
UNIVERSITEIT ANTWERPEN

Property Preservation in Co-simulation

Eigenschapsbewaring in co-simulatie

Auteur:
Cláudio GOMES

Promotor:
Prof. Dr. Hans VANGHELUWE

Co-Promotor:
Prof. Dr. Paul DE MEULENAERE

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica

https://www.uantwerpen.be/
http://msdl.cs.mcgill.ca/people/claudio
http://msdl.cs.mcgill.ca/people/hv
http://msdl.cs.mcgill.ca/people/hv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Main Challenge and Contributions . 2
1.3 Limitations . 3
1.4 Structure . 3

2 Background 5
2.1 Complexity in the Real World . 5
2.2 Complexity in the Simulation World . 8
2.3 Model Integration . 8
2.4 Taxonomy of Dynamical Model Formalisms 9
2.5 Simulation . 10
2.6 Co-simulation . 11

3 State of the Art 15
3.1 Main Milestones . 15

3.1.1 60s . 16
3.1.2 70s and 80s . 16
3.1.3 90s . 17
3.1.4 2000s . 18
3.1.5 2010s . 19

3.2 Emerging Trends and Challenges . 20
3.2.1 Design Space Exploration . 21
3.2.2 X-in-The-Loop . 21
3.2.3 Incremental Testing/Certification 22

3.3 Co-simulation in Industry . 22
3.3.1 Exhaust Gas Recirculation (MAN Diesel & Turbo) 22
3.3.2 Driverless Lawn Mower (AGROINTELLI) 23
3.3.3 Motion Compensated Crane (ControlLab) 24

3.4 Co-simulation in Research . 25
3.5 Recent Survey Work . 26

3.5.1 Hafner and Popper . 26
3.5.2 Palensky et al. 27
3.5.3 Our Survey . 27

3.6 Discrete-Event-Based Co-simulation . 27
3.6.1 DE Simulation Units . 28

CONTENTS

3.6.2 DE Co-simulation Orchestration 30
3.6.3 Technical Challenges . 36
3.6.4 Standards for DE Co-simulation 38
3.6.5 Summary . 38

3.7 Continuous-Time-Based Co-simulation 38
3.7.1 CT Simulation Units . 38
3.7.2 CT Co-simulation Orchestration 40
3.7.3 Technical Challenges . 46
3.7.4 Standards for CT Co-simulation 59

3.8 Hybrid Co-simulation Approach . 60
3.8.1 Hybrid Co-simulation Scenarios 60
3.8.2 Challenges . 61
3.8.3 Standards for Hybrid Co-simulation 64

3.9 Classification and Applications . 65
3.9.1 Methodology . 65
3.9.2 Taxonomy . 65
3.9.3 Applications . 65

3.9.3.1 An Industrial Application 66
3.9.3.2 A Framework . 66
3.9.3.3 A Standard . 66

3.9.4 The State of the Art . 67
3.9.5 Discussion . 68

3.10 Concluding Remarks . 70

4 Empirical Survey 73
4.1 Method and Rationale . 74

4.1.1 Delphi Method . 74
4.1.2 Expert selection and response rate 75
4.1.3 Presentation of the results . 75
4.1.4 Threats to validity and limitations of the study 76

4.2 Results and Discussion . 77
4.2.1 Simulator and Co-simulation Characterization 77
4.2.2 Dissemination channels . 77
4.2.3 Ranking of Standards and Tools 77
4.2.4 Current challenges . 78
4.2.5 Research needs . 82

4.3 Concluding Remarks . 84

5 Stability Preservation in Adaptive Co-simulation 87
5.1 Introduction . 87

5.1.1 Contribution . 88
5.1.2 Structure . 89

5.2 Motivational Examples . 89
5.2.1 Adaptive Simulation . 89
5.2.2 Adaptive Co-simulation . 91

5.3 Background . 93
5.3.1 (Numerical) Stability . 93
5.3.2 Joint Spectral Radius . 96

ii

CONTENTS

5.4 Stability Certification of Adaptive Co-simulations 97
5.4.1 Stability . 97
5.4.2 Stabilization . 98
5.4.3 Conservativeness . 98
5.4.4 Implementation . 99

5.5 Minimizing Forbidden Sequences . 100
5.5.1 Constrained Switched Systems 100

5.6 Lift-and-Constrain Stabilization . 104
5.6.1 Constraining for more stability 104
5.6.2 Lifting for less conservativeness 105

5.7 Implementation . 107
5.8 Computation of the Entropy . 108

5.8.1 Spectral Radius of Adjacency Matrix 108
5.8.2 Edge Shift . 108

5.9 Optimality . 109
5.10 Application . 110
5.11 Related Work . 113
5.12 Concluding Remarks . 113

6 Stability Preservation in Hybrid Co-simulation 115
6.1 Introduction . 115

6.1.1 Contribution . 116
6.1.2 Structure . 117

6.2 Motivating Example: Relaxed Bouncing Ball Simulation 117
6.3 Problem Formulation . 118
6.4 Orbit and stability . 121
6.5 Results . 132

6.5.1 Comparison with State of the Art 133
6.6 Related Work . 135
6.7 Concluding Remarks . 136

7 Semantic Adaptation 137
7.1 Introduction . 137
7.2 Background . 139

7.2.1 Co-simulation . 139
7.2.2 Functional Mock-up Interface Standard (FMI) 141

7.2.2.1 FMUs and Simulation units 141
7.2.3 Semantic Adaptation . 143

7.2.3.1 Conversion of Units and Reference Frame Translation . 144
7.2.3.2 Interpolation/Extrapolation of Inputs 144
7.2.3.3 Fixed Point Iteration 144
7.2.3.4 Multi-Rate Adaptation 145
7.2.3.5 Time and Partial Derivative Adaptation 145
7.2.3.6 Accurate Threshold Crossing 145
7.2.3.7 Re-Initialisation . 146
7.2.3.8 Quantization . 146
7.2.3.9 Hold . 146
7.2.3.10 Data Triggered Execution 146

iii

CONTENTS

7.2.3.11 Timed Transitions . 147
7.2.4 Domain-Specific Languages . 147

7.3 Running Example . 147
7.3.1 The Example Scenario . 148
7.3.2 Semantic Adaptations . 148

7.4 Hierarchical Co-simulation for Semantic Adaptation 150
7.4.1 Hierarchical Co-simulation . 150
7.4.2 Generic Semantic Adaptation 151

7.5 A DSL for Semantic Adaptation . 157
7.5.1 The baseSA DSL . 158

7.5.1.1 The window sa adaptation 158
7.5.1.2 The loop sa adaptation 161
7.5.1.3 The rate sa adaptation 162
7.5.1.4 The lazy sa adaptation 163
7.5.1.5 The controller sa . 164

7.5.2 Syntax . 166
7.5.3 Semantics . 168

7.5.3.1 Reduction to Explicit Form 168
7.5.3.2 Mapping to Generic Semantic Adaptation 170

7.6 Evaluation . 172
7.6.1 Productivity . 172

7.6.1.1 Goals . 172
7.6.1.2 Experimental Setup 172
7.6.1.3 Results . 173
7.6.1.4 Threats to Validity . 173

7.6.2 Expressivity . 173
7.6.3 Modularity . 174
7.6.4 Transparency . 174

7.7 Discussion and Future Work . 175
7.8 Related Work . 176
7.9 Concluding Remarks . 177

8 Hint-Based Configuration of Co-simulations 179
8.1 Introduction . 179
8.2 Industrial Example . 180

8.2.1 Value of Co-simulation for Boeing 180
8.2.2 Boeing’s Case Study . 181
8.2.3 Analysis . 182

8.3 Problem Formulation . 184
8.3.1 Co-simulation Formalization . 184
8.3.2 Research Problem . 188

8.4 Hint Language . 189
8.5 Master Generation . 190

8.5.1 Search Space Representation . 190
8.5.2 Variant Generation . 191
8.5.3 Variant Execution . 192
8.5.4 Hierarchical FMUs . 193
8.5.5 Search Space Generation . 193

iv

CONTENTS

8.5.6 Results . 193
8.6 Related Work . 194
8.7 Concluding Remarks . 195

9 Conclusion 197

v

List of Figures

2.1 Summary of validity, abstraction, and property preservation, for simulation
concepts. Validity is important because it enables conservative modeling.
that is, when, for a valid model M , JMK � p then we can conclude that
JSK � p without having to perform any physical experiment. Simulation
abstraction is important because it frees the modeller from having to check
JMK � p, while checking that JMKA � p is often easier. Property preserva-
tion is important because, if JMKA 2 p then it informs the modeler that the
problem is in the model (JMK 2 p), and not in the solver. 11

2.2 Classification of simulation with respect to execution time. 12
2.3 Summary of co-simulation concepts. 13

3.1 Timeline of co-simulation milestones. From 1970s up to 2015. 16
3.2 Overview of research topics in Co-simulation, according to the use cases. 21
3.3 Research publications of co-simulation applications. 23
3.4 Exhaust Gas Re-circulation system. 24
3.5 Simulated trajectories for look-ahead distance with velocity 1m/s. Taken

from [127]. 25
3.6 3D real-time simulation of a motion compensated crane. Taken from [97]. 25
3.7 Publications that included the keyword “co-simulation” 26
3.8 Subject area for publications that include the keyword “co-simulation” . . 27
3.9 Example co-simulation trace of the traffic light and police officer scenario.

Note that when the police interrupts the traffic light with the toOff event,
no output is produced from the traffic light. 34

3.10 A mass-spring-damper system. 39
3.11 a mass-spring-damper system with a spring-damper connection. 41
3.12 A multi-body system comprised of two mass-spring-damper subsystems. . 42
3.13 A multi-body system coupled by a mass-less link. 47
3.14 Separation of Concerns. 47
3.15 Co-simulation of algebraically coupled masses. 49
3.16 Comparison of co-simulation with co-modelling for the sample coupled

system. 50
3.17 Behavior trace of co-simulator. 57
3.18 Statemachine model of the controller constituent system. 60
3.19 Top-level. 66
3.20 Non-Functional Requirements. 66

LIST OF FIGURES

3.21 Simulation Unit Requirements and features provided in the FMI Standard
for co-simulation, version 2.0. 67

3.22 Framework Requirements. 68
3.23 Classification with respect to non-functional requirements. 69
3.24 Classification with respect to simulation unit (SU) requirements: execution

capabilities. 69
3.25 Classification with respect to SU requirements: information exposed. . . . 70
3.26 Classification with respect to framework requirements. 71
3.27 Formalisms vs IP Protection. 71
3.28 Formalisms vs SUs. 71
3.29 Accuracy vs Formalisms vs SUs. 71

4.1 Answers to the question: “which properties apply to the simulators . . . ?” . 78
4.2 The three most important scientific sources researchers used to disseminate

their work. 79
4.3 Widely accepted and used standards for co-simulation. 80
4.4 Tools that experts use for continuous time co-simulation. 80
4.5 Tools that experts use for discrete event co-simulation. 81
4.6 Tools that experts use for hybrid co-simulation. 81
4.7 Research needs. 82
4.8 Current challenges. 84

5.1 Domain of numerical stability for some hybrid methods. 90
5.2 Example double mass-spring-damper system. 91
5.3 Example arrangement of simulators. 91
5.4 LHS mass position co-simulations. 93
5.5 Example wrong adaptive co-simulation. Trajectory x1 fer1M is similar

to the policy used to compute x1 ferm, except that more time is spent in
the mode where the simulators only take one integration step. 94

5.6 Runtime structures of decision sequence monitor. Matrices A8, A6, A14

are arbitrary matrices. 99
5.7 Example automaton for Example 19. 101
5.8 Evolution of h(Lk) of Example 21 in terms of k. 104
5.9 Automaton of Example 22. 104
5.10 Graphs described in Example 23. 106
5.11 Second degree lifted automaton of Example 22. 107
5.12 An automaton (a) and its edge shift (b). 109
5.13 Solution with entropy log2(7.2568898). 112

6.1 Example simulation of the bouncing ball. 118
6.2 Example simulation of the bouncing ball with a transition delay. 118
6.3 Example of bi-modal switched system: bouncing ball. 119
6.4 Transition delayed switching counterpart of a BMS system (Definition 29).

The variable z acts as a clock that is bounded by H 121
6.5 Illustrations of Lemma 2 . 123
6.6 Illustration of the set S̃p. 125
6.7 Illustration of Assumption 4. 126
6.8 Illustration of the mapping Q(x, h1, h2). 127

viii

LIST OF FIGURES

6.9 Illustration of Lemma 4 for the bouncing ball example. The horizontal axis
refers to position, and vertical refers to velocity. Since the equilibrium x∗ is
not GAS for SH , and SH does not admit any closed orbit, the figure shows
a trajectory that Lemma 4 proves to exist. 127

6.10 Illustrations of the second sub-case of Lemma 4. The axis refer to the
dimensions in the state-space. 128

6.11 Illustrations of Lemma 5. The axis refer to the dimensions in the state-space. 129
6.12 Illustration of the sequence defined in Equation (6.12). 130
6.13 Illustrations of Remark 10. Discontinuities in xmay happen if the trajectory

is tangent to the switching surface (a), and discontinuities in the delay in
the transition may happen when the time spent in Dom(2) is exactly the
delay in the transition (b). The axis refer to the dimensions in the state-space.131

6.14 Upper bound provided by the closed orbit. 133
6.15 Affine bouncing ball model results. 134
6.16 Delayed transition SpaceEx affine model of the bouncing ball example. . 134
6.17 Clipped state space output, produced with SpaceEx. 135

7.1 Overview of DSL semantics and chapter structure. 139
7.2 Internal FMUs, External FMU, and Semantic Adaptation. 144
7.3 Power window co-simulation scenario. 147
7.4 Power window monolithic simulation results. 149
7.5 The modelled adaptations in the power window example. 150
7.6 Power window co-simulation results. 166
7.7 The baseSA editor. 167

8.1 HintCO framework overview. 181
8.2 Case study co-simulation scenario. 182
8.3 Output of Load FMU in experiment 1. Step size is 1× 10−6 s. 183
8.4 Results of experiment 2. 183
8.5 Results of experiment 3. 184
8.6 The ExecRate and PowerBond hints. 189
8.7 Excerpt of search space representation metamodel. 191
8.8 Example search space. 191
8.9 An example variant diagram. 192
8.10 Example operation schedule for variants in Figure 8.9. The edges represent

ordering constraints, as in Definition 49. A possible topological order is
displayed on the left. 193

8.11 Co-simulation computed from the hints. 194

ix

List of Tables

2.1 Example classification of formalisms. ODE stands for Ordinary Differen-
tial Equations, DAE for Differential Algebraic Equations, and DEVS for
Discrete Event System Specification. 9

3.1 Excerpt of research activities in the field of co-simulation in recent years. 28

4.1 Summary of method. Legend: A (Academia), I (Industry), ND (non-
Disclosed). 76

4.2 Expert assessment of current barriers for FMI. Based on a Seven-point
Likert scale. Modified from [323]. 81

4.3 Experts’ assessments: Current challenges. Score: Very Frequently (6)
Frequently (5) Occasionally (4) Rarely (3) Very Rarely (2) Never (1). . . 83

4.4 Experts assessments: Research needs. Score: Entirely agree (7) Mostly
agree (6) Somewhat agree (5) Neither agree nor disagree (4) Somewhat
disagree (3) Mostly disagree (2) Entirely disagree (1). 83

5.1 Total number of model evaluations per co-simulation in Figure 5.4. 92
5.2 Entropy achieved per lift degree. 112

7.1 List of built-in symbols and their meaning. 168
7.2 Effort in hand-coding hierarchical semantic adaptations. 173

Acknowledgements

For the past five years I’ve crossed paths with many people whose contribution to this work
cannot be understated. What follows is an attempt at expressing my gratitude.

I am forever indebted to my supervisor, Hans Vangheluwe, for always taking the extra
time for an interesting discussion, and for all the pearls of wisdom dropped at any time
(e.g., while driving in a busy highway, or while trying to fall asleep after a long day).
Most importantly, thank you for the contagious enthusiasm, for all the hours you put in
understanding the topic and its ramifications for future research, and for the opportunities
you created for me.

My co-supervisor, Paul De Meulenaere, also played a very important role in this work.
Thank you Paul for always making time for a meeting, for your feedback, and for your
advice on how to bring this work to industry.

I am also thankful for the many meetings I had with Peter Gorm Larsen. You have changed
the course of my work through your advice and the opportunities you created. Thank you
for, even in the busiest of times, taking the time to improve our manuscripts. I could not
have survived in Denmark if it weren’t for the hospitality of you and your wife (Margit
Larsen), and the wonderful meals.

Financially, this thesis would not have been possible without the support of the Research
Foundation - Flanders (FWO), and I would not have been able to produce the cover without
the pictures that are available in the public domain (websites freepik and unsplash).

Socially, I cannot express how important my friends have been in this work:

• Thank you Simon, Ali, Yentl, Diana, and Bentley, for the lunch discussions for all the
papers proposing to solve pertinent world’s problems, that went unwritten, because
the lunch break is too short;

• Thank you Joachim, Ken, Istvan, and Bart, for all the great brainstorming sessions
and ideas that later guided much of our work, and sharing your wisdom with me;

• Thank you Benoı̂t (and Lea), and Raphaël, for believing in the relevance of our work,
even when you had other research to do, for your incredible patience in helping me
see the beauty of so many mathematical results, for attempting to teach me how
to write for mathematical audiences, and for making sure I had a great time when
visiting Louvain-la-Neuve.
• Thank you Casper and Kenneth, for teaching me so much about large scale software

development, and all the ideas that made into our work together.

ACKNOWLEDGEMENTS

• Thank you Alex, Mendo, Satya, and Stefan, for helping me understand the needs of
industry on co-simulation.

• And a big thank you to all the friends I visited (Levi, André, Daniela, Regina, Citra),
and visited me (Cláudia, Silvia, João, Vasco, Carmelita, Youyou, Rúben, Valter,
Julien), who brought me so many treats from all over the world.

I am grateful to have a family that supported me in my decision to pursue a PhD, even
though this meant being far from home. Maybe this is their way of getting rid of me.
Nevertheless, I cannot imagine how difficult this is for parents and grandparents, and I just
hope the results I achieve make up for their sacrifice.

Finally, I thank you Caroline Manik, for all the dry-runs you brace through, the weekends
we sit in, the serenity with which you listen to my complaints, your wise advice, and for
patiently showing me the beauty of economics. Thank you for your love and the home you
created.

Cláudio Gomes
1 March 2019

xiv

Abstract

Modeling and Simulation (M&S) techniques are today extensively used both in industry and
science, to develop and understand complex systems. As development processes morph to
respond to economic pressures, they impose new demands on these techniques: • frequent
full system evaluation is required to prevent late integration problems among specialized
teams who worked in parallel on different, but interconnected, parts of the system; and
• seamless integration of externally supplied component models into the M&S workflow of
Original Equipment Manufacturers is needed to enable high fidelity simulations.

Traditional M&S techniques, where a single model of the whole system is built and
simulated, are insufficient to address these demands, because: • teams use mature M&S
tools, each tailored to a particular domain, and not capable of exporting models that are
compatible with any other M&S tool; and • external suppliers are not willing to share
high fidelity models without expensive contracts protecting their Intellectual Property
(IP).

Co-simulation is a way to tackle these challenges. It consists of the theory and techniques
to enable global simulation of a coupled system via the composition of simulators. Each
simulator is broadly defined as a black box capable of exhibiting behavior, consuming
inputs and producing outputs.

This nature is also what aggravates the fundamental challenge in co-simulation: deciding
whether the results can be trusted.

This thesis is comprised of two parts. The first part explores the challenge, and tries to
understand what makes co-simulation different than traditional simulation techniques. One
of the conclusions of this part is the need to ensure that co-simulations preserve properties of
the system being developed (e.g., stability, smoothness, etc. . .). The second part represents
a collection of work, each targeting an aspect of property preservation, including giving the
users of co-simulation, the ability to control the implementation of participating simulators,
and then providing a framework to help them do so correctly.

The reported results provide a deeper understanding of the fundamental challenges that need
to be addressed before co-simulation can become a seamless technique in the development
of complex systems, including: 1. how to configure adaptive co-simulation algorithms
that preserve stability; 2. how to configure state event location for co-simulation of hybrid
systems; 3. a tool that allows the configuration of simulators participating in a co-simulation;
and 4. a framework that guides the configuration of the co-simulation, so as to preserve
domain specific description of system properties.

Nederlandstalige
Samenvatting

Technieken voor het Modelleren en Simuleren (M&S) van complexe systemen om ze
te ontwerpen en verstaan worden meer en meer gebruikt in de industrie en wetenschap.
Naarmate ontwikkelprocessen evolueren om een antwoord te bieden aan economische
druk, worden er nieuwe vereisten gesteld aan deze technieken: • het frequent evalueren
van het volledige systeem is nodig om problemen bij late integratie te voorkomen bij
gespecialiseerde teams die in parallel werken aan verschillende, maar geconnecteerde delen
van het systeem; en • er is nood aan de naadloze integratie van extern geleverde modellen
van componenten in de workflow van Original Equipment Manufacturers (OEMs) om
simulaties van hoge betrouwbaarheid te bekomen.

Traditionele M&S technieken, waar één model van het systeem wordt gebouwd en ges-
imuleerd, volstaan niet om aan deze vereisten te voldoen, want: • hooggespecialiseerde
teams gebruiken tools die specifiek zijn voor een bepaald domein, waarvan de modellen
niet geëxporteerd kunnen worden naar andere M&S tools; en • externe leveranciers willen
hun modellen met hoge betrouwbaarheid niet delen zonder dure contracten af te sluiten die
hun Intellectual Property (IP) beschermen.

Co-simulatie biedt een oplossing om deze moeilijkheden te overkomen. Het bestaat uit een
theorie en technieken die een globale simulatie toelaten van een gekoppeld systeem door
het koppelen van simulators. Elke simulator is grofweg gedefinieerd als een zwarte doos
die gedrag kan hebben, waarbij input geconsumeerd wordt en output geproduceerd wordt.
Deze natuur van simulatoren bemoeilijkt de fundamentele uitdagingen in co-simulatie:
beslissen of de resultaten betrouwbaar zijn.

Deze thesis bestaat uit twee delen. Het eerste deel verkent de uitdagingen, en probeert de
verstaan hoe co-simulatie verschilt van traditionele simulatietechnieken. Eén van de con-
clusies van dit deel is de noodzaak dat co-simulaties de eigenschappen van het systeem dat
wordt ontwikkeld bewaart (e.g., stabiliteit, gladheid, etc. . .). Het tweede deel representeert
een collectie van onderzoeksonderwerpen, die elk een aspect van eigenschapsbewaring
behandelen, inclusief het geven van de mogelijkheid aan de gebruiker van de co-simulatie
om de implementatie van de betrokken simulators aan te passen, en het levert een framework
aan om dit correct te doen.

De gerapporteerde resultaten bieden een dieper inzicht in de fundamentele uitdagingen die
moeten geadresseerd worden voordat co-simulatie naadloos kan gebruikt worden voor het

SAMENVATTING

ontwikkelen van complexe systemen, inclusief: 1. hoe co-simulaties kunnen geconfigureerd
worden om stabiliteit te behouden; 2. hoe het detecteren van toestandsveranderingseven-
ementen kan geconfigureerd worden voor hybride systemen; 3. een tool dat toelaat om
simulatoren die deelnemen in een co-simulatie te configureren; en 4. een raamwerk dat
de configuratie van de co-simulatie gidst, zodat de domeinspecifieke beschrijving van
systeemeigenschappen behouden blijft.

xviii

Publications

The following peer-reviewed publications are partially included in this thesis:

• GOMES, CLÁUDIO. “Foundations for Continuous Time Hierarchical Co-Simulation.”
In ACM Student Research Competition (MoDELS). Saint Malo, France: ACM New
York, NY, USA, 2016. Hans suggested the initial idea and Cláudio wrote the paper.
Then Hans reviewed.
• GOMES, CLÁUDIO, Paschalis Karalis, Eva M. Navarro-López, and Hans Vangheluwe.

“Approximated Stability Analysis of Bi-Modal Hybrid Co-Simulation Scenarios.”
In 1st Workshop on Formal Co-Simulation of Cyber-Physical Systems, 345–60.
Trento, Italy: Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-74781-1 24.
Cláudio came up with the idea. Then Cláudio and Paschalis worked on a draft of the
paper. Eva and Hans reviewed.

• GOMES, CLÁUDIO, Benoı̂t Legat, Raphaël M. Jungers, and Hans Vangheluwe.
“Stable Adaptive Co-Simulation: A Switched Systems Approach.” In IUTAM Sym-
posium on Co-Simulation and Solver Coupling. Darmstadt, Germany, 2017. Cláudio
and Benoı̂t came up with the initial idea, and wrote the paper draft. Then Raphaël
and Hans reviewed.

• GOMES, CLÁUDIO, Benoı̂t Legat, Raphaël Jungers, and Hans Vangheluwe. “Mini-
mally Constrained Stable Switched Systems and Application to Co-Simulation.” In
IEEE Conference on Decision and Control. Miami Beach, FL, USA, 2018. Cláudio
and Benoı̂t refined the idea from the previous paper, and Raphaël suggested the link
with entropy. Cláudio and Benoı̂t worked on the implementation and proof, while
Raphaël and Hans reviewed.
• GOMES, CLÁUDIO, Bart Meyers, Joachim Denil, Casper Thule, Kenneth Laus-

dahl, Hans Vangheluwe, and Paul De Meulenaere. “Semantic Adaptation for
FMI Co-Simulation with Hierarchical Simulators.” SIMULATION, 2018, 1–29.
https://doi.org/10.1177/0037549718759775. Bart, Hans, and Joachim, came up with
the initial idea. Cláudio and Casper refined the idea for co-simulation. Bart worked
on the syntax of the language. Cláudio, Casper, and Kenneth worked on the formal
semantics of the language, and its implementation. Bart and Cláudio wrote the initial
draft of the journal, which was then reviewed by Hans and Paul.

• GOMES, CLÁUDIO, Casper Thule, David Broman, Peter Gorm Larsen, and Hans
Vangheluwe. “Co-Simulation: A Survey.” ACM Computing Surveys 51, no. 3 (April
2018): Article 49. https://doi.org/10.1145/3179993. The initial suggestion to perform
a survey came from Peter and Casper. Casper and Cláudio collected and classified
the paper, and wrote the initial draft of the survey. David, Peter, and Hans, reviewed.

PUBLICATIONS

• GOMES, CLÁUDIO, Casper Thule, Julien DeAntoni, Peter Gorm Larsen, and Hans
Vangheluwe. “Co-Simulation: The Past, Future, and Open Challenges.” In Sympo-
sium On Leveraging Applications of Formal Methods, Verification and Validation,
Vol. 11246. Lecture Notes in Computer Science. Limassol, Cyprus: Springer Verlag,
2018. https://doi.org/10.1007/978-3-030-03424-5 34. Peter came up with the idea of
extending our previous work to a position paper. Cláudio, Casper, and Julien worked
on the first draft. Hans and Peter reviewed.

• Schweiger, Gerald, CLÁUDIO GOMES, Georg Engel, Irene Hafner, Josef Schoeggl,
Alfred Posch, and Thierry Nouidui. “Functional Mock-up Interface: An Empirical
Survey Identifies Research Challenges and Current Barriers.” In The American
Modelica Conference. Cambridge, MA, USA, 2018. Gerald and Josef initiated
the survey. Cláudio suggested some of the researchers to be contacted. Cláudio
and Gerald worked on the questions that were to be asked in both stages of the
study. Irene, Georg, Josef, Alfred and Thierry reviewed the questions. Gerald, Josef,
and Georg, collected and processed the results. Gerald, Josef, Georg, and Cláudio
worked on the draft of the paper, which was then reviewed by Alfred, and Thierry.

xx

Overview of Activities

During my PhD, I participated in a number of scientific activities that were (to some extent)
related to my research. A (non-exhaustive) list is included here.

Organization of Scientific Activities
• Co-organized Training School on Multi-Paradigm Modeling for Cyber-Physical

Systems, 18th-21st November 2018, Pisa, Italy.
http://mpm4cps.eu/trainingSchools/pisa2018

• Part of Program Committee of 2nd Workshop on Formal Co-Simulation of Cyber-
Physical Systems (CosimCPS), 26th June 2018, Toulouse, France. https://
sites.google.com/view/cosimcps18

• Part of the Program Committee of Research, Innovation and Vision for the Future
conference, to be held on 20-22 March 2019, Danang, Vietnam.

