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Abstract. The accuracy of the result of a co-simulation is dependent
on the correct initialization of all the simulation units. In this work, we
consider co-simulation where the simulation units are described as Func-
tional Mock-up Units (FMU). The Functional Mock-up Interface (FMI)
specification specifies constraints to the initialization of variables in the
scope of a single FMU. However, it does not consider the initialization
of interconnected variables between instances of FMUs. Such intercon-
nected variables place particular constraints on the initialization order
of the FMUs.

The approach taken to calculate a correct initialization order is based
on predicates from the FMI specification and the topological ordering
of both internal connections and interconnected variables. The approach
supports the initialization of co-simulation scenarios containing algebraic
loops using fixed point iteration. The approach has been realized as a
plugin for the open-source INTO-CPS Maestro 2 Co-simulation frame-
work. It has been tested for various scenarios and compared to an exist-
ing Initializer that has been validated through academic and industrial
application.

Keywords: Co-simulation · Initialization · Algebraic loop ·
Topological ordering · FMI

1 Introduction

Cyber-physical systems (CPS) are becoming ever more sophisticated, while mar-
ket pressure shortens the available development time. One of the tools to manage
the increasing complexity of such systems is co-simulation since it tackles their
heterogeneous nature. Co-simulation is a technique to combine multiple black-
box simulation units to compute the combined models’ behavior as a discrete
trace (see, e.g., [12,14]). The simulation units, often developed independently
from each other, are coupled using a master algorithm, often developed inde-
pendently, that communicates with each simulation unit via its interface. This
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interface comprises functions for setting/getting inputs/outputs and comput-
ing the associated model behavior over a given time interval. The Functional
Mock-up Interface (FMI) standard [4,7] is such an interface prescribing how to
communicate with each simulation unit. The interface is used to connect differ-
ent simulation units, called Functional Mock-up Units (FMUs), exchange values
between them, and make them progress in time.

A typical co-simulation consists of three phases: initialization, simulation, and
teardown [22]. This work concentrates on the first. The FMI standard specifies
criteria for how a single FMU shall be initialized. However, FMI is not concerned
with how a connected system of multiple FMUs is initialized correctly as a whole.

The way a system of multiple FMUs should be initialized and interacted with
depends on each FMU’s implementation and interconnections to other FMUs
[9], since these place precedence constraints between the FMU variables. These
precedence constraints can introduce algebraic loops between the FMU vari-
ables. An algebraic loop places particular requirements on the strategy for both
the order of initialization and the method used to calculate the correct initial
values of the variables in the algebraic loop [3]. Algebraic loops occur whenever
an interconnected FMU variable indirectly depends on itself. Not solving an
algebraic loop can lead to a prohibitively high error in the co-simulation result
[2], and invalid results, as shown in Sect. 4. It is crucial for all interconnected
variables that the initialization procedure ensures that a variable is never read
before it is set. For variables within an algebraic loop, the initialization must
ensure that all initial values have converged to a fixed point before entering the
next phase of the co-simulation.

Other approaches for the generation of co-simulation algorithms have avoided
co-simulation scenarios containing algebraic loops since their presence reduces
the chance of obtaining a deterministic co-simulation result[1,5,10]. This choice
is driven by the fact that not all co-simulation scenarios containing algebraic
loops are valid since those algebraic loops never converge, or might converge
to unexpected solutions. However, as shown in Sect. 4, solving algebraic loops
can be essential to obtaining valid simulation results, and a well-established co-
simulation framework should be able to handle these scenarios.

Contribution: This paper describes an approach for calculating the initialization
order of an FMI-based co-simulation in linear time of the number of intercon-
nected variables, even when algebraic loops are present. The approach does not
put any constraints on the master algorithm chosen to carry out the simula-
tion. The approach is realized as a plugin to the co-simulation framework called
INTO-CPS Maestro 2 (Maestro 2), introduced in [22]. The realized plugin has
been tested for various co-simulation scenarios and compared to an existing Ini-
tializer that has been validated through academic and industrial applications.
Furthermore, the calculated initialization order is systematically verified by the
semantics of co-simulation introduced in [9,10].

Structure: The paper is structured as follows: Sect. 2 gives a brief background of
the formalization of FMUs and Maestro 2. Section 3 describes the approach taken
to calculate the initialization order. It is followed by Sect. 5, where the realization
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of the approach is presented. Finally, Sect. 7 provides concluding remarks and
describes future work.

