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Abstract. Correct co-simulation results require a careful consideration
of how the interacting simulators are implemented. In version 2.0 of the
FMI Standard, input handling implementation is left implicit, which
leads to the situation where a simulator can be interacted with in a
manner that its implementation does not expect, yielding incorrect re-
sults.
In this paper, we build on prior work to make information about each
simulator implementation explicit, in order to derive correct interactions
with it. The formalization we use is specific to two kinds of contracts, but
could serve as a basis to a general approach to black box co-simulation.
The algorithm we propose generates a co-simulation execution plan in
linear time. It has been successfully applied to an industrial case study,
and the results are available online.

Keywords: co-simulation, prolog, contract-based code generation, con-
straint solving.

1 Introduction

Correct co-simulation results require a careful consideration of how the inter-
acting simulators are implemented (e.g., see [12,13,19], and references thereof).
Co-simulation is a technique to combine multiple black-box simulators, each
responsible for a model, in order to compute the behavior of the combined mod-
els over time [16]. The simulators, often developed independently from each
other, are coupled using a master algorithm, also often developed independently,
that communicates with each simulator via its interface. This interface com-
prises functions for setting/getting inputs/outputs, and computing the associ-
ated model behavior over a given interval of time. An example of such interface,
the terminology of which we adopt here, is the Functional Mockup Interface
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(FMI) Standard [3, 4]. In the FMI Standard, the simulators are called Func-
tional Mockup Units (FMUs).

The widespread adoption of co-simulation is hindered by the lack of guar-
antees on the correctness of the results [13]. Indeed, a recent empirical survey
has shown that practitioners still experience difficulties in the configuration of
co-simulations [17,18]. Version 2.0 of the FMI Standard does not impose a single
way of interacting with an FMU (see Section 2.1). However, different interac-
tion protocols with an FMU lead to assumptions on the implementation of that
FMU. Recent work [12] shows that one of the reasons for these difficulties is the
lack of information about the implementation of each FMU.

Contribution. In this paper, we propose a way to model simulator capabilities,
which we denote as contracts, and automatically generate fixed-step master al-
gorithms that satisfy those contracts. While our long term research goal is to
consider arbitrary contracts, in this paper, we restrict our attention to input
approximation and output calculation contracts. These contracts correspond to
a partial view of how the FMUs implement their input approximation schemes
and the algebraic dependencies used to calculate the outputs. Hence, they do
not expose intellectual property. As we argue next, respecting these contracts is
a necessary condition to obtaining correct results. In the future, more advanced
master algorithms can be generated if simulators expose more capabilities (Sec-
tion 5 discusses some of these).

Prior Work. The need for these contracts has been identified in prior work [11]
and an incomplete solution is advanced in [12]. The solution proposed in [11]
works under the assumptions that FMUs have the same contract for every input
(because it assumes FMUs have a single input/output vector), and the solution
described in [12] neglects how the outputs are computed [12, Assumption 2]. The
submitted manuscript [10] addresses these omissions and describes the semantics
of a master algorithm that satisfies such contracts. Since that formalization is
defined in pure Prolog, it can be used to generate master algorithms as well. How-
ever, this process takes exponential time in the size of the co-simulation scenario
(which, for long running co-simulation, becomes negligible). With the current
manuscript, we propose a linear time algorithm to perform such generations.

Structure. The next section recalls the formalization proposed in [10], shows why
different contracts require different FMU implementations, and formalizes our
research problem. Then, Section 3 describes our contribution and application
results. Section 4 describes related work and Section 5 concludes.

2 Background

In this section, we provide a formalization of FMI co-simulation with a restricted
set of contracts. We show, through a simple but representative example, that
minimizing the error in the co-simulation involves a careful consideration of
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both master and FMU implementations of such contracts. Such formalization
has been implemented in Prolog, presented in [10], and available online4.