Teaching
• Exercises for “Modelling of Software-Intensive Systems” course at University of

Antwerp (2015 - 2019);
• Lab sessions for ”Model-Drive Engineering” course at University of Antwerp (2017 -

2019);
• Tutorial on Co-simulation, at Spring Sim conference, 2018: Gomes, Cláudio, Casper

Thule, Peter Gorm Larsen, Joachim Denil, and Hans Vangheluwe. “Co-Simulation
of Continuous Systems: A Tutorial.” University of Antwerp, September 22, 2018.
http://arxiv.org/abs/1809.08463.

• Tutorial on Co-simulation, at Summer Sim conference, 2018.
• Tutorial on Stability analysis for co-simulation, at CosimCPS workshop conference,

2018: Gomes, Cláudio, Casper Thule, Kenneth Lausdahl, Peter Gorm Larsen, and
Hans Vangheluwe. “Demo: Stabilization Technique in INTO-CPS.” In 2nd Workshop
on Formal Co-Simulation of Cyber-Physical Systems, to be published. Toulouse,
France: Springer, Cham, 2018.

• Co-authored publication for popular science magazine “EuroHeat&Power”: Schweiger,
Gerald, Cláudio Gomes, Irene Hafner, George Engel, Thierry Stephane Nouidui,
Niki Popper, and Josef-Peter Schoggl. “Co-Simulation: Leveraging the Potential of
Urban Energy System Simulation.” EuroHeat&Power 15, no. I–II (2018): 13–16.

http://mpm4cps.eu/trainingSchools/pisa2018
https://sites.google.com/view/cosimcps18
https://sites.google.com/view/cosimcps18

OVERVIEW OF ACTIVITIES

Participation in Scientific Activities
• Attended several meetings of the COST Action MPM4PCS, resulting in multiple

publications with the participants.
• Attended, and presented at, the Spring Sim conferences 2017 and 2018.
• Presented at the MoDELS Conference, 2016.
• Presented at the first and second editions of the CosimCPS workshop 2017 and 2018.
• Presented at the IUTAM Symposium on Co-Simulation and Solver Coupling 2017
• Presented at the ISOLA Conference, 2018.
• Reviewed papers for:

– Software Language Engineering journal;
– Spring Simulation conference;
– Winter Simulation conference;
– Engineering w ith Computers journal;
– CosimCPS Conference;
– Machine Theory and Practice journal;
– IFAC Workshop on Distributed Estimation and Control in Networked Systems;
– Oil & Gas Science and Technology Journal;
– Research, Innovation and Vision for the Future conference;
– Simulation Modelling Practice and Theory journal; and
– Software and Systems journal;

xxii

Chapter 1

Introduction

It is not just that systems are complex. Their development process is also complex. While
systems comprised of many interacting, heterogeneous, components, are fundamental to
our society [230, 276], we argue that the complexity in their development process should
be reduced.

One can identify two main causes of complexity in the development process [351]:

Concurrency Concurrent engineering processes arise out of the need to deliver products
faster [76]. However, they require frequent communication among different teams,
to avoid late integration problems [104, 301, 351].

Specialization Specialization arises as our knowledge matures on each domain, opening
new markets for supplier companies [93]. While there are clear benefits to specializa-
tion, the Original Equipment Manufacturer (OEM) has difficulties obtaining detailed
descriptions of externally supplied components, due to Intellectual Property.

1.1 Motivation
Modeling and Simulation (M&S) techniques have proven to mitigate these issues [131,
321]:

• frequent integration can be attained if every model of the system is accessible in
a single repository, so that every engineer can interact with the models and run
simulations (e.g., see [193, 196]); and

• external suppliers can provide, or the OEM can build, abstract models of supplied
components, based on well known and publicly accessible physical models.

However, M&S techniques are insufficient to enable the global optimization of the system
design, because:

• simulations integrating multiple sub-models built with different tools become increas-
ingly difficult, as these tools mature [359] (e.g., in Bosch at least 100 different M&S
tools are used [45]));

• simulations comprising externally supplied components have limited fidelity [47];
and

CHAPTER 1. INTRODUCTION

• sub-system prototypes should be integrated with models of the rest of the system, to
study the impact on their realization [18, 263].

Co-simulation is a response to the need to unlock the full potential of modeling and
simulation techniques. It consists of the theory and techniques to enable global simulation
of a coupled system via the composition of simulators [216]. Each simulator is broadly
defined as a black box capable of exhibiting behavior, consuming inputs and producing
outputs. Examples of simulators include dynamical models being integrated by numerical
solvers [87], software and its execution platform [108], dedicated real-time hardware
simulators (e.g., [180]), physical test stands (e.g., [378, Fig. 3]), or humans operating
suitable interfaces (e.g., a steering wheel [92, Fig. 24], or graphical user interface [295,
Fig. 6]).

1.2 Main Challenge and Contributions
Co-simulation shares the same fundamental challenge as any simulation-based technique:
can the results be trusted? Naturally, if the results cannot be trusted, the utility of co-
simulation is nil.

Our long term goal is to develop co-simulation to the stage where it can be applied
seamlessly as part of engineering processes.

As such, the first part of our work is dedicated to understanding what makes co-simulation
different than simulation (Chapters 3 and 4). The main conclusions are:

1. The co-simulation configuration space is much larger than the simulation one;
2. The current co-simulation standards are insufficient to enable correct co-simulation,

because the black box nature of co-simulation offers little control over the implemen-
tation of simulators.

3. When the co-simulation results are incorrect, researchers propose solutions that
require information about the simulators.

4. Developing stable co-simulation algorithms is a pre-condition to obtaining correct
results.

5. Users of co-simulation often do not have the necessary information to correctly
configure existing co-simulation algorithms.

The second part of our work focuses on identifying new use cases and scenarios where the
results of the co-simulation are not correct, and the solutions proposed in the state of the art
are insufficient to address them. In particular, our contributions are:

1. we show a first step to producing adaptive co-simulation algorithms that preserve the
stability properties of the system (Chapter 5);

2. we provide an in-depth study of how state event detection in hybrid co-simulation can
threaten the stability of the results, and offer a procedure to configure this detection,
for a restricted class of systems (Chapter 6);

3. we develop the theory and techniques to control the configuration of simulators
participating in co-simulations (Chapter 7); and

4. we propose a solution to improve the configuration of co-simulations, that lever-
ages engineer’s expertise in detecting incorrect results (Chapter 8), so that the co-
simulation preserves the properties that are declared by engineers.

2

1.3. LIMITATIONS

These contributions are related in the following ways:

• Contribution 1 and Contribution 2 both focus in fundamental research on preserving
the stability property;

• Contribution 3 is used in the implementation of Contribution 4, and can potentially
be used to apply Contribution 1 and Contribution 2, when these become more mature.

1.3 Limitations
Our contributions shed light into the many difficult problems that need to be addressed
before our long term goal becomes a reality. However, it is hard to argue that we have solved
each problem to the point where it no longer needs more research. In particular:

1. We assume that the IP of the supplier of sub-models is more protected if he shares
the black box simulator, rather than if he shares the model. Where this assumption
does not hold, there is still a need for co-simulation, as a way to integrate specialized
M&S tools.

2. the body of knowledge in co-simulation is expanding at an unprecedented pace, so
the state of the art survey will most likely be outdated by the time this work gets
published;

3. Contribution 1 and Contribution 2 deal with NP-Hard and Undecidable problems,
and we were able to apply them to very simple co-simulations only, where full
information of the simulators is available;

4. Contribution 3 is limited to the current standards for co-simulation, hence it cannot
fully change the configuration of each simulator; and

5. Contribution 4 does not guarantee that the configurations obtained are correct.

These are discussed in more detail in each chapter.

1.4 Structure
Chapter 2 introduces the main concepts in co-simulation, and scopes our work. The remain-
ing chapters are self-contained, and each of them corresponds to one contribution.

3

Chapter 2

Background

In this chapter, we provide an overview of the main concepts in co-simulation, and the scope
of our work. Many of the concepts informally defined here are refined in later chapters, to
facilitate the description of the contributions.

We focus on human engineered systems, and their development processes. Human kind
has been able to engineer and maintain complex systems for a long time. However, new
technological advances and increasing expectations on these systems, lead to an increasing
complexity not just in the systems, but also in their development process. We will call the
first kind complexity in the real world, and the second kind complexity in the simulation
world.

The next section details the causes of complexity in systems, and what the consequences
are for the modeling and simulation activity. In particular, one of the conclusions is the
need for model integration. Section 2.2 details how economic factors lead to development
processes that make model integration more difficult. Then, Section 2.3 discusses how
model integration can be done. Finally, Sections 2.4 to 2.6 introduce the main concepts in
co-simulation, the model integration activity that we focus on.

2.1 Complexity in the Real World
We denote an engineered system as original system. Additionally, we consider systems
that have a dynamic behavior, which may satisfy a set of properties of interest P , within
a particular context. These properties are often represented as requirements that the
behavior of the system has to satisfy. Failing to satisfy one of such properties may lead
to catastrophic consequences. Example properties are: the system conserves energy, the
system is continuous, the system’s behavior remain within a particular region, etc.
Assumption 1. Throughout this work, we assume that, for a given original system, the
context for which it is to be used and the set of properties P , are fully specified.

This assumption often does not hold in practice: unknown system/environment interactions
can go undetected until the original system is in operation. A simple example of this is the
deformation of a spring while operating under different temperatures. A more interesting

CHAPTER 2. BACKGROUND

example is reported in [297], where a costly recipient tank was overfilled because the
behavior of the system after the shutdown procedure was not taken into account.

The behavior of the system is observed by performing experiments. An experiment is a
way to judge whether the system’s behavior satisfies a subset of the properties P . We will
denote the results of an experiment on system S by JSK. Note that assumption 1 allows
us to refer to the behavior of the system while assuming that such behavior was obtained
within the correct context.
Definition 1 (Complex System). We consider a system to be complex when it is difficult to
partition the set of properties into multiple disjoint subsets of properties that can be studied
individually. In other words, the satisfaction of P cannot be studied by a compositional
study of disjoint subsets of P.

Definition 1 is consistent with the state of the art, where complex systems often have a
large number of interacting, heterogeneous, components (structural complexity), and/or
behaviors that are sensitive to external stimuli (dynamic complexity) [343].
Claim 1. Existing works argue that a way to tackle the complexity in systems is to use
models at the right level of abstraction, represented with the most appropriate formalism,
to study a well defined set of properties (e.g., [86, 191, 359, 367, 368, 383]).

Naturally, it takes time and resources to build models, hence Claim 1 needs to be taken as a
rule of thumb. Nevertheless, it is instructive to understand its consequences when applied
to complex systems.

Following the definitions of [219, 337], a model needs to be based on an original system,
reflecting only a relevant subset of its properties, and can be used in place of the original,
for some pre-defined purpose and within a particular context. This definition of model
is intertwined with the definition of experiment: a model is created for the purpose of
experimenting with it, and with a set of properties and context in mind [86, 383].

We denote by dynamical models those models whose purpose is to approximate the relevant
behavior of the original system with respect to some properties of interest. They are
characterized by a state and a notion of evolution rules. The state is a set of point values
in a state space. The evolution rules describe how the state evolves over an independent
variable, usually time.

The behavior trace JMK of a dynamic model M is the set of trajectories followed by the
state (and outputs) of M . For example, a state trajectory x ∈ JMK can be defined as a
mapping between a time base T and the set of reals R, that is, x : T → R. We refer to the
time variable t ∈ T as simulated time—or simply time, when no ambiguity exists—defined
over a time base T (typically the real numbers R). Note the difference to the wall-clock time
τ ∈WcT , which is the time that passes in the real world [135]. More details are given in
Section 2.4. We need to postulate that every dynamical model has a behavior trace.
Definition 2. We say that a dynamic model M is valid w.r.t. system S when

∀p ∈ P, JMK � p =⇒ JSK � p,

where P denotes the subset of properties that M was created to study, JSK � p means that
the behavior of S satisfies p, and JMK � p means that the behavior of M satisfies p.
Assumption 2. The models we work with are valid.

In practice, it can be a challenge to recognize that a model is valid for a particular system
and context [109, 383]. The simplest example of this is the model of a spring with Hooke’s

6

2.1. COMPLEXITY IN THE REAL WORLD

law: it can only be used to measure the force of the spring for small deformations. A
more interesting example is described in [336], where the authors ran a questionnaire
through several experts in various domains of physics, asking them to identify the implicit
assumptions in a simple model of a particle moving in a viscous medium. No expert was
able to identify all the 29 assumptions, identified by their combined expertise.

Abstraction is a partial order between models with respect to a set of properties, commonly
used in model checking [94].
Definition 3 (Abstraction). Given a set of properties P ′ ⊆ P , a model M ′ is an abstraction
of a model M w.r.t. P ′ if ∀p ∈ P ′, JM ′K � p =⇒ JMK � p.

In Definition 3, model M ′ will often be associated with a reduced context.

In Claim 1, a model M ′ is at the right level of abstraction with respect to a given P ′ if any
other model M (comparable to M ′ with respect to the abstraction order), expressed in the
same formalism, is not an abstraction of M ′ with respect to P ′. Note that, due to time and
resource constraints, it might not be possible to construct a model that is at the right level
of abstraction.

The formalism of a model is defined here as the language used to represent the model.
Formalisms have syntax and semantics. For example, ordinary differential equations is a
formalism frequently used to create system models.

In Claim 1, the most appropriate formalism depends, at least, on:

Cognition (e.g., readability)
Tool Support (e.g., ease of use, collaboration support)
Library (e.g., most common mechanical system components)
Ecosystem (e.g., active community)

By these definitions, different sets of properties regulate the right level of abstraction, and
the most appropriate formalism, for a model. For example, the best model to understand
the temperature of a spring is different than the model required to understand the reaction
force of the spring.

Therefore, applying Claim 1 to complex systems (Definition 1), one concludes that there
seldom is a model, expressed in a single formalism and level of abstraction, that is suitable
to study the whole set of properties P . Instead, the best model is typically a coupled
model.
Definition 4 (Coupled Model). A coupled model is combination of different models,
interconnected in an architecture, expressed in possibly different formalisms, and at possibly
different levels of abstraction, that share information.
Definition 5. Model integration is the act of computing the behavior trace of a coupled
model. Model integration entails the formulation of the semantics of the coupled model.

For example, to understand whether a power window detects an obstacle and retracts without
causing harmful deformation on the obstacle, one needs to construct a model that represents
the dynamics of the window/motor sub-system, the dynamics of the software control sub-
system, and the dynamics of how these sub-systems communicate (see Chapter 7). Prior
research work has found [107] that a coupled model combining differential equations with
state machines constitutes a good model to study this property.

7

CHAPTER 2. BACKGROUND

2.2 Complexity in the Simulation World
Complexity in the simulation world is caused by the complexity of the original system, and
the constraints on the development process, such as competitive pressures and specializa-
tion.

Traditionally, electromechanical systems were designed sequentially, i.e., the mechanical
and structural components were designed first, then the electrical and electronic were
selected or developed, then they were interconnected with the mechanical components, and
so on [104]. This purely sequential development of components increases the product lead
times [76]. Any attempt to optimize this process, and respond to competitive pressures,
leads to concurrently developed components [230, 351]. When concurrently designed
components need to be integrated, multiple problems can arise [104, 356, 359].

Increased specialization leads to distributed processes. As an anecdotal example, [93]
presents the initial results of a study of product development in the world auto industry
using data on passenger vehicle development projects from 20 automobile companies in
Japan, Europe, and the US. They argue that, at least in the Japanese automotive industry,
using components provided by specialized suppliers brings benefits to the development
process. They also motivate the importance of concurrent development and specialization
to reduce the critical path of projects.

To tackle increased specialization and distribution, the development process makes use of
multiple models of the same system, developed concurrently, at different stages (e.g., the
v-process [359]), each focusing on a subset of properties P .

The increased specialization makes it harder for each engineer to understand all the con-
structed models. This is where coupled models (Definition 4), and model integration, play
a fundamental role: it allows engineers to quickly understand the impact of their changes in
the system.

However, the distribution makes it difficult to construct models for externally supplied
parts of the system, because these might constitute important intellectual property. For
example, the system described in [297] comprises a water treatment sub-system that is
built externally. How can one construct a coupled model of the system, using a sub-model
that is provided by an external entity, with vested interest in not disclosing how the water
treatment system works?

2.3 Model Integration
Models can be integrated in many different ways.
Example 1. For example, as shown in [266, 267], a state machine model can be integrated
with a Causal Block Diagram (CBD) model to form a Hybrid Automata, or a Hybrid CBD.
The Hybrid Automaton, formally defined in Chapter 6, is essentially an automaton where
each state represents a mode of operation of the system, and within each mode, a CBD
dictates the continuous behavior of the system, when it is in that mode. The Hybrid CBD
is a CBD whose blocks can contain state machines, where each state dictates the output
values of the block.

Co-simulation is a model integration approach where models are integrated using the

8

2.4. TAXONOMY OF DYNAMICAL MODEL FORMALISMS

input/output mechanisms of each formalism. It has the potential to solve the challenges
identified in Section 2.2:

• It enables the reuse of mature knowledge about how to build and simulate each model,
thereby facilitating the integration of models created using specialized tools;

• It allows black box models to be integrated, thereby preserving the intellectual
property in them.

In the following, we give some basic concepts on simulation, as a starting point to detail
the co-simulation approach, the challenges it entails, and scope our contributions. These
concepts are refined in later chapters.

2.4 Taxonomy of Dynamical Model Formalisms
Formalisms can be categorized according to:

Time Domain The time can be a continuous set (e.g., the set R), discrete set (e.g., the
set N), or superdense set (e.g., the set R× N)1. In Superdense time [232, 246, 247],
each time point is a pair (t, n) ∈ R× N.

State Domain The state domain can be a continuous set (e.g., Rn, where n ∈ N), a discrete
set (e.g., Qn, where n ∈ N), or a mix of both.

Behavior Trace The behavior trace can be discontinuous, continuous, differentiable.
Causality Models can be a-causal, when they can be coupled to other models without any

notion of inputs and outputs, or causal, when outputs need to be connected to inputs
and vice-versa.

Evolution The evolution of the state can be deterministic, stochastic, or non-deterministic.

This classification is based on the works of [157, 158, 191, 367].

Table 2.1 shows how the above taxonomy can be applied to classify multiple well known
formalisms.

Table 2.1: Example classification of formalisms. ODE stands for Ordinary Differential
Equations, DAE for Differential Algebraic Equations, and DEVS for Discrete Event System
Specification.

Formalism Time D. State D. Behavior T. Causality Evolution

ODEs R Rn Differentiable Causal Determ.
DAEs R Rn Differentiable A-causal Determ.
Difference Equations Q Rn Discontinuous Causal Determ.
Petri-nets N Nn Discontinuous Causal Non-Determ.
Automata N Nn Discontinuous Causal Determ.
Differential Inclusions R Rn Differentiable Causal Non-Determ.
Hybrid Automata R× N Mix Discontinuous Causal Non-Determ.
Classic DEVS R× N Mix Discontinuous Causal Determ.
Delayed ODEs R Rn Differentiable Causal Determ.

1We exclude the singleton set for time because we consider dynamical models only.

9

CHAPTER 2. BACKGROUND

The taxonomy introduced is not meant to be exhaustive, but rather give the reader a sense of
the different kinds of formalisms being used, and how difficult it might be to integrate them
in a co-simulation. For example, in [227], the authors report a successful integration of a
railway traffic light Petri-net model with a CBD model. The result is a co-simulation that
spans multiple parallel executions, branching whenever the Petri-net model exhibits non-
deterministic state changes. However, the reported approach requires the CBD simulator to
support parallel execution.

In this thesis, we will focus on the formalisms that are most commonly integrated in
co-simulation practice: ODEs, DAEs, Automata, CBDs, and Hybrid Automata.

2.5 Simulation
There are two generally accepted ways of obtaining the behavior trace of a dynamical
model:

Translational Translate the model into another model, which can be readily used to obtain
the behavior trace. For example, obtaining the analytical solution of a set of linear
differential equations.

Operational Use a solver – an algorithm that takes the dynamical model, and its inputs,
as input, and outputs a behavior trace. For example, the application of a numerical
solver to compute the solution to a set of differential equations.

Throughout this work we will focus on the latter approach.

A simulator (or solver) is an algorithm that computes the behavior trace of a dynamical
model, given the inputs of the model. For some formalisms, the behavior trace can only
be approximated. For example, if running in a digital computer, it is often the case that a
simulator will only be able to approximate the trace of a set of differential equations. One
can often create a model representing how the simulator approximates the behavior of the
dynamical model (an example is shown in Section 3.7).

For a given model M and simulator A, we denote the approximated behavior of the model
by JMKA. With this notation, the behavior trace computed is exact iff JMKA = JMK, and
approximate otherwise.

In the case that JMKA 6= JMK, we define the error of the simulator as the abstract difference2

between the original model and the induced model: ‖JMK− JMKA‖, for some given norm
‖·‖. Based on the state of the art, we can distill the two unavoidable causes of errors
in simulators: inability to compute unpredictable and continuous interactions between
variables over time, and the finite representation of real numbers.

A simulator is accurate when ‖M − JMKA‖ is small enough to satisfy the following two
conditions.
Definition 6 (Simulation Abstraction). A simulator is a simulation abstraction when:

∀p ∈ P, JMKA � p =⇒ JMK � p.

Definition 7 (Property Preservation). A simulator is property preserving when:

∀p ∈ P, JMK � p =⇒ JMKA � p.
2Abstract because we do not specify how to compute this difference.

10

2.6. CO-SIMULATION

To contrast accuracy with validity, note that validity is a property of a dynamical model
whereas accuracy is a property of a simulator [87]. It is perfectly possible to have an
accurate behavior trace of a model that is invalid, and vice versa.

Figure 2.1 summarizes these concepts, and their importance.

"In Vivo" "In Silico"

⟦S⟧

Model
M

Validity:
∀p∈P, ⟦M⟧ ⊧ p ⟹ ⟦S⟧ ⊧ p

Experiment E

∀p∈P, ⟦S⟧ ⊧ p

Prop. Analysis

Simulation

⟦M⟧A

Prop. Analysis

∀p∈P, ⟦M⟧A ⊧ p

Solution

⟦M⟧

Prop. Analysis

∀p∈P, ⟦M⟧ ⊧ p

Prop. Preserv:
∀p∈P, ⟦M⟧ ⊧ p ⟹ ⟦M⟧A ⊧ p

Abstraction

Abstraction

Solution

⟦M'⟧

Prop. Analysis

∀p∈P', ⟦M'⟧ ⊧ p

Abstraction:
∀p∈P'⊆P, ⟦M'⟧ ⊧ p ⟹ ⟦M⟧ ⊧ p

Abstraction (restricted to P')

Modelling

Sim. Abstraction:
∀p∈P, ⟦M⟧A ⊧ p ⟹ ⟦M⟧ ⊧ p

Validity

Original
System S

C
on

te
xt

 C

C
on

te
xt

 C

Solver A

Prop. Preservation

Model
M'

C
on

te
xt

 C
'

C' ⊆ C

Figure 2.1: Summary of validity, abstraction, and property preservation, for simulation
concepts. Validity is important because it enables conservative modeling. that is, when,
for a valid model M , JMK � p then we can conclude that JSK � p without having to
perform any physical experiment. Simulation abstraction is important because it frees the
modeller from having to check JMK � p, while checking that JMKA � p is often easier.
Property preservation is important because, if JMKA 2 p then it informs the modeler that
the problem is in the model (JMK 2 p), and not in the solver.

One can apply the taxonomy identified in Table 2.1 to classify simulators as well. Addition-
ally, we can identify one extra dimension:

Execution Time When computing the behavior trace of a dynamical model over an interval
[0, t] of simulated time, a computer takes τ units of wall-clock time that depend on t.
The value τ can therefore be used to measure the run-time performance of simulators.
Figure 2.2 highlights different kinds of simulation, based on the relationship between
τ and t.

2.6 Co-simulation
We use the term Simulation Unit (SU) to denote something that produces a behavior trace,
when inputs are provided. A SU can be a composition of a simulator and a dynamical
model, or it can be a real-world entity (with appropriate interface). Notice that, in contrast

11

CHAPTER 2. BACKGROUND

Figure 2.2: Classification of simulation with respect to execution time. Based on [268, 361].
In real-time simulation, the relationship between t and τ is t = ατ , for a given α > 0. In
most cases α = 1 is required, but making sure this is obeyed by the simulation algorithm is
one of the main challenges in real-time simulation, and by extension, of co-simulation. In
as-fast-as-possible —or analytical— simulation, the relationship between τ and t is not
restricted. Simulation tools that offer interactive visualization allow the user to pause the
simulation and/or set a different value for α.

to a simulator, a SU only requires inputs to produce behavior. It represents an black box, a
key concept in co-simulation.

A simulation is the behavior trace obtained with a SU. The correctness of a SU is dictated
by the correctness of the simulation, which depends on the accuracy of the simulator and
the validity of the dynamical model.

In co-simulation, the integration of models is done through SUs. These can be coupled via
their inputs/outputs to produce a behavior trace of the coupled system. A co-simulation,
a special kind of simulation, is the collection of combined simulations produced by the
coupled SUs.

The SUs are coupled using a master, or orchestrator, algorithm. The master controls how
the simulated time progresses in each SU and moves data from outputs to inputs according
to a co-simulation scenario. A co-simulation scenario is the information necessary to
compute a co-simulation. It includes how the values of each SU are shared with other SUs,
the frequency of sharing, etc. . .

Analogously to the simulator and SU concepts, the composition of a specific master with
a co-simulation scenario, yields a co-SU, which is a special kind of SU. It follows that a
co-simulation is the simulation trace computed by a co-SU. This characterization allows
hierarchical co-simulation scenarios, where co-SUs are coupled, and is compatible with the
concepts of simulation introduced above:

Approximated Behavior Let M denote the coupled model. Then, a co-simulation unit A
approximates the behavior of M . We will denote such behavior as JMKA.

Property Preservation and Simulation Abstraction An accurate co-simulation algorithm
satisfies the conditions in Definitions 6 and 7.

Kind of co-simulation unit The co-SU can be classified according to the taxonomy used
to classify simulators.

12

2.6. CO-SIMULATION

Figure 2.3 summarizes these concepts.

Solver
Ai

∀p∈Pi, ⟦Mi⟧ ⊧ p

Prop. Analysis

⟦Mi⟧

Inputs

Solution

Model
Mi

C
on

te
xt

 C
j

Model
Mi

Simulation

⟦Mi⟧Ai

Prop. Analysis

∀p∈Pi, ⟦Mi⟧Ai ⊧ p

C
on

te
xt

 C
i

Inputs

Solver
Ai

Coupled Model M

C
on

te
xt

 C

Model
Mi

Model
Mi

Co-Simulation

⟦M⟧A

Prop. Analysis

∀p∈P, ⟦M⟧A ⊧ p

Master
Algorithm A

Prop. Preserv:
∀p∈P, ⟦M⟧ ⊧ p ⟹ ⟦M⟧A ⊧ p

Sim. Abstraction:
∀p∈P, ⟦M⟧A ⊧ p ⟹ ⟦M⟧ ⊧ p

Figure 2.3: Summary of co-simulation concepts. The co-simulation makes use of each
sub-model’s solver, and the coupled model incorporates how the sub-models are connected.
Also note that the inputs used for each sub-model’s simulation are not necessarily the
same as the inputs used in the co-simulation. Finally, there is no relationship between the
properties satisfies by each sub-model, and the properties satisfied by the coupled model.

13

Chapter 3

State of the Art

Disclaimer The content in this chapter is adapted from:

• Gomes, Cláudio, Casper Thule, David Broman, Peter Gorm Larsen, and Hans
Vangheluwe. “Co-Simulation: A Survey.” ACM Computing Surveys 51, no. 3 (April
2018): Article 49. https://doi.org/10.1145/3179993.

• Gomes, Cláudio, Casper Thule, Julien DeAntoni, Peter Gorm Larsen, and Hans
Vangheluwe. “Co-Simulation: The Past, Future, and Open Challenges.” In Sympo-
sium On Leveraging Applications of Formal Methods, Verification and Validation,
Vol. 11246. Lecture Notes in Computer Science. Limassol, Cyprus: Springer Verlag,
2018. https://doi.org/10.1007/978-3-030-03424-5 34.

In this chapter, we look at the state of the art in co-simulation. We give an historical
overview of co-simulation, identify the main challenges and approaches to tackle such
challenges.

