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Abstract. This paper presents a comprehensive Digital Twin (DT) tu-
torial using the case study of an incubator system designed for tempeh
fermentation (a traditional Indonesian soy product). The study explores
the development, calibration, and validation of models based on thermo-
dynamics, offering insight into how DTs can enhance control and mon-
itoring. Key DT services such as monitoring, decision support, and re-
configuration are implemented and evaluated. The tutorial demonstrates
the potential of DTs in optimizing real-time systems while ensuring op-
erational consistency.

Keywords: digital twin · simulation · optimization.

1 Introduction

1.1 Overview of Digital Twins (DTs)

The DT concept is gaining widespread attention due to its potential to leverage
computing power for data analysis, event prediction, and scenario exploration
without affecting the actual system. As interest in DTs grows across conferences,
journals, and various industries, nations and businesses are increasingly investing
in DTs for a wide range of applications, from microscopic systems to global
environments. However, despite its promising potential, the methods and tools
for developing DTs are still in the early stages, and the concept itself is not yet
fully understood.

This tutorial aims to provide a comprehensive introduction to concept of
DTs, focusing on the development and application of a DT in an incubator
system. The tutorial synthesizes a decade of research in topics that fall under
the umbrella of DTs, such as modelling and simulation, control, a

nomaly detection, and the internet of things. Some of the materials used
in this tutorial have been simplified from the material presented in previous
publications [19,17,18,36,45,16,5] and book [21].

https://international.au.dk/
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1.2 Digital Twin Definition(s)

We adopt the definition from Fuller et al. [22]:

. . . [A DT is] when the data flows between an existing physical object and
a digital object [. . . ] A change made to the physical object automatically
leads to a change in the digital object and vice versa.

Note the contrast to an often cited definition of DT: A DT is a digital rep-
resentation of a physical object or system that serves as the real-time digital
counterpart of a physical object or system. As later described in section 2, this
definition is closer to the definition of model. If the reader wishes to think of DT
as representations of the physical system, then she/he may read this tutorial as
a guide to applications of models (DT). We justify our choice of nomenclature
in section 2.

The definition presented in Fuller remains too abstract to structure our pre-
sentation. We therefore propose the following breakdown of the definition, that
is inline with the various surveys on the topic [29,48,32,23,6]. We focus on the
critical services offered by a DT. A DT is a software support system that provides
the following services, summarized in fig. 1:

Visualization Real-time visualization of system states and their history.
Monitoring Continuous monitoring of system performance, safety, or other

properties
Predictive Maintenance Predicting when maintenance is required to prevent

system failures.
Fault Diagnosis Identifying and diagnosing faults or unusual behavior.
Decision Making Simulating potential scenarios to predict outcomes.
Reconfiguration Enabling the Physical Twin (PT) to adapt to changes in their

environment or operational conditions.

We consider these services to be building blocks of a DT. As we illustrate later
they are combined to add value to a PT, but the PT should still operate without
the support of a DT. This clearly distinguishes a DT from a control system. In
this tutorial we will cover the underlined services above.

1.3 Our Experience

The authors are part of a research lab that have been working on the development
of different services for DTs for well over a decade. In the following are some
examples of Cyber-Physical System (CPS) for which one or more DT services
have been produced.

Universal Robots Manipulator. In [33], the authors have built a tool that enables
users to efficiently model robot dynamics by separating rigid-body dynamics
from joint dynamics, allowing for rapid recalibration (an important feature in
DTs to keep the model synchronized with the PT) without recompiling the entire
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Fig. 1. Overview of services provided by a DT. The arrows represent the data flow a
DT. Underlined are the services we will cover in this tutorial.

model. The tool, called Aarhus University Robotics Toolbox (AURT) supports
various joint dynamics models and uses a Weighted Least Squares (WLS) method
for calibration. The authors demonstrate the effectiveness of AURT through
case studies involving a Universal Robots UR5e robot, showing that AURT can
produce high-fidelity dynamic models with low prediction errors. In addition, 3D
and 2D visualizations have been produced to visualize the robot’s motion and
the model’s prediction, as shown in fig. 2. Although monitoring and predictive
maintenance were not implemented in this work, its realization is trivial since the
user can just compare the predicted current with the actual current to detect
problems, such as a collision (which would show up as a sudden spike in the
current).

Agricultural Robot Miniature. Woodcock et al. [45] provide a detailed case study
involving an agricultural vehicle called Desktop Robotti [14], which serves as a
prime example of the need for environment-aware DT in complex, uncertain
environments. The case study illustrates how the model of the vehicle is used to
monitor and predict its behavior under various operating conditions, accounting
for factors such as noise and environmental changes. It enables the identification
of safety violations by comparing real-time data with the expected performance
based on statistical noise models. The case study also demonstrates how the
system can perform “what-if” analyses for decision support, to determine the
impact of different noise sources on the vehicle’s safety and decide on the best
system configuration to minimize risks.

And others. Our lab has also worked on other case studies such as the F1-tenth
[1], a pancreas preservation device [7], as well as an incubator system intended
for academic purposes. The incubator is the running example for this tutorial
and is elaborated upon in section 4.

1.4 Purpose and Structure of the Tutorial

This tutorial aims to provide a comprehensive introduction to DT technology,
with a focus on the development and application of a DT in an incubator system,
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Fig. 2. Visualizations of the Universal Robots UR5e robot. On the left is a video stream
of the robot. On the right is 3D visualization based on the streamed robot joint angles,
and at the bottom is a plot of the positions of the joint angles as well as the predicted
(by the model) current drawn at each joint overlaid on the actual current. The vertical
red line indicates the time since the operation started.

and covering some of the services introduced in fig. 1. The incubator system was
chosen for its simplicity and accessibility of the physics, as well as clear need
for a DT. The tutorial will cover foundational concepts, the building blocks of a
DT, and a detailed case study of the incubator system.

Structure. The material, most of it published elsewhere, is presented in a top-
down matter, with section 2 describing the foundational concepts in digital twin-
ning, and section 3 giving a catalog of the typical DT services. Due to their
breadth, sections 2 and 3 do not delve into details, so we encourage the reader
to jump to section 4 whenever a concept is not clear, as the concept is illustrated
in the incubator system.

2 Building Blocks of a Digital Twin

In this section we introduce some of the foundational concepts as well as a
terminology used in this tutorial. For more details about the models and their
qualities we refer the reader to [36].