2.1 FMUs and Contracts

Definition 1. An FMU with identifier c is represented by the tuple

〈Sc, Uc, Yc, setc, getc, doStepc〉 ,

where: – Sc represents the state space; – Uc and Yc the set of input and output
variables, respectively; – setc : Sc × Uc × V → Sc and getc : Sc × Yc → V
are functions to set the inputs and get the outputs, respectively (we abstract the
set of values that each input/output variable can take as V); and – doStepc :
Sc × R≥0 → Sc is a function that instructs the FMU to compute its state after
a given time step.

a b

Fig. 1. Running
Example.

If an FMU is in state s
(n)
c at time t, doStepc(s

(n)
c , H) ap-

proximates the state of the corresponding model at time t+H.

The result of this approximation is encoded in state s
(n+1)
c . If

the model is continuous, the FMU will internally approximate
the evolution in the interval [t, t+H], using an approximation
function to estimate the values of the inputs in that interval.
In this formalization, we leave this function implicit in the
doStepc, as reflected in the version 2.0 of the FMI Standard.

Definition 2 (Scenario). A scenario is a structure 〈C,L〉 where each identi-
fier c ∈ C is associated with an FMU, as defined in Definition 1, and L(u) = y
means that the output y is connected to input u. Let U =

⋃
c∈C Uc and Y =⋃

c∈C Yc, then L : U → Y . It is common to represent a co-simulation scenario
as a diagram. For example, Figure 1 shows an example scenario with two FMUs,
connected in a feedback loop.

The following definitions correspond to the operations that are permitted in
a co-simulation, and are correlated later in Definitions 8 to 10.

Definition 3 (Step). Given a scenario 〈C,L〉, a co-simulation step, or just
step, is a finite ordered sequence of FMU function calls (fi)i∈N = f0, f1, . . . with
fi ∈ F =

⋃
c∈C {setc, getc, doStepc} , and i denoting the order of the function

call.

Definition 4 (Initialization). Given a scenario 〈C,L〉, we define the initial-
ization procedure (Ii)i∈N in the same way as a step, with Ii ∈ F .

Definition 5 (Master). Given a scenario 〈C,L〉, a step size H, a step (fi)i∈N,
and an initialization procedure (Ii)i∈N, a master algorithm is a structure defined

as A =
〈
C,L,H, (Ii)i∈N , (fi)i∈N

〉
.
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Fig. 2. Generic master.

Figure 2 shows the main steps of any master algorithm, and sheds light on
the relationship between the initialization and step procedures.

Algorithms 1 to 3 are possible step procedures for the scenario introduced in

Figure 1. We use the notation s
(0)
c , s

(1)
c , ... to stress the transformations on the

internal state of the FMU. The index is independent of the co-simulation time, so
the state can undergo multiple transformations at the same co-simulation time.

Version 2.0 of the FMI standard [4] is not sufficiently rigorous to conclude
whether any of the three algorithms is not a valid step. In fact, page 104 con-
tains “There is the additional restriction in ’slaveInitialized’ state that it is not
allowed to call fmi2GetXXX functions after fmi2SetXXX functions without an
fmi2DoStep call in between”, invalidating Algorithms 2 and 3. However, this is
contradicted by the fact that the standard supports feed-through dependencies,
which induce algebraic dependencies between inputs and outputs. To quote the
standard:

– “’output’: The variable value can be used by another model or slave. The
algebraic relationship to the inputs is defined via the dependencies attribute
of <fmiModelDescription><ModelStructure><Outputs><Unknown>.”, page
45.

– “Attribute dependencies defines the dependencies of the outputs from the
knowns [. . . ] at the current Communication Point (CoSimulation).”, page
58.

The need for feed-through is also described in the scientific literature by the
founders of the standard (e.g., [1, Fig. 3]). Since even the simplest mechanical
systems, such as mass-spring-dampers, when coupled in a co-simulation, exhibit
such feed-through effect [14], we are convinced that the statement on page 104
is incorrect. Therefore, Algorithms 1 to 3 satisfy the standard.

