
Application of Model-Based Testing to Dynamic Evaluation of
Functional Mockup Units

Cláudio Gomes1 Romain Franceschini1,4 Nick Battle2 Casper Thule3 Kenneth Lausdahl3

Hans Vangheluwe1 Peter Gorm Larsen3

1University of Antwerp, Belgium,
{claudio.gomes,romain.franceschini,hans.vangheluwe}@uantwerp.be

2Independent, United Kingdom, nick.battle@acm.org
3Aarhus University, Denmark, {casper.thule,lausdahl,pgl}@eng.au.dk

4University of Corsica, France

Abstract
A successful co-simulation standard is crucial in applying
co-simulation in large scale distributed development pro-
cesses. A factor that affects the success of a standard is
how easily a vendor can implement it. In this paper, we
describe an approach to facilitate the implementation of
the Functional Mock-up Interface standard. In particular,
we propose the use of model-based testing for evaluating
the tools that export Functional Mock-up Units (FMUs).
This has the benefit that the model used as documentation
to describe the possible behaviors of an FMU, can also be
used to test it. These principles are embodied in a tool,
which is open source, and available online. We then use
this tool to evaluate the FMUs available in the FMI Cross-
check repository.
Keywords: model-based testing, functional mock-up inter-
face standard, co-simulation

1 Introduction
Multi-paradigm modeling is a natural response to the chal-
lenges posed by the development of complex systems
(Vangheluwe; Vangheluwe et al.). These challenges arise
not only from essential system complexity (e.g., many in-
teracting, heterogeneous, components), but also from the
ensuing development process (e.g., concurrency and dis-
tribution) (Tomiyama et al.). Model integration is the
means by which multiple models, constructed in different
tools and formalisms, can be integrated to answer ques-
tions about the system these models represent.

Co-simulation is a technique where the models are in-
tegrated through their corresponding simulators (Kübler
and Schiehlen, a,b; Gomes et al., f; Hafner and Popper;
Palensky et al.). Each simulator, given inputs to the model,
is capable of producing outputs, both function over time.
Therefore simulators cooperate in producing the overall
behavior of the system.

While co-simulation can only be used to answer ques-
tions about a system’s behavior, it has the advantage that
the contents of each model need not to be disclosed, as the
model and solver can be encapsulated in a black box. It

is therefore a suitable technique to address the challenges
arising from concurrent and distributed development pro-
cesses, where many tools/formalisms might be used and
external suppliers may play a role.

Co-simulation standards are crucial enablers. These
prescribe the interfaces with which inputs/outputs/param-
eters can be set/obtained and, optionally, the interaction
protocol that each simulator abides to. For example,
the Discrete Event System (DEVS) specification that pre-
scribes the integration protocol between simulators (Zei-
gler; Gomes et al., f; Van Tendeloo and Vangheluwe). On
the other hand, the Functional Mock-up Interface (FMI)
Standard for co-simulation (FMIv2.0; Blochwitz et al.,
a,b) prescribes the interfaces, but under-specifies the in-
teraction protocol. In this paper, we focus on the FMI
version 2.0. In the FMI terminology, the simulators are
referred to as Functional Mock-up Units (FMUs).

Past research (Schweiger et al., a,b), and the co-authors’
experience, have shown that there are some ambiguities in
the FMI standard (see, e.g., Section 5.2), which lead to not
only technical difficulties (e.g., co-simulations crash), but
also numerical difficulties (e.g., instabilities. For instance,
the second and third most eminent barriers in the adoption
of the FMI standard are: “Lack of transparency in fea-
tures supported by FMI tools” and “insufficient documen-
tation and a lack of examples, tutorials, etc.” (Schweiger
et al., b). Other somewhat barriers include: “It is diffi-
cult to implement FMUs”, and “There is a lack of tools
that sufficiently support FMI” (Schweiger et al., a). In the
same empirical study, the authors identified the most ex-
perienced issue to be “Difficulties in practical aspects, like
IT-prerequisites in cross-company collaboration.”

Goal. We aim at supporting the community in rooting
out possible ambiguities and improving the conformance
to the standard. We propose an approach to the devel-
opment of an evaluation tool for a co-simulation stan-
dard. Ideally, such a tool would never be necessary, as the
ideal standard would allow for automated synthesis of co-
simulation interfaces. However, we recognize that it is dif-
ficult to rigorously specify a standard to the level required
by automated synthesis. In particular, we propose the use

of Model-Based Testing (MBT) for the evaluation. This
has the benefit that the model used to describe the possible
behaviors of a simulator can also be used to test it, and can
be applied with minimal setup. We describe a tool that em-
bodies these principles and tests co-simulation Functional
Mock-up Units (FMUs) exported by tool providers. The
tool does not test the numerical performance of an FMU
(e.g., numerical error, freedom from stability problems,
etc.). This tool is open source and available online with
documentation and examples (Gomes et al., 2019). It is
our goal that it helps in the development of FMUs and
that our approach inspires standardization bodies to adopt
the same technique.

Structure. In the next section, we survey prior work.
Then, in Section 3, we describe our contribution. In
Section 4 we describe the application of our contribu-
tion to empirically evaluate 169 FMUs, downloaded from
the FMI Cross-check repository (Modelica Association,
2019a). Section 5 summarizes the results, lessons learned,
and discusses the limitations of our approach. Section 6
concludes.

2 Related Work
Our goal is similar to other researchers that have helped
identify ambiguities and omissions in the FMI standard.

In particular, the FMI development committee makes
available an FMU Compliance Checker on its website
(Modelica Association, 2019b). It verifies the consistency
of the FMU metadata, and runs a co-simulation with user-
defined input data using a fixed communication step size,
appropriate to the FMU under test. This tool, along with
the FMU-SDK (qTronic GmbH, 2019), available at the
FMI web site, play an important role in improving the
conformance of FMUs to the FMI standard. Moreover,
the work in (Bertsch et al.) focuses on the testing of FMU
importing tools, by the use of reference FMUs, build using
the FMU-SDK.