2.1 Cyber-Physical Systems (CPS)

A system is defined as “a combination of interacting elements organized to
achieve one or more stated purposes” [28]. In CPSs, this may include physical
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devices, natural phenomena, or information about the CPS. The environment
refers to elements outside the system. The system boundary between the system
and environment is determined by the system’s purpose [47].

A system’s purpose relates to its behavior, i.e., its interactions with the en-
vironment. The system context denotes all possible environment-system inter-
actions. System properties, derived from functional and non-functional require-
ments, encode the system’s purpose and should be satisfiable, meaning it should
be possible to check if the system satisfies a property, accounting for uncertainty.

Let S represent the system, and PS the set of properties to be satisfied
in context CS (where CS denotes the set of all possible interactions from the
environment to the system). Let JSKCS

represent the system behavior under CS

as a set of traces. We write JSKCS
⊨ p to indicate that the behavior satisfies

property p ∈ PS .
CPS are systems that integrate computational and physical processes. Exam-

ples of CPS include smart grids, autonomous vehicles, and industrial automation
systems. The interaction between these processes is crucial for the overall sys-
tem’s functionality and performance. In the context of this tutorial the PT is
considered a CPS.

2.2 Data Collection and Integration

Data collection forms the backbone of a DT, and it is an activity that spans
multiple areas of science and engineering, relying on sensors and communica-
tion systems to capture real-time information from the PT. This data is seam-
lessly integrated into the digital model, where it supports analysis and informed
decision-making. In the following we introduce the key areas in roughly the order
of information flow, enumerating the main challenges and techniques in each.

Sensing involves gathering system and environment data through devices at-
tached to the PT such as temperature sensors. The key areas are introduced in
the following. A key aspect of sensing is sampling, where signals are measured at
regular intervals. According to the Nyquist-Shannon theorem, a signal must be
sampled at least twice its highest frequency to prevent information loss. How-
ever, challenges such as non-uniform sampling, noise, and quantisation — the
conversion of continuous signals into discrete values — can affect signal quality.
To address these, techniques like non-uniform sampling and dynamic quantisa-
tion focus on capturing significant changes in the signal, improving the efficiency
of data collection.

Quantisation errors occur when continuous signals are converted into dis-
crete signals, often resulting in minor inaccuracies. Dynamic range compression
helps mitigate these errors, especially for signals with a wide amplitude range.
Sensor data is also impacted by various types of noise, and flicker noise (which
varies with frequency). Compensation methods are necessary to account for these
disturbances and ensure accurate sensor readings. After sensing comes the trans-
mission of information using network communication protocols.

Stable network communication is crucial for DTs, but it can be disrupted by
delays and data loss. Communication protocols like TCP ensure reliable data
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transmission by prioritizing accuracy, while UDP sacrifices some reliability for
faster performance. To counteract network degradation and connection drops,
techniques such as synchronizing the clocks of the PT and DT and handling
outdated data can maintain system integrity.

Data compression is essential for managing network traffic and storage re-
quirements. Lossless compression preserves the integrity of the data, while lossy
compression trades some accuracy for a higher compression ratio. In time-series
data, effective compression methods are critical for reducing traffic without com-
promising key information.

Several messaging protocols support communication in DT ecosystems, in-
cluding ZeroMQ, ROS, Apache Kafka, and RabbitMQ. These protocols use pat-
terns like publish-subscribe and request-reply to ensure real-time data flow across
distributed systems.

Finally, Time-Series Databases like InfluxDB3 and ClickHouse4 store the vast
amounts of data generated by sensors in the PT. These databases are optimized
for real-time processing and long-term storage, supporting critical DT services
like monitoring and predictive modeling. Built-in compression techniques further
reduce memory usage, enabling scalable and efficient data management.

Setting up a data collection is first step towards obtaining a valid model of
the PT system, discussed next.

2.3 Modelling Systems

DTs use models of PTs that they represent to provide some of the services iden-
tified in subsection 1.2, covering aspects like energy consumption or functional
performance. The choice of models is based on trade-offs between precision, ac-
curacy, and computational costs.

What to Model A model, following [31,41], is based on a system, reflects a
subset of its properties, and serves a predefined purpose in a specific context.
Experiments on models should faithfully reflect property satisfaction on the real
system, as discussed in [13], and summarized in the commuting diagram of fig. 3.

The following details the main qualities of the model, in an informal manner,
to help the reader see the nuances faced by modelers. The scope of modelling
is too broad for an attempt at a more rigorous formalization without focusing
on a specific modelling formalism such as state machines, differential equations,
Markov models, etc. The reader is encouraged to read [36] for more details of
these qualities.

A model is relevant if its context encompasses the system’s context, ensur-
ing that the model can represent the system in that specific context. Relevance
ensures that the model operates effectively within the intended scope and envi-
ronment of the real system.

3 https://www.influxdata.com/
4 https://clickhouse.com//

https://www.influxdata.com/
https://clickhouse.com//
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Fig. 3. Commuting diagram illustrating the relationship between a real system and its
corresponding valid model.

A model is verifiable if it is possible to determine whether the model satisfies
each property of interest. Verifiability is critical for ensuring that the model
behaves as intended and adheres to its design requirements.

Substitutability holds when the behavior of the model aligns with that of
the system for all relevant properties. This quality ensures that the model can
replace the system in experiments or analyses, producing equivalent outcomes.

Fidelity measures how closely the model’s behavior matches that of the sys-
tem under comparable conditions. High fidelity indicates that the model accu-
rately reflects the system’s properties and behavior, which is particularly impor-
tant in safety-critical or precision-oriented applications.

Note that verifiability is essential; if models cannot be checked for properties,
they cannot provide substitutable results. Next, substitutability is important to
verify the satisfaction of properties, though quick or approximate checks may
be necessary for large possibility spaces. Relevance follows, ensuring models re-
main applicable in a dynamic system. Non-relevant models increase the risk of
errors, especially in safety-critical environments. Finally, fidelity should be con-
sidered once other qualities are satisfied, ensuring the system’s properties are
reflected with sufficient accuracy. Low fidelity may be acceptable in non-critical
applications to reduce resource use.

If the above properties are satisfied, the model is considered valid. The rela-
tionship between the model and the system can be summarized by a conceptual
framework. This framework illustrates the relationship between a real system and
its corresponding valid model, highlighting how virtual experiments can replace
real-world experiments, provided the model is valid. It shows a system interact-
ing with its environment, where measurements are taken and then replicated in
a virtual environment using a model. The model and virtual environment are
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used for simulations, with the goal that the outcomes of these simulations should
match those of the real-world experiments, allowing the virtual experiment to
serve as an accurate substitute.