The trend of historical data hints at a future with more and more virtual engineering, across
all stages of the system’s life-cycle. Furthermore, the proposed approaches share a common
theme: they require more information about the black-box SUs, and/or demand that the SUs
satisfy extra requirements. As such, we propose a taxonomy that structures these require-
ments and information, and charts the configuration space of the co-simulation.

This taxonomy is then used in a systematic literature survey, of papers from 2010 until
2015. The results of this classification help future standardization efforts, researchers, and
simulator developers, understand the relative important of the different requirements.

3.1 Main Milestones

We summarize the main milestones of the past 30 years that lead to the modern uses of
co-simulation. Figure 3.1 situates these in time, whose circled numbers are referenced
throughout the text.

CHAPTER 3. STATE OF THE ART

2 3 4 6 7 8 9 10 11 12 10 1413 155

1980s 1990s 2000s 2010s1970s1960s

1

Figure 3.1: Timeline of co-simulation milestones. From 1970s up to 2015.

3.1.1 60s
1 In the sixties, as parallel computer architectures matured, researchers explored how to

parallelize traditional numerical solvers of differential equations (e.g., see [190, 255] and
references thereof). From the early contributions, we can identify the following types of
parallelism, relevant to simulation:

Algebraic the solution procedure to a set of algebraic equations (e.g., [91, 254]), or a single
step of a numerical solver (e.g., [256]), is computed in parallel;

Time the simulation time interval is partitioned and the solution procedure is applied in
parallel to the different intervals (e.g., [277])

State the state space is partitioned, and simulated in parallel (e.g., parallel partial differential
equation solvers [82, 114])

The modern co-simulation approaches resemble the state parallel algorithms the most.

3.1.2 70s and 80s
2 In the mid seventies, researchers (e.g., [38, 187, 291]) acknowledged that soil-structure

and fluid-structure interaction problems should be partitioned into different sub-subsystems
[124]. This is because their solution with a single numerical method was inefficient. These
approaches where called partitioned methods [123], and they highlight the heterogeneity
aspect in co-simulation.

To the best of our knowledge, the first discrete event synchronization algorithms were
published in the late seventies [206], around the same time that Lamport [224] published
his seminal paper regarding the ordering of events in distributed process networks. Discrete
event simulators, described in Section 3.6, compute the behavior of a system by isolating
the most important events and computing the state evolution of the system from one event
to the next [134]. In this paradigm, a coupled system can be modeled as a set of sub-models
that exchange events, which then are simulated in parallel, each in a separate process. The
main challenge is the correct synchronization of the sub-models.

3 In the late seventies and early eighties, as electrical circuits increased in size, their
simulation algorithms were becoming a bottleneck in the development process because of
the long simulation times. Practitioners noticed that, for sufficiently large circuits, only
a small fraction of the subsystems had actively changing voltage levels, at any point in
time. This led to the development of simulation techniques that, in a similar way to their
discrete event based counterparts, only computed a new state of each subsystem when
its outputs had changed significantly [190, 235, 252, 257, 275]. Additionally, to exploit
parallel architectures and reduce numerical instabilities, the waveform relaxation techniques
were introduced. These can be seen as a combination of state and time parallelism (recall

16

3.1. MAIN MILESTONES

Section 3.1.1): during a computation interval t → t + H , each subsystem was assigned
to a simulator which approximated its solution in that interval, making a guess for the
unknown input trajectories, using whatever simulation step size was required to keep the
approximation error of that subsystem within tolerance. Then the simulators exchanged the
computed solution trajectories, and were asked to re-compute the same interval, using the
updated input trajectories.

These techniques made possible the simulation of large scale circuits because they naturally
supported subsystems with different dynamics: systems which changed slowly where more
quickly driven to convergence, and with larger simulation step sizes. They represent a
parallel version of multi-rate solvers [140], and have been subject to extensive numerical
analysis [250].

4 In the late eighties, the release of Time Warp Operating System represented the
optimistic facet in parallel discrete event simulation. It acknowledged that the performance
of a parallel discrete event simulation could be increased by allowing the different processes
to simulate as fast as possible, ignoring the absence of input events, and correcting causality
violations. The corrections are made by rolling back the processes to a state that is consistent
with the time of the input event that caused the violation (see Section 3.6).

5 The performance of optimistic discrete event synchronization algorithms was such
that it sparked the research into large scale simulations with humans interacting in realistic
environments created by collaborating simulators. Developed during the 80s, SIMNET
was dedicated to military training scenarios involving thousands of simulators representing,
for instance, tanks or helicopters [253]. It encompasses an architecture and protocol to
implement the optimistic synchronization of simulators in a distributed environment, with
real-time constraints. In order to keep a reasonable level of accuracy and realism, one of
the innovations is the concept of dead-reckoning models. A dead-reckoning model is a
computationally lightweight version of some other model, whose purpose is to be used by
interested simulators when there is a failure of communication, or when the synchronization
times are far apart. A related approach is used in model predictive control [137].

3.1.3 90s
6 Following the research into parallel algorithms, in the early nineties, process coordina-

tion languages emerged (e.g., Linda [46], Manifold [22]). Such languages can be used to
manage process creation and communication [142], and therefore can be used to specify
parallel synchronization schemes between simulator processes. During the same period, the
software architecture research field proposed languages to abstract, structure, and reason
about complex systems. One example is the Architecture Description Languages (ADLs)
[138]. A ADL description specifies a system in terms of components and interactions
among those components. Such languages helped 1) to clarify structural and semantics
difference between components and interactions, 2) to reuse and compose architectural
elements, 3) to identify/enforce commonly used patterns (e.g., architectural styles).

In 1990, United Airlines ordered 34 Boeing 777s, the first aircraft to be developed with
concurrent engineering [193, 196]. The design was communicated fully in digital form,
later aptly named a Digital Mockup Unit (DMU [21]), using CAD tools to showcase the
different views of the system. This central repository of information served many purposes:
(i) every team could consult the specifications of the subsystems made by any other team;

17

CHAPTER 3. STATE OF THE ART

(ii) simulations could be carried out periodically, to detect problems in the design; (iii) both
the assembly and maintenance phases of the system could affect the design phase, by
running simulations of repairs and assembly.

This milestone represented an increase in the information that is taken into account for the
design of the system. It now did not come only from requirements, but also from other
stages of the life-cycle of the system: manufacturing, assembly and maintenance.

7 As digital circuits became more complex, they comprised microprocessors running
software. Rather than simulate the digital circuit, and deduce the execution of the software
from there, researchers explored how to isolate the non-microprocessor part of the digital
circuit, so that the software can be simulated directly. This field spawned the need for
hardware/software co-simulation [90, 169, 315, 391]. Before using co-simulation, software
developers had to develop their code with little information about the underlying hardware,
leading to painful integration efforts later on. Later, they were able to quickly identify
miscommunication errors before building hardware prototypes.

In the field of physical system simulation, researchers realized that there should be a
standardized way to represent physical system models, so that these could be easily coupled
to form complex systems [179, 218, 298, 369, 392]. One of these standards was called
the Dynamical System Block (DSBlock) standard [287]. This proposal later inspired a
widely adopted standard for co-simulation: the Functional Mockup Interface. 8 While
the composition of DSBlocks still needs a solver, and is therefore not strictly considered co-
simulation, this was a milestone in highlighting the need for standardization for continuous
system co-simulation.

9 As embedded systems were enhanced with communication capabilities, researchers
noticed that the simulation of these distributed systems should not always be run at the
same level of detail. Instead, the designers should be able to choose the level of detail they
wanted for each embedded system: from the highest level of detail (circuit simulation), to
the lowest (software simulation) [118, 181, 182, 209, 248, 320].

In the particular case of analog-digital co-simulation, each level of abstraction was solved
by a different tool: a continuous time tool and a discrete event tool. The separation
into continuous-time and discrete-event lead researchers to study some of the first hybrid
co-simulation master algorithms [81, 125, 130, 354].

3.1.4 2000s

10 The early 2000s was marked by multiple reported applications of co-simulation being
used in industrial case studies (e.g., see [25, 124, 228] and Section 3.3). These had in
common one aspect: two simulators were coupled, each specialized in one domain, in a

feedback loop. 11 For example, in [25] the authors reports on the study of interactions
between a pantograph (a mechanical structure on top of a train, connecting it to the electric
grid), and a catenary (over hanging cable that transmits electricity to the train). A flexible
body simulator was used to compute the behavior of the catenary, and a multi-body simulator

was used for the pantograph. 13 In the meantime, the DIS standard, and its protocols,
were generalized to non-real time applications, in what became the HLA (High Level
Architecture) standard [14].

18

3.1. MAIN MILESTONES

12 In order to ensure the correctness of coordinated heterogeneous model simulations,
the Ptolemy and the Modhel’x projects proposed to expose some information about the
behavioral semantics of languages (named Model of Computation) [60, 117]. Then, they
defined adaptations so that they could be co-simulated. These works can be seen as a
continuation of the process coordination languages that started in the 90s.

In the meantime, the domain of Hw/sw co-simulation matured with well defined Regis-
ter Transfer Level (RTL) and Transaction Level Model (TLM) abstraction levels, which
facilitated multi-abstraction co-simulation [37, 204, 312].

14 In 2008, the MODELISAR project published the FMI (Functional Mockup Interface)
standard [47], whose essential contribution to co-simulation was the concept of Intellectual
Property protection. It was an evolution of the DSBlock proposal, but recognizing that each
subsystem might need its own simulator. This standard is widely adopted in industry1 (see
Chapter 4), where the simulation of externally supplied components can be costly due to
high licensing costs.

Just as the adoption of simulation techniques in circuit design highlighted scalability into
focus, so does the adoption of the FMI standard highlights this issue. The number of tools
being used in the development of systems exploded. In the Bosch company, for example,
there more than 100 different modeling and simulation tools [45] are in use.

Although there was some research about the coordination of black-box physical system
simulators before the FMI Standard was published (e.g., [25, 165, 217]), it does not
standardize the synchronization protocol between simulators. The main reason is that, as in
continuous system simulation, there is no one-fits-all master algorithm. This is in contrast
to discrete event simulation, where the implementations of the DIS and HLA standards
provide everything to run the co-simulation.

Compared to the DMU initiative, the FMI represents a pragmatic approach that is aimed
at being adopted by companies of different sizes, and does not require the intervenients
to disclose their Intellectual Property, which is crucial in the interactions with suppliers
[18, 359].

3.1.5 2010s
The current decade is marked by several applications of co-simulation across many do-
mains (see Section 3.3) and across more development stages, with the Digital Twin [147]
concept.

The application of co-simulation to simulate large scale distributed systems is discussed in
[30, 31, 32, 136]. Furthermore, co-simulation is being proposed for early system validation
and X-in-the-Loop studies, bringing hard real-time constraints to the set of challenges
[115].

15 The Digital Twin extends the DMU concept not just to the design and assembly phases
of the system, but also to the maintenance and operation. The essential idea is to use high
fidelity models of the system, calibrated from sensory information collected during its

1http://fmi-standard.org/

19

http://fmi-standard.org/

CHAPTER 3. STATE OF THE ART

operation, to affect how the system should operate, predict failures, schedule maintenance,
etc. . . [56, 147, 163].

3.2 Emerging Trends and Challenges

Since co-simulation is but a special kind of simulation, the grand challenge is whether the
results can be trusted. What makes co-simulation different is the fact that heterogeneous
models are integrated. Obviously, if the results cannot be trusted, then the utility of the
technique is nil.

Using the notations introduced in Chapter 2, let M denote the coupled model being co-
simulated,A denote the co-simulation algorithm, and P the set of relevant properties. Then,
the main challenge consists of satisfying property preservation (Definition 7):

∀p ∈ P,M � p =⇒ JMKA � p. (3.1)

Assuming that co-simulation algorithms satisfy Equation (3.1), one can use the histori-
cal milestones to identify the trends, and take an informed guess of the challenges that
ensue.

Throughout the history of co-simulation, the trend is a gradual shift towards the virtu-
alization of not just the design of the system, but also assembly, operation, and mainte-
nance.

The virtualization of the design has been one of the primary uses of co-simulation, backed
up by concurrent engineering processes, such as the v-process [359].

The virtualization of the assembly is reflected by an increased demand in the information
that should be taken into account at the design phase, with concepts like the Digital Mockup
Unit (DMU).

Complex systems that need interaction with human operators require training interfaces.
Marked by military simulators, the virtualization of operation refers to the creation of
complex training environments at almost no cost by leveraging the same co-simulation
scenarios used in the design phase.

Finally, extending the lifespan of systems, and reducing their downtime through the vir-
tualization of their maintenance, is becoming a priority. This is in line with recent trends
towards a circular economy, and a shift to an economy based on services, such as mainte-
nance and disposal of the company’s own products [355]. This means that co-simulation
can be combined with advanced sensors to create smart monitors (also known as Digital
Twins) that detect/predict failures, and therefore decrease the maintenance costs.

These trends allow us to identify the main context in which co-simulation is, and will be,
used: Design Space Exploration, X-in-the-Loop, and Incremental Testing/Certification.
Example applications of co-simulation that fit into these categories are described in Sec-
tion 3.3. Each usage context is related to research topics, described below, and summarized
in Figure 3.2.

20

3.2. EMERGING TRENDS AND CHALLENGES

Guarantees

Non-determinism

X-in-the-Loop

Increment
Testing/Certification

Design Space
Exploration

Full System
Simulation

Performance
Accuracy Tradeoff

Debugging

Validity

1

Time
Guarantees

Orchestration

Automated Configuration

Figure 3.2: Overview of research topics in Co-simulation, according to the use cases.

3.2.1 Design Space Exploration

Design Space Exploration consists of the systematic analysis and evaluation of different
designs over a parameter space. Co-simulation is used as part of the evaluation of a design.
The following requirements are noteworthy:

Number of Designs The number of designs to be evaluated is large. Therefore, the co-
simulations need to take as little wall clock time as possible.

Unsupervised Evaluation The experts do not typically inspect the behavior trace pro-
duced by the co-simulation algorithm. Therefore, the co-simulation needs to be
automatically configured to produce trustworthy results.

Heterogeneous Designs The configuration of the co-simulation for one design can be
wildly different from the configuration of the co-simulation for the other design.
Additionally, the co-simulation should check the validity of each new coupled model.
This is important because physical system models have many implicit assumptions,
and their combination may violate those assumptions, purging their predictive value,
making validity an important research topic.

3.2.2 X-in-The-Loop

X-in-the-Loop refers to co-simulations that are restricted in time and computing resources,
due to the presence of human operators, animation requirements, or physical subsystems.
In this context, there is a need for simulators which can provide contracts with timing and
resource guarantees on their computation time, based on the inputs and parameters.

21

CHAPTER 3. STATE OF THE ART

3.2.3 Incremental Testing/Certification
Incremental Testing/Certification consists of the co-simulation activities that are applied
as part of concurrent engineering, where the models of each subsystem are refined as the
development progresses and full system evaluation is run frequently. We highlight the need
for co-simulations that provide formal guarantees on the accuracy. This could be done
through some form of contract. Moreover, it should be possible to obtain an abstraction
of each simulation unit that is appropriate to the kind of contracts defined. There is some
research that could be used as a starting point [58, 83, 189, 245].

Once each simulator provides formal guarantees, then the master algorithm should ensure
that the composition of those contracts, and other formal properties, can be satisfied. As
highlighted by works on heterogeneous simulations and more recently in [237], the way
to orchestrate the different simulators can lead to incorrect results. This is especially true
when discrete models (with frequent and natural discontinuities) are in the loop since a
minor change in timings can result in different behavior. This phenomenon is discussed in
Chapter 6.

To illustrate, consider a simulator that guarantees there are no more than one discontinuity
every 10 seconds. Then, depending on similar contracts satisfied by other simulators, a
similar contract could be satisfied by the co-simulation.

One of the main use cases of the Digital Twin is to predict/detect failures, and analyze
re-configurations of the system. This kind of what-if analysis, in an uncertain environ-
ment, is best done with a co-simulation that supports non-deterministic and stochastic
models.

Finally, since co-simulation is meant to integrate black boxes, there is a need for research
into how to detect faulty behavior, and understand its cause.

3.3 Co-simulation in Industry
This section attempts at providing an overview of the current usage of co-simulation in
industry. Figure 3.3 summarizes the application domains in which there is a published
report describing a co-simulation use, in the years 2011–2015. Each report is referenced in
[157, Section 1.2].

The sub-sections describe three recent representative applications of co-simulation. Note
that our description is based on published works only.

3.3.1 Exhaust Gas Recirculation (MAN Diesel & Turbo)
The work in [297] describes an exhaust gas re-circulation system, and a water handling
system, schematized in Figure 3.4. The purpose is to clean and recirculate exhaust gas to a
ship engine intake manifold. Due to new emissions legislation on NOx, this system need
to be improved. Since the development at MAN Diesel & Turbo (MDT) is split between
different departments, tools, with limited sharing of models, co-simulation was applied to
maximize reuse of models.

In the development of this system, the company initially used an in-house application
framework, that simulated both the control system and the physical models of the ship

22

3.3. CO-SIMULATION IN INDUSTRY

0

1

2

3

4

5

6

7

8

9

10

11

12

2011 2012 2013 2014 2015 2016
Year

P
ub

lic
at

io
ns

Application Domain
Automotive
Electricity Production and Distribution
HVAC
IC and SoC Design
Maritime
Robotics

Figure 3.3: Research publications of co-simulation applications over 2011–2015. Taken
from [157].

engine. However, this setup did not allow sufficiently detailed simulations of the physical
models.

As a result, thanks to the FMI Standard, its support by MATLAB/Simulink R©, and to the
INTO-CPS co-simulation framework [350], the authors were able to combine the behavior
of higher fidelity models, with the behavior of the controller under development, simulated
by an in-house C++ software application framework.

Through co-simulation, it was possible to reproduce and correct an issue that was previously
encountered only during a (costly) Hardware-in-the-loop simulation with a physical engine
test bench available at the MDT research center in Copenhagen.

The authors believe that, had this approach been used from the start, then a water tank
overflow problem could have been discovered before running the software on an expensive
engine test bench.

3.3.2 Driverless Lawn Mower (AGROINTELLI)
Co-simulation has been applied to the development of a steering controller of an industrial
size driverless lawn mower [127], developed by AGROINTELLI2.

Besides aiding in the development of the control and navigation system of the lawn mover,
co-simulation was used to investigate alternative designs, in a Design Space Exploration
(DSE), that would otherwise be both costly and time-consuming to test with physical
prototypes. Figure 3.5 shows example trajectories computed by alternative designs.

The co-simulation scenario consists of three parts: a simulator representing the vehicle
dynamics, a simulator representing the control algorithm, and a simulator to convert values
between the two (more about semantic adaptation in Chapter 7). During the DSE, each

2http://www.agrointelli.com/

23

http://www.agrointelli.com/

CHAPTER 3. STATE OF THE ART

Figure 3.4: Exhaust Gas Re-circulation system. Taken from [297]. The exhaust gas is
cleaned by spraying water into it, and allowing the mixture to cool down and flow into a
receiving tank. Then, the (dirty) water is pumped to a water treatment center (externally
developed) to be purified and reused.

alternative design was projected in a 3D animation based on the game engine Unity, so
that it could be visually inspected by designers and clients. Additionally, it was possible
for a human operator to control the virtual lawn mower with a joystick, highlighting the
real-time constraints of the co-simulation.

Recognizing the validity challenge, the authors made sure the co-simulation results were
valid and accurate by developing an initial prototype and comparing the actual behavior
with the predicted one.

3.3.3 Motion Compensated Crane (ControlLab)

We highlight the design of a motion compensated crane [97], developed by Control-
Lab.

24

3.4. CO-SIMULATION IN RESEARCH

Figure 3.5: Simulated trajectories for look-ahead distance with velocity 1m/s. Taken from
[127].

In this application, the models used in the development of the crane were reused in the
development of a virtual reality environment. This environment was then used to safely
train the crane operators. Figure 3.6 shows a third-person view of the operator using the
controls on the crane to place himself on the platform.

Figure 3.6: 3D real-time simulation of a motion compensated crane. Taken from [97].

3.4 Co-simulation in Research

To assess the importance of co-simulation in the scientific community, we conducted a
keyword analysis and searched for co-simulation related projects. We queried Scopus3

for the keyword “co-simulation”. Figure 3.7 shows that the number of citations grew in
an almost linear fashion from 2000 to 2017. As it can be seen in Figure 3.8, most of the
publications can be assigned to the fields of Engineering (40%), followed by Computer
Science (25%) and Mathematics (11%). Table 3.1 gives an overview of prominent recent
research projects related to co-simulation.

This shows that there is an increasing interest in co-simulation as a research topic.

3www.scopus.com

25

www.scopus.com

CHAPTER 3. STATE OF THE ART

0

100

200

300

400

500

600

700
20

01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

Ci
ta

tio
ns

Publications on "co-simulation"

Keywords

Article title, Abstract, Keywords

Figure 3.7: Publications that included the keyword “co-simulation”

3.5 Recent Survey Work
Co-simulation is now widely used in industry and researched in academia, having been
applied in different domains. The extensive and scattered nature of this knowledge prompted
researchers to initiate surveys of the state of the art. In the following, a short description of
these efforts is provided.

3.5.1 Hafner and Popper
Hafner and Popper [171], recognizing that co-simulation has evolved in different domains,
discuss the differences in terminology and attempt to classify co-simulation methods. The
authors propose the following distinctions: (i) distinction by the state of development, (ii)
by the field of application, (iii) by the model description, (iv) by numeric approaches, (v)
by interfaces, and (vi) by multi-rate method.

Within state of development, one can find co-simulations that are run in order to integrate
mature, independently developed simulation models, or co-simulation that are run as a
divide-and-conquer way to speed up the computation. A traffic simulation model that is
coupled with a weather prediction model, is an example of the former. The waveform
relaxation, described in Section 3.1.2, is an example of the latter.

The partitioned methods, described in Section 3.1.2 represent an example of application of
co-simulation due to different model descriptions.

The distinction by numerical approach corresponds to the different master algorithms
that can be employed to synchronize the simulators. Examples of these are provided in
Sections 3.6 and 3.7.

Distinction by interfaces focuses on the communication interfaces between the sub-models.
These can be strong, characterized by the need for an implicit co-simulation approach, or
weak, where an explicit co-simulation approach can be taken. More details on explicit and

26

3.6. DISCRETE-EVENT-BASED CO-SIMULATION

Engineering
40%

Computer Science
25%

Mathematics
11%

Energy
6%

Physics and Astronomy
5%

Materials Science
4%

Social Sciences
2%

Other
7%

Subject area for publications with the keyword "Co-
Simulation"

Figure 3.8: Subject area for publications that include the keyword “co-simulation”

implicit co-simulation approaches are given in Section 3.7.

The multi-rate distinction corresponds to the time stepping behavior of the simulators. This
category comprises co-simulations that distinguish fast from slow simulators, executing
them in parallel or in sequence.

3.5.2 Palensky et al.
Placing a focus on power systems, but still covering the main co-simulation algorithms
(e.g., parallel/sequential, iterative/non-iterative, etc. . .), Palensky et al. [289] highlights the
value of co-simulation for the analysis of the former. In a tutorial fashion, they go over the
main concepts and challenges, providing a great introduction for new researchers in the
field.

3.5.3 Our Survey
The above surveys complement our work. We define some common terminology in order to
be more rigorous. Moreover, we focus on the main kinds of co-simulation, as identified in
the systematic state of the art survey. No survey has identified all the types of co-simulation
that we describe here, nor the requirements concerning the co-simulation units.

3.6 Discrete-Event-Based Co-simulation
From the historical overview, in Section 3.1, and the systematic literature review, we
distinguish two major kinds of co-simulation: discrete event based, and continuous time

27

CHAPTER 3. STATE OF THE ART

Table 3.1: Excerpt of research activities in the field of co-simulation in recent years.

Project Duration Goals
COSIBA [2] 2000–2002 Formulate a co-simulation backplane for coupling electronic design au-

tomation tools, supporting different abstraction levels.
ODETTE [9] 2000–20003 Develop a complete co-design solution including hardware/software

co-simulation and synthesis tools.
MODELISAR [8] 2008–2011 Improve the design of embedded software in vehicles.
DESTECS [4] 2010–2012 Improve the development of fault-tolerant embedded systems.
INTO-CPS [7] 2015–2017 Create an integrated tool chain for Model-Based Design of CPS with

FMI.
ACOSAR [1] 2015–2018 Develop a non-proprietary advanced co-simulation interface for real

time system integration.
OpenCPS [10] 2015–2018 Improve the interoperability between Modelica, UML and FMI.
ERIGrid [6] 2015–2020 Propose solutions for Cyber-Physical Energy Systems through co-

simulation.
PEGASUS [11] 2016–2019 Establish standards for autonomous driving.
CyDER [3] 2017–2020 Develop a co-simulation platform for integration and analysis of high

PV penetration.
EMPHYSIS [5] 2017–2020 Develop a new standard (eFMI) for modeling and simulation environ-

ments of embedded systems.

based. Each has it’s own essential characteristics and challenges. In this section, we focus
on the former. Continuous time based co-simulation is described in Section 3.7.

The Discrete-Event-(DE)-based co-simulation approach describes a family of master algo-
rithms and characteristics of SUs that are borrowed from the DE system simulation domain.
We start with a description of DE systems, and then we extract the main concepts that
characterize DE based co-simulation. These have a direct relationship with the concepts
defined in Section 2.5.
Example 2. The traffic light is a good example of a DE model. It can be in one of three
possible modes: red, yellow, green, or off. The off mode is often used by the police,
which in some countries is characterized by a blinking yellow. Initially, the traffic light can
be red. Then, after 60 seconds, it changes to green. Before those 60 seconds pass, a police
officer may trigger a change from red to off. The output of this system can be an event
signaling its change to a new color. There are no constraints regarding when the traffic
signal can be interrupted. As such, the police officer can turn on and off the traffic light
simultaneously.

This example captures some of the essential characteristics of a DE dynamical model:
reactivity – instant reaction to external stimuli (turning off by an external entity); and
transiency – a DE system can change its state multiple times in the same simulated time
point, and receive simultaneous stimuli (police officer turns off and on the traffic light
without any delay).

These characteristics are embraced in DE based co-simulation, where the master acknowl-
edges that SUs can change their internal state and exchange values despite the fact that the
simulated time is stopped.

3.6.1 DE Simulation Units
A DE SU is a black box that exhibits the characteristics of a DE dynamical model. Fur-
thermore, it is typical to assume that DE SUs communicate with the environment via
time-stamped events. This means that the outputs of SUs can be absent at times where no

28

3.6. DISCRETE-EVENT-BASED CO-SIMULATION

event is produced.

We adapt the definition of the Discrete Event System Specification (DEVS [383]) to
formally define a DE SU, and highlight the essential characteristics. Note that we chose
this formalism due to its simplicity, having been described as the assembly language of DE
models [366]. There are many other variants of DE formalisms. For instance, hardware
description languages (VHDL and Verilog) and actor based systems (the DE director in
Ptolemy II [308]).
Definition 8. We adopt the notation used in [365]. Let Si denote a DE SU:

Si =
〈
Xi, Ui, Yi, δ

ext
i , δinti , λi, tai, qi(0)

〉
δexti : Qi × Ui → Xi

δinti : Xi → Xi

λi : Xi → Yi ∪ {NaN }
tai : Xi → R≥0 ∪∞
qi(0) ∈ Qi
Qi = {(x, e)|x ∈ Xi and 0 ≤ e ≤ tai(x)}

(3.2)

where:

• i denotes the SU reference;
• Xi, Ui, and Yi are the set of possible discrete states, input events, and output events,

respectively;
• qi(0) is the initial state;
• e denotes the elapsed units of time since the last transition (internal or external);
• tai(xi) ∈ R is the time advance function that indicates how much time passes until

the next state change occurs, assuming that no external events arrive;
• δinti (xi) = x′i is the internal transition function that computes a new total state

(x′i, 0) ∈ Qi when the current total state is (xi, tai(xi)) ∈ Qi;
• δexti (qi, ui) = x′i is the external transition function that computes a new total state

(x′i, 0) ∈ Qi based on the current total state qi and an input event ui;
• λi(xi) = yi ∈ Yi ∪ {NaN } is the output event function, invoked right before an

internal transition takes place and NaN encodes an absent value;

The execution of a DE SU is described informally as follows. Suppose that the SU is at
time ti ∈ R≥0 and marks the current discrete state as xi for e ≥ 0 elapsed units of time.
Since e ≤ tai(xi), the total state is (xi, e) ∈ Qi. Let tn = ti + tai(xi) − e. If no input
event happens until tn , then at time tn an output event is computed as yi := λi(xi) and the
new discrete state xi is computed as xi := (δinti (xi), 0). If, on the other hand, there is an
event at time ts < tn , that is, ui is not absent at that time, then the solver changes to state
xi := (δexti ((xi, e+ ts − ti), ui), 0) instead.