We now show that the results produced by each of these algorithms depend on
the implementation of the FMUs. Regarding the feed-through of each FMU, as-
sume that the output ya depends instantaneously on, or has a feed-through from,
the input ua, and that the output yb does not depend instantaneously on ub. The
instantaneously dependency condition can be expressed formally as: ∃v, v′ ∈ V,

4 http://msdl.cs.mcgill.ca/people/claudio/projs/PrologCosimGeneration.zip

http://msdl.cs.mcgill.ca/people/claudio/projs/PrologCosimGeneration.zip
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Algorithm 1

1: s(1)a ← doStepa(s
(0)
a , H)

2: s
(1)
b ← doStepb(s

(0)
b , H)

3: va ← geta(s
(1)
a , ya)

4: vb ← getb(s
(1)
b , yb)

5: s
(2)
b ← setb(s

(1)
b , ub, va)

6: s(2)a ← seta(s
(1)
a , ua, vb)

7: s(0)a ← s(2)a

8: s
(0)
b ← s

(2)
b

Algorithm 2

1: s
(1)
b ← doStepb(s

(0)
b , H)

2: s(1)a ← doStepa(s
(0)
a , H)

3: v ← getb(s
(1)
b , yb)

4: s(2)a ← seta(s
(1)
a , ua, v)

5: v ← geta(s
(2)
a , ya)

6: s
(2)
b ← setb(s

(1)
b , ub, v)

7: s(0)a ← s(2)a

8: s
(0)
b ← s

(2)
b

Algorithm 3

1: s
(1)
b ← doStepb(s

(0)
b , H)

2: v ← getb(s
(1)
b , yb)

3: s(1)a ← seta(s
(0)
a , ua, v)

4: v ← geta(s
(1)
a , ya)

5: s
(2)
b ← setb(s

(1)
b , ub, v)

6: s(2)a ← doStepa(s
(1)
a , H)

7: s(0)a ← s(2)a

8: s
(0)
b ← s

(2)
b

Fig. 3. Three algorithms conforming to the FMI Standard (version 2.0). The last two
lines represent the assignment of the new state to the state to be used in the next
co-simulation step.

such that s
(1)
a = seta(s

(0)
a , ua, v), s

(2)
a = seta(s

(0)
a , ua, v

′), and geta(s
(1)
a , ya) 6=

geta(s
(2)
a , ya). With these suppositions, Algorithm 1 is inadequate, because the

value of ya can only be computed after the value of ua is known.

The feed-through information is a piece of information about the implemen-
tation of the FMU that allows us to code master algorithms that produce better
results. It is natural to wonder whether there are other aspects that we can use
to distinguish Algorithms 2 and 3.

Comparing Algorithms 2 and 3, one notices that, in Algorithm 3, the input
ua is set after doStepb is invoked. This means that, FMU b advances in time,
produces an input to FMU a, and only after does FMU a catch up to the time
that b is in. Indeed, this is the main difference between a Gauss-Seidel master
algorithm, and a Jacobi one. These are well known algorithms in the literature,
and accepted as being compatible with the FMI Standard [2].

t-H t t+H
Legend

inputs of a

t-H t t+H

Fig. 4. Application of an
interpolation formula to
inputs with the wrong
timestamps.

However, the implementation of FMU a in Al-
gorithm 3 must differ from the implementation of
FMU a in Algorithm 2. To see why, suppose that
a does a linear interpolation of its inputs. An inter-
polation formula between two given inputs vt and
vt+H , expected at times t and t + H, respectively,
is given by ũa(t + ∆t) = vt + vt+H−vt

H ∆t. In con-
trast, an extrapolation between two given inputs vt−H
and vt, expected at times t − H and t, is given by
ũa(t+∆t) = vt + vt−vt−H

H ∆t. Note the difference be-
tween the two formulas and the expected timestamps
of the inputs. Since the timestamps of the inputs are
implicit in the FMI Standard, the same FMU will ei-
ther implement an interpolation, or an extrapolation,
but cannot implement both.
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If FMU a implements an interpolation, and is used in Algorithm 2, then the
result will be a delayed input approximation of ua. This is because an interpo-
lation will given the wrong inputs, for instance, with timestamps t − H and t,
instead of t and t+H. The result is illustrated Figure 4. For purely continuous
systems, this delay may not introduce substantial errors. However, as has been
shown in [20], in systems with discontinuities, the delay can propagate to trigger
abrupt changes in the systems’ behavior.

