algorithm for handling step negotiation. How-
ever, their generic algorithm does not solve either algebraic
loops or the contracts of the scenario. This manuscript deals
with all these aspects.

Formalmethods have previously been successfully used in
the area of co-simulation [12,31–33]. Amálio et al. [31] study
howconnections between simulation units canbe formalized.
They investigate how different formal tools can detect alge-
braic loops to obtain a deterministic co-simulation result.
Cavalcanti et al. [12] claim to provide the first behavioral
semantics of FMI. Their paper shows how to prove essen-
tial properties of master algorithms, like termination and
determinism. Furthermore, they show that the example pro-
vided in the FMI standard is not a valid algorithm. The paper
[32] by Zeyda et al. formalizes models and proofs about co-
simulation in Isabelle/UTP, illustrated by an industrial case
study from the railway sector. However, their approach does
not cover complex scenarios, unlike ours.

Nyman et al. in [33] use UPPAAL to analyze controller-
based systemswith FMUs and amaster algorithmmodeled in
UPPAAL as a TA. However, they use UPPAAL quite differ-
ently; they focus on the controller and not the co-simulation
algorithm. Palmieri et al. in [34] have used UPPAAL to
provide sound guarantees on the interleaving between a
graphical user interface and a generic FMI master algorithm.

The paper extends its predecessors [13,14] by treating
adaptive co-simulation scenarios and providing synthesis and
verification of orchestration algorithms in an integrated set-
ting. Furthermore, the paper describes two case studieswhere
the techniques have been used on real co-simulation scenar-
ios.

9 Concluding remarks

We showed how to synthesize and verify orchestration algo-
rithms for co-simulation scenarios with algebraic loops, step
rejections, adaptive couplings, and reactivity constraints.

The approaches have been implemented in a tool called
the Scenario-Verifier, which has been integrated with the
orchestration engineMaestro 2 to establish, to the best of our
knowledge, one of the first connections between a formal tool
and an orchestration engine running real-world scenarios.

The applicability of the formal approaches in a practical
context was explored using two case studies, which were
simulated in Maestro 2 using a verified and synthesized
orchestration algorithm from the Scenario-Verifier.

A future work agenda includes formalizing the FMI 3.0
standard and integrating the Scenario-Verifier with other
orchestration engines. We will also examine whether it is
possible to synthesize an optimal orchestration algorithm for
a given co-simulation scenario.

Acknowledgements We are grateful to the Poul Due Jensen Founda-
tion, which has supported the establishment of a new Centre for Digital
Twin Technology at Aarhus University. We are would also like to thank
the anonymous reviewers of the paper, who have provided valuable
feedback on the paper.

Appendix A: Table of conventions

This appendix contains a table describing the notation used
throughout the paper. Capitalized letters refer to sets, while
lower case letters refer to a variable belonging to the set
represented by the capitalized letter.

Convention Description

U All Inputs of the Scenario
Uc Inputs of the SU c
Y All Outputs of the Scenario
Uc Outputs of the SU c
S States
s(t)
c State of SU c at time t
VT Time stamped values of the type V × R≥0

sRc The abstract state of SU c
t Time t (t ∈ R≥0)
H Step duration H (H ∈ R>0)
L Couplings between SUs
F Feed-through constraints
R Reactivity constraints
C A set of SU identifiers
A Adaptations
M A set of SUs that may reject a step duration
B A set of SUs that must be backtracked

123

1022 S. T. Hansen et al.

Appendix B: BNF grammar

The section presents the domain-specific language where
user can describe co-simulation algorithms and scenarios for
both simple, complex, and adaptive co-simulation scenario.

Examples of algorithms and scenarios described using
the DSL are available online https://github.com/INTO-CPS-
Association/Scenario-Verifier/tree/master/src/test/resources
.

Listing 1 BNF Grammar to orchestration algorithms.