Battle et al. has produced a tool that focuses on the
conformance of the FMU metadata. It has been applied
to the FMI Cross-check repository (Modelica Association,
2019a), and has yielded important lessons:

• Roughly 17% out of 692 FMUs do not follow the
rules regarding the InitialUnknowns field of the
model structure (FMIv2.0, Section 2.2.8, p. 60).

• About 18% have inconsistencies related to the
derivatives declared. For instance, the derivative in-
dexes do not match the set of real scalar variables
with a derivative field declared; there are derivatives,
but no real scalar variables with a derivative field de-
clared; or there are real scalar variables with deriva-
tive field set, but no derivatives declared.

Our work aims at complementing the existing work by
modeling all possible interactions with an FMU allowed
by the FMI standard. In this sense, it obviously differs
from the tool described in Battle et al.. However, our ap-
proach also differs from the FMU Compliance Checker,

which runs a co-simulation with inputs prescribed by the
FMU. While our tool also uses the information declared
by the FMU, it may also stop a co-simulation, reset the
FMU, initialize some variables while leaving others unini-
tiated, etc, as long as these operations are allowed by the
standard.

Finally, we highlight the DCP-Test-Generator tool,
made available in (Leibniz University Hannover, 2019).
This tool was created with the same goal as ours, except
it targets the Distributed Co-simulation Protocol (DCP)
standard (Baumann et al.; Krammer et al., b,a). The DCP
standard focuses on Hardware-in-the-loop and real-time
co-simulations. It complements the FMI standard by en-
compassing information that is crucial for communica-
tion over a variety of transport protocols. At the heart of
the standard is a state machine that dictates how the co-
simulation progresses. This state machine was reused to
generate test cases, providing anecdotal evidence that our
approach has the benefit of leveraging any state machine
diagrams used for documentation, leading to an inexpen-
sive way of adopting any standard.

3 Model-Based Testing FMUs
In this section, we introduce Model-Based Testing (MBT)
and then we explain the language we created to develop
the FMU model, used in the MBT process.

3.1 Model-Based Testing
We adopt the terminology in Roy Awedikian and define
Model-Based Testing (MBT) as the use of a model of the
System-Under-Test (SUT) in order to guide test case gen-
eration. Such model can be represented as a state machine.
Figure 1 shows an example that captures some of the pos-
sible interactions with an FMU.

Figure 1. Example state transition system – Simplified FMU
interaction model. The initial state is called “start”, represented
as a circle, and the final state is “freed” (outlined rectangle).

Any finite path accepted by the state transition sys-
tem constitutes a possible test case of the SUT, and each
test case must be associated with an oracle that dictates
whether the SUT has passed the test or not. For instance,
in Figure 1, an accepted path could be:

1. Start-e_Instantiate->instantiated
2. instantiated-e_SetupExperiment->experiment
3. experiment-e_EnterInitMode->initializing
4. initializing-e_ExitInitMode->step_complete
5. step_complete-e_Free->freed

where each edge corresponds to procedures that invokes
the corresponding operations on the FMU. Some of these
operations are detailed in Section 3 and all are available in
the online code (Gomes et al., 2019).

If a test case fails, the MBT tool cleans up allocated re-
sources, records the log of the SUT, and provides enough
information to reproduce the test case (e.g., a seed value).

MBT is applied to SUTs as a black box, i.e., affecting
only the SUT’s inputs, making an ideal technique to test
black box FMUs, and there is a large body of research
on how to optimize the generation of paths to discover
problems quickly (Li et al.; Peleska).

We have extended the Modbat (Artho et al., 2019;
Artho et al.) to perform MBT on a finite state machine-
based language that we developed. The language uses the
GraphML syntax (Brandes et al.), for which the graph ed-
itor yEd (yWorks, 2019) can be used.

In the following sub-section, we describe the syntax and
semantics of the proposed language.

3.2 Simulator Environment Language
We propose a language to describe all possible simula-
tor operations. Our language is largely based on non-
deterministic Extended Finite State Machines (EFSM),
with constructions that make it easier to deal with large
numbers of possible test paths.

Figure 1 shows an example of a traditional EFSM. Al-
beit a simple example, one can readily see the some of the
problems associated with using a traditional EFSM for the
description of simulator environments:

• There can be many edges between the same pair of
states (e.g., edges from step_complete onto it-
self);

• There are operations that can be performed in almost
all states (e.g., e_Free and e_Reset);

• There are many operations whose execution should
not be repeated, or should be repeated a fixed number
of times;

• Adding more interactions will quickly make the
EFSM unreadable;

As a result, we propose the following extensions that
are implemented in our language. These are purely syn-
tactic, as they do not add to the expressive power of EF-
SMs, and their implementation can be done by reduction
to a more complex traditional EFSM.

3.2.1 Edge-Or
This extension allows one to compactly represent multi-
ple possible operations in the same edge. Its syntax and
example reduction are described in Figure 2.

Figure 2. Edge-or syntactic extension and example reduction.
Each edge-or (left) gets expanded to a traditional EFSM edge
(right, in red).

3.2.2 State-Or
This extension allows one to compactly represent an oper-
ation between many possible states. Its syntax and exam-
ple reduction are described in Figure 3.

Figure 3. State-or syntactic extension and example reduction.
Each State-or (left) gets expanded to a state (right), preserving
the edges leaving/arriving at that state (in red).

3.2.3 Bounded Repetition
This extension allows one to compactly represent a self-
loop edge that should be repeated only a finite number
of times while in the same state. Its syntax and example
reduction are described in Figure 4.