We now formalize the contracts over the outputs of the FMU (input/output
feed-through), and the contracts over the inputs (interpolation or extrapolation).
We use the more generic term reactivity to the contracts over the inputs because
it can be used for purposes other than input approximation implementations.
For example, a software FMU may not implement a linear input interpolation,
but still be reactive to reflect the fact that it runs with a very short sampling
interval (short relative to co-simulation step size).

Definition 6 (Feed-through). The input uc ∈ Uc feeds through to output
yc ∈ Yc, that is, (uc, yc) ∈ Dc, when there exists v1, v2 ∈ V and sc ∈ Sc, such
that getc(setc(sc, uc, v1), yc) 6= getc(setc(sc, uc, v2), yc).

Definition 7 (Reactivity). For a given FMU c with input uc ∈ Uc, Rc(uc) =
true if the function doStepc assumes that the input uc comes from a FMU that
has advanced forward relative to FMU c.

a b Delayed
Reactiver

d
Legend

Feedthrough

d

r

FMU

Fig. 5. Contracts notation.

The feed-through and reactivity information for the scenario introduced in
Figure 1 can be represented visually as in Figure 5, i.e., FMU a is reactive and
has feed-through, whereas FMU b is delayed.

2.2 Master Algorithms

In order to determine whether a given master algorithm satisfies a given scenario
and contracts, we need to formalize the constraints that the contracts impose on
the valid master algorithms. For that, we need to formalize the run-time state of
each FMU, and how the invocation of each co-simulation operation evolves this
state.

Definition 8 (Run-time State). Given an FMU c as defined in Definition 1,
the run-time state of c is a member of the set SR

c = R≥0 × SR
Uc
× SR

Yc
, where

R≥0 is the time base, SR
Uc

=
∏

uc∈Uc
SR
uc

represents the aggregated state set of
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the input ports, SR
uc

= R≥0 × {defined , undefined} represents the set of states of
an input port uc ∈ Uc, SR

Yc
=
∏

yc∈Yc
SR
yc

represents the aggregated state set of

the output ports, and SR
yc

= R≥0 × {defined , undefined}.

Note that the run-time state of an FMU c differs from the state of the FMU.
The later belongs to the state space Sc, while the former is defined next. More-
over, note that each port has its own timestamp, the reason of which will become
clear when we define how each co-simulation operation changes the run-time
state of the co-simulation.

Definition 9 (Co-simulation State). Given a co-simulation scenario 〈C,L〉,
as defined in Definition 2, the co-simulation state is a member of the set SR

C =∏
c∈C S

R
c .

For the scenario introduced in Figure 1, the run-time state set is SR
a × SR

b ,
with SR

a = R≥0 × SR
ua
× SR

ya
, and SR

b = R≥0 × SR
ub
× SR

yb
. Before initialization

(recall Figure 2), every port has not yet been defined, and the timestamp of the
ports and FMUs is 0. To improve readability, we will use a visual notation to
represent the state, as illustrated in Figure 6.

a b
Legend

FMU

Timestamp

t

Defined
Undefined

0

0 0

0 0

t

0

Init.

Step

r

d a b
0

0 0

0 00

r

d

a b
t

t t

t tt

r

d a b
t+H

t+H t+H

t+H t+Ht+H

r

d

Fig. 6. Visual representation of the state before and after initialization/step.

Definition 10 (Consistent State). A co-simulation run-time state SR
C is

consistent when all FMUs and ports have the same timestamp, and all ports
are either defined, or undefined. We shall use the notation Consistent(SR

C ) =
(defined , t) or Consistent(SR

C ) = (undefined , t), when such is the case, respec-
tively.

Using these definitions and notation, we can summarize the purpose of the
initialization process, depicted in Figure 2, and defined in Definition 4: to take
a run-time state SR

C where Consistent(SR
C ) = (undefined , 0), and transform it

into a run-time state SR
C
′

where Consistent(SR
C
′
) = (defined , 0). Similarly, one

can summarize the purpose of the step process, defined in Definition 3: to take a
run-time state SR

C where Consistent(SR
C ) = (defined , t), and transform it into a

run-time state SR
C
′
where Consistent(SR

C
′
) = (defined , t+H). Figure 6 illustrates

this for the example in Figure 1.
We use structural operational semantics (SOS) notation to represent the run-

time state evolution rules.