If two events happen at the same time, both are processed before the simulated time
progresses. Their processing order is determined by the DE Master (Section 3.6.2).

Due to the transiency and reactivity properties, the state and output trajectories of a DE SU
can only be well identified using the superdense time base T ×N , introduced in Section 2.4.
In this time base, a state trajectory is a function xi : T × N → Vxi , where Vxi is the set
of values for the state, and an output/input trajectory is ui : T × N → Vui ∪ {NaN }.

29

CHAPTER 3. STATE OF THE ART

Simultaneous states and events can be formally represented with increasing indexes. See
[67] for an introduction.

Example 3 shows instances of SUs, as defined in Definition 8.

A DE SU is passive: it expects some external entity to set the inputs and call the transition
functions. This passivity enables an easier composition of SUs in a co-simulation, by means
of a master algorithm, as will be shown later in Section 3.6.2. Algorithm 1 shows a master
that computes the behavior trace of a single DE SU, as specified in Equation (3.2) with no
inputs. Remarks: tl holds the time of the last transition; and the initial elapsed time satisfies
0 ≤ e ≤ tai(xi(0));

If Algorithm 1 is used to coordinate the execution of the traffic light SU in Equation (3.3),
then the resulting behavior trace is the piece-wise constant traffic light state x1(t), to-
gether with the output events. The latter is represented as a trajectory yi(t) that is absent
everywhere except where an output is produced, according to ta1.

ALGORITHM 1: Single autonomous DE SU orchestration.

Data: A Si =
〈
Xi, ∅, Yi, δexti , δinti , λi, tai, (xi(0), ei)

〉
.

1 ti := 0 ;
2 xi := xi(0) ; // Initial discrete state
3 tl := −ei ; // Account for initial elapsed time
4 while true do
5 ti := tl + tai(xi) ; // Compute time of the next transition
6 yi := λi(xi) ; // Output

7 xi := δinti (xi) ; // Take internal transition
8 tl := ti ;
9 end

3.6.2 DE Co-simulation Orchestration

DE co-simulation scenarios are comprised of multiple DE SUs (Equation (3.2)) coupled
through output to input connections, which map output events of one SU to external events
in other SU.
Example 3. Consider the following DE SUs of a traffic light and a police office, respec-

30

3.6. DISCRETE-EVENT-BASED CO-SIMULATION

tively:

S1 =
〈
X1, U1, Y1, δ

ext
1 , δint1 , λ1, ta1, q1(0)

〉
X1 = Y1 = {red , yellow , green, off }
U1 = {toAuto, toOff } ; q1(0) = (red , 0)

δext1 ((x1, e), u1) =

{
off if u1 = toOff

red if u1 = toAuto and x1 = off

δint1 (x1) =

green if x1 = red

yellow if x1 = green

red if x1 = yellow

λ1(x1) =

green if x1 = red

yellow if x1 = green

red if x1 = yellow

ta1(x1) =

60 if x1 = red

50 if x1 = green

10 if x1 = yellow

∞ if x1 = off

S2 =
〈
X2, U2, Y2, δ

ext
2 , δint2 , λ2, ta2, q2(0)

〉
X2 = {working , idle}
U2 = ∅
Y2 = {toWork , toIdle}

δint2 (x2) =

{
idle if x2 = working

working if x2 = idle

λ2(x2) =

{
toIdle if x2 = working

toWork if x2 = idle

ta2(x2) =

{
200 if x2 = working

100 if x2 = idle

q2(0) = (idle, 0)

(3.3)

With the following remarks:

• The current state of the model in the definition of δext1 is q1 = (x1, e) with e being
the elapsed time since the last transition.

• The output event function λ1 is executed immediately before the internal transition
takes place. It must then publish the next state instead of the current.

To model a scenario where the police officer interacts with a traffic light, the output events
Y2 have to be mapped into the external events U1 of the traffic light SU (Equation (3.3)). In
Example 3, if U1 = {toAuto, toOff } are the external input events handled by the traffic

31

CHAPTER 3. STATE OF THE ART

light SU, the mapping Z2,1 : Y2 → U1 is defined by:

Z2,1(y2) =

{
toAuto if y2 = toIdle

toOff if y2 = toWork
(3.4)

This way, if the police officer changes to working state at time tn , then the output signal
y2 := toWork will be translated by Z2,1 into an input event u1 := toOff of the traffic light
SU.
Definition 9. Based on the idea of abstract SUs [386], we formalize a DE co-simulation
scenario with reference cs as follows:

〈Ucs , Ycs , D, {Sd : d ∈ D} , {Id : d ∈ D ∪ {cs}} , {Zi,d : d ∈ D ∧ i ∈ Id} ,Select〉
(3.5)

where:

• Ucs is the set of possible input events, external to the scenario;
• Ycs is the set of possible output events from the scenario to the environment;
• D is an ordered set of SU references;
• For each d ∈ D, Sd denotes a DE SU, as defined in Equation (3.2);
• For each d ∈ D ∪ {cs}, Id ⊆ (D \ {d}) ∪ {cs} is the set of SUs that can influence
Sd, possibly including the environment external to the scenario (cs), but excluding
itself;

• For each i ∈ Id, Zi,d specifies the mapping of events:

Zi,d :Ui → Ud, if i = cs

Zi,d :Yi → Yd, if d = cs

Zi,d :Yi → Ud, if i 6= cs and d 6= cs

• Select : 2D → D is used to deterministically select one SU among multiple SUs
ready to produce output events simultaneously, i.e., when at time t, the set of SUs

IMM (t) = {d|d ∈ D ∧ qd(t) = (xd, tad(xd))} (3.6)

has more than one SU reference. This function is restricted to select one from among
the set IMM (t), i.e., Select(IMM (t)) ∈ IMM (t).

Example 4. The following co-simulation scenario cs couples the traffic light SU to the
police officer SU:

〈∅, Ycs , {1, 2} , {S1, S2} , {I1, I2, Ics} , {Z2,1, Z1,cs} ,Select〉
Ycs = Y1; I1 = {2} ; I2 = ∅; Ics = {1} ; Z1,cs(y1) = y1

(3.7)

where: S1 is the traffic light SU and S2 the police officer SU (Example 3); Y1 is the output
of S1; Z2,1 is defined in Equation (3.4); and the omitted Zi,d functions map anything to
absent (NaN).

The Select function is particularly important to ensure that the co-simulation trace is unique
for a particular co-simulation scenario. For example, Example 4, and suppose that at time
tn both SUs are ready to output an event and perform an internal transition. Should the
traffic light output the event and perform the internal transition first, or should it be the

32

3.6. DISCRETE-EVENT-BASED CO-SIMULATION

police office to do it first? In this example, the end result is the same but this is not the
general case. In general, the order in which these output/transition actions are performed
can lead to different co-simulation traces.

Algorithm 2 illustrates the master algorithm of an autonomous (without inputs) DE co-
simulation scenario. It assumes that the co-simulation scenario does not expect external
events, that is, all events that can affect the SUs are produced by other SUs in the same
scenario. External output events are possible though. Remarks: tcs holds the most recent
time of the last transition in the scenario; ed is the elapsed time of the current state
qd = (xd, ed) of Sd; tn is the time of the next transition in the scenario; i∗ denotes the
chosen imminent SU; Ics is the set of SUs that can produce output events to the environment;
ycs is the output event signal of the scenario to the environment; and {d|d ∈ D ∧ i∗ ∈ Id}
holds the SUs that Si∗ can influence.

ALGORITHM 2: Autonomous DE co-simulation scenario orchestration. Based on [365]
Data: A co-simulation scenario cs = 〈∅, Ycs , D, {Sd} , {Id} , {Zi,d} , Select〉.

1 tcs := 0 ;
2 xi := xi(0) for all i ∈ D ; // Store initial discrete state for each unit
3 while true do
4 tacs := mind∈D {tad(xd)− ed} ; // Time until the next internal

transition
5 tn := tcs + tacs ; // Time of the next internal transition
6 i∗ := Select(IMM (tn)) ; // Get next unit to execute
7 yi∗ := λi∗(xi∗) ;
8 xi∗ := δinti∗ (xi∗) ; // Store new discrete state
9 ei∗ := 0 ; // Reset elapsed time for the executed unit

10 if i∗ ∈ Ics then
11 ycs := Zi∗,cs(yi∗) ; // Compute output of the scenario
12 end
13 for d ∈ {d|d ∈ D ∧ i∗ ∈ Id} do
14 ud := Zi∗,d(yi∗) ; // Trigger internal units that are influenced

by unit i∗

15 xd := δextd ((xd, ed + tacs), ud) ;
16 ed := 0 ;
17 end
18 for d ∈ {d|d ∈ D ∧ i∗ 6∈ Id} do
19 ed := ed + tacs ; // Update the elapsed time of the remaining

units

20 end
21 tcs := tn ; // Advance time

22 end

Figure 3.9 shows the behavior trace of the traffic light in the co-simulation scenario of
Example 4.

Algorithm 2 is similar to Algorithm 1: i) The time advance of the scenario tacs corresponds
to the time advance of a single SU; ii) The output produced by the state transition is
analogous to the λ function of a single SU; and iii) The output and state transition of child
Si∗ , together with the external transitions of the SUs influenced by Si∗ , are analogous to
the internal transition of a single SU. It is natural then that a co-simulation scenario cs as

33

CHAPTER 3. STATE OF THE ART

Figure 3.9: Example co-simulation trace of the traffic light and police officer scenario. Note
that when the police interrupts the traffic light with the toOff event, no output is produced
from the traffic light.

specified in Definition 9, can be made to behave as a single DE SU Scs . Intuitively,

• the state of Scs is the set product of the total states of each child DE SU;
• tacs is the minimum time until one of the DE SUs executes an internal transition;
• the internal transition of Scs gets the output event of the imminent SU, executes the

external transitions of all the affected SUs, updates the elapsed time of all unaffected
SUs, and computes the next state of the imminent SU;

• the external transition of Scs gets an event from the environment, executes the
external transition of all the affected SUs, and updates the elapsed time of all the
unaffected SUs [386].

The following definition formalizes this notion.

34

3.6. DISCRETE-EVENT-BASED CO-SIMULATION

Definition 10. A co-SU is defined as:

Scs =
〈
Xcs , Ucs , Ycs , δ

ext
cs , δ

int
cs , λcs , tacs , qcs(0)

〉
Xcs = ×d∈DQd
qcs(0) = (×d∈Dqi(0),min

d∈D
ed)

tacs((. . . , (xd, ed), . . .)) = min
d∈D
{tad(xd)− ed}

i∗ = Select(IMM (t))

λcs(xcs) =

{
Zi∗,cs(yi∗(tn)) if i∗ ∈ Ics
NaN otherwise

δintcs (xcs) = (. . . , (x′d, e
′
d), . . .), for all d ∈ D, where:

xcs = (. . . , (xd, ed), . . .)

(x′d, e
′
d) =

(δintd (xd), 0) if i∗ = d

(δextd ((xd, ed + tacs(xcs)), Zi∗,d(λi∗(xi∗)), 0) if i∗ ∈ Id
(xd, ed + tacs(xcs)) otherwise

δextcs ((xcs , ecs) , ucs) = (. . . , (x′d, e
′
d), . . .), for all d ∈ D, where:

xcs = (. . . , (xd, ed), . . .)

(x′d, e
′
d) =

{
(δextd ((xd, ed + ecs) , Zcs,d(ucs)), 0) if cs ∈ Id
(xd, ed + ecs) otherwise

(3.8)

Remarks:

• The discrete state of the co-SU is the Cartesian product of the total state of each child
SU;

• The elapsed times of each child SU are managed solely by the co-SU, whenever there
is a transition (internal or external);

• The external transition functions of each child are executed with the mapping of the
events produced by the current state of the imminent child, and not the next one
computed by (δintd (xd), 0);

• An internal transition of a child SU may cause an output event to the environment of
the co-SU, if the child is connected to the output of the co-SU;

• A single internal transition causes not only a change in the child discrete state, but
also, due to the child’s output event, may cause external transitions in other child
SUs. This is not a recursive nor iterative process: at most one external transition
will occur in all the affected child SUs; if any of the affected SUs becomes ready
for an internal transition, it waits for the next internal transition invoked from the
coordinator of the co-SU;

The resulting co-SU Scs behaves exactly as a DE SU specified in Equation (3.2). It
can thus be executed with Algorithm 1 (in case of no inputs), or composed with other
SUs in hierarchical co-simulation scenarios. Hierarchical co-simulation scenarios can

35

CHAPTER 3. STATE OF THE ART

elegantly correspond to real hierarchical systems, a natural way to deal with their complexity
[212].

In summary, DE based co-simulation exhibits the following characteristics:

reactivity: A DE SU (analogously, a DE co-SU) has to process an event at the moment it
occurs.

transiency: In both Algorithm 2 and in a DE co-SU, the time advance tacs to the next
imminent child internal transition can be zero for successive iterations, so an master
has to tolerate the fact that simulated time may not advance for several iterations.

predictable step sizes: In a DE co-simulation scenario without inputs, the master, as
shown in Algorithm 2, can always predict the next simulated time step. In a scenario
with inputs, if the environment provides the time of the next event, then the next
simulated time step can be predicted too. For this to be possible, black box DE
SUs have to be able to inform the master what their time advance is. This is not a
trivial task for DE SUs that simulate continuous systems whose future behavior trace,
especially when reacting to future inputs, is not easily predicted without actually
computing it.

The formalization presented thus far can be used to make explicit the main challenges in
DE based co-simulation, along with the requirements their solutions impose. The following
section focuses on these.

3.6.3 Technical Challenges
Causality

For the sake of simplicity, we presented Algorithm 2 as sequential. In a hierarchical co-SU,
the imminent SU (closest to performing an internal transition) will be the one to execute,
thus inducing a global order in the events that are exchanged. This order avoids causality
violations but is too pessimistic. If an event y1(t1) causes another event —by changing the
internal state of some other SU, which in turn changes its next output event— y2(t2), then
t1 ≤ t2, which is valid. However, the converse is not true: t1 ≤ t2 does not necessarily
imply that y1(t1) has caused y2(t2), which means that S2 could execute before —in the
wall-clock time sense— y1(t1) without violating causality, at least within a small window
of simulated time. To see why, suppose that S1 and S2 do not influence each other in
the scenario. Then y2(t2) would happen anyway, regardless of y1(t1) occurring or not.
Moreover, the co-simulation scenario holds information —the dependencies {Id}— that
can be used to determine who influences what [224][89].

A parallel optimistic master that takes {Id} into account is, in general, faster in the wall
clock time sense, than a pessimistic, sequential one. However, most of these, the Time-warp
algorithm [192] being a well known example, require rollback capabilities of SUs. This
is because SUs proceed to advance their own time optimistically, assuming that any other
SUs will not affect them, until they are proven wrong by receiving an event which occurs
before their own internal time. When that happens, the SU has to rollback to a state prior to
the time of timestamp of the event that just arrived. This may in turn cause a cascade of
rollbacks in other affected SUs. Moreover, in parallel optimistic DE co-simulation, any of
the SUs in the scenario needs (theoretically) to support multiple rollbacks and have enough
memory to do so for an arbitrary distant point in the past [135]. This point in the past is

36

3.6. DISCRETE-EVENT-BASED CO-SIMULATION

limited in Time-warp by the Global Virtual Time (GVT). The GVT represents the minimum
internal time of all SUs. By definition, no event that is yet to be produced (in wall-clock
time) can have a timestamp smaller than the GVT.

We make a distinction between multiple rollback and single rollback capabilities. To
support single rollback, a SU needs to store only the last committed state, thereby saving
memory.

Causality is a property worth preserving. If the original system is causal, so should the co-
simulation be. Optimistic master algorithms ensure this by requiring rollback capabilities
from child SUs, whereas pessimistic algorithms do so by ordering every event by its
timestamp.

Determinism and Confluence

Determinism is also a property worth preserving. The Select function in Definition 9 is
paramount to ensure deterministic behavior. This function cannot be defined arbitrarily. It
must reflect the behavior of the real system.

The alternative to the Select function is to ensure that all possible interleavings of simultane-
ous event processing always lead to the same behavior trace – this is known as confluence.
If a co-SU is confluent, then it is also deterministic.

Proving confluence is hard in general for black box DE co-simulation because it depends on
knowledge about how the child SUs react to external events, which is potentially valuable IP.
More research is needed to understand what information can be disclosed so that confluence
can be ensured.

Dynamic Structure

Until now, the set of influencers {Id} for each SU d, in Definition 9, have been assumed
to be fixed over time. From a performance perspective, a static sequence of dependencies
may be too conservative, especially if used to ensure causality in optimistic parallel co-
simulation. To see why, consider that in a large scale simulation, there is a SU S1 which
may influence SU S2 but only under a very specific set of conditions, which may not be
verified until a large amount of simulated time has passed. A pessimistic co-SU assumes
that S1 may always affect S2 and hence, tries to ensure that the simulated time of S2

is always smaller than S1, to minimize possible rollbacks. This incurs an unnecessary
performance toll in the overall co-simulation because S1 does not affect S2 most of the
time. This is where making I2 dynamic can improve the performance of the co-simulation
since the co-SU will know that most of the time, S1 does not affect S2. Dynamic structure
co-simulation allows for {Id} to change over time, depending on the behavior trace of the
SUs. It can be used to study self-organizing systems [357][34].

Distribution

Co-SUs whose child SUs are geographically distributed are common [135]. Interesting
solutions like computation allocation [269][362], bridging the hierarchical encapsulation
[363], and the use of dead-reckoning models [229] have been proposed to mitigate the
additional communication cost. Moreover, security becomes important, as pointed out, and
addressed, in [280].

37

CHAPTER 3. STATE OF THE ART

3.6.4 Standards for DE Co-simulation

Co-simulation presupposes that many different types of simulation tools can communicate
with a master algorithm. To this end, establishing a common communication standard
is crucial to avoid the combinatorial explosion of interfaces. Over the years, multiple
standards were created for this purpose.

Discrete event based standards are proposed for simulations where events form a natural
communication mechanism (for example, in software controllers, the state tends to evolve
discontinuously, as a reaction to new inputs being transmitted by the environment). Contin-
uous time based standards originate from differential equation based modeling activities,
pervasive in many engineering domains. Hybrid based standards acknowledge that systems
are comprised of both software and physical components, and therefore need to combine
both events and continuous time interfaces. DEVS [383] can be considered one of the
first discrete event based co-simulation standards. It standardizes not only the interface
with which simulators communicate with the outside world, but also the master algorithm.
Fueled by advances in parallel and distributed discrete event simulations, and their suc-
cess in large scale military simulations, the Distributed Interactive Simulation (DIS) [188]
standard was introduced as an evolution from SIMNET [253] (early 90s), later inspiring
the creation of the High Level Architecture (HLA) standard [14] (early 2000s). The DIS
standard targeted real-time distributed simulations, whereas HLA was targeting general
purpose simulations.

3.6.5 Summary

The above concepts reflect the essential characteristics and challenges of DE-based co-
simulation.

Event though we introduced an example dynamical model that is DE, Definition 8 can be
used to approximate the behavior of a model that is not discrete event. This is discussed in
Section 3.8.

In the next section, we focus on the other major kind of co-simulation: Continuous
Time.

3.7 Continuous-Time-Based Co-simulation

In the continuous time (CT) based co-simulation approach, the master and simulation units’
(SUs) behavior and assumptions are borrowed from the CT simulation domain. Each of
these concepts, formally defined below, have a direct relationship with the concepts defined
in Section 2.5.

3.7.1 CT Simulation Units

A CT dynamical model has a state that evolves continuously over time. It is easier to get
the intuitive idea of this by an example.
Example 5. Consider a mass-spring-damper model, depicted in Figure 3.10. The state is

38

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

given by the displacement x1 and velocity v1 of the mass, and the evolution governed by:

ẋ1 = v1; m1 · v̇1 = −c1 · x1 − d1 · v1 + Fe

x1(0) = p1; v1(0) = s1

(3.9)

where ẋ denotes the time derivative of x; c1 is the spring stiffness constant and d1 the
damping coefficient; m1 is the mass; p1 and s1 the initial position and velocity; and Fe
denotes an external input force acting on the mass over time.

Figure 3.10: A mass-spring-damper system.

Equation (3.9) can be generalized to the state space form.
Definition 11. A dynamical model has the form:

ẋ = f(x, u)

y = g(x, u)

x(0) = x0

(3.10)

where x is the state vector, u the input and y the output vectors, and x0 is the initial state.

We adopt Equation (3.10) to represent a dynamical model because these are the most
commonly used models. These show up in the co-simulation of closed loop control systems,
finite element codes, etc. . .

A solution [x(t)]
T that obeys Equation (3.10) is the behavior trace of the dynamical model.

In Example 5, the solutions x1(t) and v1(t) that satisfy Equation (3.9) constitute the
behavior trace.

If f is linear and time-invariant, an analytical form for x(t) can be obtained [28], which
is an example of a behavior trace obtained via the translational approach, described in
Section 2.5. In general however, the behavior trace can only be approximated. We describe
one way this can be done.

If f(x, u) is sufficiently differentiable, the vicinity of x(t) can be approximated with a
truncated Taylor series [87, 346]:

x(t+ h) = x(t) + f(x(t), u(t)) · h+O
(
h2
)

as h→ 0, (3.11)

39

CHAPTER 3. STATE OF THE ART

where

O
(
hn+1

)
=

(
lim
h→0

xn+1 (ζ(t∗))

(n+ 1)!
hn+1

)
= const · hn+1 as h→ 0

denotes the order of the truncated residual term; t∗ ∈ [t, t+ h]; and h ≥ 0 is the micro-step
size. Equation (3.11) is the basis of a family of numerical solvers that iteratively compute
an approximated behavior trace x̃.

For example, the forward Euler method is given by:

x̃(t+ h) := x̃(t) + f(x̃(t), u(t)) · h
x̃(0) := x(0)

(3.12)

A CT SU behaves as a numerical solver computing a set of differential equations, as shown
in the following example.
Example 6. For example, a SU S1 of the mass-spring-damper, using the forward Euler
solver, can be written by embedding the solver (Equation (3.12)) into Equation (3.9):

x̃1(t+ h1) := x̃1(t) + v1(t) · h1

ṽ1(t+ h1) := ṽ1(t) +
1

m1
· (−c1 · x̃1(t)− d1 · ṽ1(t) + Fe(t)) · h1

x̃1(0) := p1

ṽ1(0) := s1

(3.13)

where h1 is the micro-step size, Fe(t) is the input, and [x(t+ h), v(t+ h)]
T is the output.

3.7.2 CT Co-simulation Orchestration
Example 7. Consider now a second system, depicted in Figure 3.11. It is governed by the
differential equations:

ẋ2 = v2

m2 · v̇2 = −c2 · x2 − Fc
Fc = cc · (x2 − xc) + dc · (v2 − ẋc)

x2(0) = p2

v2(0) = s2

(3.14)

where cc and dc denote the stiffness and damping coefficients of the spring and damper, re-
spectively; and xc denotes the displacement of the left end of the spring-damper. Combining
Equation (3.14) with the forward Euler solver, yields the following SU:

x̃2(t+ h2) := x̃2(t) + ṽ2(t) · h2

ṽ2(t+ h2) := ṽ2(t) +
1

m2
· (−c2 · x̃2(t)− Fc(t)) · h2

Fc(t) = cc · (x̃2(t)− xc(t)) + dc ·
(
ṽ2(t)− ˙xc(t)

)
x̃2(0) := p2

ṽ2(0) := s2

(3.15)

40

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

Figure 3.11: a mass-spring-damper system with a spring-damper connection.

where h2 is the micro-step size, xc and ẋc are inputs, and Fc the output.
Example 8. Suppose the models in Examples 5 and 7 are coupled, by setting xc = x1,
ẋc = v1 and Fe = Fc. This results in the following coupled model, represented in
Figure 3.12:

ẋ1 = v1

m1 · v̇1 = −c1 · x1 − d1 · v1 + Fc

ẋ2 = v2

m2 · v̇2 = −c2 · x2 − Fc
Fc = cc · (x2 − x1) + dc · (v2 − v1)

x1(0) = p1

v1(0) = s1

x2(0) = p2

v2(0) = s2

(3.16)

which can be written in the state space form (Equation (3.10)) as:
ẋ1

v̇1

ẋ2

v̇2

 =

0 1 0 0

− c1+cc
m1

−d1+dc
m1

cc
m1

dc
m1

0 0 0 1
cc
m2

dc
m2

− c2+cc
m2

− dc
m2

x1

v1

x2

v2

x1(0)

v1(0)

x2(0)

v2(0)

 =

p1

s1

p2

s2

(3.17)

The objective of a co-simulation between the SU defined in Equation (3.13) and the
SU defined in Equation (3.15) is to approximate the behavior of the coupled model in
Example 8. In the following, we first convey the intuitive notions, and then provide the
formal definitions.

In CT based co-simulation, to overcome the fact that each SU’s micro-step sizes are inde-
pendent, a communication step size H (also known as macro-step size or communication

41

CHAPTER 3. STATE OF THE ART

Figure 3.12: A multi-body system comprised of two mass-spring-damper subsystems.

grid size) has to be defined. H marks the times at which the SUs exchange values, and it is
usually greater then or equal to all micro-step sizes4.

Suppose a SU Si is at time n ·H , for some natural n, and is asked by a master to execute
until time (n+1) ·H . Before executing the co-simulation step, the unit needs to have values
for its inputs. For each input variable, two scenarios can happen: Si gets the input valued at
n ·H , or valued at (n + 1) ·H . If Si gets the inputs valued at n ·H , then extrapolation
must be used to estimate the input in any of the internal micro-steps of the SU. If, on the
other hand, Si gets the inputs valued at (n+ 1) ·H , interpolation must be used.
Remark 1. Each SU has to know the time stamp of each input value provided by the master.
In the state of the art, to make the explanations clearer, this is frequently left implicit.
However, the implementation of an SU must take this into account, as it determines the
accuracy, stability, and the convergence rate of algebraic loops, of a co-simulation, as is
discussed in Section 3.7.3. The implementation details of an SU are discussed in Chapter 7.
Definition 12. For a vector space U , we denote U ts = T |U | × U the time stamped vector
space, for a time base T . We will use the notation u(t) to represent the value u at timestamp
t ∈ T .

Suppose the input vector space Ui of SU Si is Ui = R. Then, at time n ·H +m · hi, for
m ≤ H

hi
and micro-step size hi, an extrapolation function φui(m ·hi, ui(n ·H), ui((n−1) ·

H), . . .), built from known input values, is used to approximate the value of ui(n·H+m·hi).
The importance of this approximation function cannot be overstated, as it determines the
accuracy and stability of the co-simulation, as is discussed in Section 3.7.3. Analogously,
an interpolation function is used when the master makes the input value available at time
(n+ 1) ·H before asking the SU to execute until time (n+ 1) ·H .
Example 9. The input Fe of the SU described in Equation (3.13) can be defined as:

Fe(n ·H +m · h1) := φFe(m · h1, Fe(n ·H), Fe((n− 1) ·H), . . .), for m ≤ H

h1
(3.18)

4While it is possible to have co-simulations where the communication step size is smaller than a micro-step
size, this case is rare in practice, so we did not consider it. However, the results presented here are applicable to
such co-simulations

42

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

Similarly, the inputs xc and ẋc of the SU described in Equation (3.15) can be defined as

xc(n ·H +m · h2) := φxc(m · h2, xc(n ·H), xc((n− 1) ·H), . . .)

ẋc(n ·H +m · h2) := φẋc(m · h2, ẋc(n ·H), ẋc((n− 1) ·H), . . .)

for m ≤ H

h2

(3.19)

In the simplest case, the extrapolations can be constant. In the coupled mass-spring-
dampers, this means:

φFe(t, Fe(n ·H)) = Fe(n ·H);

φxc(t, xc(n ·H)) = xc(n ·H);

φẋc(t, ẋc(n ·H)) = ẋc(n ·H)

(3.20)

In the state of the art, input approximation can be classified as:

1. Constant
2. Linear
3. Polynomial
4. Extrapolated-Interpolation [71, 116]
5. Context-aware [39, 40]; and
6. Estimated Dead-Reckoning Model [64, 338, 339]

Even though polynomial includes constant and linear approximations, we make the dis-
tinction between constant and linear approximations as these are the most commonly used
in practice. See [19, 23, 71, 329] for an overview of linear and higher order extrapolation
techniques and how these affect the accuracy of the co-simulation trace.