Figure 4. Bounded Repetition syntactic extension and example
reduction. A bounded repetition edge (left) gets expanded to
a counter of the number of times that edge has been executed
(right). Notice that upon attaining the maximum number of edge
executions, the state machine can only execute other edges.

3.2.4 Edge and State Merge
This extension, in combination with the previous ones, al-
lows one to split the specification of the environment into
multiple models. The merging of multiple descriptions is
done by merging states with the same name, and taking
the union of their edges. Figure 5 illustrates this operation.
These reductions can be applied until none is applicable.

3.2.5 Edge Implementations
Each edge corresponds to a method, implemented in a
class, as exemplified in Figure 6.

Figure 5. Edge and State Merge operation example. the two
descriptions on the left get merged into one, on the right.

When setting/getting variables, we followed the defini-
tions in (FMIv2.0, Fig. 11). For example, in Figure 6, the
set INIE is defined as follows:

INIE = vars.filter(v =>
v.causality==Causality.Input ||
(v.variability != Variability.Constant
&& v.initial == Initial.Exact))

3.2.6 Tess Success Criteria
Whether a test passes or not is decided when the code cor-
responding to an edge is executed: any uncaught excep-
tion, including an assertion on a false statement, represents
a test failure.

3.3 Model-Based Testing Tool for FMUs
The main use case and the structure of our tool are sum-
marized in Figure 7.

4 Empirical Evaluation of FMUs
In this section, we describe the application of our tool to
the FMUs made available for the FMI Cross-check repos-
itory (Modelica Association, 2019a).

4.1 Methodology
This goal of this study is to measure how well the FMUs
tolerate sequences of operations that are valid with respect
to the FMI standard.

The model used to generate test cases was created fol-
lowing (FMIv2.0, Fig. 11), and is partially illustrated in
Figure 9. The full model, and edge implementations, can
be consulted in the tool’s repository (Gomes et al., 2019).
Most operations are mapped directly to the FMI Standard
operations. The following are the noteworthy exceptions:

• The e_GetINIT and e_GetX operations select at
random one of the variables in the corresponding set
INIT and X.

• The e_SetINI, e_SetIN, and e_SetINIE, op-
erations select at random one of the variables in the
corresponding set INI, IN, and INIE. The value to
set the variable with is computed either from the de-
clared nominal value, or is equal to 1.

• The e_SetupExperiment operation chooses, at
random, whether the stop time, equal to 1s, is defined
or not.

class FMIGraphModel extends ModBatGraphModel {
// SUT and Time
var instance: IFmiComponent
var t = 0
...

// Edge Methods
def e_Instantiate() = {
instance = instantiate(fmu, getGuid(fmu))

}
def e_SetINIE() = {
// Pick a random var from the
// INIE set of variables
// Pick a value (e.g., nominal value), and
// invoke the corresponding
// instance operation.
setVar(getRandomElement(INIE))

}
def e_Terminate() = {
val s = instance.terminate()
assert(s == Fmi2Status.OK)

}
def e_Step() = {
// Choose a step size according to
// FMU Capabilities
var H = chooseH()
// Execute the step, and
// check if the step was carried out
val res = instance.doStep(t, H, true)
assert(res == Fmi2Status.OK)
t = t+H

}
def e_Free() = {
instance.freeInstance()

}
...

}

Figure 6. Pseudocode exemplifying implementation of some of
the operations introduced in Figure 1. The full code is available
online (Gomes et al., 2019).

• The e_Step operation will either pick a random
step size (from the set {0.001,0.01,0.1}) if the FMU
supports adaptive step size, otherwise 0.01 will be
used.

• The e_GetFmuState and e_SetFmuState are
only executed if the FMU supports the corresponding
operations, and the state is set with the most recent
state recorded.

Each operation is accompanied by a simple assertion
checking whether it ran successfully. The sets of variables
used are defined in Figure 8.

Our tool was applied to each FMU sequentially,
with the following parameters: • Number of Random
Walks=1000; • Self-Loop Execution Limit=10. The later
refers only to the self-loops that are not already con-
strained by the bounded repetition operator. Both param-
eters are forwarded to Modbat (Artho et al., 2019).

For each FMU, the 1000 tests are executed in sequence.
Before the first test is run, the FMU is loaded. Each test
creates a new FMU instance and, regardless of the test
result, that instance is always freed before the next test
begins. After the 1000-th test is concluded, the FMU is

Our Tool

GraphML
FMU GraphML FMIOps.scala

FMU Supplier

Reductions

EFSM

ModbatResults

Figure 7. Main use case and structure of our tool. The FMU
Supplier provides an FMU. The GraphML files, created with
the simulator environment language (Section 3.2), along with
the implementation of the edges, are part of our tool. These are
loaded and transformed into a configuration that Modbat can use
to run the MBT.

unloaded. This method avoids any concurrency problems
within instances of the same FMU and different FMUs.

Each failed test is logged, along with the output log
of the FMU instance and the sequence of operations that
were executed from the instantiation until the failure.

Failed tests are grouped into equivalence classes. Two
test failures are considered equivalent if they occurred in
the same operation on an instance of the same FMU. For
example, two tests failures on the e_Reset operation of
an instance of the same FMU are considered equivalent,
even if the first test failure happened just after the instance
was instantiated, and the second test failure happened after
a step was completed.

To analyze the results, we selected a test from each
equivalence class and inspected the logs. The results are
summarized in the next sub-section.

4.2 Results
The data used to write the results in this section can be ob-
tained by contacting the authors. We do not mention any
concrete FMU failures because we recognize that the re-
sponsible companies are working to improve their FMUs.
Instead, we show aggregate statistics, and present a sum-
mary of the failures and the size of the respective equiva-
lence class.