8 C. Gomes et al.

Definition 11. Given a scenario 〈C,L〉, a set of contracts C =
⋃

c∈C {(Rc, Dc)}
a finite sequence of operations (fi)i∈N = f0, f1, . . ., with fi ∈ F as used in
Definitions 3 and 4, and a run-time state SR

C as in Definition 9, we define the
application of (fi) to SR

C in SOS as〈
C;L; C;SR

C ; f0
〉
⇒ SR

C
′〈

C;L; C;SR
C ; f0, f1, . . .

〉
→
〈
C;L; C;SR

C
′
; f1, . . .

〉
〈
C;L; C;SR

C ; f
〉
⇒ SR

C
′〈

C;L; C;SR
C ; f

〉
→
〈
C;L; C;SR

C
′
; ∅
〉

The following definitions detail the⇒ reduction (not to be confused with the
application operation →, specified in Definition 11). Examples of this reduction
are shown in Figure 7. We will use the notation for variables that need not be
named.

Definition 12 (Output Computation). The reduction〈
C;L; C;SR

C ; getc( , yc)
〉
⇒ SR

C

′

represents the effect on the run-time state of operation getc( , yc). The reduction
is valid if, in SR

C , all inputs that feed-through to yc are defined and have the same

timestamp t. In that case, SR
C
′

is obtained by setting the run-time state of yc in
SR
C to defined with timestamp t.

Definition 13 (Input Computation). The reduction〈
C;L; C;SR

C ; setc( , uc, v)
〉
⇒ SR

C

′

represents the effect on the run-time state of operation setc( , uc, v). The reduc-
tion is valid if, in SR

C , all outputs connected to uc are defined and have the same

timestamp t. In that case, SR
C
′

is obtained by setting the run-time state of uc in
SR
C to defined with timestamp t.

Definition 14 (Step Computation). The reduction〈
C;L; C;SR

C ; doStepc( , H)
〉
⇒ SR

C

′

represents the effect on the run-time state of operation doStepc( , H). Let t de-
note the timestamp of c in SR

C . The success of this reduction depends on satisfying
all the following conditions:
– For every input port uc that has a non-reactive contract in C, SR

C must con-
tain the state of uc as defined at timestamp t.

– For every input port uc that has a reactive contract in C, SR
C must contain

the state of uc as defined at timestamp t+H.
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doStepb(_,H)a b
t

t t

t tt

r

d a b
t

t t+H

t t+Ht

r

d

a b
t

t t+H

t t+Ht

r

dseta(_,ua,_)a b
t

t+H t+H

t t+Ht

r

d

getb(_,yb)

Fig. 7. Example application of operations on the run-time state.

If such conditions hold, then SR
C
′

is obtained by setting the run-time state of c,
and all its output ports, to timestamp t+H, and by setting all the output ports
to undefined.

Figure 7 shows the application of the first three operations of Algorithm 3
on the run-time state of the co-simulation at the beginning of a step.

Our problem can now be formalized.

Problem 1. Given a scenario 〈C,L〉, and the set of contracts C =
⋃

c∈C {(Rc, Dc)},
generate a master algorithm

A =
〈
C,L,H, (Ii)i∈N , (fi)i∈N

〉
,

such that: 〈
C;L; C;SR

C ; (Ii)i∈N
〉
→∗

〈
C;L; C;SR

C

(0)
; ∅
〉

and〈
C;L; C;SR

C

(j)
; (fi)i∈N

〉
→∗

〈
C;L; C;SR

C

(j+1)
; ∅
〉
,

where SR
C , SR

C
(0)

, SR
C

(j)
, and SR

C
(j+1)

, are such that

Consistent(SR
C ) = (undefined , 0), Consistent(SR

C

(0)
) = (defined , 0),

Consistent(SR
C

(j)
) = (defined , t), Consistent(SR

C

(j+1)
) = (defined , t+H).