In terms of object of study, models can focus on all aspects of CPS, summa-
rized in fig. 4, and detailed as follows:

Network Represents the communication infrastructure that allows different
components of the system to exchange data and information.

Platform Refers to the underlying hardware or software environment that sup-
ports the operation of CPS components.

Actuators Physical devices that interact with the environment by converting
electrical signals into mechanical actions, such as motors, valves, etc.

Sensors Devices that monitor physical properties like temperature, pressure,
or motion and provide data to the system.

Controller The computational unit responsible for decision-making and send-
ing commands to actuators based on the data received from sensors.

Plant Represents the physical process or system being controlled and moni-
tored, such as a manufacturing machine or an energy grid.

Cyber Refers to the computational components of the system, encompassing
the software, algorithms, and networking aspects that process data and con-
trol actions.

Physical Refers to the real-world physical components that interact with the
environment, such as sensors, actuators, and the plant.

Network
Platform

Actuators

Sensors

Controller Plant

Cyber Physical

Fig. 4. Aspects of CPSs that can be the focus of models.
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How to Model The DT model set is heterogeneous, often developed by spe-
cialists from different disciplines, using diverse formalisms, including:

Physics-based models: Derived from first principles, these models use alge-
braic and differential equations to describe physical processes like heat trans-
fer. They are commonly represented using ordinary or partial differential
equations. Example models such as Ordinary Differential Equation (ODE)s,
describe physical conservation laws. These models can be simulated using nu-
merical methods like Euler’s method. Partial Differential Equations (PDEs)
provide more complex models for spatial heat distribution, often requiring
spatial discretization methods like finite element or finite volume methods.

Data-driven models: These models predict system behavior based on input-
output data, using techniques like machine learning, deep learning, and
physics-informed machine learning. They are versatile but rely on high-
quality data. Machine learning, especially deep learning, has become a pop-
ular approach. These models are trained using methods like supervised, un-
supervised, or reinforcement, learning.

Models for computer-based systems: These describe hardware and software
components using formalisms like finite state machines or hybrid automata.
Finite State Machines (FSM) can represent the systems states and transi-
tions with conditions attached to represent when the current state of the
system changes. Hybrid automata extend FSMs to include continuous dy-
namics, allowing for more complex system behavior. These models can be
used to describe the behavior of embedded systems, control systems, and
software systems.

Models are characterized by state form (numerical or symbolic), state evolu-
tion (continuous or discrete time), and model behavior (deterministic or stochas-
tic). These criteria help in selecting appropriate formalisms for DTs.

Simulation is the process of producing the behavior of a model. Simulations
can be classified into different types such as continuous, discrete-event, or hybrid,
depending on the nature of the system and the way time and events are modeled.
We revisit this topic in subsection 3.3.

We refer the reader to [21,9,44] for excellent introductions to the topic of
modelling, and to [10] for a general treatment of the topic of simulation.

2.4 Calibration

Calibration involves finding parameter values that align model behavior with
real-world data. For instance, in a simple linear model y = ax+ b, parameters a
and b are estimated to match experimental observations. In complex non-linear
models, optimization techniques like gradient descent are necessary to minimize
errors and potentially avoid local minima.

For linear algebraic models, the least squares method is used. It minimizes
the sum of squared residuals between the observed and predicted values. For
example, given a system y = ax1 + bx2, parameters a and b can be estimated
from experimental data through matrix operations.
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Non-linear models require iterative methods like gradient descent, which
minimizes the residual error between the predicted and observed data. In com-
plex surfaces with multiple minima, heuristic methods like genetic algorithms or
Gauss-Newton methods can be employed to avoid local minima and find optimal
solutions.

In practice, measurements are often noisy, which complicates the calibration
process. Least squares can be adapted to handle noise, but more advanced meth-
ods like gradient descent become essential for non-linear models. The challenge
lies in finding parameters that balance fitting noisy data without overfitting.
Underfitting occurs when models are too simple, while overfitting happens when
models are too complex and fail to generalize. Techniques like regularization and
careful experiment design can help mitigate these issues.

2.5 Validation of Models

Validation is the process of ensuring that the model is valid by comparing its
predictions with the real world data. Figure 5 puts together the concepts of
modelling, simulation, and calibration. In the figure we show calibration as a
synonym with validation because it is after the choice of suitable parameters
that the model qualities can be evaluated.
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Fig. 5. Commuting diagram illustrating the relationship between a real system and its
corresponding valid model.

2.6 DT vs. Digital Shadow

A DT involves bi-directional data flow between the PT and its digital counter-
part, allowing for real-time feedback and control. In contrast, a Digital Shadow
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(DS) only allows data to flow from the PT to the digital model, without direct
feedback capabilities. We like making this distinction because the set of chal-
lenges tackled by a DT are different from those faced by a DS. Note that a DT
can start as a digital shadow where it can bring the most value and insight, and
then evolve to a full DT. Figure 6 illustrates the different services provided by a
DS and a DT. Note how the DT can leverage the services provided by the DS.
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Fig. 6. Communications inside a DS and DT. The blue and red arrows represent the
data flow of a DS and a DT respectively. A DT includes the features of a DS and has
unique features such as reconfiguration.

3 Digital Twin Services

We now provide an overview of the services that were summarized in fig. 1.

3.1 Visualization

Visualization translates complex information into figures, graphs, 3D models, or
even 4D interactive interfaces, enabling users to grasp the current state of the
PT. It enhances system monitoring, supports decision-making, and helps identify
patterns or risks.

Five key visualization types are commonly used:

1. Data graphs and charts: Display real-time data trends, such as system
metrics.
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2. Schematic diagrams: Show system structure and component relationships,
often as 2D floor plans.

3. 3D models: Visualize physical characteristics of the PT, useful for systems
requiring detailed examination.

4. Augmented Reality (AR): Overlay digital data onto the physical world,
enhancing user interaction with the PT.

5. Mixed and Virtual Reality: Combine AR/Virtual Reality with interac-
tive controls for a full 4D experience, ideal for precision tasks.

Dashboards are the preferred user interface to offer high-level views of system
performance using graphs and charts. Popular frameworks include:

InfluxDB: A cloud-based time-series database with customizable dashboards
for real-time analytics.

JMobile: A framework for IoT systems, supporting process management and
data visualization.