〈cosim-step〉 ::= ‘[’〈cosim-action〉*‘]’
〈SU-action〉 ::= 〈get : <SUID〉.〈OId〉> | 〈set: <SUID〉.〈IId〉> | 〈step: <SUID〉> |

〈restore-state: <SUID〉> | 〈save-state: <SUID〉>
〈SU-step-action〉 ::= 〈SU-action〉 | ‘{’ 〈algebraic〉 ‘}’
〈cosim-action〉 ::= 〈SU-action〉 | ‘{’ 〈step-loop〉 ‘}’ | ‘{’ 〈algebraic〉 ‘}’
〈step-loop〉 ::= ‘until-step-accept:’ ‘[’〈SUID〉*‘]’

‘iterate:’ ‘[’〈SU-step-action〉*‘]’
‘if-retry-needed:’ ‘[’〈restore-state: <SUID〉>*]’

〈algebraic〉 ::= ‘until-converged:’ ‘[’〈<SUID〉.〈Oid〉>*‘]’
‘iterate:’ ‘[’〈SU-action〉*‘]’
‘if-retry-needed:’ ‘[’〈restore-state: <SUID〉>*]’

Listing 2 BNF Grammar for the specification of Adaptive scenarios.

〈Scenario〉 ::= ‘fmus=’ ‘{’ 〈SU〉+ ‘}’ ‘configuration= {’ 〈configuration〉 ‘}’
‘connections=’ ‘[’ 〈Connection〉* ‘]’

〈SU〉 ::= 〈SUID〉 ‘= {’ 〈‘can-reject-step =’ Bool〉?‘,’ ‘inputs = {’ 〈Input〉* ‘}’ ‘,’
‘outputs = {’ 〈Output〉* ‘}’ ‘}’

〈configuration〉 ::= ‘configurable-inputs = [’〈SUID〉.〈IID〉* ‘]’,
‘configurations = {’ 〈config〉* ‘}’

〈config〉 ::= ‘inputs = {’ 〈Input〉* ‘}’ ‘cosim-step=’ 〈StepId〉 ‘connections= [’
〈Connection〉* ‘]’

〈Input〉 ::= 〈IId〉 ‘= {reactivity: <Contract>‘}’

〈Output〉 ::= 〈OId〉 ‘= {dependencies-init=[’〈IId〉*‘], dependencies=[’〈IId〉*‘]}’

〈Connection〉 ::= 〈SUID〉.〈OId〉 ‘->’ 〈SUID〉.〈IID〉

〈Contract〉 ::= delayed | reactive

Appendix C: Algorithm of nested complex
scenario

The co-simulation step of the scenario in Fig. 8a on page 26.

Algorithm 7 Step procedure containing fixed-point iteration
inside step negotiation procedure for simulating the scenario
in Fig. 8a.
1: SaveSUs in B ∪ K
2: h ← Hmax
3: while !Step_found do � Step negotiation
4: while !conv do � Fixed-point Iteration

5: s(s)A ← setA(s(s)A , u f , fval)

6: s(s)B ← setB (s(s)B , [uv, ug], [vval , gval]) � Setting v and g

7: (s
(s+hC)

C , hC), ← stepC (s(s)C , h)

8: (s
(s+hB)

B , hB), ← stepB (s(s)B , h)

9: (s
(s+hA)

A , hA),← stepA(s(s)A , h)

10: (vvala , xval) ← getA(s
(s+hA)

A , [yv, yx]) � Getting v and x

11: zval ← getB (s
(s+hB)

B , yz)

12: s
(s+hC)

C ← setC (s
(s+hC)

C , uz , zval)

13: gvala ← getC (s
(s+hC)

C , yg)

14: s
(s+hB)

B ← setB (s
(s+hB)

B , ux , xval)

15: fvala ← getB (s
(s+hB)

B , yF)

16: conv ← CheckConv((gvala , gval), (vvala , vval), (fvala , fval))
17: if !conv then
18: RestoreSUs in K
19: end if
20: (gval , vval , fval) ← (gvala , vvala , fvala)

21: end while
22: h ← min(hA, hB , hC)

23: Step_found ← h == hA ∧ h == hB ∧ h == hC
24: if !Step_found then
25: RestoreSUs in B
26: end if
27: end while