3 Generation of Co-simulation Algorithms

In this section, we propose a graph-based master generation algorithm, with com-
plexity that is linear in the number of ports and FMUs in a given co-simulation
scenario. We will focus on the generation of the step procedure, as the genera-
tion of the initialization procedure can be easily derived. The key insight in our
contribution is the following.

Proposition 1. For each c ∈ C of a given co-simulation scenario: doStepc( , H)
needs to be executed once, and only once; for each yc ∈ Yc, getc( , yc) needs to
be executed once; and for each uc ∈ Uc, setc( , uc, ) needs to be executed once.



10 C. Gomes et al.

Proposition 1 allows us to build a graph representing every operation that
might be executed in a step procedure. The edges of this graph represent prece-
dence constraints, and a topological sorting of the graph yields a valid step
procedure. We provide a proof sketch of this claim in Section 3.1.

Definition 15 (Step Operation Graph). Given a co-simulation scenario
〈C,L〉, and a set of contracts C =

⋃
c∈C {(Rc, Dc)}, we define the step operation

graph where each node represents an operation setc( , uc, ), doStepc( , H), or
getc( , yc), of some fmu c ∈ C, yc ∈ Yc, and uc ∈ Uc. The edges are created
according to the following rules:
1. For each c ∈ C and uc ∈ Uc, if L(uc) = yd, add an edge getd( , yd) →

setc( , uc, );
2. For each c ∈ C and yc ∈ Yc, add an edge doStepc( , H)→ getc( , yc);
3. For each c ∈ C and uc ∈ Uc, if Rc(uc) = true, add an edge setc( , uc, )→

doStepc( , H);
4. For each c ∈ C and uc ∈ Uc, if Rc(uc) = false, add an edge doStepc( , H)→

setc( , uc, );
5. For each c ∈ C and (uc, yc) ∈ Dc, add an edge setc( , uc, )→ getc( , yc).

Figure 8 shows an example graph, constructed from the example in Figure 5.

3.1 Correctness

getb(_,yb)

doStepb(_,H)

seta(_,ua,_)

doStepa(_,H)

geta(_,ya) setb(_,ub,_)

Fig. 8. Example step opera-
tion graph.

We now provide a proof sketch of the claim that
a topological sorting of the above defined graph
will yield a valid step procedure. The proof is di-
vided into two parts. The first part proves that
each operation is invoked in the correct order, with
respect the conditions for its execution, detailed
in Definitions 12 to 14. The second part proves
Proposition 1, which essentially means that the
graph is complete. The proof sketch also estab-
lishes that the successive application of the oper-
ations, in the topological order, satisfy the condi-
tions in problem 1, thereby transforming a consistently defined run-time state
with timestamp t into a consistently defined run-time state at time t+H.

We will assume a given non-trivial co-simulation scenario. A non-trivial sce-
nario contains at least two fmus, every input is connected to an output, there
are no self-connections, and it is possible to construct a topological ordering of
the step operation graph.

Ordering We now sketch the proof that each operation in the topological or-
dering satisfies the conditions for its execution, as detailed in Definitions 12
to 14.

Given a non-trivial scenario 〈C,L〉, and a set of contracts C, consider a topo-
logical ordering (fi)i∈N of the graph constructed as in Definition 15, and let us
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prove the correct ordering by induction on i. Let SR
C be the given run-time state

before the step procedure is executed. It satisfies Consistent(SR
C ) = (defined , t)

for some t.

i = 1. Let us now consider the form of f1:
– f1 = getc( , yc), for some c ∈ C and yc ∈ Yc. This case is impossible, as

every output operation in c must be preceded by a step operation of c.
– f1 = setc( , uc, ), for some c ∈ C and uc ∈ Uc. This case is impossible as

every input operation is preceded by at least one output operation.
– f1 = doStepc( , H), for some c ∈ C. This case is possible, and every input

of c is delayed (otherwise there would be no topological sort). Since every
input uc is delayed, and since Consistent(SR

C ) = (defined , t), the conditions
in Definition 14 hold.