The aggregate statistics are: • FMUs passing all
tests=77; • FMUs failing at least one test=55; • FMUs
with process crash=37; • Total FMUs tested (sum of pre-
vious items)=169; • Total Tests=169000; • Total Failed
Tests=14733; • Test Equivalence Classes/Analyzed Fail-
ures=102. When a process crash occurs, no other test on
the FMU that caused the crash is run. Since this should
never happen, we do not count such FMU as failing at
least one test even though it did fail one test. Rather, we
count it in the “FMUs with process crash” category.

The following is the list of the test failures:

INI = vars.filter(v =>
(v.variability != Variability.Constant &&
(v.initial == Initial.Approx ||
v.initial == Initial.Exact)) ||

(ders.contains(v) &&
v.`type`.`type` == Types.Real &&
v.causality == Causality.Input))

IN = vars.filter(v =>
v.causality==Causality.Input ||
(v.causality != Causality.Parameter &&

v.variability == Variability.Tunable))

INIE = vars.filter(v =>
v.causality==Causality.Input &&
(v.variability != Variability.Constant &&
v.initial == Initial.Exact))

INIT = vars.filter(v =>
v.causality==Causality.Output ||
ders.contains(v) ||
derMap.containsValue(v))

X = vars.filter(v => v.causality==Causality.Output)

Figure 8. Definition of the sets used in the get and set opera-
tions. The full code is available online (Gomes et al., 2019).

Failure 1. The FMU does not recognize the value refer-
ence for a variable declared in its model description. Such
a variable is set during initialization mode, and belongs to
the set INI, as defined in Figure 8.

Failure 2. After an FMU is terminated, it fails when a
variable belonging to the set X (Figure 8) is queried. Re-
call FMIv2.0, State “terminated”, Fig. 11.

Failure 3. During stepping mode, a tunable parameter
(i.e., a scalar variable with causality=“parameter” and
variability=“tunable”) is changed. The FMU then logs a
message that it cannot be changed, and returns an error.
Recall FMIv2.0, State “step Complete”, Fig. 11.

Failure 4. The getRealStatus (invoked as part of the
e_GetLST in Figure 9) operation is not supported after
an instance is terminated. Recall FMIv2.0, State “termi-
nated”, Fig. 11.

Failure 5. URI has multiple possible formats for the ab-
solute path of a file, and some FMUs only support one.
This causes a failure in the instantiation of the FMU.

Failure 6. The outputs are queried after a change in the
inputs, without a doStep in-between, causing the FMU
to return an error. We investigate this issue in Section 5.

Failure 7. The reset operation is not supported.

Failure 8. Some FMUs do not isolate instances in the
sense that one failed operation in an instance of an FMU
will affect the outcome of other operation calls in a differ-
ent instance of the same FMU.

Failure 9. A variable was set with a value that is outside
the scope of an FMU.

Figure 9. Partial model used to generate test cases. We did not consider asynchronous FMUs.

The majority of the process crashes are caused by invo-
cation to the reset operation.

Figure 10 summarizes the number of occurrences of
each failure, and relates some of them to the failures de-
scribed above.

5 Discussion
In this section, we start by making explicit the limitations
of this study, and how to mitigate them. Then, we discuss
the lessons learned.

5.1 Limitations
An FMU that passes the tests provided in this tool does not
constitute a proof that the FMU is correct. Currently, our
tool uses the Modbat tool (Artho et al., 2019) to generate
random walks in the graph, from start to finish. The later
prints coverage information regarding the transitions taken
by the model. We chose the number of tests per FMU to
be 1000 because it allows us to cover about 95% of the
possible choices in the model of Figure 9. Note that the
coverage also includes the random choices made inside
each edge operation (e.g., the choice of the scalar vari-
able to set), as exemplified in Figure 6, but it depends on
the number of scalar variables declared in each FMU. The
self-loop limit is chosen to be a small value (10) because
our goal is not to run co-simulations to the end. The per-
formance of the tool was not a factor hindering our study.
For example, on the example FMU that is shipped with the
tool, it takes about 12 seconds to complete these tests.

An FMU failing a test does not necessarily mean that
the FMU does not conform to the FMU standard. For ex-
ample, it is acceptable that an FMU returns an error when
the invocation of the e_Reset operation is made, but our

tools will nevertheless signal a failed test. This enables us
to measure the capabilities of the FMUs, which is impor-
tant in the configuration of co-simulations involving those
FMUs.

We have used Scala to implement our tool, and the
INTO-CPS FMI library to load and interact with the
FMUs. It is possible that some of the failed tests and/or
process crashes are caused not by the FMU, but by the li-
brary. For the failures analyzed however, we did not find
any evidence of this.

The choices made in the implementation of each op-
eration are largely due to the co-authors’ experience, and
therefore can be a cause for error. Indeed, from the an-
alyzed failures, only one crash was caused by the choice
of parameters to run the co-simulation. The size of the
equivalence class for this failure is 14 (out of 14733 tests).
Whenever possible, we used the model description given
by the FMU (e.g., default experiment, nominal/max/min
values for variables). However, many FMUs do not pro-
vide such information.

Regarding the dataset used, it is worth noting that com-
panies are continuously improving their FMI support and
therefore these results will likely become outdated soon.
However, the methodology and principles are embodied
in an easy to use tool (Gomes et al., 2019).

Regarding the failure analysis, while there is some
anecdotal evidence that test failures from the same equiva-
lence class (as defined in Section 4.1) have the same cause,
this was not exhaustively checked. Hence, it is possible
that some test failures are not being reported here.