Appendix D: Parameters of the full vehicle
model

Table 1 Parameters of the longitudinal vehicle model

Constant Description Value

Je Inertia of Engine shaft 0.155kgm2

Jc Inertia of the clutch 0.02kgm2

Ja Inertia of the driving front axle 0.132kgm2

ke Torsional stiffness of the engine shaft 106Nm/degree

ka Torsional stiffness of the driving front
axle

106Nm/degree

μe Damping of the engine shaft 0.2Nm/(rev/min)

μa Damping of the axle 0.25Nm/(rev/min)

ca Damper rating at the end of the axle 0.02Nm/(rev/min)

rw Radius of a 205/55R16 tyre [35] 0.32m

mv Mass of the vehicle 1350kg

123

https://github.com/INTO-CPS-Association/Scenario-Verifier/tree/master/src/test/resources.
https://github.com/INTO-CPS-Association/Scenario-Verifier/tree/master/src/test/resources.
https://github.com/INTO-CPS-Association/Scenario-Verifier/tree/master/src/test/resources.

Verification and synthesis of co-simulation... 1023

Table 2 Torque profile

Torque [Nm] Time [s]

0 0.0

400 2.0

400 4.0

200 6.0

300 8.0

100 10.0

Table 3 Parameters of the vertical vehicle model

Constant Description Value

ks f Front suspension
stiffness

2 × (15x103)

cs f Front suspension
damping

2 × (1700)Ns/m

ksr Rear suspension
stiffness

2 × (15x103)

csr Rear suspension
damping

2 × (1500)Ns/m

mw Unsprung mass 2 × 70kg

kw Tyre stiffness 2 × (2 × 105)N/m

cw Tyre damping cw = 2 × (100)Ns/m

Lv Distance between the
front and rear wheels

3m

L Length of periodic road
of the axle

19.5m

w Width of the speed
bump

0.5m

References

1. Lee, E.A.: UNKNOWN (ed.) Cyber physical systems: Design
challenges. (ed.UNKNOWN) International Symposium onObject-
Oriented Real-Time Distributed Computing (ISORC). IEEE, Los
Alamitos, CA, USA (2008)

2. Blockwitz, T., et al.: Functional Mockup Interface 2.0: The Stan-
dard for Tool independent Exchange of Simulation Models. In:
Otter, M., Zimmer, D. (eds.) Proceedings of 9th InternationalMod-
elica Conference, pp. 173–184. Linköping University Electronic
Press, Linköping (2012)

3. Kübler, R., Schiehlen, W.: Two methods of simulator coupling.
Math. Comput. Model. Dyn. Syst. 6(2), (2000)

4. Gomes, C., Broman, D., Vangheluwe, H., Thule, C. & Larsen, P. G.
Co-simulation: a survey. ACM Computing Surveys 51 (3): (2018)

5. FMI. Functional mock-up interface tools (2014). https://fmi-
standard.org/tools/

6. Arnold, M., Clauß, C., Schierz, T.: Error analysis and error
estimates for co-simulation in FMI for model exchange and co-
simulation v2.0. In: Schops, S., Bartel, A., Gunther, M., ter Maten,
E.J.W.,Muller, P.C. (eds.) Progress inDifferential-Algebraic Equa-
tions. Springer, Berlin, Heidelberg (2014)

7. Gomes, C., et al.: HintCO—hint-based configuration of co-
simulations. In: Obaidat, M.S., Ören, T.I., Szczerbicka, H. (eds.)
Proc. Simultech’19. SciTePress, Setubal, Portugal (2019)

8. Oakes, B.J., et al.: Hint-based configuration of co-simulations with
algebraic loops. In:Obaidat,M.,Obaidat,M.,Obaidat,M.,Ören,T.,
Szczerbicka, H. (eds.) Proc. Simultech’19, Vol. 1260 of Advances
in intelligent systems and computing. Springer, Setubal, Portugal
(2020)

9. Gomes, C., Thule, C., Lausdahl, K., Larsen, P.G., Vangheluwe, H.,
Mazzara, M., Ober, I., Salaün, G. (eds).: Stabilization technique
in INTO-CPS. Mazzara, M., Ober, I., Salaün, G. (eds.), Proc. 2nd
Workshop on Formal Co-Simulation of Cyber-Physical Systems,
Vol. 11176 of LNCS, Springer, Cham (2018)