2 Background

In this section, we provide a formalization of FMI co-simulation and a brief
background on INTO-CPS Maestro 2.

2.1 FMU Definitions

To describe the formalization of FMUs, we adopt the vocabulary from [9]. The
main definitions of relevance to this paper will be presented, but readers are
referred to the original publications for more information. This paper is only
concerned with the initialization-phase of a co-simulation, making time of an
FMU irrelevant. The formalization from Gomes et al.[9] is extended with new
definitions regarding algebraic loops, and convergence of fixed point iteration.

Definition 1 (FMU). An FMU with identifier c is represented by the tuple

〈Sc, Uc, Yc, setc, getc〉 ,

where: Sc represents the state space of FMU c; Uc and Yc the set of input and
output variables, respectively; setc : Sc × Uc × V → Sc and getc : Sc × Yc → V
are functions to set the inputs and get the outputs, respectively (we abstract the
set of values that each input/output variable can take as V).

Definition 2 (Scenario). A scenario is a structure 〈C,L〉 where each iden-
tifier c ∈ C is associated with an FMU, as defined in Definition 1, and
L(u) = y means that the output y is connected to input u. Let U =

⋃
c∈C Uc

and Y =
⋃

c∈C Yc, then L : U → Y .

Note a single output can connect to multiple inputs, but a single input can
only rely on a single output. The following definitions correspond to the opera-
tions that are permitted in the initialization phase of a co-simulation.

Definition 3 (Output Computation). The getc( , yc) represents the calcu-
lation of output yc of c ∈ C. Given a co-simulation state, it checks whether all
inputs that feed-through to yc are defined.

Definition 4 (Input Computation). The setc( , uc, v) represents the setting
of input uc of c ∈ C. Given a co-simulation state, it checks whether all outputs
connected to uc are defined.

Definition 5 (Fixed Point). The fixedpointl represents an ordered sequence
of the setting or getting of all variables of a given SCC l, see Definition 9 for a def-
inition of SCC. The fixedpointl ⊆ ⋃

c∈C {getc, setc}
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Definition 6 (Initialization). Given a scenario 〈C,L〉, we define the ini-
tialization procedure (Ii)i∈N

as is a finite ordered sequence of FMU function
calls that needs to be performed in the initialization of a co-simulation sce-
nario. The ordered sequence is defined as: (fi)i∈N

= f0, f1, . . . with fi ∈ I =⋃
l∈loops fixedpointl, and i denoting the order of the function call. Loops is

defined as the set of all SCC see Definition 9.

It should be noted that a trivial SCC (see Definition 9) is only a single get
or set action and is not regarded as a fixed point outside Definition 6, but just
a simple computation.

Definition 7 (Feed-through). The input uc ∈ Uc feeds through to output
yc ∈ Yc, that is, (uc, yc) ∈ Dc, when there exists v1, v2 ∈ V and sc ∈ Sc, such
that getc(setc(sc, uc, v1), yc) �= getc(setc(sc, uc, v2), yc).

A graph of the dependencies of a co-simulation scenario is established from
the interconnected variables by Definition 8. The graph is the foundation for
the calculation of the initialization procedure and is therefore referred to as the
Initialization Graph. The graph construction is similar to the one in [10], except
the later focuses on a general co-simulation step, while this work focus on the
initialization phase.

Definition 8 (Initialization Graph). Given a co-simulation scenario 〈C,L〉,
and a set of feed-through dependencies

⋃
c∈C {Dc}, we define the Initialization

Graph where each node represents a port yc ∈ Yc or uc ∈ Uc of some fmu c ∈ C.
The edges are created according to the following rules:

1. For each c ∈ C and uc ∈ Uc, if L(uc) = yd, add an edge yd → uc (output to
input).

2. For each c ∈ C and (uc, yc) ∈ Dc, add an edge uc → yc (input to output).

The interconnections of FMU variables can lead to circular dependencies
between the variables. An example of this behavior is the car suspension system
that is presented in Sect. 4. Figure 1 shows the co-simulation scenario of the
example and the Initialization Graph of the system. The Initialization Graph in
Fig. 1 is annotated with the strongly connected components of the graph.

The following definitions formalize the concept of an algebraic loop in a co-
simulation scenario and define the problem these algebraic loops are introducing.
The definition of strongly connected components is adapted from the semantics
of Causal Block Diagrams (see [8] for an overview).