A possible master for the coupling described in Example 8, at a time t = n ·H , gets the
outputs of both SUs and computes their inputs. Then, each SU is instructed to compute its
behavior trace until the next communication step size, at t = (n+ 1) ·H , making use of
the extrapolating functions described in Example 9 to get the inputs at each of the micro
steps (Equations (3.18) and (3.19)).
Definition 13. We are now ready to formally define a CT SU Si:

Si = 〈Xi, Ui, Yi, δi, λi, xi(0), φUi〉
δi : R×Xi × U ts

i → Xi

λi : R×Xi × Ui → Y ts
i

xi(0) ∈ Xi

φUi : R× U ts
i × . . .× U ts

i → Ui

(3.21)

where:

• Xi is the state vector space;
• Ui is the input vector space and U ts

i its timestamped counterpart;
• Yi is the output vector space;
• δi is the function that instructs the SU to compute a behavior trace from t to t+H ,

using the input approximation function φUi ;
• λi(t, xi(t), ui(t)) = yi(t) is the output function; and
• xi(0) is the initial state.

43

CHAPTER 3. STATE OF THE ART

Example 10. The SU in Equation (3.13) can be described as follows:

S1 =

〈
R2,R,R2, δ1, λ1,

[
p1

s1

]
, φFe

〉

δ1(t,

[
x̃1(t)

ṽ1(t)

]
, Fe(t)) =

[
x̃1(t+H)

ṽ1(t+H)

]

λ1(t,

[
x̃1(t)

ṽ1(t)

]
) =

[
x̃1(t)

ṽ1(t)

] (3.22)

where [x̃1(t+H), ṽ1(t+H)]
T is obtained by the iterative application of the SU in

Equation (3.13) over a finite number of micro-steps, making use of the extrapolation of Fe
(defined in Equation (3.18)):[

x̃1(t+H)

ṽ1(t+H)

]
=

[
x̃1(t)

ṽ1(t)

]
+

[
ẋ1(t)

v̇1(t, φFe(t, Fe(t), . . .))

]
· h

+

[
ẋ1(t+ h)

v̇1(t+ h, φFe(t+ h, Fe(t), . . .))

]
· h+ . . .

(3.23)

Definition 14. A CT co-simulation scenario with reference cs comprises the following
information5:

〈Ucs , Ycs , D, {Si : i ∈ D} , L, φUcs 〉
L : (Πi∈DYi)× Ycs × (Πi∈DUi)× Ucs → Rm

(3.24)

where D is an ordered set of SU references, each Si is defined as in Equation (3.21),
m ∈ N, Ucs is the vector space of inputs external to the scenario, Ycs is the vector space
of outputs of the scenario, φUcs

a set of input approximation functions, and L induces the
SU coupling constraints, that is, if D = {1, . . . , n}, then the coupling is the solution to
L(y1, . . . , yn, ycs , u1, . . . , un, ucs) = 0̄, where 0̄ denotes the null vector. We choose to
represent the coupling as the solution to an algebraic equation because the data exchange
between the simulators can be more general than simply copying inputs to outputs.
Example 11. As an example, the co-simulation scenario representing the system of Fig-
ure 3.12 is:

cs = 〈∅, ∅, {1, 2} , {S1, S2} , L, ∅〉 ; L = [xc − x1; ẋc − v1; Fe − Fc]T (3.25)

where:

• S1 is the SU for the constituent system on the left (Equation (3.22)), and S2 is the
SU for the remaining constituent system;

• xc, ẋc are the inputs of S2, and Fe is the input of S1; and
• x1, v1 are outputs of S1 and Fc is the output of S2.

Algorithm 3 summarizes, in a generic way, the tasks of the master related to computing
the co-simulation of a scenario cs with no external inputs. It represents the Jacobi com-
munication approach: SUs exchange values at time t and independently compute the trace

5Please note that this formalization is related to the formalization proposed by [66], with the main differences:
i) it is not designed to formalize a subset of the FMI Standard, ii) it accommodates algebraic coupling conditions,
and iii) it does not explicitly define port variables.

44

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

until the next communication time t+H . The way the system in Equation (3.26) is solved
depends on the definition of L. In the most trivial case, the system reduces to an assignment
of an output yj(t) to each input ui(t), and so the master just gets the output of each SU and
copies it onto the input of some other SU, in an appropriate order. Concrete examples of
Algorithm 3 are described in [35, 73, 120, 132, 136, 165, 214, 375].

An alternative to the Jacobi communication approach is the Gauss-Seidel (a.k.a. sequential
or zig-zag) approach, where an order of the SUs’ δ function is forced to ensure that, at
time t, they get inputs from a SU that is already at time t + H . Gauss-Seidel approach
allows for interpolations of inputs, which is more accurate, but hinders the parallelization
potential. An example of this algorithm is described in Chapter 7. Examples are described
in [23, 25, 35, 358].

ALGORITHM 3: Generic Jacobi based master for autonomous CT co-simulation scenarios.
Data: An autonomous scenario cs = 〈∅, Ycs , D = {1, . . . , n} , {Si} , L, ∅〉 and a

communication step size H .
Result: A co-simulation trace.

1 t := 0 ;
2 xi := xi(0) for i = 1, . . . , n ;
3 while true do
4 Solve the following system for the unknowns:5

y1 = λ1(t, x1, u1(t))

. . .

yn = λn(t, xn, un(t))

L(y1, . . . , yn, ycs , u1, . . . , un) = 0̄

(3.26)

xi := δi(t, xi, ui(t)), for i = 1, . . . , n ; // Instruct each SU to advance
6 t := t+H ; // Advance time

7 end

Similarly to DE based co-simulation, a CT co-simulation scenario, together with a master,
should behave as a (co-)SU of the form of Equation (3.21), and thus be coupled with other
SUs, forming hierarchical co-simulation scenarios:

• the state of the co-SU is the set product of the states of the internal SUs;
• the inputs are given by Ucs and the outputs by Ycs ;
• the transition and output functions are implemented by the master;
• the communication step size H used by the master is analogous to a SU’s micro-step

sizes, and
• the input extrapolation function is φUi .

An example of this construction is given in Chapter 7.

Algorithm 3 makes it clear that the SUs can be coupled with very limited information about
their internal details. In concrete:

• The output λi and state transition δi functions need to be executable but their internal
details can remain hidden;

• the inputs ui and their timestamps need to be accessible;

45

CHAPTER 3. STATE OF THE ART

• the state variables can be hidden. These are represented merely to illustrate that the
internal state of the SU changes when executing δi.

However, the blind coupling can lead to many problems, as will be discussed in the
sections below. The common trait in addressing these is to require more from the individual
SUs: either more capabilities, or more information about the internal (hidden) dynamical
model.

3.7.3 Technical Challenges
In the following, to ease the notation, let tn = n ·H .

Composition – Algebraic Constraints

In the co-simulation scenario described in Equation (3.25), the coupling condition L
(Definition 14) translates into a set of assignments from outputs to inputs. This is because
the inputs of the SU of the system in the left hand side of Figure 3.12 and the outputs of the
SU of the system represented in the right hand side of the same picture can be connected
directly, and vice versa. In practice, the SUs’ models are not created with a specific coupling
patterns in mind and L can therefore induce more complex coupling constraints.
Example 12. As an example, adapted from [324], consider the system coupled by a mass-
less rigid link, depicted in Figure 3.13. The first subsystem is the same as the one in the left
hand side of Figure 3.12 and its SU is in Equation (3.13). The second constituent system is
governed by the following differential equations:

ẋ3 = v3

m3 · v̇2 = −c3 · x3 + Fc

x3(0) = p3

v3(0) = s3

(3.27)

And the following SU:

x̃3(t+ h3) = x̃3(t) + v3(t) · h3

ṽ3(t+ h3) = ṽ3(t) +
1

m3
· (−c3 · x3(t) + Fc(t)) · h3

x̃3(0) = p3

ṽ3(0) = s3

(3.28)

The input to S3 is the coupling force Fc, and the output is the state of the mass [x̃3, ṽ3]
T .

The input to S1 is the external force Fe and the outputs are the state of the mass [x̃1, ṽ1]
T .

In Example 12, there is a mismatch between inputs and outputs. The outputs [x̃1, ṽ1]
T of

the first SU cannot be coupled directly to the input Fc of the second SU, and vice versa.
However, the massless link restricts the states and inputs of the two SUs to be the same.
Whatever the input forces may be, they are equal and opposite in sign. Hence, any master
algorithm has to find inputs that ensure the coupling constraints are satisfied:

L = [x̃1(tn)− x̃3(tn); ṽ1(tn)− ṽ3(tn); Fe(tn) + Fc(tn)]
T

= 0̄ (3.29)

46

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

Figure 3.13: A multi-body system coupled by a mass-less link.

This problem has been addressed in [23, 25, 165, 166, 324, 329, 332]. The approach taken
in [165] is worth mentioning because it defines a Boundary Condition Coordinator (BCC)
which behaves as an extra SU, whose inputs are the outputs of the original two SUs, and
whose outputs are Fe and Fc. They show that the initial co-simulation scenario with the
non-trivial constraint can be translated into a co-simulation, with a trivial constraint, by
adding an extra SU. This is illustrated in Figure 3.14.

Figure 3.14: Transforming a co-simulation scenario with a non-trivial constraint into a
simpler scenario by adding an extra SU that induces a trivial constraint. This promotes
separation of concerns.

Transforming the co-simulation scenario to make it simpler marks an important step in
separating the concerns of the master [150]. In fact, the newly created SU can be run with a
smaller internal micro-step size, possibly to meet stability and accuracy criteria as shown in
[165].

In many of the solutions proposed (e.g., [23, 25, 324, 329, 332]), information about the
rate of change (or sensitivity) of outputs and states of each SU, with respect to changes
in its inputs is required to solve the non-trivial coupling condition. This information can
be either provided directly as a Jacobian matrix of the system and output functions, or
estimated by finite differences, provided that the SUs can be rolled back to previous states.

47

CHAPTER 3. STATE OF THE ART

A frequent characteristic of co-simulation: the availability of certain capabilities from SUs
can mitigate the lack of other capabilities.

To show why the sensitivity information is useful, one of the tasks of the BCC is to ensure
that x̃1 − x̃3 is as close to zero as possible, by finding appropriate inputs Fe and Fc. This
is possible since x̃1 and x̃3 are functions of the inputs Fe and Fc, and −Fe = Fc. So the
constraint can be written as

g(Fe) = x̃1(Fe)− x̃3(−Fe) = 0 (3.30)

From one communication step to the next, g can be expanded with the Taylor series:

g(Fe(tn+1)) = g(Fe(tn) + ∆Fe) ≈ g(Fe(tn)) +
∂g(Fe(tn))

∂Fe
·∆Fe (3.31)

From a known input Fe(tn), Equations 3.30 and 3.31 can be combined to obtain the input
Fe(tn+1) at the next communication step:

g(Fe(tn) + ∆Fe) ≈ g(Fe(tn)) +
∂g(Fe(tn))

∂Fe
·∆Fe = 0↔

g(Fe(tn)) = −∂g(Fe(tn))

∂Fe
·∆Fe ↔

∆Fe = −
[
∂g(Fe(tn))

∂Fe

]−1

· g(Fe(tn))↔

Fe(tn+1) = Fe(tn)−
[
∂g(Fe(tn))

∂Fe

]−1

· g(Fe(tn))

(3.32)

with

∂g(Fe(tn))

∂Fe
=
∂x̃1(Fe(tn))

∂Fe
+
∂x̃3(−Fe(tn))

∂Fc
(3.33)

A simple master algorithm will then perform the following steps, at each co-simulation
step:

1. Let x̃1(nH), x̃3(nH) be the current position outputs of the two SUs S1 and S3;
2. Perform a co-simulation step with a known Fe, obtaining x̃p1(nH), x̃p3(nH) as new

outputs.
3. Rollback SUs to state x̃1(nH), x̃3(nH);
4. Pick a small ∆Fe, and perform a co-simulation step with Fe + ∆Fe, obtaining
x̃d1(nH), x̃d3(nH);

5. Approximate ∂g(Fe(tn))
∂Fe

by finite differences and Equation (3.33);
6. Obtain a corrected F ce by Equation (3.32);
7. Rollback SUs to state x̃1(nH), x̃3(nH);
8. Perform the final co-simulation step with F ce ;
9. Commit states and advance time;

48

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

−20

−10

0

10

20

−0.5

0.0

0.5

1.0

C
oupling

Trajectory

0.0 2.5 5.0 7.5 10.0
Time

Solution
x1
x3
x_analytical
Fe

Figure 3.15: Co-simulation of algebraically coupled masses. Parameters are: m2 =
2,m1 = c1 = c3 = d1 = cc = 1, H = 0.1, x1(0) = 1.0, x3(0) = 1.1, v1(0) = v3(0) = 0.
Notice the small disturbance at the initial conditions.

As can be seen in Figure 3.15, this coupling cannot be carried out without errors: the
constraint g(Fe(tn+1)) cannot be accurately forced to zero at first try. Furthermore, finding
initial conditions and initial inputs that satisfy Equations 3.9, 3.27, and 3.29 is very impor-
tant and usually requires a fixed point iteration. The above algorithm could be changed
to perform an arbitrary number of iterations, repeating steps 1–7 until g(Fe(tn+1)) is
close enough to zero. This would increase the accuracy but also increase the amount of
computation.

These examples show that rollback capabilities are important. If a SU is a black box, then
the rollback capability has to be provided by the SU itself and there is little that the master
can do to make up for the lack of the feature. If, on the other hand, the SU provides access
to its state, and allows the state to be set, as in [48], then the master can implement the
rollback by keeping track of the state of the SU. Rollback also plays a key role when dealing
with algebraic loops in the co-simulation scenario.

Finally, to explain why this subsection refers to modular composition of SUs, the example in
Figure 3.13 makes explicit one of the problems in co-simulation: the “rigid” and protected
nature of SUs can make their coupled simulation very difficult. To contrast, in a white
box approach where the equations of both constituent systems are available, the whole
system is simplified, with the two masses being lumped together, and their coupling forces
canceling each other out, as is shown in Example 13. The simplified system is a lumped
mass-spring-damper, which is easily solvable. Such a symbolic approach is common in
acausal modeling languages, such as Modelica [13].
Example 13. The coupled system is obtained by combining Equations 3.9, 3.27, and 3.29,
and simplifying to:

ẋ1 = v1

(m1 +m3) · v̇1 = −(c1 + c3) · x1 − d1 · v1

x1(0) = p1

v1(0) = s1

(3.34)

Figure 3.16 compares the behavior trace produced by Algorithm 3 when applied to the
co-simulation scenario described in Equation (3.25), with the analytical solution, obtained

49

CHAPTER 3. STATE OF THE ART

−1.0

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0
Time

Solution
x1 cosim.
x1 analytical
x2 cosim.
x2 analytical

Figure 3.16: Comparison of co-simulation with co-modelling for the sample coupled system.
Parameters are: m1 = m2 = c1 = c2 = d1 = cc = 1, H = 0.1.

from the coupled model of Equation (3.17). It is obvious that there is an error due to the
extrapolation functions and the large communication step size H = 0.1.

Algebraic loops

Algebraic loops occur whenever there is a variable that indirectly depends on itself.
Example 14. To see how algebraic loops arise in co-simulation scenarios, supose two SUs,
S1 and S2, are coupled in a feedback loop. As per Definition 13, the output of each Si can
be written as:

yi(t) = λi(t, xi(t), ui(t)) (3.35)

The SUs are coupled by a set of assignments from outputs to inputs, i.e.,

u1(t) := y2(t) ; u2(t) := y1(t) (3.36)

where ui is the input of SU Si and yj the output of a SU Sj , in the same co-simulation
scenario. It is easy to see that the output of a SU may depend on itself. That is,

y1(t) = λ1(t, x1, u1)

u1 = y2

y2 = λ2(t, x2, u2)

u2 = y1

(3.37)

We distinguish two kinds of algebraic loops [217]: the ones spanning just input variables,
and the ones that include state variables as well. The first kind arises when the outputs of a
SU depend on its inputs, while the second kind happens when implicit numerical solvers
are used, or when the input approximating functions are interpolations. This distinction is
important for the correct time synchronization of the SUs, as is shown in Chapter 7.
Example 15. To see how algebraic loops involving state variables arise, suppose that, in
Example 14, φui is constructed from ui(tn+1):

ui(tn +m · hi) := φui(m · hi, ui(tn+1), ui(tn), ui(tn−1), . . .) (3.38)

If an order can be imposed in the evaluation of the SUs that ensures ui(tn+1) can be com-
puted from some λj(tn+1, xj(tn+1), uj(tn+1) that does not indirectly depend on ui(tn+1),

50

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

then this approach —Gauss-Seidel— can improve the accuracy of the co-simulation, as
shown in [23, 24, 25, 71, 201]. Obviously, the execution of SU Si has to start after SU
Sj has finished and its output λj(tn+1, xj(tn+1), uj(tn+1) can be evaluated. If the input
uj((n+ 1) depends indirectly on ui(tn+1), then an algebraic loop exists. The output func-
tion λj(tn+1, xj(tn+1), uj(tn+1)) depends on the state of the SU at xj(tn+1), which in
turn can only be obtained by executing the SU from time tn to tn+1, using the extrapolation
of the input uj , φuj (m · hi, uj(tn+1, . . .)); any improvement in the input uj(tn+1, means
that the whole co-simulation step has to be repeated, to get an improved xj(tn+1) and by
consequence, an improved output λj(tn+1, xj(tn+1), uj(tn+1)).

In Example 14, the input algebraic loops can be removed by replacing u1 in Equation (3.35)
by the corresponding extrapolation φui(H,ui(tn−1), . . .) which does not depend on ui(tn),
thus breaking the algebraic loop.

As shown in [24, 217], and empirically in [35], neglecting a loop can lead to a prohibitively
high error in the co-simulation. Instead, fixed point iteration technique should be used to
solve algebraic loops. For those involving state variables, the same co-simulation step has
to be repeated until convergence, whereas for loops over inputs/outputs, the iteration just
repeats the evaluation of the output functions.

A master that makes use of rollback to repeat the co-simulation step with corrected inputs
is called dynamic iteration, waveform iteration, and strong or onion coupling [184, 352].
If the SUs expose their outputs at every internal micro-step, then the waveform iteration
can be used [235]. Strong coupling approaches are typically the best in terms of accuracy,
but worst in terms of performance. A variant that attempts to obtain the middle-ground
is the so-called semi-implicit method, where a fixed limited number of correction steps is
performed. See [324, 329] for examples of this approach.

Until here, we have assumed full knowledge of the models being simulated in each SU to
explain how to identify, and deal with, algebraic loops. In practice, with general black-box
SUs, such knowledge is unavailable, and extra information is required to identify algebraic
loops. According to [24, 44, 66], a binary flag denoting whether an output depends directly
on an input is sufficient. A structural analysis, for example, with Tarjan’s strong component
algorithm [344], can then be performed to identify the loops.

Consistent Initialization of Simulators

The definition of a SU in Equation (3.21) assumes that an initial condition is part of the SU.
However, as seen in Example 12, the initial states of the SUs can be coupled by algebraic
constraints, through the output functions, which implies that the initial states of the SUs
cannot be set independently of the co-simulation in which they are used. In the example,
the constraint in Equation (3.29) has to be satisfied for the initial states:

{x̃1(0), ṽ1(0), x̃3(0), ṽ3(0)} .

In general, for a co-simulation scenario as defined in Equation (3.24), there is an extra
coupling function L0 that at the time t = 0, has to be satisfied. For example:

L0(x1(0), . . . , xn(0), y1(0), . . . , yn(0), ycs(0), u1(0), . . . , un(0), ucs(0)) = 0̄ (3.39)

where:

51

CHAPTER 3. STATE OF THE ART

• xi(0) denotes the initial state of Si; and
• L0 : X1 × . . .×Xn × Y1 × . . .× Yn ×U1 × . . .×Un → Rm represents the initial

constraint, not necessarily equal to L in Equation (3.24).

Equation (3.39) may have an infinite number of solutions – as in the case of the example in
Figure 3.13 – or have algebraic loops. The initialization problem (or co-initialization) is
identified in [48] and addressed in [136].

Convergence – Error Control

In the context of co-simulation of CT systems, the most accurate trace is the analytical solu-
tion to the coupled model that the co-simulation scenario approximates. For example, the
behavior of the coupled model in Equation (3.17), corresponding to the multi-body system
in Figure 3.12, is approximated by the co-simulation scenario described in Equation (3.25).
In practice, the analytical solution for a coupled model cannot be found easily, therefore
calculating the error precisely is impossible for most cases. However, it is possible to get
an estimate of how the error grows.

We now review the error control techniques in simulation, as these are the basis for the
analogous techniques in co-simulation.

In simulation, the factors that influence the error are [87]: the model, the solver, the
micro-step size, and the size of the time interval to be simulated.

For example, when the forward Euler solver (Equation (3.12)) is used to compute the
approximated behavior trace of the dynamical model in Equation (3.10), in a single micro
step, it is making an error in the order of∥∥∥∥∥∥∥

(
x(t) + f(x(t)) · h+O

(
h2
))︸ ︷︷ ︸

by infinite Taylor series

− (x(t) + f(x(t)) · h)︸ ︷︷ ︸
by forward Euler

∥∥∥∥∥∥∥ = O
(
h2
)

Obviously, the order in the error made at one step O
(
h2
)
, most commonly called the local

error, depends on:

• f having no unbounded derivatives – to see why, observe that if the derivative of
f is infinite, then the residual term cannot be bounded by a constant multiplied
by h2. Fortunately, since most CT dynamic systems model some real system, this
assumption is satisfied.

• The solver used – other solvers, such as the midpoint method, are derived by trun-
cating higher order terms of the Taylor series. For the midpoint method, the local
truncation error is O

(
h3
)
;

• Naturally, the larger the micro step size h is, the larger the local error O
(
h2
)

is.

The local error assumes that the solver only made one step, starting from an accurate
point x(t). To compute the approximate behavior trace, the only accurate point the solver
starts from is the initial value x(0). The rest of the trace is approximate and the error
gets compounded over the multiple steps. We denote such it by global error. For the
forward Euler method, if there is a limit to how f reacts to deviations on its parameter
x̃(t) = x(t) + e(t) from the true parameter x(t), that is, if

‖f(x(t))− f(x(t) + e(t))‖ ≤ const · e(t) (3.40)

52

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

and const <∞, then the order of the global error can be defined in terms of the micro-step
size. This condition is called global Lipschitz continuity [121]. For the forward Euler
solver, the global error is O (h).

For a solver to be useful, it must be convergent, that is, the computed trace must coincide
with the accurate trace when h→ 0 [373]. It means the error can be controlled by adjusting
the micro step size h.

In co-simulation, the error is influenced by the same factors as simulation, plus: the
extrapolation functions, the master algorithm, and the co-simulation step size H . The
extrapolation functions introduce error in the inputs of the SUs, which is translated into
error in the state/outputs of these, causing a feedback on the error that can increase over
time. Intuitively, the larger the co-simulation step size H , the larger is the error made by
the extrapolation functions.

The same concepts (Local/Global Error and Convergence) apply to co-simulation, and we
refer to [24] for calculations of the global order of the error.

The local error vector, in a co-simulation, is defined as the deviation from the analytical
trace after one co-simulation step H , starting from an accurate point.

x1(t+H)− x̃1(t+H)

· · ·
xn(t+H)− x̃n(t+H)

y1(t+H)− ỹ1(t+H)

· · ·
yn(t+H)− ỹn(t+H)

(3.41)

where x̃i(t + H) = δi(t, xi(t), φui(t)), ỹi(t + H) = λi(t, x̃i(t + H), φui(t + H)),
and xi(t+H) and yi(t+H) are the true state vectors and outputs, respectively, for SU
Si.

To ensure that a co-simulation is convergent, contrarily to what Equation (3.40) might hint at,
it is not enough that every SU is Lipschitz continuous. According to [24, 25, 73, 170, 217],
the SUs need to be Lipschitz continuous, and the coupled model induced by the scenario
coupling conditions needs to be of the form of Equation (3.10). This result only applies
to the most common master algorithms (Jacobi, Gauss-Seidel, or Strong coupling) and
polynomial input approximation techniques. Presence of algebraic loops, or complex
coupling constraints, are factors that may make it impossible to write the coupled model in
state space form [23].

For a convergent co-SU, some of the techniques traditionally used in simulation, have been
applied in co-simulation to estimate the error during the computation:

Richardson extrapolation: This well-known technique is compatible with black-box
SUs as long as these provide rollback and state saving/restore capabilities [24,
26, 136]. The essential idea is to get an estimate of the local error by comparing
[x̃i(t+H), ỹi(t+H)]

T with a less accurate point [x̄i(t+H), ȳi(t+H)]
T . The

less accurate point can be computed by the same master but using a larger commu-
nication step size. We have seen that larger communication step sizes affect the
accuracy so if the two points are not too far apart, it means the communication step

53

CHAPTER 3. STATE OF THE ART

H does not need to be changed. It is importance to notice that the less accurate
point [x̄i(t+H), ȳi(t+H)]

T has to be computed from the accurate starting point
[x̃i(t), ỹi(t)]

T .
Multi-Order Input Extrapolation: The outputs of two different order input approxima-

tion methods are compared [73, 75].
Milne’s Device: Similar to the previous ones, but the extrapolation of the inputs is com-

pared with its actual value, at the end of the co-simulation step. Iterative approaches
such as the ones studied in [23, 25, 324, 325, 329] can readily benefit from this
technique.

Parallel Embedded Method: This technique runs a traditional adaptive step size numeri-
cal method in parallel with the co-simulation [184]. The purpose is to piggy back in
the auxiliary method, the decisions on the step size. The derivatives being integrated
in each SU have to be either provided, or estimated.

Conservation Laws: The local error is estimated based on the deviation from a known
conservation law. Extra domain knowledge about the coupling between SUs is
required. For example, if the couplings form power bonds [294], then energy should
be conserved across a co-simulation step. In practice there is always an error due
to the usual factors. The magnitude of the energy residual at a start and at end of a
co-simulation step serves as an estimate of the local error. This technique has been
implemented and studied in [161, 317]. It has the advantage that it may not require
rollback functionalities.

Embedded Solver Method: If the individual SUs support adaptive step size, then the
decisions made internally can be made public to help the master decide on the
communication step size. To the best of our knowledge, there is no master proposed
that performs this, but the FMI Standard allows SUs to reject too large communication
step sizes [48, 66].

After the error is deemed too large by one of the above methods, the correction can be
applied pessimistically (rolling back and repeating the same step) or optimistically (adapt
the next step). To mitigate the overhead of a pessimistic approach, the corrections may be
applied only to sensitive SUs, as carried out in [372].

Stability

In the previous section we have presented conditions in which a master can reduce the
communication step size to an arbitrarily small value in order to meet arbitrary accuracy.
Theoretically, this is useful as it tells the master that by reducing the local error, it also
reduces the global error. In practice, the communication step size cannot be reduced
to an arbitrarily small value without facing performance and round-off error problems.
Performance because, for smaller communication step sizes, it takes more steps to compute
a behavior trace over a given interval of time. Round-off accuracy because in a digital
computer, real numbers can only be represented approximately. Computations involving
very small real numbers incur a non-negligible round-off error. So that means that in practice
convergence does not imply that arbitrary accuracy can be achieved. A better question is
to analyze what happens to the global error, as the co-simulation trace is computed with a
non-null communication step size H .

Suppose that the analytical solution to the coupled model induced by the co-simulation
scenario eventually goes to zero. This is the case for the coupled multi-body system of

54

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

Figure 3.12, described in Equation (3.17), provided that at least one of the constants d1 or
d2 is positive non-zero. Intuitively, this means that the system will lose energy over time,
until it eventually comes to rest.

Let x1(t) denote the analytical solution of the position of the mass m1 in the system, and
let x̃1(t) be the solution computed by a co-SU. Then exi(t) = ‖x1(t)− x̃1(t)‖ denotes
the global error at time t made by the co-SU. If limt→∞ x1(t) = 0, then limt→∞ exi(t) =
x̃1(t).