Regarding the model used for MBT, detailed in Fig-
ure 9, it does not yet cover all permissible operation se-
quences described in the FMI standard. In particular, we
did not consider asynchronous stepping and state serial-

ization, assumed that state get/set operations can only be
called while in the stepping mode, and that there’s only
one setup experiment (hence the experiment state).
Moreover, a state based model may not be the best rep-
resentation to specify more complex test scenarios. For
example, a sound property of a rollback operation is that,
under the same input signals, an instance that has been
rolled back should have the exact same behavior as before
the rollback. We are convinced that such property is more
easily expressed in Linear Temporal Logic, rather than as
a state machine.

Finally, we considered the FMI Standard version 2.0,
and not the most recent (version 2.0.1), because, at the
time of this study, most tools in the FMI cross check repos-
itory implement version 2.0.

5.2 Lessons Learned and Ambiguities
Despite the above limitations, we have extracted interest-
ing insights and questions from these experiments.

Some FMUs have parameters that refer to numerical
properties (such as internal solver step size). Since these
are not model parameters, should they be standardized?
If not, should the FMU avoid disclosing these parameters
and, instead, attempt to infer appropriate values for these
parameters, from the information provided by the master
algorithm? There is some evidence that practitioners have
difficulties configuring co-simulations (Schweiger et al.,
b), leading us to believe that fewer parameters translates
to easier configuration. However, having such parameters
exposed can enable the implementation of adaptive master
algorithms (Gomes et al., b,a), or automated configuration
techniques (Gomes et al., d; Holzinger and Benedikt)

Some FMUs have internal limitations on the values that
variables can take, but fail to declare these constraints
in their model description. When values on those vari-
ables violate these constraints, the FMU causes the co-
simulation to fail, and the only way to know what caused
the co-simulation to fail is to inspect the logs of the FMUs.
Recognizing that there is a trade-of between demand-
ing more standardization in error reporting, and having a
wider adoption of such standardization, we recommend
that the log messages of the FMUs be made clear regard-
ing validity range violations.

We now focus on failure 6. We believe that such failure
is a actually an intended feature of version 2.0 of the FMI
standard (FMIv2.0). However, as we show next, this is not
so clear, and only one tool reported failure 6. In particu-
lar, (FMIv2.0, Page 104) contains “There is the additional
restriction in slaveInitialized state that it is not allowed to
call fmi2GetXXX functions after fmi2SetXXX functions
without an fmi2DoStep call in between”. However, this
is contradicted by the fact that the standard supports feed-
through dependencies, which induce algebraic dependen-
cies between inputs and outputs. To quote the standard:

• “output: The variable value can be used by another
model or slave. The algebraic relationship to the
inputs is defined via the dependencies attribute of

<ModelStructure><Outputs><Unknown>.”, page 45.
• “Attribute dependencies defines the dependencies of

the outputs from the knowns [. . .] at the current
Communication Point (CoSimulation).”, page 58.

Since even the simplest mechanical systems, such as
mass-spring-dampers, when coupled with a power bond in
a co-simulation, exhibit such feed-through effect (Gomes
et al., e), it is not clear that failure 6 is a failure of the
standard.

In order to investigate how this ambiguity is being in-
terpreted in practice, we devised a simple test, that follows
the formal definition of feed-through: the input uc feeds
through to output yc when there exist two different values
v1,v2 and FMU state sc that lead to two different output
values (Gomes et al., c):

getc(setc(sc,uc,v1),yc) ̸= getc(setc(sc,uc,v2),yc).
(1)

The test tries to find two values for which the above holds.
If such values are found, the FMU is said to implement
feed-through.

Out of 113 FMUs, 7 implement feed-through as defined
in Equation (1). Moreover, from the authors’ experience
with the tool OpenModelica (Open Source Modelica Con-
sortium, 2019), FMUs from the latest version (1.13.2) im-
plement feed-through, whereas FMUs from the versions
1.12.X do not, further highlighting the uncertainty sur-
rounding this feature.

Acknowledging that different versions of the same tool
have different degrees of support for the FMI standard, we
argue that the tools listed in FMI standard website should
disclose which version is being used in the FMI Cross-
check. This helps users to determine to which degree their
version supports the standard.

Finally, we remark that, in the definition of the sets
of variables INI, IN, INIE, INIT, and X (recall Fig-
ure 8 and (FMIv2.0, Figure 11)), the authors had diffi-
culties understanding whether the Set* operations can-
not be made on variables whose causality is output, and
whether the Get* operation cannot be made on variables
whose causality is input. For instance, the definition of
INIE, is “any variable with variability ̸= ‘constant’ and
with initial=‘exact’” (FMIv2.0, Figure 11), and does not
explicitly state that causality=‘input’ should be the case.
Instead, elsewhere in the same page, “[In Initialization
Mode] Variables with initial = ‘exact’ , as well as vari-
ables with variability = ‘input’ can be set” (FMIv2.0, Page
103). We suspect that failures 1 and 2 might be caused by
misinterpretation of the definition of these sets.

6 Summary and Future Work
With the goal of rooting out possible ambiguities and im-
proving the conformance to the FMI standard, we describe
an approach to apply MBT to evaluate FMUs. We have
contributed with a state machine based language that can
be used to describe test cases for FMUs, and we package
it in an easy to use tool, available online (Gomes et al.,

2019). We then used this tool to empirically evaluate ex-
isting FMUs and discussed the results. Our approach is
easy to apply in existing and subsequent version of co-
simulation standards. For the test failures observed, we
are currently contacting the companies responsible, with
the necessary information to ensure they can reproduce
the failure.

In the future, we intend to extend the state machine that
is used to generate tests. In particular, we will consider
FMU soundness properties such as rollback and reset con-
tracts, and step rejection (Broman et al.) and tunable pa-
rameter properties. Our language might have to be ex-
tended to specify such soundness properties. One possible
extension is to implement linear temporal logic monitors.
This will separate the property specification from the sys-
tem model, and the former should guide the model-based
testing of the latter.