Grafana: A multi-platform visualizer that integrates with various data sources,
offering interactive web-based interfaces.

For 4D visualization, the following tools are commonly used:

Unreal Engine: A 4D graphics engine for resource-intensive applications in
industries like simulation and architecture.

Unity: A 4D engine widely used in DTs for mobile apps, automated vehicles,
and robotic systems.

Godot: A lightweight, open-source game engine for basic 4D visualizations.
iTwin: A platform for infrastructure DTs, supporting 4D visualisations and IoT

data streams.

3.2 Monitoring

A DT enhances a PT by integrating models of expected behavior with real-
time data from the PT, identifying anomalies or deviations from normal opera-
tions [2,3]. This monitoring function supports stakeholders in making informed
decisions [2]. Monitoring can be done offline, analyzing stored data for debug-
ging, or online, tracking properties during operation and triggering prevention
or recovery actions. Here we focus on online monitoring.

Monitoring methods can be broadly categorized as model-based and data-
driven. Model-based monitoring checks system behavior against defined proper-
ties, using temporal logics such as Linear Temporal Logic (LTL [37]) or Signal
Temporal Logic (STL [34]). Temporal logics enable the expression of properties
over system traces. LTL is useful for expressing safety and liveness properties
in discrete time, while STL adds time constraints and continuous-time support,
making it suitable for real-time systems. STL also provides quantitative outputs,
useful for predicting how close the system is to violating a property. Data-driven
monitors, by contrast, use machine learning models trained on historical data to
detect anomalies in the PT.
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Model-based monitoring techniques, such as Runtime Verification (RV), al-
low DTs to monitor system properties in real-time. These monitors can trigger
compensating actions if a violation of safety properties is detected. Various tools
are available for implementing RV, including Java PathExplorer, MonPoly, and
RTAMT [27,4,35].

Data-driven anomaly detection relies on real-time sensor data, analyzed us-
ing machine learning models trained on historical data. This approach is often
framed as a one-class classification problem, learning what constitutes normal
operation and identifying deviations as anomalies. Various models can be em-
ployed, such as autoencoders or Recurrent Neural Networks (RNNs), which are
trained on normal data and predict or reconstruct time-series measurements.

State Estimation An important technique in monitoring is state estimation,
which effectively combines real-time sensor data with a model of the PT to esti-
mate the system’s internal state. This is particularly useful when some states are
not directly observable. Just like RV, state estimation can be done offline (e.g., in
batches of data), or online. The technique is illustrated in fig. 7. In the figure, the
plant represents the PT being monitored or controlled that is modelled by the
model. The “plant” could be any PT like a machine, vehicle, or environmental
process. The environment represents external factors or conditions that influ-
ence the plant. These could include external inputs like temperature, pressure,
or other environmental variables affecting the plant’s behavior. The model is the
mathematical or computational model used to simulate or represent the behav-
ior of the plant. The model relates the states of the plant with its output via
equations, typically ordinary differential equations in the state space representa-
tion. The input refers to the control inputs provided to the plant. These inputs
could be in the form of actuators controlling variables like speed, temperature,
or position, and note that they are sent in parallel to the plant and the model.
Sample refers to the data collected from the plant at discrete intervals, usually
using sensors. These samples are taken into account by the state estimation al-
gorithm. Note that the model does not have access to the samples directly. The
samples are the observable or measurable outputs of the plant and are used by
the state estimation algorithm to correct the model’s predictions. The “states”
represent the internal variables of the plant that are being estimated. Note that
in the model, the states are fed back in each new timestep. The outputs of the
state estimator refer to the final output after processing the model with the sam-
ple. In addition, the state estimator can often produce a measure of how good
the model is performing in terms of predicting accurately the plant’s behavior.

For offline state estimation, where samples can be accessed in batch, the
problem being solved can be formulated as follows: find states x0, x1, . . . , xi such
that ∥∥[ȳ0, ȳ1, . . . , ȳi]T − [y0, y1, . . . , yi]

T
∥∥ ≈ 0

where the outputs are the ones produced by the state estimation algorithm in
fig. 7.
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Fig. 7. State estimation illustration.

In the online case, the problem is more challenging as the samples are not
available in batch. The state estimation algorithm must estimate the states based
on the model and the samples available at each time step i. The problem can be
formulated as follows: at each new sample, find state xi such that

∥ȳi − yi∥ ≈ 0

The Kalman filter is a widely used state estimator that combines noisy sensor
data with a dynamic model of the system to estimate the true state. Extended
Kalman Filter (EKF) and Unscented Kalman filters (UKF) are used when the
system is nonlinear. Particle filters are another option for nonlinear systems,
using a set of particles to represent the system’s state distribution. We refer the
reader to [40] for a comprehensive introduction to state estimation techniques,
and to [18] for a detailed derivation of the Kalman filter.

3.3 Decision Support

In the context of this tutorial, decision support represents the DT service that
allows the user to conduct various simulation experiments on the historical data,
on future data, and solve optimization problems based on simulations.

We start with a primer in simulation of ordinary differential equations (as
these are used later in section 4).

Simulation of Ordinary Differential Equations To simulate the ODE,
values for the parameters and its initial states must be found. The ODE and
initial values form an Initial Value Problem (IVP), solved using numerical time
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integration. A general ODE of this type is:

dx

dt
= f(x,u,p) , x(0) = x0 (1)

where x represents the state vector, u the input vector, and p the model param-
eters.

Numerical integration schemes estimate the state vector at discrete intervals,
with the Euler method being the simplest:

xk+1 = xk + f(xk,uk,p)∆t (2)

More advanced methods use multiple steps or evaluations within each time step
to improve accuracy. The simulation output tracks the system’s state over time.
Libraries like SciPy in Python offer various numerical integration schemes for
solving ODEs. Interested readers can refer to [8,26] for more on numerical time
integration.

What-if Simulation A what-if simulation is a data- and computation-intensive
approach used to evaluate the behavior of a PT under different scenarios and
hypotheses [38]. If unwanted behaviors are detected in the PT, a what-if sim-
ulation enables operators or the DT itself to simulate potential interventions,
compare outcomes, and make better-informed decisions. For effective use, the
simulations must run faster than real-time, and combining multiple simulation
components through “co-simulation” may be required when multiple models are
involved [25]. In a DT context, what-if simulations can leverage historical data
from the other DT services, such as the state estimation, and feed results into
other services for further optimization.