10. Schweizer, B., Li, P., Lu, D.: Explicit and implicit cosimulation
methods: stability and convergence analysis for different solver
coupling approaches. J. Comput. Nonlinear Dyn. 10(5), 051007
(2015)

11. Gomes, C., et al.: Semantic adaptation for FMI co-simulation with
hierarchical simulators. J. Simul. 95(3), 241–269 (2019)

12. Cavalcanti, A., Woodcock, J., Amálio, N. Sampaio, A., Wang, F.
(eds.), Behavioural models for FMI co-simulations. (eds Sampaio,
A. & Wang, F.) Proc. ICTAC’16, Vol. 9965 of LNCS Springer,
Cham (2016)

13. Hansen, S.T., Gomes, C., Larsen, P.G., van de Pol, J., Martin, C.R.,
Blas, M.J., Inostrosa-Psijas, A. (eds.), Synthesizing co-simulation
algorithms with step negotiation and algebraic loop handling. In:
Martin, C.R., Blas, M.J., Inostrosa-Psijas, A., (eds.), Proc. Annual
Modeling and Simulation Conference (ANNSIM’21), IEEE, Vir-
ginia, USA, (2021)

14. Hansen, S.T., et al.:Verificationof co-simulation algorithms subject
to algebraic loops and adaptive steps. In:LluchLafuente,A.,Mavri-
dou, A. (eds.) Proc. FMICS’21, Vol. 12863 of LNCS. Springer,
Cham (2021)

15. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G. Mae-
stro: The INTO-CPS co-simulation framework. Simulatio Mod-
elling Practice and Theory 92 (2019). https://www.sciencedirect.
com/science/article/pii/S1569190X1830193X

16. Broman, D. et al.: Determinate composition of FMUs for co-
simulation. In: Ernst, R., Sokolsky, O. (eds.), Proc. EMSOFT’13,
IEEE, (2013)

17. Gomes, C., Thule, C., Lúcio, L., Vangheluwe, H., Larsen, P.G.,
Camara, J., Steffen, M. (eds): Generation of co-simulation algo-
rithms subject to simulator contracts. In: Camara, J., Steffen, M.
(ed.), Proc. SEFM’19CollocatedWorkshops, Vol. 12226 of LNCS,
Springer, Cham (2020)

18. Clarke, E.M., Jr., Grumberg, O., Peled, D.A.: Model Checking.
MIT Press, Cambridge, MA, USA (1999)

19. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT
Press, Cambridge, Mass (2008)

20. Behrmann, G. et al.: UNKNOWN (ed.) UPPAAL 4.0.
(ed.UNKNOWN) Third International Conference on Quantitative
Evaluation of Systems (QEST 2006), Springer, (2006)

21. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput.
Sci. 126(2), (1994)

22. Bérard, B., et al.: UPPAAL—Timed systems. In: Bérard, B., et al.
(eds.) Systems and Software Verification: Model-Checking Tech-
niques and Tools. Springer, Berlin, Heidelberg (2001)

23. Hansen, S.T., Thule, C., Gomes, C. Cleophas, L., Massink, M.
(eds.), An FMI-Based Initialization Plugin for INTO-CPSMaestro
2. In: Cleophas, L., Massink, M. (eds.), Proc. SEFM’20 Collocated
Workshops, Vol. 12524, Springer, Cham (2020)

24. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal
derivation of programs.Communications of theACM 18(8), (1975)

25. Cellier, F.E.,Kofman,E.: ContinuousSystemSimulation. Springer,
New York (2010)

26. Inci, E.O. et al.: The effect and selection of solution sequence
in co-simulation. In: Martin, C.R., Blas, M.J., Inostrosa-Psijas,
A. (eds.), Proc. Annual Modeling and Simulation Conference
(ANNSIM’21), IEEE, Virginia, USA (2021)

123

https://fmi-standard.org/tools/
https://fmi-standard.org/tools/
https://www.sciencedirect.com/science/article/pii/S1569190X1830193X
https://www.sciencedirect.com/science/article/pii/S1569190X1830193X