Definition 9 (Algebraic loops). An algebraic loop is defined as a non-trivial,
strongly connected component of the graph in Definition 8. Formally, a strong
connected component satisfies {a, b ∈ SCC : Path(a, b)}, where Path(a, b) is true
when there’s a path (including an empty path from a node to itself) between nodes
a and b (Path(a, a) is always true). An SCC is non-trivial when it has more than
one node.
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SCC 2
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Road_zs Suspension_zs
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Fig. 1. An FMU co-simulation scenario of the Quarter car and its Initialization Graph
denoted with SCCs.

Since the edges of the graph represent dependencies between the variables,
the value of every variable in a non-trivial strong component depends on itself.
Let X denote a vector of one or more variables whose value depends on itself. The
non-trivial strong component forms an equation with the form F (X,U) = X,
where F denotes the relations between the variables in the loop and U denotes
the variables whose values are calculated elsewhere. This means that algebraic
loops need to be handled using fixed point iterations[12].

An example of a co-simulation scenario where fixed point iteration is needed
can be seen in Fig. 1 where the Initialization Graph of the quarter car system
from Sect. 4 is shown.

A fixed point iteration technique is not guaranteed to convergence if the sys-
tem is unstable. The fixed point is as a numerical fixed point that approximates
a limit if such a value exist (the system is stable). It means that an upper bound
of the number of repetitions needs to be established to ensure termination. In the
case of a non-converging algebraic loop, the simulation should be stopped since
the result of the co-simulation scenario would not be trustworthy. The criteria
of a valid co-simulation scenario are specified in Definition 10.

Definition 10 (Convergence of Fixed point iteration). A fixed point iter-
ation converges if a finite number of iterations will make the difference of the
output value of the same operation between two following iterations within a cer-
tain threshold ε.
Formally, ∃n ∈ N : |F (Xn+1, U) − F (Xn, U)| ≤ ε.
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2.2 INTO-CPS Maestro 2

INTO-CPS Maestro 21 [22] is a framework for creating simulation specifications
and executing such specifications. The framework is FMI-based and set to super-
sede Maestro [21] with the main goal of supporting research into co-simulation
based on FMI.

The philosophy of the framework is to separate the specification of a co-
simulation from the execution. This allows one to inspect and verify, manually
or automatically, how a given co-simulation is to be executed.

A specification is expressed in the domain-specific language called Maestro
Base Language (MaBL), and it is explicit, such that the application of, i.e.,
FMUs are transparent. Expansion plugins can assist in creating such MaBL
specifications, and one can apply expansion plugins that, in turn, generate the
MaBL code. The plugin described in this paper is such an expansion plugin.
The application of a plugin is evident in a MaBL specification. Upon processing
of the specification, a new specification is created where the application of a
plugin is replaced by the MaBL code generated by the plugin. This process is
known as expansion, and a specification without any expansions remaining is a
fully expanded MaBL specification. An example of a part of the folded MaBL
specification of the case study example of Sect. 4 can be seen below.

1 simulation

2 import Initializer;

3 {

4 FMI2 chassis = load("FMI2", "{8c4e810f -3df3 -4a00 -8276 -176

fa3c9f000}", "src/chassis -c.fmu");

5 ...

6 IFmuComponent components [3]={ chassis ,suspension , road};

7 expand initialize(components ,START_TIME , END_TIME);

8 ...

9 }

To conduct a co-simulation, Maestro2 also features an interpreter that can exe-
cute a fully expanded MaBL specification, resulting in the execution of the co-
simulation.

3 Calculation of an Initialization Order

The FMI specification defines certain information about the initialization order
described through different states of a co-simulation. The initialization phase
covers the two states (in chronological order) defined in the FMI specification:

– Instantiated
– Initialization Mode

1 Currently in alpha https://github.com/INTO-CPS-Association/maestro/tree/2.0.0-
alpha.

https://github.com/INTO-CPS-Association/maestro/tree/2.0.0-alpha
https://github.com/INTO-CPS-Association/maestro/tree/2.0.0-alpha
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In each of the two states, different groups of FMU variables and parameters
are potentially assigned a value. The groups are defined by FMI based on the
characteristics of the FMU variables. The rules have been extracted as predicates
and used in the implementation. Some groups consist of variables and parameters
whose value does not depend on other variables. These independent variables
and parameters can be set in the Instantiated phase of the Initialization. Since
these variables have no connections to other FMU variables - meaning they are
not represented in the graph of Definition 8, the order their value is set in is
insignificant. The setting and getting operations of each FMU are grouped to
perform the fewest possible FMU-operations during the Initialization.