Design Space Exploration Design Space Exploration (DSE) is a form of
optimization, used to evaluate different design alternatives for a system [15],
aiming to meet performance goals. Each alternative consists of specific parameter
values, and (co-)simulations are performed for each one. Genetic algorithms can
help choose which simulations to run when the design space is too large [39].
DSE often involves balancing conflicting objectives, such as speed, accuracy,
and energy consumption. A ranking function or the Pareto Optimal front [12]
may be used to select the best design.

While DSE and what-if simulations both explore alternatives, they differ
in context: DSE is used during design stages to optimize the system, whereas
what-if simulations are applied during operational stages to explore the effects
of different conditions on the deployed system.

Decision support services are intimately related to Reconfiguration, since
the outcome of a decision support service may lead to a reconfiguration of the
system, discussed next.
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3.4 Reconfiguration

A critical feature of a DT is its ability to autonomously manage the PT, such
as addressing anomalies, ensuring safety, or reconfiguring the PT to adapt to
changes in its environment. This process may involve re-optimizing parameters
and updating models, and may use data from monitoring and decision support
services to inform the reconfiguration. It can combine the results from the other
services, e.g., anomaly detection, what-if, or DSE in order to optimize the system.
A popular architecture to represent reconfiguration is the MAPE-K loop.

MAPE-K Loop The Monitor-Analyze-Plan-Execute over a shared Knowledge
(MAPE-K) loop is a framework for self-adaptive systems that enables dynamic
reconfiguration in response to changes or anomalies in the environment or the
system itself [30]. It comprises four main phases—Monitor, Analyze, Plan, and
Execute—that operate over a shared Knowledge base, as illustrated in fig. 8.

  PT

Control Software

Monitor
Know-
ledge

Analyse Pl
an

Execute

Autonomic manager (MAPE-K Loop)

Fig. 8. The MAPE-K loop architecture [30].

Monitor In the Monitor phase, the system collects data from various sources,
such as sensors or logs, to observe the current state of the PT. This data
includes metrics and events that are relevant for detecting significant changes
or anomalies in the system’s operation.

Analyze The Analyze phase processes the collected data to identify patterns,
trends, or anomalies. Techniques such as anomaly detection algorithms, sta-
tistical analysis, or machine learning models may be employed. The goal is
to determine whether the current state deviates from expected behavior and
requires adaptation.
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Plan During the Plan phase, the system devises a strategy to address any iden-
tified issues or to optimize performance. This involves generating a set of
actions or changes to the system’s configuration that can mitigate anomalies
or improve operation. The planning process may consider multiple alterna-
tives and evaluate them based on predefined criteria or objectives.

Execute In the Execute phase, the planned actions are implemented to modify
the system’s behavior. This may involve reconfiguring components, updating
parameters, or deploying new resources. The execution should be carried out
in a controlled manner to ensure system stability and minimize disruption.

Knowledge The shared Knowledge component is a repository that stores in-
formation used by all phases of the loop. This includes models of the system,
historical data, policies, and any other contextual information necessary for
decision-making. The knowledge base enables consistency and coordination
among the different phases.

4 Case Study: The Incubator System

4.1 Overview

The incubator system, illustrated in fig. 9, serves as a practical example of a CPS-
based DT. It consists of a styrofoam box with a heatbed, fan, and temperature
sensors, controlled by a Raspberry Pi, made to incubate tempeh. The reader is
invited to see an online video presenting the setup5.

Temperature
Sensors

Heatbed

Content

Fan
Temperature

Sensor

Insulated
Container

Controller

Air Volume

Temperature
Sensors Controller

Heater

Fan

Box Walls &
Lid Room Air

Power Supply

User

System Boundary

Fig. 9. Schematic overview of the incubator system and the role of the DT in tempeh
production. The left diagram shows the physical setup, while the right diagram repre-
sents the interactions between various components, including digital information flows
and user interactions. Reproduced from [21].

5 https://youtu.be/gG4za7iPY0I

https://youtu.be/gG4za7iPY0I
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Tempeh: Tempeh is a traditional fermented food originating from Southeast
Asia, especially known in Indonesia for its nutty flavor and firm texture. While
traditionally made from soybeans, it can also be produced using various legumes
such as black beans, chickpeas, and lentils. Each variation offers different fla-
vors and nutritional profiles, making tempeh a versatile plant-based protein op-
tion [42].

The process of making tempeh, as shown in fig. 10, involves soaking and cook-
ing the soybeans before inoculating them with the fungus Rhizopus oligosporus.
The mixture is then fermented at a controlled temperature, usually between 24
to 48 hours, depending on the desired final product. During the fermentation,
the fungus binds the beans into a cake-like structure, developing the firm texture
and the nutty flavor associated with tempeh.

Soak soybeans

[No]

[Yes]At 37°C?

[No]

[Yes]Done?

PackInoculate

De-hull Boil in acidic water
 for 90 minutes Drain

Cool down

Incubate
at ~37°C

Fig. 10. Overview of the tempeh-making process. The incubation phase is critical to
maintaining a temperature of 37.5◦C for optimal fermentation. Reproduced from [21].

During the fermentation, the fungus initially absorbs heat from the environ-
ment. After around 20 hours, the fungi rapidly grow, producing their own heat,
which can cause the internal temperature of the tempeh to rise above the sur-
roundings by as much as 7◦C. The tempeh is typically ready for consumption
once it passes its temperature peak, as seen in fig. 11.

Role of DT: The DT serves as an extension to the physical incubator, offer-
ing these enhanced services through a connected device such as a smartphone.
Although the incubator can function without the DT, users who opt to use the
DT-enabled features will benefit from improved control, ensuring higher consis-
tency and better quality of the final tempeh product.

Hardware: The incubator hardware includes a styrofoam box for insulation,
a heat bed (RepRap PCB Heat Bed MK2a), a fan to distribute heat, and three
DS18S20 temperature sensors (two inside and one outside). A Raspberry Pi



Digital Twin Tutorial: The Incubator Case Study 19

Hours

Te
m

pe
ra

tu
re

 (
)

Tempeh is ready

Fig. 11. Temperature changes during tempeh fermentation. Adapted from [42]. Vari-
ations in temperature and timings are common and depend on several factors such as
environmental conditions and bean type.

manages the sensors and controls the heat bed and fan, connecting them to a
higher voltage power supply using a set of relays on a printed circuit board. We
refer the reader to the online repository with up-to-date documentation about
all aspects of the hardware of the incubator [24].