Acknowledgments
We are grateful to the Research Foundation - Flanders
(File Number 1S06316N) and to the Poul Due Jensen
Foundation, for the financial support. Additionally, we
thank the developers of the INTO-CPS Library and Mod-
bat tools, on which our contribution builds upon. Fi-
nally, we thank Martin Krammer, Martin Benedikt, and
the reviewers, for the information on the related work and
throughout feedback on this work.

References
Cyrille Valentin Artho, Armin Biere, Masami Hagiya, Eric Pla-

ton, Martina Seidl, Yoshinori Tanabe, and Mitsuharu Ya-
mamoto. Modbat: A Model-Based API Tester for Event-
Driven Systems. In Hardware and Software: Verification and
Testing, volume 8244, pages 112–128. Springer International
Publishing. ISBN 978-3-319-03076-0 978-3-319-03077-7.
doi:10.1007/978-3-319-03077-7_8.

Cyrille Valentin Artho, Armin Biere, Masami Hagiya, Eric Pla-
ton, Martina Seidl, Yoshinori Tanabe, and Mitsuharu Ya-
mamoto. Modbat repository, 2019. https://github.
com/cyrille-artho/modbat, accessed 25th Septem-
ber 2019.

Nick Battle, Casper Thule, Cláudio Gomes, Hugo Daniel
Macedo, and Peter Gorm Larsen. Towards a Static Check
of FMUs in VDM-SL. In 17th Overture Workshop, page to
be published.

Peter Baumann, Martin Krammer, Mario Driussi, Lars Mikel-
sons, Josef Zehetner, Werner Mair, and Dieter Schramm. Us-
ing the distributed co-simulation protocol for a mixed real-
virtual prototype. In 2019 IEEE International Conference on
Mechatronics (ICM), volume 1, pages 440–445. IEEE Indus-
trial Electronics Society.

Christian Bertsch, Awad Mukbil, and Andreas Junghanns. Im-
proving Interoperability of FMI-supporting Tools with Refer-
ence FMUs. pages 533–540. doi:10.3384/ecp17132533.

Torsten Blochwitz, Martin Otter, Johan Akesson, Martin Arnold,
Christoph Clauss, Hilding Elmqvist, Markus Friedrich, An-
dreas Junghanns, Jakob Mauss, Dietmar Neumerkel, Hans
Olsson, and Antoine Viel. Functional Mockup Interface
2.0: The Standard for Tool independent Exchange of Sim-
ulation Models. In 9th International Modelica Conference,
pages 173–184. Linköping University Electronic Press, a.
doi:10.3384/ecp12076173.

Torsten Blochwitz, Martin Otter, Martin Arnold, C. Bausch,
Christoph Clauss, Hilding Elmqvist, Andreas Junghanns,
Jakob Mauss, M. Monteiro, T. Neidhold, Dietmar Neumerkel,
Hans Olsson, J.-V. Peetz, and S. Wolf. The Func-
tional Mockup Interface for Tool independent Exchange
of Simulation Models. In Proceedings of the 8th Inter-
national Modelica Conference, pages 105–114. Linköping
University Electronic Press; Linköpings universitet, b.
doi:10.3384/ecp11063105.

Ulrik Brandes, Markus Eiglsperger, Jürgen Lerner, and Christian
Pich. Graph Markup Language (GraphML).

David Broman, Christopher Brooks, Lev Greenberg, Edward A.
Lee, Michael Masin, Stavros Tripakis, and Michael Wetter.
Determinate composition of FMUs for co-simulation. In
Eleventh ACM International Conference on Embedded Soft-
ware, page Article No. 2. IEEE Press Piscataway, NJ, USA.
ISBN 978-1-4799-1443-2.

FMIv2.0. Functional Mock-up Interface for Model Exchange
and Co-Simulation. URL https://fmi-standard.
org/downloads/.

Cláudio Gomes, Romain Franceschini, Nick Battle, Casper
Thule, Kenneth Lausdahl, Hans Vangheluwe, and Pe-
ter Gorm Larsen. FMIMOBSTER repository, 2019.
https://msdl.uantwerpen.be/git/claudio/
FMIMOBSTER, accessed 25th September 2019.

Cláudio Gomes, Benoît Legat, Raphaël Jungers, and Hans
Vangheluwe. Minimally Constrained Stable Switched Sys-
tems and Application to Co-simulation. In IEEE Con-
ference on Decision and Control, pages 5676–5681, a.
doi:10.1109/CDC.2018.8619223.

Cláudio Gomes, Benoît Legat, Raphaël M. Jungers, and Hans
Vangheluwe. Stable Adaptive Co-simulation: A Switched
Systems Approach. In IUTAM Symposium on Co-Simulation
and Solver Coupling, volume 35, pages 81–97. Springer,
Cham, b. doi:10.1007/978-3-030-14883-6_5.

Cláudio Gomes, Levi Lucio, and Hans Vangheluwe. Se-
mantics of Co-simulation Algorithms with Simulator Con-
tracts. In 2019 ACM/IEEE 22nd International Confer-
ence on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C), pages 784–789. IEEE, c.
doi:10.1109/MODELS-C.2019.00124.