In the Initialization Mode state all the interconnected variable is being
defined, but as stated by the Definitions 3, 4 and 7 the operations get and
set require that the operations are performed in a specific order. Furthermore,
algebraic loops place even more requirements on the initialization strategy. Since
each non-trivial strongly connected component (algebraic loop) needs to be iso-
lated from the other variables of the system to calculate their initial values using
fixed point iteration as described in Definition 5. After the Initialization Mode
state, all variables of all FMUs in the co-simulation scenario should be defined,
and the co-simulation should be ready to enter the modelInitialized state.

3.1 Method to Calculate the Initialization Order

This section describes the approach taken to calculate the initialization order
of the interconnected FMU variables. The approach is based on the strategy
proposed in Gomes et al. [5,10], but the approach in this work is extended with
the ability to handle the Initialization of algebraic loops.

The initialization algorithm starts by building a directed graph of the depen-
dencies between the interconnected variables of the FMUs. The graph is con-
structed based on the interconnected variables and internal connections (feed-
through); please see Definition 8 for a formal definition of the graph.

The topological ordering of the strongly connected components of the graph
defined in Definition 8 is the initialization order of the interconnected FMU
variables. The non-trivial strongly connected components are algebraic loops of
the system. The trivial ones are standard interconnected FMU variables, whose
port operation should be performed only once during the initialization procedure.
The calculation of an initialization order is performed in linear time based on
the number of external and internal connections using Tarjan’s algorithm [20].

As described in earlier sections, it is essential to handle algebraic loops by a
particular initialization strategy since the loops otherwise would invalidate the co-
simulation result. The procedure for initializing algebraic loops is identifying and
initializing them using a fixed point iteration strategy until convergence. Since
convergence is not guaranteed, this property is monitored using Definition 10 to
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see if the difference between all the output variables of two successive iterations is
below a defined threshold. Suppose convergence is not established within a finite
number of iterations2, the co-simulation scenario is rejected to avoid running an
invalid simulation.

3.2 Optimization of a Initialization Procedure

An initialization procedure can sometimes be optimized since the FMI specifica-
tion allows multiple set or get operations of the same FMU to be performed in
bulk by grouping them together to a single operation over multiple variables with
similar characteristic. This criteria of optimization is formalized in Definition 11.

Definition 11 (Optimization of a Initialization procedure). Given an
initialization procedure (Ii)i∈N

with a finite ordered sequence of FMU function
calls fi ∈ F =

⋃
c∈C {setc, getc} , and i denoting the order of the function call.

It can be optimized if ∃fi, fi+1 ∈ F : ∃c ∈ C : (fi ∈ setc ∧ fi+1 ∈ setc) ∨ (fi ∈
getc ∧ fi+1 ∈ getc)

The correctness of the optimization in Definition 11 is established by the
proof of using the Initialization Graph’s topological ordering as the initialization
order by Gomes et al. [11]. Their proof is trivially shown to cover this approach
since the optimization does not change the structure of the Initialization Graph.
A limitation of this optimization strategy is that it is not guaranteed to find all
potentially valid optimizations of a co-simulation scenario. Considering it works
only on a specific co-simulation step (a topological order of a graph), which
is not necessarily unique for a given co-simulation scenario. A more advanced
optimization strategy needs to be developed to perform all viable optimizations
of a co-simulation step. Another solution is to apply this optimization strategy
on the set of all valid co-simulation steps - yielding a potential very inefficient
initialization algorithm. The initialization of a co-simulation is typically not
the most time consuming or computational heaviest part of the co-simulation.
However, it is still considered a low hanging fruit to apply this optimization to
optimize the initialization.

3.3 The Complete Initialization Strategy

The pseudo-code in Algorithm 1 formulates the entire initialization strategy of
the interconnected variables of a co-simulation scenario.

2 5 iterations is the default in our approach. This number is based on experience.
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Algorithm 1. Initialization strategy for Interconnected variables
1: InitializationGraph ← createGraph(connections)
2: SCCS ← Tarjan(InitializationGraph)
3: OptimizeInitializationOrder(SCCS)
4: for each: SCC ∈ SCCS do
5: if isAlgebraicLoop(SCC) then
6: applyF ixedPointIteration(SCC);
7: else
8: initializeV ariable(SCC);
9: end if

10: end for

As seen from the algorithm in Algorithm 1, the algebraic loops are handled
using a different initialization strategy compared to the other trivial SCC of a
single interconnected FMU variable.