Software: The incubator’s control system, summarized in fig. 12 and imple-
mented in Python, includes a communication server, a low-level driver, and a
controller that manages the heatbed and fan, with a basic on-off control strategy.

Communication Server – RabbitMQ implementing the AMQP protocol is
employed for managing communication and synchronisation, facilitating mes-
sage exchange between the controller and low-level driver. It ensures seamless
communication between components, which is essential for the DT process.

Low-level driver – Manages low-level communication with sensors and actua-
tors. The low-level driver interacts with the PT, collecting data periodically
and ensuring safe protocol execution. It reads the temperature data and
checks for commands from the controller via the communication server.

Controller – The controller operates based on bang-bang control with a slight
variation. It turns on the heatbed until the temperature reaches the setpoint,
then waits to prevent overshoot. The controller parameters are: LL – Lower
temperature limit; UL – Upper temperature limit; H – Heating duration; C
– Waiting duration.

4.2 Digital Twin Architecture

The software architecture of the DT is an instance of the service oriented archi-
tecture pattern. Service-Oriented Architecture (SOA) is a design pattern where
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Commands

Communicate
Data

Physical Twin Digital Twin

Fig. 12. Overview of communication in the Incubator. Arrows indicate the information
flow. Reproduced from [20].

software components provide services to other components over a network. In
SOA, these services are loosely coupled, reusable, and can be accessed inde-
pendently, promoting flexibility and scalability. Each service performs a specific
business function and can be accessed via standard communication protocols
like RabbitMQ.

In this architecture, where even the controller is seen as a service, each DT
service translates directly to a corresponding software process that is commu-
nicating with other services to accomplish a given task. The communication
between services is accomplished via RabbitMQ messages where services pub-
lish and subscribe to messages with certain topics. This communication is very
flexible enabling the following scenarios:

Point-to-Point One producer sends a message to a specific queue, and a single
consumer retrieves it, ensuring one-to-one communication. It’s useful for
tasks like job processing.

Topic-Based Publish/Subscribe Messages are sent to an exchange with a
routing key, and only consumers with matching routing keys (using wildcard
patterns, e.g., *.log) receive the messages. This enables flexible one-to-many
communication based on message topics.

Load Balancing This is particularly useful in scenarios where there are multi-
ple consumers working on tasks from a shared queue. Multiple instances of
the same DT service can started, and connected to the same queue. When
multiple consumers are connected to a queue, RabbitMQ distributes mes-
sages evenly in a round-robin fashion to avoid overloading any single con-
sumer. In the incubator DT this is used for services that provide decision
support.
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If T < LL, turn heater on.

cooling
down

after H s

heating

after C s, 
if T > UL

after C s, 
if T< UL

waiting
heater off

Fig. 13. Controller Statechart. Reproduced from [20].

Request-Reply This pattern involves sending a request message and awaiting
a reply, enabling synchronous communication. A reply queue is used to send
the response back to the original requester.

4.3 Data Collection

The data is collected by a Python process (a service) that subscribes to most
messages exchanged between the controller and low level driver, and stores them
in InfluxDB, a time-series database. The data stored includes all sensor and
actuator data, as well as control parameters.

4.4 Modeling the Physical Twin

We first introduce the thermodynamics equations that were used to model the
temperature evolution inside the incubator box.

Lumped Element Heat Transfer Modelling Here we introduce the funda-
mental concepts of the lumped element heat transfer model, providing enough
information to ensure the manuscript is self-contained. For a comprehensive
treatment of thermodynamics and calculus, readers are directed to sources such
as [43,11].

Consider the warm air (e.g., 80◦C) insulated inside a Styrofoam box, in a
room that’s at 20◦C. Over time, the air cools down as heat transfers from the
air to the surrounding room. The rate of heat transfer depends on two factors:
the temperature difference between the air and the room and how good the box
is as an insulator. The thicker and more insulating the box walls, the slower the
rate of heat transfer. The heat transfer rate is governed by Fourier’s Law of heat
conduction:

dQ

dt
= −Gbr(Tb − Tr), (3)
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where Q is the heat energy of the air volume, Gbr is the thermal conductivity of
the box, Tb and Tr are the air and room temperatures, respectively. The negative
sign indicates heat flow from the air inside the box to the room. To keep the
model simple, we assume the material properties, thickness, and area remain
constant, consolidating them into the constant Gbr.

Next, we relate the heat transfer to the box air’s temperature change. The
heat capacity Cb quantifies how much heat is needed to raise the box air’s tem-
perature. The heat transfer rate can be expressed as:

dQ

dt
= Cb

dTb

dt
. (4)

By combining this with Fourier’s Law, we derive the following differential
equation:

dTb

dt
=

−Gbr(Tb − Troom)

Cb
. (5)

Additional Factors: Electrical Heating. Now, suppose we heat the rod by passing
an electrical current through it. The total heat transfer now includes both the
heat loss to the room and the electrical power contribution, given by the product
of voltage and current V · I. This modifies the heat transfer equation to:

dTb

dt
=

−Gbr(Tb − Troom) + V · I
Cb

. (6)

Incubator Temperature Model To get the incubator temperature model,
we apply the previous derivation steps twice: to the heat exchange between the
heatbed resistance (piece of metal that’s a heater, with it own volume and heat
transfer rate) and the box air volume, and to the heat exchange between the box
air volume and the room. We therefore obtain the following ODE:

Ch
dTh

dt
= Hh · Ph −Ghb · (Th − Tb) (7a)

Cb
dTb

dt
= Ghb · (Th − Tb)−Gbr · (Tb − Tr) (7b)

where Th is the temperature of the heater (measured in ◦C), Tb is the temper-
ature of the air inside the box (◦C), Tr is the known input room temperature
(◦C); Ch is the heat capacity of the heater (J/(Kg · ◦C)) while Cb is the heat
capacity of the box including contained air (J/(Kg ·◦C)). The electric power sup-
plied to the heatbed Ph is a constant given by voltage times current Ph = Vh · Ih
(W), while Hh is a Boolean variable utilised to switch electric power on and off.
Finally, Gbr is a coefficient that models heat transfer between the box and the
room (W/◦C) while Ghb is a coefficient that models heat transfer between the
heater and the box (W/◦C).