1024 S. T. Hansen et al.

27. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM
J. Comput. 1(2), 146–160 (1972)

28. Alfonso, J. et al.: Distributed simulation and testing for the design
of a smart suspension. SAE International Journal of Connected and
Automated Vehicles 3(2), (2020)

29. Gomes, C., Lucio, L., Vangheluwe, H., Burgueño, L. et al.: (eds)
Semantics of co-simulation algorithmswith simulator contracts. In:
Burgueño, L. et al. (eds.), Proc. ACM/IEEE MODELS’19, IEEE
(2019)

30. Thule, C., et al.: Towards the verification of hybrid co-simulation
algorithms. In: Mazzara, M., Ober, I., Salaün, G. (eds.) Proc.
STAF’18 Collocated Workshops, Vol. 11176 of LNCS. Springer,
Cham (2018)

31. Amálio, N., Payne, R.J., Cavalcanti, A., Woodcock, J. Ogata, K.,
Lawford, M., Liu, S.: Checking SysML models for co-simulation.
In: Ogata, K., Lawford, M., Liu, S. (eds.), Proc. ICFEM’16, Vol.
10009 of LNCS Springer, Cham (2016)

32. Zeyda, F., Ouy, J., Foster, S., Cavalcanti, A. Cerone, A., Roveri,
M.: Formalising cosimulation models. In: Cerone, A., Roveri, M.
(eds.), Proc. SEFM’17CollocatedWorkshops,Vol. 10729 ofLNCS
Springer, Cham (2017)

33. Jensen, P.G., Larsen, K.G., Legay, A., Nyman, U. UNKNOWN
(ed.): Integrating tools: Co-simulation in UPPAAL using FMI-
FMU. (ed.UNKNOWN) Proc. ICECCS’17, IEEE, Fukuoka (2017)

34. Palmieri, M., Bernardeschi, C., Masci, P.: A framework for FMI-
based co-simulation of human-machine interfaces. Softw. Syst.
Model. 19(3), (2020)

35. Tire size calculator (2021). https://tiresize.com/calculator/

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://tiresize.com/calculator/

	Verification and synthesis of co-simulation algorithms subject to algebraic loops and adaptive steps
	Abstract
	1 Introduction
	1.1 Problem definition
	1.2 Contribution
	1.3 Structure

	2 Preliminaries
	2.1 The FMI standard
	2.2 Notation and abbreviations
	2.3 Model checking

	3 Simple co-simulation scenarios
	3.1 Orchestration algorithms for simple scenarios
	3.2 Correct orchestration algorithms
	3.3 Verification of orchestration algorithms in UPPAAL
	3.3.1 The UPPAAL model
	3.3.2 The orchestrator template
	3.3.3 The SU template

	3.4 Checking an algorithm in UPPAAL

	4 Complex co-simulation scenarios
	4.1 Algebraic loops
	4.2 Step negotiation
	4.3 Orchestration algorithms for complex scenarios
	4.4 Verifying complex simulation scenarios in UPPAAL
	4.4.1 Avoiding false positives
	4.4.2 Verifying a step negotiation procedure
	4.4.3 Verifying a fixed-point procedure

	4.5 Nested complex scenarios
	4.6 Limitations of the UPPAAL model

	5 Adaptive co-simulation scenarios
	5.1 Verification of adaptive scenarios in UPPAAL
	5.2 General remarks on the UPPAAL model
	5.2.1 Debugging algorithm errors

	6 Synthesizing Orchestration Algorithms
	6.1 Synthesizing algorithms for complex scenarios
	6.1.1 Algebraic loops
	6.1.2 Step negotiation

	6.2 Synthesizing algorithms for adaptive scenarios
	6.3 Verification of synthesized algorithms

	7 Case study
	7.1 Skyhook active suspension system
	7.2 Simplified full vehicle model: co-simulation of longitudinal and vertical dynamics models

	8 Related work
	9 Concluding remarks
	Acknowledgements
	Appendix A: Table of conventions
	Appendix B: BNF grammar
	Appendix C: Algorithm of nested complex scenario
	Appendix D: Parameters of the full vehicle model
	References