Cláudio Gomes, Bentley James Oakes, Mehrdad Moradi, Ale-
jandro Torres Gamiz, Juan Carlos Mendo, Stefan Dutre,
Joachim Denil, and Hans Vangheluwe. HintCO - Hint-Based
Configuration of Co-Simulations. In International Confer-
ence on Simulation and Modeling Methodologies, Technolo-
gies and Applications, pages 57–68, d. ISBN 978-989-758-
381-0. doi:10.5220/0007830000570068.

https://doi.org/10.1007/978-3-319-03077-7_8
https://github.com/cyrille-artho/modbat
https://github.com/cyrille-artho/modbat
https://doi.org/10.3384/ecp17132533
https://doi.org/10.3384/ecp12076173
https://doi.org/10.3384/ecp11063105
https://fmi-standard.org/downloads/
https://fmi-standard.org/downloads/
https://msdl.uantwerpen.be/git/claudio/FMIMOBSTER
https://msdl.uantwerpen.be/git/claudio/FMIMOBSTER
https://doi.org/10.1109/CDC.2018.8619223
https://doi.org/10.1007/978-3-030-14883-6_5
https://doi.org/10.1109/MODELS-C.2019.00124
https://doi.org/10.5220/0007830000570068

Cláudio Gomes, Casper Thule, David Broman, Peter Gorm
Larsen, and Hans Vangheluwe. Co-simulation: State of the
art, e. URL http://arxiv.org/abs/1702.00686.

Cláudio Gomes, Casper Thule, David Broman, Peter Gorm
Larsen, and Hans Vangheluwe. Co-simulation: A Survey.
51(3):Article 49, f. doi:10.1145/3179993.

Irene Hafner and Niki Popper. On the terminology and structur-
ing of co-simulation methods. In Dirk Zimmer and Bern-
hard Bachmann, editors, Proceedings of the 8th Interna-
tional Workshop on Equation-Based Object-Oriented Mod-
eling Languages and Tools, pages 67–76. ACM Press. ISBN
978-1-4503-6373-0. doi:10.1145/3158191.3158203.

Franz Holzinger and Martin Benedikt. Optimal Trigger Se-
quence for Non-iterative Co-simulation:. In Proceedings of
the 9th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications, pages 80–87.
SCITEPRESS - Science and Technology Publications. ISBN
978-989-758-381-0. doi:10.5220/0007833800800087.

R. Kübler and W. Schiehlen. Two Methods of Simulator Cou-
pling. 6(2):93–113, a. ISSN 1387-3954. doi:10.1076/1387-
3954(200006)6:2;1-M;FT093.

R. Kübler and W. Schiehlen. Modular Simulation in Multibody
System Dynamics. 4(2-3):107–127, b. ISSN 1384-5640.
doi:10.1023/A:1009810318420.

Martin Krammer, Martin Benedikt, Torsten Blochwitz, Khaled
Alekeish, Nicolas Amringer, Christian Kater, Stefan Materne,
Roberto Ruvalcaba, Klaus Schuch, Josef Zehetner, Micha
Damm-Norwig, Viktor Schreiber, Natarajan Nagarajan,
Isidro Corral, Tommy Sparber, Serge Klein, and Jakob An-
dert. The Distributed Co-Simulation Protocol for the Inte-
gration of Real-Time Systems and Simulation Environments.
In Proceedings of the 50th Computer Simulation Conference,
page No. 1. Society for Computer Simulation International,
a. doi:10.22360/summersim.2018.scsc.001.

Martin Krammer, Klaus Schuch, Christian Kater, Khaled
Alekeish, Torsten Blochwitz, Stefan Materne, Andreas
Soppa, and Martin Benedikt. Standardized Integration of
Real-Time and Non-Real-Time Systems: The Distributed Co-
Simulation Protocol. In Proceedings of the 13th International
Modelica Conference, volume 157, pages 87–96. Modelica
Association, b. doi:10.3384/ecp1915787.

Leibniz University Hannover. Dcp-test-generator repos-
itory, 2019. https://github.com/modelica/
DCPTestGenerator, accessed 25th September 2019.

Wenbin Li, Franck Le Gall, and Naum Spaseski. A Survey
on Model-Based Testing Tools for Test Case Generation. In
Vladimir Itsykson, Andre Scedrov, and Victor Zakharov, ed-
itors, Tools and Methods of Program Analysis, volume 779,
pages 77–89. Springer International Publishing. ISBN 978-
3-319-71733-3 978-3-319-71734-0. doi:10.1007/978-3-319-
71734-0_7.

Modelica Association. FMI cross-check repository,
2019a. https://github.com/modelica/
fmi-cross-check/tree/master/fmus/2.0/,
accessed 25th September 2019.

Modelica Association. FMI standard website, 2019b. https:
//fmi-standard.org, accessed 25th September 2019.

Open Source Modelica Consortium. Openmodelica, 2019.
https://openmodelica.org/, accessed 25th Septem-
ber 2019.

Peter Palensky, Arjen A. Van Der Meer, Claudio David Lopez,
Arun Joseph, and Kaikai Pan. Cosimulation of Intelligent
Power Systems: Fundamentals, Software Architecture, Nu-
merics, and Coupling. 11(1):34–50. ISSN 1932-4529.
doi:10.1109/MIE.2016.2639825.

Jan Peleska. Industrial-Strength Model-Based Testing - State of
the Art and Current Challenges. 111:3–28. ISSN 2075-2180.
doi:10.4204/EPTCS.111.1.

qTronic GmbH. FMU software development kit, 2019.
https://github.com/qtronic/fmusdk, accessed
25th September 2019.

Bernard Yannou Roy Awedikian. Practical Model-Based Test-
ing. ISBN 978-0-12-372501-1.

Gerald Schweiger, Cláudio Gomes, Georg Engel, Irene Hafner,
Josef Schoeggl, Alfred Posch, and Thierry Nouidui. Func-
tional Mock-up Interface: An empirical survey identifies re-
search challenges and current barriers. In Proceedings of the
American Modelica Conference, pages 138–146. Linköping
University Electronic Press, Linköpings Universitet, a. ISBN
978-91-7685-148-7. doi:10.3384/ecp18154138.

Gerald Schweiger, Cláudio Gomes, Georg Engel, Irene Hafner,
Josef-Peter Schoeggl, Alfred Posch, and Thierry Nouidui.
An empirical survey on co-simulation: Promising standards,
challenges and research needs. 95:148–163, b. ISSN
1569190X. doi:10.1016/j.simpat.2019.05.001.