To see the general form of the ODE in eq. (1), we set:

x = [Th, Tb]
T
, u = [Hh]

T
, p = [Ch, Cb, Gbr, Ghb]

T
, x(0) = [24, 24]

T (8)
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Fig. 14. Example behavior of the incubator temperature model introduced in eq. (7),
obtained by running a time integration method for 30 steps from the given initial
values. The vertical axis of the two topmost plots measure Celsius and the bottom plot
shows the heater state which is turned off for the whole duration of the simulation.

Figure 14 illustrates the simulation of eq. (7) for 30 time steps, with a timestep
of 3 seconds.

Model Calibration and Validation. The model of the incubator in eq. (7) contains
a few parameters and variables that we estimate from a physical experiment,
from vendor part’s datasheets, or are set by the experiment:

– Ch and Cb are the heat capacities of the heater and the box, estimated from
data.

– Gbr and Ghb are the heat transfer coefficients between the box and the room,
and between the heater and the box, respectively, also estimated from data.

– Vh and Ih are the voltage and current supplied to the heatbed, respectively,
and are obtained from the data sheet of the power supply, fan, and heater.

– Hh is a Boolean variable that represents the state of the heatbed, and is
obtained from the controller signal defined for the experiment.

– Tr is measured by the sensor inside the room.
– Tb is measured by the sensors inside the box. We take the average of the two

sensors.
– Th cannot be measured by the sensors, but this value will still be estimated

since eq. (7) relates it to Tb.
– The initial values for the heatbed and box air are known as well as the room

temperature, because the incubator starts out “cold”.

The physical experiment consists of hard coding the controller so that it
outputs a particular profile of on and off while all data is being recorded. The
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on-off signal can be seen in fig. 15. The calibration then consists of solving an
optimization problem (a non linear least squares) that will try and estimate the
values for the parameters above for which Tb obtained from the simulation best
matches the Tb obtained from the data. For the incubator this process takes a
few seconds and the results can be seen in fig. 15. As can be seen the model has
an almost perfect agreement with the experiment carried out.

heatbed control signal

temperature data
from sensors

temperature data
from the model

Temperature (°C)

Incubator Temperatures

Fig. 15. Calibration results of eq. (7). The blue line is the average temperature rep-
resenting the air temperature inside the incubator, while the green line represents the
results from our calibrated model. The red line shows the scaled states of the heatbed:
on (= 1) and off (= 0).

Revisiting the discussion in subsection 2.3, it is worth noting that several
assumptions are implicit in this calibration process: First the calibration was
carried out at room temperature of 20◦C, where the styrofoam box operates in
a certain environment where it has a constant heat capacitance. If now we try
to conduct a simulation using a heat signal that is very different than the one
used in fig. 15 (for instance, a always on signal that would drive the temperature
of the heat bed to 80◦C and maintain that temperature for 4 hours), a heat
capacitance of the box could change due to the extended exposure to a high
temperature thus rendering our simulation invalid. This is a common problem
in calibration and validation of models, and it is important to keep in mind that
the model is only valid for the conditions under which it was calibrated.

4.5 Visualization

We illustrate two DT visualisation approaches for the incubator prototype:

Incubator Dashboard InfluxDB provides a usable dashboard which gives a
structured view of temperature data, fan/heater states, and controller param-
eters/state, enabling easy system monitoring. Figure 16 shows an example of
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visualisation for a DT using the incubator. The dashboard combines graphs of
evolving signals and a real-time system state overview. Visualisations may also
include system controls and interactive elements, offering users deeper insights
into specific data. In addition new queries can be made with sophisticated filters
for aggregating information.

Fig. 16. A dashboard overview for the Incubator.

Incubator 4D Visualization A 4D visualization, shown in fig. 17, can be
started using Godot Engine, a free and open-source game engine. The code
subscribes to RabbitMQ and queues messages containing the sensor and actuator
information and updates the graphical objects accordingly.

AR: Incubator Prototype AR offers enhanced interaction by visualizing the
internal state of the incubator on a mobile device. This allows users to inspect
the tempeh without disrupting the incubation process, improving user experience
and system efficiency.

4.6 Monitoring

The monitoring service in the incubator DT is implemented using a Kalman
filter. For the full details we refer the reader to the technical report in [18].
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Fig. 17. Snapshot of a 4D visualisation of the incubator. From the online documenta-
tion [24].

Goal of the Kalman Filter. As illustrated in fig. 7, the Kalman Filter (KF)
combines measurements T b

k , inputs Pk, T
r
k , Gaussian distribution parameters

µTh
k−1

, ΣTh
k−1

, and a model in eq. (11), to estimate the parameters µTh
k
, ΣTh

k
:

[
µTh

k

ΣTh
k

]
= KF

([
µTh

k−1

ΣTh
k−1

]
,

[
Pk

T r
k

]
, T b

k

)
, with Th

K ∼ N (µTh
k
, ΣTh

k
). (9)

For using the Kalman filter, the first step is to write the discrete time state
space model of the system. The incubator system is described by the following
linear discrete time system:[

Th
k

T b
k

]
= A

[
Th
k−1

T b
k−1

]
+B

[
Pk

T r
k

]
, yk =

[
0 1
] [Th

k

T b
k

]
= T b

k , (10)

where Th, T b, and T r are the temperature of heater, the temperature of the air
inside the incubator, and the temperature of the room, respectively. P represents
the power supply on/off function. A and B are 2 by 2 matrices containing the
parameters of the system estimated by the calibration process.

The Kalman filter assumes that there is Gaussian process and measurement
noise, so the above model is actually given as follows:[

Th
k

T b
k

]
= A

[
Th
k−1

T b
k−1

]
+B

[
Pk

T r
k

]
+ ϵk, yk = T b

k + δk, (11)
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Fig. 18. An AR application for the incubator. Reproduced from [21].

where ϵk and δk are random variables representing process noise and measure-
ment noise, satisfying ϵk ∼ N (0, Rk) and δk ∼ N (0, Qk), respectively.

The algorithm was implemented into a service. We now show how the error
in the predictions of the Kalman filter can be used to detect anomalies such as
the lid being opened.

Opening the lid causes the system to violate the physical principles the model
was originally built on, and will therefore make the KF fail to track what is
happening. The result can be seen in fig. 19. The orange line is the control
signal of the heater, “high” means turning on the heater and “low” is turning
off. Green line, purple line, and blue line are predicted state form the model,
estimated state from KF, and measurement from the sensors respectively.