If the co-SU is convergent, then for an arbitrarily small H → 0, limt→∞ exi(t)→ 0 will
be arbitrarily small too. Since in practice we cannot take arbitrarily small H , we want to
know whether there is some non-zero H such that limt→∞ x̃1(t) = 0, thus driving exi(t)
to zero as well. If that is the case, then it means that, assuming the system will eventually
come to rest, the co-SU will too. This property is called numerical stability.

Contrarily to convergence, numerical stability is a property that depends on the characteris-
tics of the system being co-simulated. Numerical stability is always studied assuming that
the system being co-simulated is stable. It makes no sense to show that the co-simulation
trace will grow unbounded provided that the system does too, as it is a comparison of two
infinities.

One of the ways numerical stability in co-simulation can be studied is by calculating the
spectral radius (the largest absolute value of the eigen values) of the error in the co-SU,
written as an autonomous linear discrete system [72]. This corresponds to the induced
model, as introduced in Chapter 2. The following example shows how to compute the
induced coupled model, given a master algorithm.
Example 16. Recall that the coupled model being approximated by the co-simulation
scenario in Equation (3.25) can be written as:[

ẋ1

v̇1

]
=

[
0 1

− c1
m1

− d1
m1

]
︸ ︷︷ ︸

A1

[
x1

v1

]
+

[
0
1
m1

]
︸ ︷︷ ︸
B1

u1

y1 =

[
1 0

0 1

]
︸ ︷︷ ︸

C1

[
x1

v1

]

[
ẋ2

v̇2

]
=

[
0 1

− c2+cc
m2

− dc
m2

]
︸ ︷︷ ︸

A2

[
x2

v2

]
+

[
0 0
cc
m2

dc
m2

]
︸ ︷︷ ︸

B2

u2

y2 =
[
cc dc

]
︸ ︷︷ ︸

C2

[
x2

v2

]
+
[
−cc −dc

]
︸ ︷︷ ︸

D2

u2

(3.42)

with the coupling conditions u1 = y2 and u2 = y1.

In order to write the induced co-simulation model as an autonomous linear discrete system,
we have to write what happens at a single co-simulation step t ∈ [tn, tn+1] when executed
by the master presented in Algorithm 3. Since the purpose is to analyze the stability of
a co-SU, and not the stability of each of the SUs in the co-simulation, it is common to

55

CHAPTER 3. STATE OF THE ART

assume that the SUs compute the analytical trace of the system. This enables the study of
the stability properties of the co-SU, starting from accurate SUs.

From time t ∈ [tn, tn+1], SU S1 is computing the behavior trace of the following Initial
Value Problem Ordinary Differential Equation (IVP-ODE):[

ẋ1(t)

v̇1(t)

]
= A1

[
x1(t)

v1(t)

]
+B1u1(tn) (3.43)

with initial conditions
[
x1(tn) v1(tn)

]T
given from the previous co-simulation step. The

term u1(tn) denotes the fact that we are assuming a constant extrapolation of the input in
the interval t ∈ [tn, tn+1].

Equation (3.43) is linear and time invariant, so the value of

[
x1(tn+1)

v1(tn+1)

]
can be given

analytically as:[
x1(tn+1)

v1(tn+1)

]
= eA1H

[
x1(tn)

v1(tn)

]
+

(∫ tn+1

tn

eA1(tn+1−τ)dτ

)
B1u1(tn) (3.44)

or, replacing the integration variable with s = τ − tn,[
x1(tn+1)

v1(tn+1)

]
= eA1H

[
x1(tn)

v1(tn)

]
+

(∫ H

0

eA1(H−s)ds

)
︸ ︷︷ ︸

K1

B1u1(tn)
(3.45)

where eX =
∑∞
k=0

1
k!X

k is the matrix exponential.

Rewriting Equation (3.45) as a discrete time system gives us the computation performed by
SU S1 in a single co-simulation step, that is, the state transition function δ1:[

x
(n+1)
1

v
(n+1)
1

]
= eA1H

[
x

(n)
1

v
(n)
1

]
+K1B1u

(n)
1 (3.46)

where z(n) = z(tn).

At the end of the co-simulation step (t = tn+1) the output of the first SU, that is, its output
function λ1, is given by plugging in Equation (3.46) to the output y1 in Equation (3.42):

y
(n+1)
1 = C1e

A1H

[
x

(n)
1

v
(n)
1

]
+ C1K1B1u

(n)
1 (3.47)

Repeating the same procedure for the second SU, yields the state transition δ2 and output
functions λ2: [

x
(n+1)
2

v
(n+1)
2

]
= eA2H

[
x

(n)
2

v
(n)
2

]
+K2B2u

(n)
2

y
(n+1)
2 = C2e

A2H

[
x

(n)
2

v
(n)
2

]
+ (C2K2B2 +D2)u

(n)
2

(3.48)

56

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

with K2 =
∫H

0
eA2(H−u)du.

Since the coupling conditions are u1 = y2 and u2 = y1, we can combine Equations 3.48,
3.47, and 3.43 into a single discrete time system:

[
x

(n+1)
1

v
(n+1)
1

]
y

(n+1)
1[
x

(n+1)
2

v
(n+1)
2

]
y

(n+1)
2

=

eA1H 0̄ 0̄ K1B1

C1e
A1H 0̄ 0̄ C1K1B1

0̄ K2B2 eA2H 0̄

0̄ C2K2B2 +D2 C2e
A2H 0̄

︸ ︷︷ ︸

A

[
x

(n)
1

v
(n)
1

]
y

(n)
1[
x

(n)
2

v
(n)
2

]
y

(n)
2

(3.49)

The above system represents the model induced by the co-simulation algorithm. It is
stable if the behavior traces remain bounded (e.g., by going to zero) as n → ∞. This
can be checked by observing whether the spectral radius ρ(A) < 1. For parameters
m1 = m2 = c1 = c2 = d1 = cc = dc = 1, d2 = 2, a communication step size of
H = 0.001, ρ(A) = 0.9992, which means that the co-SU is stable. If the damping
constant were dc = 6.0E6, then the co-SU would be unstable (ρ(A) ≈ 76.43). A stable
co-simulation is shown in Figure 3.17.

−1.0

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0
Time

Solution
x1
v1
x2
v2

Figure 3.17: Behavior trace of co-simulator described in Equation (3.49). Parameters are:
m1 = m2 = c1 = c2 = d1 = cc = dc = 1, d2 = 2, H = 0.001.

As Example 16 shows, the numerical stability is determined by the internal solver of each
SU, by the input approximation scheme, the master algorithm, and the communication step
size.

In Chapters 5 and 6, we revisit stability in more detail. Additionally, see [71, 72, 74] for
the stability analysis under multiple coupling approaches and approximating functions.
Stability of various co-SUs has been also studied in [23, 165, 201, 216, 325]. The rules
of thumb drawn from these papers can be summarized as: (1) Co-simulators that employ
fixed point iteration techniques typically have better stability properties; (2) Gauss-Seidel
coupling approach has slightly better stability properties when the order in which the
SUs compute is appropriate (e.g., the SU with the highest mass should be computed first
[23]).

57

CHAPTER 3. STATE OF THE ART

In industrial problems, the stability analysis of a co-simulation algorithm is seldom done.
This is because the SUs are black boxes (to protect IP), so there is little knowledge about
the kind of solver and model being used and its stability properties. In these situations, we
recommend that strong coupling algorithms be used, as these have better stability prop-
erties. However, these techniques require rollback functionalities which can be difficult
to support for certain SUs. Even if those functionalities are available, the cost of com-
puting a co-simulation trace can be prohibitively high when compared with non-iterative
approaches.

Compositional Continuity

If a SU approximates the behavior of a CT system, then it is reasonable to expect that
its inputs are also continuous. As discussed in [71, 318], the careless use of input extrap-
olations (e.g., constant extrapolation) may violate this assumption. Consider the point
of view of a SU Si in co-simulation. Throughout a co-simulation step t ∈ [tn, tn+1]
the input φui(t, ui(tn)) = ui(tn) is kept constant. At the next co-simulation step t ∈
[tn+1, (n+ 2)H], the input φui(t, ui(tn+1)) = ui(tn+1) may change radically if ui(tn+1)
is too far away from ui(tn).

Any sudden change in the input to a CT SU may wreak havoc in the performance of its
simulator, causing it to reduce inappropriately the internal micro step size, to reinitialize
the solver [87, 373], to discard useful information about the past (in multi-step solvers
[19, 20]), and/or produce inaccurate values in its input extrapolation [285]. Furthermore, a
discontinuity may be propagated to other SUs, aggravating the problem.

We now discuss the continuity problem for simulation, and later relate it to co-simulation.

Most numerical methods assume that the input is a discretized version of a continuous
trace. That means that, when a discontinuity occurs, SU Si cannot distinguish it from a very
steep change in the continuous trace. The way traditional solvers deal with this behavior
is to reduce the micro step size hi until the change is not so steep. This works with a
continuous signal with a steep change, but does not work with a discontinuity: even if the
micro-step size hi is reduced, the difference between limt→(tn+1)− φui(t, ui(tn)) = ui(tn)
and limt→(tn+1)+ φui(t, ui(tn+1)) = ui(tn+1) is still the same, as it depends on the
communication step size H and not on the micro step size hi. The solver will reduce the
micro step size until a minimum is reached, at which point it gives up and finally advantages
the micro step [87].

Most of the times this gives acceptable results but has a huge performance toll: when the
solver is repeatedly retrying a small micro-step size, it does not advance the simulated time.
This means that a huge computational effort goes to waste until the solver finally gives up
[85].

We defer the discussion of the correct ways to deal with discontinuities to co-simulation
scenario where discontinuities are expected, Section 3.8. In continuous co-simulation
scenarios, discontinuities should not occur.

A solution to avoid discontinuities in the input approximations is to use the extrapolated
interpolation methods [71, 116], exemplified below. These methods ensure at least that
the left and right limit of the exchanged data points match: limt→(tn+1)− φui(t, ui(tn)) =
limt→(tn+1)+ φui(t, ui(tn+1)).

58

3.7. CONTINUOUS-TIME-BASED CO-SIMULATION

Example 17. To give an example, we derive one possible linear extrapolated interpolation
method for φui over the interval t ∈ [tn, tn+1]. Since φui is linear, then

φui(t, ui(tn), ui(tn−1)) = b+ a(t− tn)

, for some constants a, b. Let ūi(tn) = φui(tn, ui(tn−1), ui((n − 2)H)). To avoid
discontinuities, we require that φui(tn, ui(tn), ui(tn−1)) = ūi(tn). And we want that
φui(tn+1, ui(tn), ui(tn−1)) = ui(tn).

So putting these constraints together gives

φui(t, ui(tn), ui(tn−1)) = b+ a(t− tn)

ūi(tn) = φui(tn, ui(tn−1), ui((n− 2)H))

φui(tn, ui(tn), ui(tn−1)) = ūi(tn)

φui(tn+1, ui(tn), ui(tn−1)) = ui(tn)

(3.50)

Solving this system for φui(t, ui(tn), ui(tn−1)) gives:

φui(t, ui(tn), ui(tn−1)) = ui(tn−1) +
ui(tn)− ui(tn−1)

H
(t− tn) (3.51)

Real-time Constraints, Noise, and Delay

The major challenge in real-time co-simulation is to ensure that a SU is fast-enough to satisfy
the timing constraint t = ατ . In real-time co-simulation, this challenge gets aggravated due
to the presence of multiple SUs, with different capabilities [340], and whose internal details
are unknown. Furthermore, real-time co-simulation is often used when at least one of the
SUs is a physical entity (as in Section 3.2.2). This means that measurements may carry
noise, and the extrapolation functions used in the other SUs have to be properly protected
from that noise. Finally, the quality of the network is important, as the real-time SUs needs
to receive their inputs in a timely manner. To mitigate this, the master algorithm has to
compensate for any delays in the receiving of data, and provide inputs to the real-time SU
[339].

3.7.4 Standards for CT Co-simulation
In the realm of continuous time based standards, we highlight the Dynamical System
Block (DSBlock) [287] standard (early 90s), whose purpose was not strictly to enable
co-simulation, but to be able to represent differential equation based models in a uniform
way. Then numerical solvers could be used to simulate these models. This standard later
inspired the creation of the Functional Mockup Interface (FMI) standard [47] (late 2000s)
for co-simulation. Contrarily to discrete event based standards, continuous based standards
do not attempt to standardize the interaction between simulators. This is because there is no
single best way to coordinate a continuous time co-simulation, and often extra knowledge
and experience are required to pick the best way.

The above concepts try to capture the essence of continuous time co-simulation. Note that
a CT SU does not have to be a mockup of a CT system. We introduce them as such to
simplify the explanation. Most common co-simulation scenarios will include SUs that share
continuous and discrete event characteristics. In the next section, we focus on these.

59

CHAPTER 3. STATE OF THE ART

3.8 Hybrid Co-simulation Approach
Sections 3.6 and 3.7 described the essential characteristics and assumptions of simulation
units (SUs) for each kind of co-simulation approach. When compared to a CT SU, whose
state evolves continuously in time and whose output may have to obey physical laws of
continuity, a DE SU state can assume multiple values at the same time (transiency) and its
output is discontinuous. For a master algorithm, a CT SU has some flexibility (except for
algebraic loops and complex coupling conditions) in deciding the parameters (e.g., step
size or tolerance) of the co-simulation. In contrast, a DE SU has to get inputs and produce
outputs at the precise time an event is supposed to occur, and there is no Lipschitz continuity
conditions to help predict how a delay in the output of the DE SU can affect the overall
co-simulation trace.

These differences are at the heart of many challenges in hybrid co-simulation scenarios,
which are studied in detail in Chapter 6.

Please refer to [260, 262, 270, 271] for examples of hybrid systems, and descriptions of
their characteristics.

3.8.1 Hybrid Co-simulation Scenarios
We do not give a formal definition of a hybrid co-simulation scenarios because that is
related to finding an appropriate standard for hybrid co-simulation and master algorithms
that would solve the challenges enumerated in Section 3.8.2.

Instead, we define it broadly as mixing the characteristics and assumptions of both kinds
of SUs. These scenarios, together with an adequate master, can be used as mock-ups of
hybrid systems [17, 80, 84, 246].
Example 18. A thermostat regulating the temperature in a room is a classical example
[242]. The Continuous Time (CT) constituent system represents the temperature dynamics
of the room, accounting for a source of heat (radiator). The Discrete Event (DE) part is a
controller that turns on/off the radiator depending on the temperature.

The SU S1 simulates the following dynamics:

ẋ = −α (x− 30q) ; x(0) = x0 (3.52)

where x is the output temperature in the room, α > 0 denotes how fast the room can be
heated (or cooled) down, and q ∈ {0, 1} is the control input that turns on/off the radiator.
The SU S2 simulates the statemachine shown in Figure 3.18, where one can think of the
input event tooHot as happening when x(t) ≥ 21 and tooCold when x(t) ≤ 19. The
output events off and on will assign the appropriate value to the input q of S1. Therefore,
the temperature x(t) is kept within a comfort region.

Figure 3.18: Statemachine model of the controller constituent system.

60

3.8. HYBRID CO-SIMULATION APPROACH

The two SUs in Example 18 cannot just be coupled together via input to output assignments.
Any master for this co-simulation scenario has to reconcile the different assumptions about
the inputs and output of each SU.

• The CT SU expects a continuous input, whereas the output of the DE SU is an event
signal.

• The output of the CT SU is a continuous signal, whereas the DE SUs expects an
event signal as input.

The coupling of CT and DE black box SUs has been studied in the state of the art. In
essence, two approaches are known, both based on adapting (or wrapping) the behavior of
the SU:

Hybrid DE – adapt every CT SU as a DE SU, and use a DE based master;
Hybrid CT – wrap every DE SU to become a CT SU and use a CT based master.

We will denote these techniques as semantic adaptations, defined in Chapter 7.

According to the formalization that we have proposed for CT and DE SUs, the Hybrid DE
approach, applied to the thermostat example involves:

1. adapting S1 as a DE SU, S′1, with a time advance that matches the size of the
co-simulation step;

2. keeping track of the output of S1 in order to produce an output event whenever it
crosses the thresholds; and, conversely,

3. any output event from S2 has to be converted into a continuous signal for the input
q(t) of S1.

Other examples of Hybrid DE are described in [31, 53, 54, 78, 79, 125, 211, 213, 220, 274,
282, 284, 310, 366, 376, 382, 384].

To apply the Hybrid CT to Example 18, we require the adaptation of the DE S2 as a CT SU
that takes as input the temperature continuous signal, and internally reacts to an event caused
by the crossing of the threshold. The output event of S2 can be converted into a continuous
signal q(t). Examples of the Hybrid CT include [110, 122, 139, 227, 309, 345, 353].

Regardless of the approach taken, care must be taken to uphold the properties of the coupled
model: the fact that an otherwise discontinuous signal becomes continuous as a result of a
linear or higher order extrapolation may violate these properties. Knowledge of the domain
and the SUs is paramount to retain aforementioned properties.

In the section below, different challenges that arise in hybrid co-simulation will be dis-
cussed.

3.8.2 Challenges
Semantic Adaptation and Model Composition

While a generic wrapper based on the underlying model of computation of the SU can be
used, as done in [100, 308], the realization of any of the approaches Hybrid DE or Hybrid
CT depends on the concrete co-simulation scenario and the features of the SUs [61, 266],
as shown with the thermostat example. As Chapters 5 and 7 show, there is no best choice
of wrappers for all scenarios. Even at the technical level, the manner in which the events

61

CHAPTER 3. STATE OF THE ART

or signals are sent to (or obtained from) the SU may need to be adapted [156, 353]. To
account for this variability, the most common adaptations can be captured in a configuration
language, as was done in [110, 251] and Chapter 7, or in a specialization of a model of
computation, as done in [220, 264, 296]. These approaches require that a person with the
domain knowledge describes how the SUs can be adapted.

Our choice of wrapper for the Hybrid DE approach is meant to highlight another problem
with the adaptations of SUs: the wrapper incorporates information that will ultimately have
to be encoded in the software controller. As such, we argue that the need for sophisticated
semantic adaptations should be smaller in later stages of the development of the components
so that, for more refined models of the thermostat, the decision about when to turn off the
radiator is not made by a wrapper of S1.

Predictive Step Sizes and Event Location

In the Hybrid DE approach, the time advance has to be defined (recall Equation (3.2)).
Setting it to whatever co-simulation step size H the master decides, will work, but the
adapted SU may produce many absent output events. Better adaptations have been proposed.
In the thermostat example, S′1 can propose a time advance that coincides with the moment
that x(t) will leave the comfort region, thereby always being simulated at the relevant times.
Naturally, these approaches rely on information that may expose the IP of SUs.

Others try to adaptively guess the right time advance by monitoring other conditions of
interest, set over the own dynamics of the adapted SU, the most common approach being
the quantization of the output space [54, 210, 211, 283, 385].

The capability to predict the time advance is also useful to enhance the performance/accu-
racy of CT based co-simulation, as shown in [66].

Locating the exact time at which a continuous signal crosses a threshold is a well known
problem [55, 57, 388] and intimately related to guessing the right time advance for predict-
ing the step size [79, 136]. To address this, solutions typically require derivative information
of the signal that causes the event, and/or the capability to perform rollbacks.

In Example 18, a co-simulation that shows the output q of the controller changing from 0
to 1 at time te while the temperature of the room x actually crossed the comfort zone at
te − k, for k > 0, may not be accurate if k is too large. Note that k is a consequence of the
decisions made in the master.

Discontinuity Identification

Until here, we have based our discussion in the knowledge of what kind of SUs comprise
a co-simulation. In the most common implementations of co-simulation, a signal is often
represented as a set of time-stamped points. Observing this sequence of points alone
does not make it possible to discern a steep change in a continuous signal, from a true
discontinuity, that occurs in an event signal [67, 232, 260, 388]. Extra information is
currently used: a) a formalization of time which include the notion of absent signal, as
proposed in [67, 232, 345]; or b) an extra signal can be used to discern when a discontinuity
occurs, as done in the FMI for Model Exchange [48], even facilitating the location of the
exact time of the discontinuity; or c) symbolic information (e.g., Dirac impulses [112]) that
characterize a discontinuity can be included, as done in [160, 278].

62

3.8. HYBRID CO-SIMULATION APPROACH

Discontinuity Handling

Once a discontinuity is located, how it is handled depends on the nature of the SUs and
their capabilities. If the SU is a mock-up of a continuous system then, traditionally,
discontinuities in the inputs should be handled by reinitializing the SU [87]. This step
can incur a too high performance cost, especially with multi-step numerical methods, and
[19, 20] proposes an improvement for these solvers.

A discontinuity can cause other discontinuities at the same simulated time, triggering a
cascade of re-initializations. During this process, which may not finish, care must be taken
to ensure that physically meaningful properties such as energy distribution, are respected
[261].

Algebraic Loops, Legitimacy, and Zeno Behavior

Algebraic loops are non-causal dependencies between SUs that can be detected using
feedthrough information, as explained in Section 3.7.3. In CT based co-simulation, the
solution to algebraic loops can be attained by a fixed point iteration technique, as covered
in Section 3.7.3. There is the possibility that the solution to an algebraic loop will fail to
converge.

In DE based co-simulation a related property is legitimacy [386], which is roughly the
undesirable version of the transiency property, explained in Section 3.6. An illegitimate
co-simulation scenario will cause the co-simulation master to move an infinite number of
events with the same timestamp between SUs, never advancing time. Distance matrices,
used to optimize parallel optimistic approaches, as explained in [135] and used in [144],
can be leveraged to detect statically the presence of some classes of illegitimacy.

A similar behavior, but more difficult to detect is Zeno behavior. It occurs when there is
successively smaller intervals of time between two consecutive events, up to the point that
the sum of all these intervals is finite [360]. As shown in [65], a simulator eventually fails
to detect the consecutive events. In particular, it advocates that the Zeno behavior is a
property of the model, whereas the incorrectness is due to a simulation approximation error.
However, while illegitimate behaviors are not desired in pure DE co-simulation, Zenoness
can be a desired feature in some hybrid co-simulation scenarios (e.g., see [63]). We say in
the theoretical sense because, for the purposes of co-simulation, scenarios with Zenoness
still have to be recognized and appropriate measures, such as regularization [194], have to
be taken.

Stability under X

If a hybrid co-simulation represents a hybrid or switched system [360], then it is possible
that a particular sequence of events causes the system to become unstable, even if all the
individual continuous modes of operation are stable [197, Example 1.1]. New analyses
are required to identify whether the CT SUs can yield unstable trajectories as a result of:
1. noisy inputs; 2. data quantization; 3. change of co-simulation orchestration [155]; 4. the
events of wrapped DE SUs [153]; and, 5. delayed exchange of values.

Example analyses are developed in Chapters 5 and 6.

63

CHAPTER 3. STATE OF THE ART

Theory of DE Approximated States

In a pure DE based co-simulation, if round-off errors are neglected, the computed trajecto-
ries are essentially exact. To the best of our knowledge, only [386] addresses theoretically
how the error in a discrete event system can be propagated. In CT based co-simulation
however, error is an accepted and well studied and techniques exist to control it.

In Hybrid co-simulation, there is a need for analysis techniques that provide bounds on the
error propagation in the DE SUs, when these are coupled to sources of error. The reason
why this is so difficult is discussed in Chapter 6.

In addition, based on these analyzes, it should be possible for a DE SU to recognize that its
error has exceeded a given tolerance, and measures should be taken to reduce that error.
Having these techniques in place allows a hybrid co-simulation master to take appropriate
measures (e.g., adapt the communication step size, etc. . .) the keep the error bounded in
every SU.

3.8.3 Standards for Hybrid Co-simulation

In the hybrid co-simulation domain, there have been some efforts to standardize both the
orchestration and interfaces.

While for CT co-simulation there is the Functional Mockup Interface (FMI) standard [48],
and for DE co-simulation there is the High Level Architecture (HLA) [14] standard, as of
the time of writing, both standards have limitations for hybrid co-simulation. References
[52, 99, 139, 345] use/propose extensions to the FMI standard and [30] proposes techniques
to perform CT simulation conforming to HLA. Recognizing that hybrid co-simulation is
far from well studied, [67] proposes a set of idealized test cases that any hybrid co-SU, and
underlying standard, should pass. In particular, it is important to have correct handling and
representation of time, to achieve a sound approach for simultaneity.

While there is no formal standard, there are plenty of potential candidates. We highlight6:
the Ptolemy project [68], where a key principle is the use of multiple models of computation
in a hierarchical heterogeneous design environment; ModHel’X [61], which makes those
models of computation customizable by the modeler; DEVS&DESS [384], which builds on
DEVS to allow the representation of continuous behavior; and HFSS [34], which decouples
the transmission of data between simulators, and allows for the simulation of dynamic
structure systems.

Finally, even with a standardized interface, SUs have different capabilities: a fact that
makes coding an optimal master algorithm difficult. A possible approach to deal with this
heterogeneity, proposed in [150, 156] and Chapter 7, is to assume that all SUs implement
the same set of features, code the master algorithm for those features, and delegate to
wrappers the responsibility of leveraging extra features (or mitigating the lack of). In the
section below, these features are classified.

6The field in hybrid systems is vast and here we restrict our scope to standards that focus on the simulation of
such systems (e.g., we do not consider Hybrid Automata [243] or Hybrid Programs [302] as candidates because
their primal intent is analysis of hybrid systems).

64

3.9. CLASSIFICATION AND APPLICATIONS

3.9 Classification and Applications

Having described the multiple facets of co-simulation, this section summarizes our classifi-
cation and methodology, and applies it to a typical use case.

3.9.1 Methodology

To find an initial set of papers related to co-simulation, we used Google Scholar with the
keywords “co-simulation”, “cosimulation”, “coupled simulation”, and collected the first
10 pages of papers. Every paper was then filtered by the abstract, read in detail, and its
references collected. To guide our reading to the most influential papers, we gave higher
priority to most cited (from the papers that we have collected).

We read approximately 30 papers to create the initial version of the taxonomy. Then, as we
read new papers, we revised the taxonomy and classified them.

After a few iterations, new references did not cause revisions to the taxonomy, which
prompted us to classify the collected papers in a more systematic fashion: all the papers
that we collected from 2011 (inclusive) up to, and including, 2016 were classified. Two
main reasons justify the last 5 years interval: limited time; and most of the papers refer to,
and are based on, prior work. As a consequence, the classification would be very similar
for many of the related references prior to 2011.

In total, 84 papers were classified.

3.9.2 Taxonomy

The taxonomy is represented as a feature model [202] structured in three main categories,
shown in Figure 3.19:

Non-Functional Requirements (NFRs): Groups concerns (e.g., performance, accuracy,
and IP Protection) that the reference addresses.

SU Requirements (SRs): Features required/assumed from the SUs by the master de-
scribed in the paper. Examples: Information exposed, causality, local/remote avail-
ability, or rollback support.

Framework Requirements (FRs): Features provided by the master. Examples: dynamic
structure, adaptive communication step size, or strong coupling support.

Each main group is detailed in Figures 3.20 to 3.22. Abstract features denote concepts that
can be easily detailed down but we chose not to, for the sake of brevity. Mandatory features
are required for the activity of co-simulation, while optional are not.

3.9.3 Applications

To demonstrate how the taxonomy is used, we picked three representative examples from
the state of the art: an industrial use case, a co-simulation framework, and a co-simulation
standard.

65

CHAPTER 3. STATE OF THE ART

Co-Simulation

Non-Functional
Requirements

Simulator
Requirements

Framework
Requirements

Feature

Legend

Figure 3.19: Top-level.

Non-Functional
Requirements Configuration

Reusability

Performance

IP Protection

Distribution

Hierarchy

Scalability

Extensibility

Accuracy

Platform
Independence

Feature

Fault
Tolerance

Parallelism

Open-source Van Acker et al. 2015

Pedersen et al. 2017

Figure 3.20: Non-Functional Requirements.

3.9.3.1 An Industrial Application

The case study presented in Section 3.3.1 is a representative example application because:
it includes parts that are developed by other departments (e.g., the ship engine) and external
suppliers (e.g., the water treatment system); there are both continuous and discrete event
dynamics (e.g., the control system is comprised of a state machine and a PI-Controller); and,
quoting the authors, “to improve the control strategy of the WHS, a higher-fidelity model
[of the systems interacting with the controller] should be used.” [297, Section 3.4].

This work is classified as highlighted in Figures 3.20 to 3.22.