i > 1. Let SR
C

(i−1)
denote the run-time state after the (successful) invocation of

operations f1, . . . , fi−1 in the topological order. Let us now consider the form of
fi:
– fi = getc( , yc), for some c ∈ C and yc ∈ Yc. In this case, according to

Definition 15, it must be the case that: doStepc( , H) has been invoked
successfully; setc( , uc, ) has been invoked successfully, for each (uc, yc) ∈
Dc; and, the timestamp of yc in SR

C
(i−1)

is t+H. Since SR
C contains all inputs

defined at timestamp t, the only reason to invoke setc( , uc, ) on any input
uc is to set its timestamp to t + H. Therefore, every (uc, yc) ∈ Dc has the
same timestamp t+H. This satisfies the conditions in Definition 12.

– fi = setc( , uc, ), for some c ∈ C and uc ∈ Uc. With a similar argument to
the previous case, we conclude that every yd connected to uc is defined and
has the same timestamp t+H.

– fi = doStepc( , H), for some c ∈ C. In this case, according to Definition 15,
we know that: setc( , uc, ) has been invoked successfully, for each uc ∈ Uc

such that Rc(uc) = true; and, setc( , uc, ) has not been invoked yet, for
each uc ∈ Uc such that Rc(uc) = false. Therefore, for every uc ∈ Uc, if
Rc(uc) = true, then its timestamp is t + H, and if Rc(uc) = false then its
timestamp is t. This satisfies the conditions in Definition 14.

Since all possible options are satisfied, the topological ordering is correct.

Completeness (Proof of Proposition 1) Given a non-trivial scenario 〈C,L〉,
and a set of contracts C, consider a topological ordering (fi)i∈N = f1, . . . , fN of
the graph constructed as in Definition 15. Let SR

C be the given run-time state
before the step procedure is executed. It satisfies Consistent(SR

C ) = (defined , t)
for some t. Let us define a function that assigns a natural number to each run-
time state: Remaining(x, t) is the number of ports and fmus whose timestamp
is less than t. For example, Remaining(SR

C , t+H) denotes the number of ports
and the number of FMUs in the scenario 〈C,L〉, and Remaining(SR

C , t) = 0.

Let SR
C

(i−1)
denote the run-time state after the (successful) invocation of opera-

tions f1, . . . , fi−1 in the topological order. Now we show by induction on i that
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Remaining(SR
C

(i)
, t+H) = N − i. This will establish that Remaining(SR

C
(N)

, t+

H) = 0, which implies that Consistent(SR
C

(N)
) = (defined , t+H).

i = 1. As established in Section 3.1, f1 = doStepc( , H), and the conditions in
Definition 14 hold. Therefore, the operation is executed and the timestamp of c

becomes t+H in SR
C

(1)
.

i > 1. Assume that Remaining(SR
C

(i−1)
, t+H) = N − (i− 1). As in Section 3.1,

every possible form of fi can be executed. Hence, let us consider the effects of
each execution in turn:

– fi = getc( , yc), for some c ∈ C and yc ∈ Yc. In this case, it is easy to
see that the getc( , yc) operation has not been executed before, therefore

the timestamp of yc in SR
C

(i−1)
is t. After execution, the timestamp of yc in

SR
C

(i)
is t+H. Therefore, Remaining(SR

C
(i)
, t+H) = Remaining(SR

C
(i−1)

, t+
H) + 1 = N − i.

– fi = setc( , uc, ), for some c ∈ C and uc ∈ Uc. The argument is similar to
above.

– fi = doStepc( , H), for some c ∈ C. The argument is similar to above.

This concludes our proof sketch for the completeness of the graph based
approach to generating master algorithms.

3.2 Optimization

In this section, we describe a simple optimization to the topological ordering that
leverages the fact that the FMI standard allows multiple ports to be set and get
in bulk. Essentially, we have modified the topological ordering procedure to group
operations that can be executed in parallel. If multiple set or get operations on
the same FMU belong to the same group, then these can be merged into a single
operation.

The correctness of this optimization can be established by noting that this
grouping procedure amounts to representing all possible topological orderings,
and Section 3.1 establishes that each ordering is correct. The next section shows
an example application of this procedure.