4 Case Study

In this section, we give a simple example of a co-simulation whose correct ini-
tialization demands the solution to an algebraic loop.

We consider a co-simulation of a quarter car model [19, Section 6.4], illus-
trated in Fig. 2. We omit the equations that each FMU is solving but note that
gravity acts on both wheel and chassis masses and that the origin of each mass
is when the springs are not displaced. The equations and simulation model for
this example are available online3.

mA

zA

zR

chassis

wheel

tire elasticity

road surface

dA

wheel
suspension

zS

cA

mR

cR

zs

Road FMU

FA

Suspension FMU

Chassis FMU

za,va

Due to Initial conditions:
acceleration and velocity of

the vehicle = 0
Gravity

Fig. 2. Quarter car model co-simulation. Adapted from [19, Section 6.4].

3 https://github.com/SimplisticCode/QuarterCarCaseStudy.

https://github.com/SimplisticCode/QuarterCarCaseStudy
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The FMUs need initial conditions specified by equations that restrict the pos-
sible initial values for the position and velocity of the wheel and chassis masses.
Figure 3 illustrates what happens when we set those positions and velocities to
zero. Note that, because of gravity, the car chassis bounces on the suspension
wheel, with a maximum compression of about 17cm compared to when the sys-
tem’s springs are uncompressed. This is most likely an invalid scenario, as the
car’s suspension might not be rated to be displaced that much. In any case, the
purpose of simulation studies involving quarter car models is to understand how
well a suspension system absorbs shock when the car goes over a bump, not
when the car falls on the road, which is what the simulation results in Fig. 3
resemble.
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Fig. 3. Simulation results when position and velocity of the chassis mass is zero.

The correct way to initialize this co-simulation scenario is to force the master
algorithm to calculate the valid initial velocities and position from equations that
force the accelerations and velocities on the masses to be zero. This will force
the co-simulation to initialize to a steady state.

To make the above explanation concrete, we now show the equations that
are active at the initial time for each FMU for a correct initialization, and we
show that there is an algebraic loop.
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For the road FMU, the initial equation is simply the initial height of the
road surface, which in this case is zero, i.e., zs = 0. For the suspension FMU,
the following equations are active:

aR = 0.0 Acceleration of tire (1)
vR = 0.0 Velocity of tire (2)
FgR = 9.81 ∗ mR Gravity on the tire (3)
FR = −cR ∗ zR Rubber force acting on tire (4)
FA = cA ∗ (zA − zR) + dA ∗ (vA − vr) Suspension force acting on tire (5)
Ftotal = FR + FA − FgR Total forces acting on tire (6)
aR = (1/mR) ∗ Ftotal Acceleration of tire. (7)

Finally, for the Chassis FMU, the following equations are active at the initial
time:

aA = 0.0 Acceleration of chassis (8)
vA = 0.0 Velocity of chassis (9)
FgA = 9.81 ∗ mA Gravity on the chassis (10)
aA = (1/mA) ∗ (−FA − FgA) Acceleration of chassis. (11)

To see that there is an algebraic loop, note that the output zA of the chassis
FMU is not restricted directly, but instead has to be computed from the acceler-
ation equations aA = 0 = (1/mA) ∗ (−FA − FgA). The later contains the output
FA of the Suspension FMU. This output, in turn, depends on zA, thus yielding
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Fig. 4. Simulation results starting from a correct initial state (a steady state).
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an algebraic loop. Figure 4 shows the simulation results when the algebraic loop
is properly solved during initialization.

5 Realization of a Maestro 2 Plugin

The presented approach has been realized as a Maestro 2 expansion plugin that
generates the Initialization-phase of a co-simulation specification expressed in
MaBL. The plugin calculates the MaBL-specification based on the FMUs of a co-
simulation scenario and a specific plugin-configuration to let the user supply the
initial values of FMU parameters and fine-tune the initialization of the system.
The plugin can calculate a correct initialization specification if the co-simulation
scenario adheres to the behavior dictated by the definition given in Definition 10
meaning all algebraic loops in the scenario convergences within a finite number
of iterations.