T. Tomiyama, V. D’Amelio, J. Urbanic, and W. ElMaraghy.
Complexity of Multi-Disciplinary Design. 56(1):185–188.
ISSN 00078506. doi:10.1016/j.cirp.2007.05.044.

Yentl Van Tendeloo and Hans Vangheluwe. An Introduction to
Classic DEVS.

Hans Vangheluwe. Foundations of Modelling and Simulation of
Complex Systems. 10. doi:10.14279/tuj.eceasst.10.162.148.

Hans Vangheluwe, Juan De Lara, and Pieter J. Mosterman. An
introduction to multi-paradigm modelling and simulation. In
Proceedings of the AI, Simulation and Planning in High Au-
tonomy Systems Conference, pages 9–20. Society for Com-
puter Simulation International.

yWorks. yed graph editor website, 2019. https://www.
yworks.com/products/yed, accessed 25th September
2019.

Bernard P. Zeigler. Theory of Modelling and Simulation. New
York, Wiley. ISBN 0-471-98152-4.

http://arxiv.org/abs/1702.00686
https://doi.org/10.1145/3179993
https://doi.org/10.1145/3158191.3158203
https://doi.org/10.5220/0007833800800087
https://doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
https://doi.org/10.1076/1387-3954(200006)6:2;1-M;FT093
https://doi.org/10.1023/A:1009810318420
https://doi.org/10.22360/summersim.2018.scsc.001
https://doi.org/10.3384/ecp1915787
https://github.com/modelica/DCPTestGenerator
https://github.com/modelica/DCPTestGenerator
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1007/978-3-319-71734-0_7
https://github.com/modelica/fmi-cross-check/tree/master/fmus/2.0/
https://github.com/modelica/fmi-cross-check/tree/master/fmus/2.0/
https://fmi-standard.org
https://fmi-standard.org
https://openmodelica.org/
https://doi.org/10.1109/MIE.2016.2639825
https://doi.org/10.4204/EPTCS.111.1
https://github.com/qtronic/fmusdk
https://doi.org/10.3384/ecp18154138
https://doi.org/10.1016/j.simpat.2019.05.001
https://doi.org/10.1016/j.cirp.2007.05.044
https://doi.org/10.14279/tuj.eceasst.10.162.148
https://www.yworks.com/products/yed
https://www.yworks.com/products/yed

e
_

S
e

tu
p

E
x

p
e

ri
m

e
n

t
[0

]

e
x

p
e

ri
m

e
n

t

e
_

R
e

se
t

[1
2

2
9

]

e
_

E
n

te
rI

n
it

M
o

d
e

 [
0

]
e

_
S

e
tI

N
I

[1
2

9
]

e
_

S
e

tu
p

E
x

p
e

ri
m

e
n

t
[0

]
e

_
G

e
tT

y
p

e
sP

la
tf

o
rm

 [
0

]
e

_
G

e
tV

e
rs

io
n

 [
0

]

e
_

G
e

tF
m

u
S

ta
te

 [
0

]

st
e

p
_

co
m

p
le

te

e
_

G
e

tV
e

rs
io

n
 [

0
]

te
rm

in
a

te
d

e
_

R
e

se
t

[5
3

]
e

_
G

e
tL

S
T

 [
9

3
]

e
_

G
e

tT
y

p
e

sP
la

tf
o

rm
 [

0
]

e
_

G
e

tT
e

rm
S

 [
0

]
e

_
G

e
tX

 [
6

]

in
st

a
n

ti
a

te
d

e
_

R
e

se
t

[3
8

0
2

]
e

_
G

e
tT

y
p

e
sP

la
tf

o
rm

 [
0

]
e

_
S

e
tI

N
I

[5
0

4
]

e
_

G
e

tV
e

rs
io

n
 [

0
]

e
_

S
e

tI
N

 [
0

]

in
it

ia
li

zi
n

g

e
_

T
e

rm
in

a
te

 [
0

]

e
_

G
e

tI
N

IT
 [

0
]

e
_

R
e

se
t

[4
0

3
]

e
_

G
e

tV
e

rs
io

n
 [

0
]

e
_

E
x

it
In

it
M

o
d

e
 [

3
2

]
e

_
G

e
tT

y
p

e
sP

la
tf

o
rm

 [
0

]

e
_

G
e

tT
y

p
e

sP
la

tf
o

rm
 [

0
]

e
_

F
re

e
F

m
u

S
ta

te
 [

0
]

e
_

S
e

tI
N

 [
6

8
1]

e
_

G
e

tX
 [

0
]

e
_

G
e

tV
e

rs
io

n
 [

0
]

e
_

S
e

tF
m

u
S

ta
te

 [
0

]
e

_
S

te
p

 [
14

]

e
_

R
e

se
t

[1
3

3
]

e
_

In
st

a
n

ti
a

te
 [

6
0

0
0

]

st
a

rt

Figure 10. Number of occurrences of ea ch failure. Each failure leads to a trace. All traces were joined and counts were taken of
the edges that caused the failure. The size equivalence class of each failure can be computed by summing the occurrences for each
edge corresponding to an operation. Many tests failed at instantiation because of failure 5. Some of the test failures when entering
and exiting initialization mode are due to failure 9.

	Introduction
	Related Work
	Model-Based Testing fmu
	Model-Based Testing
	Simulator Environment Language
	Edge-Or
	State-Or
	Bounded Repetition
	Edge and State Merge
	Edge Implementations
	Tess Success Criteria

	Model-Based Testing Tool for FMUs

	Empirical Evaluation of FMUs
	Methodology
	Results

	Discussion
	Limitations
	Lessons Learned and Ambiguities

	Summary and Future Work