3.9.3.2 A Framework

We next consider the work of [358], where an FMI based multi-rate master algorithm is
generated from a description of the co-simulation scenario. In the paper, the description
language introduced can be reused in a tool-agnostic manner. The orchestration code
generator analyzes the co-simulation scenario, and: a) identifies algebraic loops using I/O
feed-through information; b) separates the fast moving SUs from the slow moving ones,
using the preferred step size information, and provides interpolation to the fast ones (multi-
rate); and c) finds the largest communication step size that divides all step sizes suggested
by SUs and uses it throughout the whole co-simulation. The algebraic loops are solved via
successive substitution of inputs, storing and restoring the state of the SUs.

Based on these facts, [358] is classified as highlighted in Figures 3.20 to 3.22.

3.9.3.3 A Standard

The FMI standard for co-simulation, version 2.0 [48, 126], defines the interface and
interaction pattern that allows simulation units to communicate.

It can be considered a restricted version of the formalization proposed in Section 3.7, with
the following differences:

• Each simulation unit is distributed as a zip file, containing binary libraries that can
be loaded in compatible execution architectures;

• These binaries implement a standardized software interface that allows the master to
set/get inputs, and execute a co-simulation step;

• There is an explicit initialization mode, where a fixed point iteration can be run to
find a consistent set of initial values;

• The simulation unit can optionally expose their internal state;

66

3.9. CLASSIFICATION AND APPLICATIONS

Causal

Simulator
RequirementsCausality

Availability

Feature

A-causal

Remote

Rollback
Support

None Single Multiple

Time
Constraints

None Scaled RT

Static Dynamic

Deadreckoning
Model

Discontinuity
Indicator

Values Serialization

State

Micro-step
Outputs

Input
Extrapolation

Detailed
Model

I/O Signal Kind

Outputs State

Derivative

Outputs State

JacobianTime

Step-size
Order of
Accuracy

I/O
Causality

Propagation
Delay

Feedthrough

Model Solver

Information
Exposed

Local

Dependency
Kind

Non-Linear Linear

Abstract Feature

NextPreferred

Outputs State

Nominal Values

WCET

Outputs State

Frequency

Van Acker et al. 2015FMI CS 2.0 Pedersen et al. 2017

Figure 3.21: Simulation Unit Requirements and features provided in the FMI Standard for
co-simulation, version 2.0.

• Outside the initialization mode, it is not possible to perform a fixed point iteration on
the output variables only (a workaround is to use a strong coupling technique); and

• the output function depends only on the internal state (see [126, p. 104] and [348]
for consequences).

Taking these differences into account, the standard can be classified according to the
assumptions it makes about the participating SUs. This is highlighted in Figure 3.21.

3.9.4 The State of the Art

The remaining state of the art is classified in Figs. 3.23–3.26. The raw data is available
online7. The apparent lack of papers in the interval 2006-2009 is a consequence of our
methodology (recall Section 3.9.1).

7http://msdl.cs.mcgill.ca/people/claudio/pub/Gomes2016bClassificationRawData/
raw_data.zip

67

http://msdl.cs.mcgill.ca/people/claudio/pub/Gomes2016bClassificationRawData/raw_data.zip
http://msdl.cs.mcgill.ca/people/claudio/pub/Gomes2016bClassificationRawData/raw_data.zip

CHAPTER 3. STATE OF THE ART

Feature

Framework
Requirements

Dynamic
Structure

CT DE

Domain

No.
Simulators

2 3+

HLA FMI

Standard

FDMU

I/O
Assignment

Algebraic
Constraints

Coupling

Single Multiple

Co-simulation
Rate

Fixed Adaptive

Comm.
Step Size

Strong Coupling
Support

None Semi-Implicit Fully Implicit

Results
Visualization

Live Postmortem Interactive

Jacobi Gauss-seidel

Comm.
Approach

Van Acker et al. 2015

Pedersen et al. 2017

Figure 3.22: Framework Requirements.

3.9.5 Discussion
Analyzing Figure 3.23, Accuracy is the most observed NFR, with 31 reports, followed by
IP protection and Performance. This is consistent with the grand challenge in co-simulation
(Section 3.2).

The least observed NFRs are Fault tolerance, Hierarchy and Extensibility. Fault tolerance
is especially important for long running co-simulations. One of the industrial partners of
the INTO-CPS project has running co-simulations that takes a minimum of two weeks to
complete.

We argue that Extensibility (the ability to easily accommodate new features) should be given
more importance: if an heterogeneous set of SUs participate in the same co-simulation
scenario, the combination of capabilities provided (see Figure 3.21) can be huge. Thus,
the master can either assume a common homogeneous set of capabilities, which is the
most common approach, or can leverage the capabilities provided by each one. In any
case, extensibility and hierarchy are crucial to address, and implement, new semantic
adaptations.

As Figure 3.25 suggests, we could not find approaches that make use of the nominal
values of state and output variables, even though these are capabilities supported in the
FMI Standard, and are useful to detect invalid co-simulations. A-causal approaches are
important for modularity, as explained in Section 3.7.3, but these are scarce too.

As for the framework requirements, in Figure 3.26, the least observed features are dy-
namic structure co-simulation, interactive visualization, multi-rate, algebraic coupling, and
partial/full strong coupling support. This can be explained by the fact that these features
depend upon the capabilities of the SUs, which may not be mature.

Figs. 3.23 – 3.26 do not tell the full story because they isolate each feature. Feature
interaction is a common phenomenon, and among many possible interactions, we highlight

68

3.9. CLASSIFICATION AND APPLICATIONS

2
4
6
8

Reports

Total

Config. Reusability
Extensibility

Accuracy
Distribution
Parallelism

Open−source
Fault Tolerance

Hierarchy
IP Protection
Performance

Platform Independence

2000 2005 2010 2015
Year

C
at

eg
o

ry
11
25
25

3
1
6

21
24
31
4
7

Figure 3.23: Classification with respect to non-functional requirements.

Multi Rollback

Single Rollback

No Rollback

Dynamic Real−Time Constraints

Fixed Real−Time Constraints

No Time Constraints

Remotely Available

Locally Available

Causal

A−Causal

2000 2005 2010 2015
Year

C
at

eg
o

ry

3
6
9
12

Reports

Figure 3.24: Classification with respect to SU requirements: execution capabilities.

the accuracy concern, domain of the co-simulation, number of SUs supported, and IP
protection. As can be seen from Figure 3.28, there is only one approach [220] that is both
CT and DE based, up to any number of SUs. Accommodating the different CT and DE
domains means that the approach assumes that the SUs can behave both as a CT and as a
DE SU.

The concern with IP protection is evident in Figure 3.23 but the number of DE and CT based
approaches that provide some support for it is small, as shown in Figure 3.27. Similarly, as
Figure 3.29 suggests, accuracy does not show up a lot in the DE and CT approaches, for
more than two SUs. Accuracy is particularly important in interactions between DE and CT
SUs.

In general, from the observed classification, there is a lack of research into approaches that
are both DE and CT based, and that leverage the extra features from the SUs.

69

CHAPTER 3. STATE OF THE ART

Output Derivatives
State Derivatives
Output Jacobian

State Jacobian
Micro−step Outputs

Serialized State
State Values

Worst Case Exec. Time
I/O Feedthrough

Next Step Size
Preferred Step Size

Frequency of Outputs
Kind of Signal

Model
Input Extrapolation

Output Nominal Values
State Nominal Values

2000 2005 2010 2015
Year

C
at

eg
o

ry

1
2
3
4

Reports

Figure 3.25: Classification with respect to SU requirements: information exposed.

3.10 Concluding Remarks
In this overview chapter, we show that there are many interesting challenges to be explored
in co-simulation, which will play a key role in enabling the virtual development of complex
heterogeneous systems in the decades to come. The early success can be attributed to a
large number of reported applications. However, the large majority of these applications
represent ad-hoc couplings between two simulators of two different domains (e.g., a network
simulator with a power grid one, or a HVAC simulator with a building envelop one)8. As
systems become increasingly complex, the demand for co-simulation scenarios that are
large, hierarchical, heterogeneous, accurate, IP protected, and so on, will increase.

This survey covers the main challenges in enabling co-simulation. To tackle such a broad
topic, we have covered two main domains—continuous-time- and discrete-event-based co-
simulation—separately and then discussed the challenges that arise when the two domains
are combined. A taxonomy is proposed and a classification of the works related to co-
simulation in the last five years is carried out using that taxonomy.

From the challenges we highlight: semantic adaptation, modular coupling, stability and ac-
curacy, finding a standard for hybrid co-simulation, and configuration of master algorithms
that leverage the individual capabilities of simulation units. For early system analysis, the
adaptations required to combine simulators from different formalisms, even conforming to
the same standard, are very difficult to generalize to any co-simulation scenario.

One of the main conclusions of the classification is that there is lack of research into
modular, stable, and accurate coupling of simulators in dynamic structure scenarios. This is

8We did not consider the (potentially many) unreported applications of co-simulation.

70

3.10. CONCLUDING REMARKS

More than Three Simulators
Two Simulators

Gauss−Seidel Communication
Jacobi Communication

FDMU Based
HLA Based
FMI Based

Interactive Visualization
Live Visualization

Post Mortem Visualization
Full Strong Coupling

Partial Strong Coupling
No Strong Coupling

Alg. Constraints Coupling
I/O Coupling

Adaptive Comm. Step
Fixed Comm. Step

Multi−Rate
Single Rate
CT Domain
DE Domain

Dynamic

2000 2005 2010 2015
Year

C
at

eg
o

ry

3
6
9
12

Reports

Figure 3.26: Classification with respect to framework requirements.

No

Yes

CT DE DE+CT
Domain

IP
 P

ro
te

ct
io

n

10
20
30
40

Reports

Figure 3.27: Formalisms vs
IP Protection.

2

3+

CT DE DE+CT
Domain

N
o

. S
im

u
la

to
rs

10
20
30

Reports

Figure 3.28: Formalisms vs
SUs.

2

3+

2

3+

CT DE DE+CT
Domain

N
o

. S
im

u
la

to
rs

5
10
15
20

Reports

Figure 3.29: Accuracy vs
Formalisms vs SUs.

where a-causal approaches for co-simulation can play a key role because they allow the
same simulator to be coupled in many different ways. The use of bi-directional effort/flow
ports can be a solution inspired by Bond-graphs [294], and there is some work already in
this direction [161, 318].

Limitations. The sources of information for the challenges identified in this chapter
where existing published works, and discussions with the co-authors. We did not contact
other experts and practitioners in the field. As such, it is difficult to priority these challenges.
The next chapter attempts to tackle this, by reporting on an empirical survey among experts
and practitioners of co-simulation.

71

Chapter 4

Empirical Survey

Disclaimer The content in this chapter is adapted from:

• Schweiger, Gerald, Cláudio Gomes, Georg Engel, Irene Hafner, Josef Schoeggl,
Alfred Posch, and Thierry Nouidui. “Functional Mock-up Interface: An Empirical
Survey Identifies Research Challenges and Current Barriers.” In The American
Modelica Conference. Cambridge, MA, USA, 2018.

• Ongoing work on a manuscript submitted to the Simulation Modelling Practice and
Theory journal.

The challenges identified in the previous chapter lack input from experts in industry.

This work complements the existing surveys by providing the empirical aspect. We inter-
viewed multiple experts from various fields in industry and academia as part of a two-stage
Delphi study. As a result, the current challenges, research needs, and standards and tools,
were investigated using qualitative and quantitative research methods. Some of the chal-
lenges identified by the experts indeed match the conclusions of the existing surveys,
presented in Chapter 3.

The current work allowed us to rank the existing research according to their importance,
as perceived by industry and academia. In particular, the findings in the present work
can:

• contribute to the structured and focused further development of various disciplines
within the co-simulation community;
• guide the efforts of the scientific community to address problems that are directly

relevant to industry; and
• serve as a practical guide by providing references to existing surveys, promising

standards and tools for co-simulation.

In the next section, we provide some background on the methodology used. Then, in
Section 4.2 we present and discuss the results. Finally, we summarize and conclude in
Section 4.3.

CHAPTER 4. EMPIRICAL SURVEY

4.1 Method and Rationale

In this section, we describe our methodology, the expert selection process, and how the
answers were handled.

4.1.1 Delphi Method

As a methodological foundation of this study, the Delphi method [102] was adopted.

The Delphi method is an empirical research method that relies on the systematic compi-
lation of knowledge from a selected group of experts [102, 186, 322, 323]. It fosters the
exploration of problems that are characterized by an incomplete state of knowledge [305], a
lack historical data, or a lack of agreement within the studied field, which makes it a perfect
fit to apply to co-simulation [286]. The aim of applying the Delphi method is to arrive at a
reliable shared opinion by means of a repetitive assessment process that includes controlled
feedback of opinions [225]. The Delphi method provides structured circumstances that
”[. . .] can generate a closer approximation of the objective truth than would be achieved
through conventional, less formal, and pooling of expert opinion” [33].

The Delphi study applied in the present work includes two rounds. The choice of rounds
was justified by, for instance, Sommerville [335], who argued that the changes in the
participants’ views occurred in most cases during the first two rounds of the study and
few insights were gained in further rounds. The quality of the Delphi process depends on
the factors of creativity, credibility, and objectivity [281]. To address these quality criteria
we followed acknowledged guidelines that have been provided by authors such as tose of
[225, 281, 286].

The questions in the first round were selected based on the existing studies on co-simulation
and the experience of the authors of the current study. Both rounds included qualitative
(open-ended) and quantitative questions.

In the first round, the majority of questions asked were qualitative, whereas in the second
round, they were quantitative. This ensured that the topic could be introduced in a general
way in the first round. To see why, note that if the first round had consisted mainly of
quantitative questions, there would have been an increased risk of overlooking important
factors or biasing the results.

The qualitative questions asked in the first round only addressed findings that were common
among survey papers referred to above. In these cases, expert opinions were used to evaluate
the findings of the previous surveys and enable quantitative statements and comparisons to
be made. The quantitative questions asked in the second round were mainly formulated
based on the results of the first round and the findings reported in the recent literature (e.g.,
where contradictions were identified).

Regarding the number of experts, Clayton [95] indicated that fifteen to thirty experts with
homogeneous expertise backgrounds or five to ten experts with heterogeneous backgrounds
should be involved in a Delphi process, while Adler and Ziglio [15] argued that ten to
fifteen experts with homogeneous expertise backgrounds could already be considered
appropriate.

74

4.1. METHOD AND RATIONALE

4.1.2 Expert selection and response rate
The Delphi method does not prescribe any particular way of selecting experts. We used a
Knowledge Resource Nomination Worksheet (KRNW) as a framework [286]. The KRNW
was proposed in [106] as a general criterion that could be used to sample an expert panel
by classifying the experts before selecting them in two iteration steps, to avoid overlooking
any important class of experts. This framework consists of the following five steps, detailed
below: (1) preparation of the KRNW; (2) population of the KRNW; (3) nomination of
additional experts; (4) ranking of experts; and (5) invitation of experts.

In Step (1), we classified the experts according to whether they worked in academia or
industry, as both perspectives were considered essential. Then, in Step (2), the academia
category was populated based on a keyword-based search in the literature on the state of the
art in co-simulation; the industry category was populated based on the same keyword-based
search and the experience of the authors. Afterwards, in Step (3), both categories were
expanded based on the suggestions received after contacting the initial list of experts. In
Step (4), the ranking of experts was done using the number of publications in the field of
co-simulation, which was obtained from Scopus R©1. In Step (5) the final group of experts
was invited to take part in the Delphi study. Fifteen experts were contacted for the first
round; after receiving a final reminder by email, twelve completed questionnaires were
returned. The response rate for the first round was, thus, 80 %. In the second round,
we contacted seventy persons; after receiving a final reminder by email, 53 completed
questionnaires were returned. The response rate for the second round was, thus, 76 %. We
can safely state that a significant share of representatives from co-simulation experts were
involved in the analysis [15, 95].

Experts from industry who took part in the survey worked in the following sectors: energy
Systems (5), software development (7), mobility (4), engineering services (1), system
engineering (1), avionics, railways (1). Experts from academia who took part in the survey
work in the following fields: energy-related applications (8), software development (6),
automotive (3), computer Science (2), maritime (1), system Engineering (1), numerical
mathematics (1), system modelling and verification (1) and formal methods (1). Some
experts did not provide information about their field or sector.

Table 4.1 summarizes the aim and approach of each round and provides the number of
participants per category.

4.1.3 Presentation of the results
A content analysis was performed following the method of Mayring to analyze the qualita-
tive answers [249]. Authors of scientific literature have conducted controversial discussions
about which statistical measures are suitable for the interpretation of results of a survey,
such as Likert-scales. Hallowell and Gambatese [172] argued that results should be reported
in terms of the median rather than the mean, because the median response is less likely to
be affected by biased responses. The median is the middle observation in a sorted list of
data, separating the upper half from the lower half of a dataset. Sachs [316] argued that
the interpolated median is more precise than the normal median, because it is better to
consider the frequencies of answers within one category in comparison to all answers. The

1www.scopus.com

75

www.scopus.com

CHAPTER 4. EMPIRICAL SURVEY

Table 4.1: Summary of method. Legend: A (Academia), I (Industry), ND (non-Disclosed).

Participants
Round Aim Approach A I ND Total
1 Identification of research

needs, SWOT factors,
limitations and possible
extension.

Qualitative 7 2 3 12

2 Evaluation of the result
from the first round and
development of in-depth
discussions on the key as-
pects. Test on conver-
gence the identified fac-
tors, themes and scenar-
ios

Semi-
quantitative. 24 19 10 53

interpolated median is used to adjust the median upward or downward within the lower
and upper bounds of the Median (M), in the direction in which the data are more heavily
weighted. The interpolated median (IM) is calculated as follows:

IM =

{
M if n2 = 0,

M − 0.5 + 0.5·N−n1

n2
if n2 6= 0

(4.1)

where N is the total number of responses to the question, n1 is the number of scores strictly
less thanM and n2 is the number of scores equal toM . For example, if all choices coincide
with the median M (that is, n1 = 0, n2 = N), then the interpolated median coincides with
the median. If, on the other hand, no choice is smaller than M (that is, n1 = 0) and there is
only one choice that coincides with M , that is, n2 = 1, then IM will be larger than the
median. Finally, if most choices are strictly below M (that is, n1 = N

2 − 1) and all the
other choices coincide with M (n2 = 1), then IM < M .

In order to provide a transparent presentation of the results, all results are displayed in
detail in a bar chart in Section 4.2, along with their mean, median, and interpolated median,
values.

4.1.4 Threats to validity and limitations of the study
Detailed discussion about the threats to validity in Delphi studies can be found in [173]. The
selection of experts from academia was done based strictly on the number of publications
listed in Scopus R©. There is an ongoing discussion about how to compare the scientific
impact among researchers. While some indices are well-suited for comparing researchers
within the same field, this is not the case for comparing different fields. Since co-simulation
is an interdisciplinary field of research, the selection of experts in this work can be seen as
a threat to validity. The ranking of experts from industry was done based on the number
of publications listed in Scopus R©. In addition, we selected experts from industry who
we knew have been working with co-simulation for a long time and who have theoretical

76

4.2. RESULTS AND DISCUSSION

and practical knowledge in the field of co-simulation. It can be regarded as a limitation
regarding the representativity of the results; however, the responses of the experts indicated
that they indeed were well experienced. This selection process ensured that also experts
from industry whose focus is not on scientific publishing participated in the study.

4.2 Results and Discussion
In this section, we present the key findings from the Delphi study and the SWOT-AHP
analysis.

In the results below, most questions are multiple choice, and the options available were
collected during the first round of the Delphi study. To accommodate for additional answers,
an extra open field was provided. These open answers, where applicable, are displayed
under the Other category.

4.2.1 Simulator and Co-simulation Characterization

In order to analyze the purpose for which experts used co-simulation, experts were asked
to select the properties that apply to the simulators with which they have worked in co-
simulation. As can be seen in Figure 4.1, the majority of the simulators being used in
co-simulation represented continuous time simulation units, as defined in Section 3.7. Still,
between 18% and 25% of the experts used simulators as “specialized in networks”, as
“specialized in software controllers”, as “a dedicated piece of hardware” or as “receiving
input from a human machine interface”.

The properties that were not pre-defined in the questionnaire represented a minority of
answers: one expert used co-simulation to prove a theorem and another, to solve partial
differential equations using finite volume methods. These results indicate that the first round
of the Delphi study was successful in that the uses of the simulators could be characterized,
and determine that co-simulation was used for many different applications.

4.2.2 Dissemination channels

To identify the main dissemination channels, experts were asked to name the three most
important scientific sources used to disseminate their work. The results are shown in
Figure 4.2. The Modelica Conference was cited as by far the most important channel
for experts used to disseminate their work. The FMI has been one of two key topics
in this conference, suggesting that this result is co-related with the fact that the FMI is
considered to be the most promising standard for co-simulation (see Section 4.2.3). The
dissemination channels suggested by the experts are highly heterogeneous, which underlines
the assumption that co-simulation is indeed a multi-disciplinary research field.

4.2.3 Ranking of Standards and Tools

To identify the standards for continuous time, discrete event and hybrid co-simulation, we
asked experts (i) to give their opinion on widely accepted standards and describe (ii) what
standard they used for co-simulation. The results are summarized in Figure 4.3.

77

CHAPTER 4. EMPIRICAL SURVEY

The simulator approx.
the solution to sets
of DAEs

The simulator is a dedicated
piece of hardware

The simulator specializes in
finite element modelling

The simulator receives
input from a human-
Machine interface

The simulator specializes
in networks

The simulator specializes
in software controllers

9% 18%

62%

25%25%

20%

Figure 4.1: Answers to the question: “which properties apply to the simulators . . . ?”. Each
node represents a property. The size of each node is proportional to the number of positive
responses to the corresponding property. Moreover, the thickness of the edge-connections
nodes x to nodes y indicates that the same expert gave positive reply to both property x and
y. Note that the latter does not imply (and neither neglect) the different properties to apply
in one and the same co-simulation.

As can be seen in the figure, the FMI standard is by far the most commonly used standard
for any kind of co-simulation.

While the responses for ”widely accepted standards” and ”standards which experts use”
were similar for continuous time and hybrid co-simulation, a different picture emerged
for discrete event co-simulation. FMI was described as widely accepted for discrete event
co-simulation by 39 % of the experts, however, 68 % of the experts used FMI for discrete
event co-simulation. A dedicated empirical study, similar to the one presented here, was
performed to identify challenges/barriers to the adoption of the FMI standard [323]. The
main results of that study are summarized in Table 4.2.

In addition to promising standards, experts were asked which tools they used for co-
simulation. The most common tools used for continuous time co-simulation were Modelica
tools and Matlab/Simulink. The use of Modelica tools was cited by 40 % of the experts
and about 24 % of the experts mentioned that they used Matlab/Simulink. For discrete
event and hybrid co-simulation, no tool was significantly more frequently mentioned than
others. The detailed results can be found in Figures 4.4 to 4.6. While only seven different
tools were listed for CT co-simulation, thirteen were listed for DE twelve 12 for hybrid
co-simulation.

4.2.4 Current challenges
In the first round of the Delphi study, experts commented on current challenges. Based on
these responses and the state-of-the-art surveys, we formulated several statements regarding
personal experiences. In the second round of the Delphi Study, we posed these statements

78

4.2. RESULTS AND DISCUSSION

12% MSCPE

53% Modelica Conference

9% Simulation Modelling
Practice and Theory

12% ACM TOMACSACM TCPS 9%

IEEE Trans. Ind. Electr. 12%

IEEE Trans. on Smart Grid 9%

ISGT 9%

IMSD 12%

HSCC 6%

SpringSim 12% 12% SIMULTECH

9% IUTAM Symposium
Solver Coupling and Co-Simulation

18% SIMULATION

Figure 4.2: Experts were asked to mark the three most important scientific sources they used
to disseminate their work. The numbers next to the nodes correspond to the ... % of positive
responses; the size of the nodes is also proportional to number of positive responses.
The statements upon which the respective experts agreed were connected. MSCPE =
Workshop on Modeling and Simulation of Cyber-Physical Energy Systems; ISGT = IEEE
Conference on Innovative Smart Grid Technologies; IMSD = International Conference on
Multibody System Dynamics; HSCC = Conference on Hybrid Systems: Computation and
Control. Conferences mentioned only once by experts are not shown; these included the
Conference of the IEEE Industrial Electronics Society, IEEE transactions on power delivery,
IEEE Power & Energy Society General Meeting, International Association of Applied
Mathematics and Mechanics, Problems in Science and Engineering, European Community
on Computational Methods in Applied Sciences and Workshop on Co-simulation of Cyber
Physical Systems.

as questions (e.g., “Have you experienced. . . ”). The experts then used a 6-point Likert scale
that ranged from from 1 = “very frequently” to 6 = “never”.

Figure 4.8 shows the response count, and Table 4.3 summarizes the responses sorted
according to how often experts experience each challenge. A detailed discussion of the
individual challenges goes beyond the scope of this survey. However, appropriate references
are provided next to each challenge.

The results indicate that practical aspects (as opposed to scientific problems) dominate the
problems encountered when conducting co-simulation. The difficulties encountered when
judging the validity of a co-simulation present pertinent challenges, already important in the
simulation field [109, 336] and aggravated by the black-box nature of co-simulation.

Most challenges (all except simplistic extrapolation functions and difficulties in choosing
the correct master algorithm) were assessed by the experts with an interpolated median
value greater or equal to four, implying at least occasional occurrence. The experts, thus,
confirm the challenges identified in the first round and from the state of the art.

Many experts identified having difficulty choosing the right macro step size, defining

79

CHAPTER 4. EMPIRICAL SURVEY

94%

6%

Hybrid
FMI HLA

68%

16%

11%
5%

Discrete Event

FMI HLA DEVS SystemC

94%

6%

Hybrid

FMI HLA

39%

31%

17%

13%

Discrete Event

FMI HLA DEVS SystemC

In your opinion, is there a widely accepted standard for […] Co-Simulation?

What standard do you use for […] Co-Simulation?

90%

10%

Continuous Time

FMI Simulink S-functions

93%

7%

Continuous Time

FMI Simulink S-functions

Figure 4.3: Widely accepted and used standards for co-simulation. Depending on the sub
figure, the brackets [...] correspond to “Continuous Time”, “Discrete Event” or “Hybrid”

Figure 4.4: Tools that experts use for continuous time co-simulation.

tolerances and with numerical stability. From these responses, we conclude that there is
a need for frameworks that provide suitable suggestions to ease the choices for the user.
In particular, we assume that many user have significantly less know-how in the areas in
practice than the experts interviewed in this work.

80

4.2. RESULTS AND DISCUSSION

Table 4.2: Expert assessment of current barriers for FMI. Based on a Seven-point Likert
scale. Modified from [323].

Score:	Entirely	agree	(7)	Mostly	agree	(6)	Somewhat	agree	(5)	Neither	agree	nor	disagree	(4)	Somewhat	disagree	(3)	
Mostly	disagree	(2)	Entirely	disagree	(1) Mean Median	 Interpolated	Median

FMI	has	limited	support	for	hybrid	co-simulation	and	it	is	not	easily	applicable 5.82 5.00 5.00

Lack	of	transparency	 in	features	supported	by	FMI	tools 5.12 5.00 5.05

There	 is	insufficient	documentation	and	a	lack	of	examples,	tutorials,	etc. 5.14 5.00 5.17

The	standard	does	not	support	certain	requirements	that	would	be	widely	needed	by	industry	and	academia 5.42 5.00 5.25

FMI	has	limited	support	for	discrete	co-simulation	and	it	is	not	easily	applicable 5.67 5.00 5.25

ASCET
7% ControlBuild

7%

FUMOLA
6%

INTO-CPS
6%

Maestro
6%

Model.Connect
6%

Modelica
6%ns-3

6%
Papyrus

6%

Prototype
Verification System

13%

PTOLEMEY
6%

Self Written
6%

Simulink
19%

What tools do you use for discrete event co-simulation?

Figure 4.5: Tools that experts use for discrete event co-simulation.

Adevs
7%

CB
7%

Daccosim
7%

INTO-CPS
8%

Maestro
8%

Model.Connect
8%

Modelica
8%

Papyrus
8%

Prototype
Verification System

8%

PTOLEMEY
8%

Self Written
8%

Simulink
15%

What tools do you use for hybrid co-simulation?

Figure 4.6: Tools that experts use for hybrid co-simulation.

81

CHAPTER 4. EMPIRICAL SURVEY

0% 20% 40% 60% 80% 100%

Hybrid co-simulation (e.g., variable structure systems, switched
systems, impulsive systems, etc...)