Fig. 19. Results of anomaly detection for incubator DT. Reproduced from [18]
and the full interactive plot can be inspected online at https://github.com/
INTO-CPS-Association/example_digital-twin_incubator/blob/master/software/
incubator/datasets/20210122_lid_opening_kalman/results.html.

https://github.com/INTO-CPS-Association/example_digital-twin_incubator/blob/master/software/incubator/datasets/20210122_lid_opening_kalman/results.html
https://github.com/INTO-CPS-Association/example_digital-twin_incubator/blob/master/software/incubator/datasets/20210122_lid_opening_kalman/results.html
https://github.com/INTO-CPS-Association/example_digital-twin_incubator/blob/master/software/incubator/datasets/20210122_lid_opening_kalman/results.html
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During the experiment, we opened the lid at 14:59:58 and 15:09:19. After
opening the lid for around 1 minute, we closed the lid at 15:00:58 and 15:10:25
respectively. As can be seen in fig. 19, after opening the lid at 14:59:58, the
anomaly was detected since there was a discrepancy between the estimated state
from KF and the sensory data.

After closing the lid, the purple line and the blue line were merging gradually,
i.e. the discrepancy reduced gradually. Before they converge together we opened
the lid again, the discrepancy started to increase again. Should we have waited
longer before opening the lid again, the discrepancy would have become virtually
zero.

Through the running example, the KF successfully demonstrated the ability
of state estimation. Such estimation succeeds in detecting an anomaly in the
incubator system.

The state estimation service is a crucial one, since its results can be used
to get valid initial states for the simulations conducted in decision support ser-
vices (introduced next), and the anomalies detected can be used to trigger the
reconfiguration service (detailed in subsection 3.4).

4.7 Decision Support

We present two decision support services offered by the incubator DT.

Power Supply Replacement. In the first example, consider a scenario where the
incubator is running, but the power supply needs replacement without inter-
rupting the tempeh fermentation process. A feasible solution involves boosting
the temperature before the replacement, allowing it to drift within a safe range
during the power outage. Several simulations can be performed to determine
the optimal heater boost time (H). As shown in fig. 20, these simulations help
identify the best value for H to avoid excessive overheating.

The figure illustrates three simulations that predict how the PTtwin will
behave under different temperature boosts. One simulation corresponds to the
current configuration, allowing an estimate of the time available for the power
supply swap. Another configuration causes overheating, while the third shows
the optimal balance between maintaining temperature and maximizing the time
available for replacement. The optimal temperature boost is then applied to
reconfigure the controller’s parameter (H) for best performance.

Design Space Exploration. In the second example, we explore an optimization
problem: balancing ideal temperature maintenance with minimizing actuator
effort. These objectives conflict because frequent power cycling to maintain tem-
perature increases actuator wear. To solve this, multiple simulations are run,
each prioritizing either temperature accuracy or actuator longevity. The simu-
lation results, displayed in fig. 21, reveal the trade-offs, with the Pareto front
showing optimal solutions that balance these objectives.

The parameter b controls how far the temperature can drop below the ideal
before triggering the heater. As shown in the figure, minimal actuator effort
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corresponds to a large value of b, but this leads to greater temperature error,
showing a clear trade-off between actuator longevity and temperature stability.

4.8 Reconfiguration

Aside from the reconfiguration related to the decision support services, another
example was implemented in the incubator, following the MAPE-K loop (recall
subsection 3.4). It reflects the fact that during tempeh fermentation, the user is
expected to open the lid to inspect the contents of the incubator.

If the lid of the incubator is opened unexpectedly, the system’s thermal model
and controller become invalidated. Using the MAPE-K loop:

– Monitor: The reconfiguration service collects temperature data and detects
the anomaly caused by the open lid.

– Analyze: It determines that the deviation is due to the lid being open,
affecting the thermal properties.

– Plan: The reconfiguration service decides to recalibrate the thermal model
and reoptimize the controller parameters to accommodate the new condi-
tions. This means setting a slightly lower temperature setpoint to both save
energy and avoid a safety hazard where the temperature overshoots if the
lid is closed [46].

– Execute: Updated parameters are applied to the controller.

Figure 22 shows the results of this process, highlighting the moment the lid
is opened and then closed. Notice how the controller profile changes to adapt to
the new conditions.

The reconfiguration service makes use of other services: the monitor phase
uses the results of the state estimation service to detect anomalies in its predic-
tion error, and the plan phase uses the results of the decision support services
to both estimate new parameters for the model (from a calibration service), and
estimate new controller optimal parameters (from the DSE service).

5 Summary and Future Work

This tutorial covered the fundamentals of Digital Twin technology, the building
blocks necessary to develop a DT, and a practical case study of an incubator
system, in a top down manner. Most content has been published elsewhere in a
fragmented manner. The value in this tutorial is to bring everything together in
a coherent manner.

One aspect that has not been covered in this tutorial, is compositions of DTs.
A logical extension of the incubator to illustrate this, is to consider the scenario
of multiple Incubator DTs. Consider a factory producing large quantities of
Tempeh through many incubators that need to be managed both at unit level
and at the aggregate level. The PTs can interfere with each other, for example, by
sharing adjacent walls. The environment is also shared, for example, through the
same air conditioning system. The corresponding DT services of each incubator
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may need to cooperate to ensure optimal operation. Distributed DSE needs to
be used, to optimally configure controllers. A similar argument can be made
for reconfiguration services. Further challenges spanning from this scenario have
been sketched in [16].

Digital Twin technology holds significant potential for transforming indus-
tries by enabling more efficient, reliable, and adaptable systems. As research
and technology continue to advance, the applications of DTs are expected to
expand, offering new opportunities for innovation. We hope this tutorial plays
an important role in that direction by breaking down this complex technology
into simple, well understood concepts.

Acronyms

AR Augmented Reality
CPS Cyber-Physical System
DSE Design Space Exploration
DT Digital Twin
EKF Extended Kalman Filter
IVP Initial Value Problem
KF Kalman Filter
ODE Ordinary Differential Equation
PT Physical Twin
SOA Service-Oriented Architecture
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Plan Power Outage
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Fig. 20. What-if simulation results for controller configuration. At roughly 400 seconds
a power outage plan is initiated which leads to the beginning of 3 consecutive simula-
tions with 3 different controller configurations, each representing a different value for
the parameter H of the controller. One of the simulations is unsafe because it leads
toa very high maximum temperature. The optimal configuration of the controller is
indicated by the Orange Line.
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Fig. 21. DSE results for the incubator case-study with two conflicting objectives. Re-
produced from [21].

Fig. 22. Experimental result of self-adaptation. Adapted from [17].
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