3.3 Application

Our contribution has been implemented in Prolog and is available online5. Con-
sider the scenario in Figure 9. The optimized generated step procedure is shown
in Algorithm 4.

5 http://msdl.cs.mcgill.ca/people/claudio/projs/PrologCosimGeneration.zip

http://msdl.cs.mcgill.ca/people/claudio/projs/PrologCosimGeneration.zip
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Fig. 9. Case study scenario.
Based on [12].

Algorithm 4

1: s
(1)
load ← doStepload (s

(0)
load , H)

2: s(1)env ← doStepenv (s
(0)
env , H)

3: [vx, vv, vxaft ]← getload (s
(1)
load , [x, v, xaft])

4: [vpsu , vref ]← getenv (s
(1)
env , [psu, ref ])

5: s
(1)
plant ← setplant (s

(0)
plant , [psu, x, v] , [vpsu , vx, vv]),

6: s
(2)
plant ← doStepplant (s

(1)
plant , H),

7: [vw, vf ]← getplant (s
(2)
plant , [w, f ]),

8: s
(1)
ctrl ← setctrl (s

(0)
ctrl , w, vw)

9: s
(2)
load ← setload (s

(1)
load , f, vf ),

10: s
(2)
ctrl ← doStepctrl (s

(1)
ctrl , H),

11: vo ← getctrl (s
(2)
ctrl , o)

12: s
(3)
ctrl ← setctrl (s

(2)
ctrl , [ref , xaft]),

13: s
(3)
plant ← setplant (s

(2)
plant , o, vo),

14: s
(0)
plant ← s

(3)
plant , s

(0)
load ← s

(2)
load

15: s(0)env ← s(1)env , s
(0)
ctrl ← s

(3)
ctrl

4 Related Work

The closest work to our own is reported in [21], where a formalization of the
semantics of FMI is proposed. However, our work differs in two key aspects: first,
the objective of [21] is to prove properties about the system being co-simulated,
whereas our goal is to guarantee certain basic properties of the co-simulation;
second, the aforementioned work does not accommodate for simulator contracts,
but includes the rollback operation. Ongoing work is revising the contracts and
semantics in order to accommodate the rollback operation.

Prior work [5–8, 15] is focused on the correct synchronization of a discrete
event simulator with a continuous one. This seminal work assumes a standard
synchronization algorithm, where, in the presence of possible state events, the
discrete simulator is always one step behind the continuous simulator, to avoid
rollbacks. This is an example of reactive simulator contract. Ongoing work is
exploring how to accommodate step rejection in the simulator contracts, to allow
for hybrid co-simulation master algorithms.

Instead of enforcing a correct synchronization, some work has focused on
finding the maximum allowed delay in the event detection. For instance, the
work in [9] explores how the energy of a hybrid system can be increased when
state events are not accurately reproduced by the co-simulation. It presents a
way to find the largest co-simulation step that prevents this from happening.

5 Conclusion

Driven by the need to make explicit information regarding the implementation
of black box simulators, we have built on a prior formalization of the FMI stan-
dard to derive a procedure that generates master algorithms that respect such
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implementations. This algorithm consists of constructing a topological ordering
of a precedence graph. An optimization, whereby input/output operations on
the same simulator are clustered together, was proposed.

The key insight that makes this algorithm possible is the fact that each co-
simulation operation on each port and fmu needs to be executed only once.
In the future, when we consider more complex master algorithms, such as the
ones supporting rollback and step size adaptation operations, this will no longer
be true, and more research will be required to efficiently derive these master
algorithms.

Our algorithm was applied successfully to an industrial case, developed in
prior work [12]. The code to reproduce the experiments in this paper is available
for download6.

References

1. Arnold, M., Clauss, C., Schierz, T.: Error Analysis and Error Estimates for Co-
Simulation in FMI for Model Exchange and Co-Simulation V2.0 LX(1), 75. https:
//doi.org/10.2478/meceng-2013-0005

2. Bastian, J., Clauß, C., Wolf, S., Schneider, P.: Master for Co-Simulation Using
FMI. In: 8th International Modelica Conference. pp. 115–120. Linköping University
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