The plugin optimizes the initialization order by grouping operations that
can be executed in parallel to take advantage of FMI’s ability to set or get
multiple variables of a single FMU in bulk. The criteria for this optimization
is defined in Definition 11. The developed plugin has been tested on numerous
co-simulation scenarios from the INTO-CPS universe[21] and compared with
the existing Initializer of Maestro. The plugin has been tested as a part of the
complete Maestro 2 pipeline.

5.1 Realization of the Topological Sorting

The topological sorting algorithm (Tarjan’s Algorithm) is implemented in Scala
[18], an object-oriented programming language incorporating many features from
the functional programming paradigm. The motivation for choosing Scala [18] is
its relation to JVM and the connection to Slang and the Sireum framework [17].
Slang (Sireum Language) is a programming language based on Scala, developed
at Kansas State University (KSU), to develop and reason about critical software
systems. Sireum is a framework for performing programming language analysis,
reasoning, and verification of CPS also developed at KSU. Logika is one of the
tools in the Sireum framework used for performing automated formal verification
of a piece of Slang code using the theorem prover Z3 [23]. The connection of the
implementation to Slang and Logika will be investigated in future work. The
plan is to use the Logika framework to formally verifying the plugin. This will
also be used to explore how Slang’s contract-based nature can be used to obtain
more reliable results of co-simulations. Tarjan’s algorithm returns a topological
order of strongly connected components. The returned order is the initialization
order, where the non-trivial strongly connected components denote an algebraic
loop requiring a particular initialization strategy.

5.2 Verification of the Initialization Order

The plugin is verified using several methods. The plugin approach is established
using traditional proof methods, and the plugin has been practically verified
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against an established co-simulation step verifier. Gomes et al. have verified the
approach in [9]; they proved the correctness of using the topological order of
a dependency graph of the interconnected FMU-variables as the order of the
operations in a co-simulation step (both the initialization procedure and an
arbitrary step). Gomes et al. [9] used a graph of FMU-operations (Set, Get,
doStep) in their proof instead of interconnected FMU-variables, which is the
approach of this paper. The simplification of using the interconnected FMU-
variables is valid and preserves the properties proved by Gomes et al. since this
approach only considers the initialization phase of a co-simulation. This makes
it possible to omit all the doStep nodes from Gomes et al.’s graph, eventually
ending up with a graph similar to the initialization graph described in Definition
8. This approach is a subgraph of the graph by Gomes et al.[9], which allows
their proof to be modified to the approach presented in this paper.

Practical Verification Against an Established Verifier. Gomes et al.’s
[9] main contribution is a Prolog implementation of the principles for a valid
FMI based co-simulation step 4. Gomes et al. use the Prolog implementation in
their research to verify their approach for generating different co-simulation algo-
rithms. The Prolog realization encapsulates all the rules of a valid co-simulation
step (both master-algorithm and an initialization algorithm). The Initializer
includes an integration to the Prolog Verifier. The integration is a Java program
based on JIProlog [13] - a library that allows calling Prolog predicates directly
from Java. The integration is used to check the initialization order against the
rules in the Prolog database. The integration performs all the necessary transfor-
mations of the dependency graph (see definition 8) used in the Maestro plugin
to a graph of FMU operations used in the Prolog database. The transforma-
tion is based on the definitions 3 and 4. The integration has been realized to
systematically verify the calculated initialization order’s correctness against an
established and recognized co-simulation Algorithm Verifier. The Prolog imple-
mentation does support co-simulation scenarios containing algebraic loop, so
these scenarios are not tested against the Prolog database.

6 Related Work

Prior work [5,11] is looking into the generation of co-simulation algorithms (both
master and initialization algorithms) for FMI-based scenarios. Their generation
technique is like ours, based on a dependency graph of the operations of a co-
simulation step. Both Gomes and Broman present an approach for using the
topological order of a dependency graph to establish a correct order of oper-
ations in a co-simulation step of a given co-simulation scenario. The work by
Gomes et al. [11] does also define the criteria for a correct co-simulation step.
Their work has many similarities with ours. However, their work is mostly con-
cerned with the theoretical aspect of co-simulation algorithm generation and

4 http://msdl.cs.mcgill.ca/people/claudio/projs/PrologCosimGeneration.zip.

http://msdl.cs.mcgill.ca/people/claudio/projs/PrologCosimGeneration.zip
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verification, while our work has a more practical nature. Gomes et al. do also
not consider the handling of algebraic loops, which is a key feature of our app-
roach. Furthermore, the approach taken in our work is only concerned with the
initialization procedure of a co-simulation.

Broman et al. [5] also suggest to use the topological sorting of a dependency
graph of the interconnected variables to detect algebraic loops and discover the
partial order of port-operations. Nevertheless, they explicitly specify the require-
ment for cycle freedom in the dependency graph as a precondition for generating
a valid co-simulation. It means they refuse all co-simulation scenarios contain-
ing algebraic loops. It is a significant difference to our approach that applies a
fixed point iteration strategy to handle these scenarios. Also, the approach in
this paper is more specialized because it only considers the initialization of a
co-simulation, which means it deals with non-interconnected variables.

Amalio et al. [1] investigate how to avoid algebraic loops in FMU based co-
simulation scenarios by statically checking the architectural design of a CPS.
The publication’s purpose is like ours, to avoid invalid co-simulation scenarios.
Nevertheless, they achieve this by excluding co-simulation scenarios containing
algebraic loops. Their method is realized in a co-simulation tool, INTO-SysML
[15]. Formal methods form the basis of their work (Theorem Proving and Model-
checking). It will be an inspiration for the future work of formally verifying the
plugin and other parts of Maestro 2.

The work by Gomez et al. [6] is similar to ours. They use Tarjan’s SCC
algorithm to generate a sorted DAG of strongly connected components to solve
the initialization problem. Even though their work is very similar to ours, we
extend their approach with the verification against the simulation semantics
resulting in a formally more sound approach. However, further work will look
into further improvements and formal verification of the current approach.

7 Concluding Remarks

This work uses a topological ordering of a dependency graph of the intercon-
nected FMUs variable and internal FMU connections along with predicates from
the FMI specification to calculate a correct initialization order for a co-simulation
scenario potentially containing algebraic loops. The initialization procedure opti-
mizes the initialization order by grouping variables with similar characteristics to
perform the fewest possible operations in the initialization procedure. This app-
roach supports the initialization of a co-simulation scenario containing algebraic
loops by using fixed point iteration. The approach is suitable to combine with
well-established master algorithms like Gauss-Seidel and Jacobi [16]. The app-
roach is realized as an expansion plugin for the open-source INTO-CPS Maestro
2 tool and verified against the existing Initializer and the calculated initializa-
tion order was verified against an established co-simulation Algorithm Generator
and Verifier implemented in Prolog [9].

Future work includes formal verification of the plugin using the Logika
framework[17]. We will also look into the generation of a verification strategy for
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the whole Maestro 2 framework to examine how different forms of verification
jointly can extend the trust of the correctness of the result of a co-simulation.

Acknowledgements. We would like to thank Stefan Hallerstede, Christian Møldrup
Legaard, and Peter Gorm Larsen for providing valuable input to this paper and the
developed plugin.
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10. Gomes, C., Thule, C., Lúcio, L., Vangheluwe, H., Larsen, P.G.: Generation of co-
simulation algorithms subject to simulator contracts. In: Camara, J., Steffen, M.
(eds.) SEFM 2019. LNCS, vol. 12226, pp. 34–49. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57506-9 4

11. Gomes, C., et al.: HintCO - hint-based configuration of co-simulations. In: Inter-
national Conference on Simulation and Modeling Methodologies, Technologies and
Applications, pp. 57–68 (2019). https://doi.org/10.5220/0007830000570068

https://doi.org/10.1007/978-3-319-47846-3_28
https://doi.org/10.1007/978-3-319-47846-3_28
https://doi.org/10.1007/978-3-662-44926-4_6
https://doi.org/10.1007/978-3-662-44926-4_6
https://doi.org/10.3384/ecp11063115
https://doi.org/10.3384/ecp12076173
https://doi.org/10.3384/ecp12076173
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-153.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-153.html
https://doi.org/10.3384/ecp19157785
https://fmi-standard.org/downloads/
https://doi.org/10.1007/978-3-030-43946-0_4
https://doi.org/10.1109/models-c.2019.00124
https://doi.org/10.1007/978-3-030-57506-9_4
https://doi.org/10.1007/978-3-030-57506-9_4
https://doi.org/10.5220/0007830000570068


310 S. T. Hansen et al.

12. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. 51(3), 1–33, Article 49 (2018). https://doi.org/10.
1145/3179993

13. JIProlog: JIProlog, October 2016. http://www.jiprolog.com. Accessed 20 Aug 2020
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