Impact of coupled error controlled algorithms

Uncertainty quantification/propagation

Impact of updating inputs (and the discontinuity it introduces) in
the subsystems

Acausal approaches for co-simulation

Representation and enforcement of model validity assumptions

Theoretical understanding of how to accurately include different
kinds of controllers in different co-simulation approaches

Numerical stability

Impact of using different tolerances in a sub-component on the
overall simulation

Systematic categorization of different co-simulation approaches,
including a better understanding of how their model of…

Integration of a wide variety of simulators despite different
structures (while achieving/maintaining high performance)

Usability and performance

Simultaneous events

Parallelization

Simulator black boxing and IP Protection

Research topics in the field of co-simulation that have not received enough attention up to now

Entirely agree Mostly agree Somewhat agree Neither agree nor disagree

Somewhat disagree Mostly disagree Entirely disagree

Figure 4.7: Research needs.

4.2.5 Research needs
Experts were asked about research topics in the field of co-simulation that have not received
enough attention up until now. Figure 4.7 summarizes the response count on a 7-point
scale from “Entirely Disagree” to “Entirely agree”. Furthermore, Table 4.4 shows the
same data, sorted in ascending order of topics that have not received enough attention until
now.

Most research needs (all except simulator black boxing and IP protection) are assessed
by the experts with a interpolated median value greater 4.5, corresponding to at least
”Somewhat agree”. Seven research needs were rated with an interpolated median score
of greater or equal to 5.5 which corresponds to at least ”Mostly agree”. The experts thus
confirm the research needs identified in the first round and from the existing surveys.

In the context of hybrid co-simulation, an expert mentioned that there is only limited
awareness about the problems that can arise in hybrid co-simulation; in many cases, it is
difficult for user to understand whether problems arise due to shortcomings in standards,
tool implementation, or usage. Another expert stressed that the fundamental question of
what hybrid co-simulation is and what it should be able to do is a controversial one. Is the

82

4.2. RESULTS AND DISCUSSION

Table 4.3: Experts’ assessments: Current challenges. Score: Very Frequently (6) Frequently
(5) Occasionally (4) Rarely (3) Very Rarely (2) Never (1).

Mean Median Interp.
Median

Difficulties in practical aspects, like IT-prerequisites in cross-
company collaboration.

4.7 5.0 4.7

Difficulties due to insufficient communication between theo-
rists and practitioners.

4.4 5.0 4.6

Difficulties in judging the validity of a co-simulation. 4.6 4.0 4.4
Difficulties in how to define the macro step size for a specific
co-simulation [42, 73, 157].

4.3 4.0 4.3

Numerical stability issues of co-simulation [23, 71, 158]. 4.4 4.0 4.3
Issues with algebraic loops [157, 217]. 4.2 4.0 4.2
Difficulties in how to define tolerances. 4.3 4.0 4.0
Issues because of too simplistic extrapolation functions. 3.5 4.0 3.6
Difficulties in choosing the right co-simulation master algo-
rithm.

3.6 3.0 3.4

Table 4.4: Experts assessments: Research needs. Score: Entirely agree (7) Mostly agree (6)
Somewhat agree (5) Neither agree nor disagree (4) Somewhat disagree (3) Mostly disagree
(2) Entirely disagree (1).

Mean Median Interp.
Median

Theoretical understanding of how to accurately include different kinds of
controllers in different co-simulation approaches

5.5 6.0 5.9

Representation and enforcement of model validity assumptions [109, 336] 5.6 6.0 5.8
Hybrid co-simulation (e.g., variable structure systems, switched systems,
impulsive systems, etc...) [99, 158]

5.8 6.0 5.8

Impact of coupled error controlled algorithms [73, 170] 5.7 6.0 5.8
Uncertainty quantification/propagation [58, 227] 5.6 6.0 5.8
Impact of updating inputs (and the discontinuity it introduces) in the subsys-
tems [71, 153].

5.6 6.0 5.7

Acausal approaches for co-simulation [317] 5.6 6.0 5.7
Impact of using different tolerances in a sub-component on the overall simu-
lation [24]

5.3 6.0 5.5

Numerical stability [72, 154, 155] 5.3 5.0 5.4
Systematic categorization of different co-simulation approaches, including a
better understanding of how their model of computations and requirements
overlap and differ [348]

5.2 5.0 5.4

Usability and performance 4.9 5.0 5.2
Simultaneous events [65] 5.0 5.0 5.1
Integration of a wide variety of simulators despite different structures (while
achieving/maintaining high performance) [156]

4.8 5.0 4.9

Parallelization [319, 349] 4.6 5.0 4.9
Simulator black boxing and IP Protection [47] 4.1 4.0 4.1

83

CHAPTER 4. EMPIRICAL SURVEY

0% 20% 40% 60% 80% 100%

difficulties in judging the validity of a co-simulation, i.e. estimating
the associated communication error

difficulties due to insufficient communication between theorists
and practitioners

difficulties in practical aspects, like IT-prerequisites in cross-
company collaboration?

difficulties in how to define the macro step size for a specific co-
simulation

issues with algebraic loops

numerical stability issues of co-simulation

difficulties in how to define tolerances

difficulties in choosing the right co-simulation orchestration
algorithm (master)

issues because of too simplistic extrapolation functions

Have you experienced [...]

Very Frequently Frequently Occasionally Rarely Very Rarely Never

Figure 4.8: Current challenges.

intention to allow the same flexibility with hybrid co-simulation as there is in monolithic
simulation (with everything that this entails) or is the intention to couple large subsystems?
This expert concluded that the two different views have different requirements with respect
to hybrid co-simulation, and this is a largely unexplored topic that needs more research
regarding numerical properties.

4.3 Concluding Remarks
This chapter presents an expert assessment on co-simulation, addressing the social and
empirical aspects and placing a focus on promising standards and tools, current challenges
and research needs. As a methodological foundation of this study, the Delphi method was
adopted.

The authors consider the following findings from the empirical data as the most impor-
tant:

• Experts consider the FMI standard as the most promising standard for continuous
time, discrete event and hybrid co-simulation;

• Experts frequently have difficulties dealing with practical aspects, like IT-prerequisites
in cross-company collaboration, and encounter problems due to insufficient commu-
nication between theorists and practitioners.

• The most important research needs identified by experts are: (i) theoretical un-
derstanding of how to accurately include different kinds of controllers in different
co-simulation approaches, (ii) validity aspects, (iii) hybrid co-simulation (iv) accuracy
aspects and (v) acausal approaches;

• The highest ranked difficulty relates to practical aspects while the highest ranked
research need related to theoretical understanding. This is not a contradiction; this
insight may help for making co-simulation easier to use in practice;

• The results of the SWOT-AHP analysis indicate that factors for strengths and op-

84

4.3. CONCLUDING REMARKS

portunities predominate. The experts assign the highest important to the need for
user-friendly tools including pre-defined master algorithms, integrated error estima-
tion, etc.;

Statistical tests were conducted to determine differences in the perceptions of experts
from industry and academia regarding the current challenges and open research topics; no
significant difference were observed. We refrained from testing more complex hypotheses
in this study, due to the number of answers and the non-probability sampling approach
taken.

Limitations. There is a potential bias towards the FMI standard, as the majority of experts
answered that this is the standard they use for co-simulation. Moreover, the definition of
co-simulation used in this survey was very narrow (i.e., a master algorithm is one of Jacobi,
Gauss-seidel, or Strong-coupling), and it is not the definition that we use throughout this
thesis. This mismatch may cause confusion when interpreting the results.

It is our hope that the results of this study will increase transparency and facilitate the
structured development of co-simulation standards and tools. They influenced our research
by showing us that stability analysis, configuration of co-simulations, and the state event
location configuration, are pertinent research problems (recall Figure 4.8). These are
explored in the following chapters.

85

Chapter 5

Stability Preservation in
Adaptive Co-simulation

Disclaimer The content in this chapter is adapted from:

• GOMES, CLÁUDIO, Benoı̂t Legat, Raphaël M. Jungers, and Hans Vangheluwe.
“Stable Adaptive Co-Simulation: A Switched Systems Approach.” In IUTAM Sym-
posium on Co-Simulation and Solver Coupling. Darmstadt, Germany, 2017.

• GOMES, CLÁUDIO, Benoı̂t Legat, Raphaël Jungers, and Hans Vangheluwe. “Mini-
mally Constrained Stable Switched Systems and Application to Co-Simulation.” In
IEEE Conference on Decision and Control. Miami Beach, FL, USA, 2018.

This chapter marks the second part of this thesis. We shift from trying to understand the
fundamental challenges in co-simulation, into exploring possible solutions.

5.1 Introduction
Co-simulation promotes the idea that each simulator decides how to best compute the
behavior of the subsystem allocated to it, leaving to the master algorithm the decision
of when (with respect to the simulated time) should the simulators exchange data, and
in what order [158]. However, as Section 3.7, and prior work referred to in that section,
show, the decision on how to best compute the behavior of each sub-model depends on the
specific arrangement of all simulation units, and on the decisions of the master. In sum:
no decision concerning how to compute the co-simulation should be taken independently
of the co-simulation scenario, which means that simulators should avoid “hard-coded”
decisions.

It is currently a matter of research to find out which decisions are scenario dependent, and
in this chapter, we assume that each simulator provides a mechanism to control some of
these. Two factors are known to affect these decisions: (1) the co-simulation scenario (i.e.,
sub-models and how they are connected); and (2) the requirements for the co-simulation
(i.e., performance, accuracy, etc).

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

Regarding the exact moment when these decisions need to be made, in the general case of
systems that undergo structural changes (and therefore change the co-simulation scenario),
the only possible time to make such decisions is when these changes occur, as demonstrated
in [260]. The requirements for the co-simulation can change during the computation itself
as well. The purpose of this is to inspect certain transient behavior of interest (e.g., see
[37, 182, 204, 312]). We will therefore focus on adaptive co-simulation, where the master
and simulators change the way they compute the co-simulation during the co-simulation
itself, as a factors (1) and (2) change.

The ability to adapt allows one to find the best tradeoff between accuracy and computation
power, to meet the available time. The applications are not restricted to co-simulation. For
example, in Model Predictive Control [137], the controller needs to be able to simulate the
system in real-time.

In the scope of adaptive co-simulation, it is hard to predict which decisions are to be taken
without actually computing the co-simulation. It is then natural to wonder whether it is
possible to ensure trustworthy co-simulation results, in the face of such uncertainty.

5.1.1 Contribution

In this chapter, we focus on the numerical stability of adaptive co-simulation algorithms.
We show how to prove that a co-simulation algorithm is numerically stable, provided
that the set of all possible decisions (i.e., reactions to changes in factors (1) and (2)) is
known.

We will call policy sequence to the sequence of policies taken by all simulators over time.
If there exists one or more policy sequences that can make the (co-) simulation method
unstable, then the simulators have to be forbidden from following these. We first show a
naive approach to this problem, and then develop a better one, that minimizes the cost of
opportunity for forbidding policy sequences.

In particular, we propose to use the joint spectral radius theory [197] to represent the
co-simulation global error as switched system (Section 5.10). Hence the preservation of
stability becomes a problem of deciding the stability of a switched system. Furthermore, as
the choice of future policies is often influenced by the past policies, we consider constrained
switched systems, a recently developed framework allowing us to model the memory of the
system (see Section 5.3).

If there exist one or more policy sequences that can make the (co-) simulation method
unstable, then the simulators have to be forbidden from following these. In the context of
constrained switched systems, there are many ways of forbidding a policy sequence, and
each way also forbids sequences that do not make the (co-) simulation unstable. We discuss
this optimization problem and propose an algorithm to solve it, based on the concept of
entropy.

Finally, we provide an open source library that comprises the algorithms developed in this
chapter, and discuss it’s implementation. This library uses the results in [233, 234].

88

5.2. MOTIVATIONAL EXAMPLES

5.1.2 Structure
In the next section, we experiment with some examples. Then, in Section 5.3, we introduce
the concepts that will help us make sense of the problem we are trying to solve. In
Section 5.4 we discuss how to prove the stability of an adaptive co-simulation schemes, and
then in Section 5.5 we analyze the problem of how to stability an unstable adaptive scheme,
and describe a naive solution. In Section 5.6 we propose an algorithm that approximates
the solution, and we prove that the it terminates and that the resulting system is stable.
Furthermore, we provide a lifting technique that yields better solutions, and we propose an
implementation in Sections 5.7 and 5.8. Finally, we discuss the optimality of our solution
in Section 5.9, present experimental results in Section 5.10, related work in Section 5.11,
and conclude in Section 5.12.

5.2 Motivational Examples
We motivate our work using two well known examples: one in the simulation domain, and
one in the co-simulation domain.

5.2.1 Adaptive Simulation
Consider the problem of approximating the solution x(t) of the system,

ẋ(t) = Āx(t), with x(0) = x0, (5.1)

using an adaptive simulation algorithm. These methods are useful in situations where,
e.g., the error tolerance, or run-time performance, can vary as a function of x̄(t) and t
[87, 141, 330]. In practice, multi-step variable order methods [87, Section 4] are the
most commonly used, but for illustrative purposes, we show a single step method. The
analysis we describe in the following sections can be applied to multi-step variable order
methods.
Example 19. The approximation x̃(t) of the solution to System (5.1), computed by a
simulation algorithm that uses different step sizes, and different numerical methods, can be
modeled as a switched system, formally defined in Section 5.3, with

xi+1 = Aσ(i)xi : σ(i) ∈ {0, . . . ,m− 1} , Aσ(i) ∈ A

A =
{
Ãfe,h, Ãmd,hÃrg,h

∣∣∣h ∈ {0.001, 0.002}
}

Ãfe,h , I + Āh

Ãmd,h , I + Āh+ (Āh)2/2

Ãrg,h , I + Āh+ (Āh)2/12 + (Āh)3/6 + (Āh)4/24,

where x0 is given, {0, . . . ,m− 1} is the set of modes, σ(i) is the mode active at step i, the
matrices in A, correspond respectively to the Forward Euler method, the Midpoint method
and the Runge-Kutta method.

In Example 19, if one assumes that System (5.1) is stable, that is,

lim
t→∞

‖x(t)‖ = 0 for any x(0),

89

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

then we need to ensure that the error made by discrete approximation x̃(t) is dissipated.
For this purpose, we introduce the error switched system, whose state variable is et =
x̃(t)− x(t), and can be written as

et+h = Aσ(t)et + Lσ(t), with

Lσ(t) ,
(
Aσ(t) − exp(Āh

)
)x(t),

(5.2)

where Lσ(t) is the local error corresponding to Aσ(t) ∈ A, andA is defined in Example 19.
Neglecting Lσ(t) yields a switched system, the stability of which determines the dissipation
of error.

As an example, the error of the adaptive simulation algorithm introduced in Example 19
may not be stable for a policy sequence 111 . . ., but may be stable for 2121 . . . As a
result, the adaptive simulation method may opt for a policy sequence that requires fewer
model evaluations (compared to a non-adaptative algorithm), whilst preserving the stability.
Another way of stating this is to observe that the spectral radius of Ã1 is larger than 1, that
is, ρ(Ã1) > 1. This does not imply that the product of any policy sequence of the form
2121 . . . causes the system to be unstable. Figure 5.1 illustrates this fact.

-2 -1 0

-2

0

2

Figure 5.1: Domain of numerical stability for some hybrid methods in A2, defined in
Example 19. See [87, Section 2.4] for an example of how to construct the stability domain.
Matrix Ã1 corresponds to the Forward Euler solver. Matrix Ã2 corresponds to the Midpoint
solver, and Ã3 to the Runge-Kutta solver. Matrix Ã2 · Ã1 represents a hybrid solver every
other simulation step is done by the Forward Euler followed by the Midpoint solver. The
matrices are defined in Example 19. Each line corresponds to the product of the step size
and Eigen value for which the corresponding solver is marginally stable. The shaded area
represents the range of step sizes for which the corresponding solver is stable. As the figure
shows, it is possible that, for a given h and Eigenvalue λ of Ā, λh is located outside the
stability domain of Ã1 (shaded area in black), but inside the stability region of the hybrid
method Ã2Ã1 (shaded in red). In that case, forbidding any policy sequence of the form
11 . . ., may ensure that the system introduced in Example 19 is stable.

90

5.2. MOTIVATIONAL EXAMPLES

5.2.2 Adaptive Co-simulation
We motivate our work for adaptive co-simulation using a simple and well known system,
that is commonly used to study the numerical stability of multiple master algorithms (see,
e.g., [23, 71, 72, 74, 201, 216, 325]), and is presented in detail in Section 3.7.

A coupled mass-spring-damper system is shown in Figure 5.2. We consider two simulators—
S1, S2—and the allocation depicted in the figure: simulator S1 computes the behavior of
the left-hand-side (LHS) mass, accepting the input coupling force Fc, and producing the
position and velocity of the mass as outputs; and S2 accepts the position and velocity
computed by S1, and produces the coupling force Fc. They are coupled as shown in
Figure 5.3.

Figure 5.2: Example double mass-spring-damper system.
Figure 5.3: Example ar-
rangement of simulators.

The dynamics of the LHS mass are given by:

ẋ1(t) = v1(t); m1 · v̇1(t) = −c1 · x1(t)− d1 · v1(t) + Fc(t);

x1(0) = p1; v1(0) = s1.
(5.3)

where ẋ denotes the time derivative of x; c1 is the spring stiffness constant and d1 the
damping coefficient; m1 is the mass; p1 and s1 the initial position and velocity, respectively;
and Fc(t) the input force acting on the mass over time.

The right-hand-side mass is governed by:

ẋ2(t) = v2(t); m2 · v̇2(t) = −c2 · x2(t)− Fc(t);
x2(0) = p2; v2(0) = s2;

Fc(t) = cc · (x2(t)− x1(t)) + dc · (v2(t)− v1(t)) ;

(5.4)

where cc and dc denote the stiffness and damping coefficients of the central spring and
damper, respectively; c2 denotes the stiffness constant for the right spring; p2 and s2 the
initial position and velocity.

We assume that the co-simulation of this example is computed with a Jacobi master
algorithm, as summarized in Algorithm 4. The function DOSTEP(H ,S) instructs simulator
S to simulate the behavior of its allocated subsystem in the time interval t→ t+H , using
an input extrapolation scheme.

91

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

ALGORITHM 4: Jacobi master algorithm for the simulators shown in Figure 5.3. This algorithm
is defined in Section 3.7.2.
Data: The stop time tf and a communication step size H > 0.

1 t := 0 ;
2 while t ≤ tf do

3
[
x1 v1

]T
:= GETOUTPUT(S1);

4 SETINPUT(S2 ,
[
x1 v1

]T
);

5 Fc := GETOUTPUT(S2);
6 SETINPUT(S1 ,Fc);
7 DOSTEP(H ,S1);
8 DOSTEP(H ,S2);
9 t := t+H;

10 end

Figure 5.4 shows multiple co-simulations of the system in Figure 5.2, using different
configurations for the simulators.

Comparing the plotted trajectories, we see that there is something wrong with trajectory
x1 fer1. Due to the positive damping constants, the original system must always come to
a rest, irrespective of the initial values. However, the co-simulation that produces x1 fer1
does not seem to satisfy this property.

To compare the performance of each co-simulation, we compute the number of model
evaluations. For the co-simulations producing the trajectories x1 fer10 and x1 fer1,
this is given as:

tf
H
×
(
StepsS1

+ StepsS2

)
,

where tf is the maximum simulation time, and StepsS denotes the number of internal
integration steps performed by simulator S, per invocation of DOSTEP(H ,S). The algo-
rithm that computes trajectory x1 ferm is designed to spend 70% of the time using the
parameters used to compute x1 fer10 and the remaining time using the parameters used
to compute x1 fer1. It gives the following evaluations:

0.7× Evalscs1 + 0.3× Evalscs2 .

As can be seen in Table 5.1, the adaptive co-simulation mimics the qualitative behav-
ior of the system (i.e., eventually coming to a rest), with fewer model evaluations than
x1 fer10.

Table 5.1: Total number of model evaluations per co-simulation in Figure 5.4.

Trajectory Evaluations
x1 fer10 20000

x1 fer1 2000

x1 ferm 14600

92

5.3. BACKGROUND

0 20 40 60 80 100

Tim e

-1

0

1
L.H.S. Mass Posit ion

x1_sol

x1_fer10

x1_fer1

x1_ferm

Figure 5.4: LHS mass position co-simulations of the system in Figure 5.2. Parameters:
m1 = c1 = m2 = c2 = cc = 1.0; and d1 = dc = 0.1. The co-simulation step used is
H = 0.1. Trajectory x1 sol denotes the correct trajectory of x1(t), for reference, obtained
by coupling Equations (5.3) and (5.4) and finding the analytical solution; x1 fer10
denotes the trajectory obtained with a co-simulation where both simulators employ the
forward Euler method, using a constant extrapolation of the inputs, and performing 10
internal integration steps per co-simulation step; x1 fer1 is similar to x1 fer10, except
each simulator performs only one integration step per co-simulation step; x1 ferm is
obtained with a co-simulation that adaptively combines the configuration used in x1 fer10
and x1 fer1, i.e., it varies the number of internal integration steps per simulator.

This minimal example highlights one of the advantages of adaptive co-simulations: the
ability to obtain better tradeoffs between mimicking the qualitative behavior of the original
system, and performance.

Consider now the adaptive co-simulation x1 fer1M shown in Figure 5.5, which is similar
to the policy used to compute x1 ferm, except that more time is spent in the mode where
the simulators only take one integration step. Despite being adaptive, it does not seem
to come to a rest, which brings to our research problem: how can we discern a stable
adaptive co-simulation, from an unstable one?

The next section provides the necessary background to explore this problem in depth.

5.3 Background

5.3.1 (Numerical) Stability
In this section, we recall the concepts of numerical stability, introduced in Section 3.7. For
convenience, we repeat some of the equations presented before.

Consider the following initial value problem:

ẋ = Ax; x(0) is given; (5.5)

93

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

0 20 40 60 80 100

Tim e

-0.5

0.0

0.5

1.0
L.H.S. Mass Posit ion

x1_fer1M

Figure 5.5: Example wrong adaptive co-simulation. Trajectory x1 fer1M is similar to the
policy used to compute x1 ferm, except that more time is spent in the mode where the
simulators only take one integration step.

where x(t) is a real-valued vector, and A is a square real matrix.

The solution x(t) to the system in Equation (5.5) is stable if x(t) tends to the origin, regard-
less of the initial value. In other words, limt→∞ ‖x(t)‖ = 0, for any given x(0).

Suppose that the solution to Equation (5.5) is approximated by the following discrete time
system:

x̃i+1 = Ãx̃i; x̃0 = x(0); (5.6)

where x̃i is a real-valued vector, and Ã is a square real matrix.

We say that the system in Equation (5.6) is stable if, for all x̃0,

lim
i→∞

∥∥x̃i∥∥ = 0⇔ lim
i→∞

∥∥Ãi∥∥ = 0, (5.7)

for any vector norm
∥∥x̃∥∥, and any matrix norm

∥∥Ã∥∥ satisfying the submultiplicativity
property.
Definition 15 (Numerical Stability). Assuming that the system in Equation (5.5) is stable,
it is important that the approximating system in Equation (5.6) preserves this property, in
which case, we denote it as being numerically stable.

If the system in Equation (5.6) is numerically stable, the errors introduced are not ampli-
fied.

The condition in Equation (5.7) can be studied by means of the spectral radius ρ(Ã) [341,
Theorem 1.3.2]:

ρ(Ã) < 1⇔ lim
i→∞

∥∥Ãi∥∥ = 0,

where ρ(Ã) is given by Gelfand’s formula or the maximum absolute eigenvalue:

ρ(Ã) = lim
i→∞

∥∥Ãi∥∥1/i
= max

j
|λj | , (5.8)

94

5.3. BACKGROUND

and λj is the j-th eigenvalue of Ã.

The numerical stability of a co-simulation is analyzed by assuming that the underlying
coupled system can be written as in Equation (5.5) and is stable, and computing the discrete
time induced model in the form of Equation (5.6) that represents the co-simulation. Here, we
illustrate how this is done for the example in Figure 5.2. This procedure can be generalized
to any number of simulators, as long as the underlying coupled system can be written as in
Equation (5.5).

Consider now the example of Figure 5.2, and suppose that the master and simulators are
at time ti. In the interval t ∈ [ti, ti+1], each simulator Sj , with j = 1, 2, is trying to
approximate the solution to a linear ODE,

ẋj = Aj · xj +Bj · uj
yj = Cj · xj +Dj · uj

(5.9)

where Aj , Bj , Cj , Dj are matrices with appropriate dimensions, and the initial state xj(ti)
is the state computed in the most recent co-simulation step. We assume that either D1 or
D2 is the null matrix, so that the coupled system can be written as Equation (5.5). In this
example, D1 = 0.

Without loss of generality (for more sophisticated input extrapolation techniques, see [71,
Equation (9)]), we assume that each simulator uses a constant extrapolation to approximate
the input in the interval [ti, ti+1). That is, ũj(t) = uj(ti), for t ∈ [ti, ti+1). Then,
Equation (5.9) can be re-written to represent the unforced system being integrated by each
simulator: [

ẋj
˙̃uj

]
=

[
Aj Bj

0 0

]
·

[
xj

ũj

]
(5.10)

We can represent the multiple internal integration steps of Equation (5.10), performed by
the simulator Sj in the interval t ∈ [ti, ti+1], as[

xj(ti+1)

ũj(ti+1)

]
= Ã

kj
j ·

[
xj(ti)

ũj

]
(5.11)

where Ãj represents a single integration step of the numerical method (e.g., Ãj = I +

hj

[
Aj Bj

0 0

]
for the forward Euler method), kj = (ti+1 − ti)/hj is the number of

internal steps, and 0 < hj ≤ H is the internal fixed step size that divides H . Note that
Equation (5.25) represents a discrete time system modeling the behavior of the simulator
at a single co-simulation step, with no inputs. Now we just have to represent how the
simulators exchange data at the end/beginning of a co-simulation step.

At the beginning of the co-simulation step i, we wish to enforce u1(ti) = y2(ti) and
u2(ti) = y1(ti). This, together with Equation (5.9), gives,

u1(ti) = C2 · x2(ti) +D2C1 · x1(ti).

u2(ti) = C1 · x1(ti)
(5.12)

95

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

Finally, Equations (5.10) to (5.12) are combined to write the co-simulation step in the form
of Equation (5.6) as

[
x1(ti+1)

x2(ti+1)

]
=

[
I 0 0 0

0 0 I 0

][
Ãk11 0

0 Ãk22

]
I 0

0 C2

0 I

C1 D1 · C2

︸ ︷︷ ︸

Ã

[
x1(ti)

x2(ti)

]
(5.13)

whose stability is easily checked with Equation (5.8).

We remark that Equation (5.13) represents an abstraction of how the co-simulation is com-
puted, for analysis purposes. In practice, the co-simulation itself may include optimizations,
parallelism, etc. . . which are neglected when building Equation (5.13).

5.3.2 Joint Spectral Radius
The definitions we present here are adapted from [197].

Consider the following switched discrete time system:

xi+1 = Aσ(i)xi : σ(i) ∈ {0, . . . ,m− 1} , Aσ(i) ∈ Σ (5.14)

where x0 is given, {0, . . . ,m− 1} is the set of modes, σ(i) is the mode active at step i,
and A = {A1, . . . , Am} ⊆ Rn×n is a set of real matrices.

Switched systems are widely used to model many dynamical systems in modern engineering
including viral mutations in a patient’s body [176], trackability of malicious agents in a sen-
sor network [200], or scheduling of thermostatically controlled loads (TCLs) [279].

We denote the sequence σ(0), σ(1), . . . as the switching signal, where Aσ(i) ∈ Σ repre-
sents the matrix used to compute xi+1 from xi in Equation (5.14). A switching signal
σ(0), σ(1), . . . , σ(i) induces the matrix product Aσ(i−1) . . . Aσ(1) ·Aσ(0). Let

Σi =
{
Api−1

Api−2
. . . Ap0 : Apj ∈ Σ, 0 ≤ pj < m, j = 0, . . . , i− 1

}
be the set of all products induced by switching signals with length i. Note that, for any
given switching signal σ(0), σ(1), . . . σ(i− 1), xi+1 = Ax0 for some A ∈ Σi.

The system in Equation (5.14) is stable if, for any x0, and any switching signal, limi→∞ ‖xi‖ =
0.

The Joint Spectral Radius ρ̂(Σ) (JSR) is essentially a generalization of Gelfand’s formula,
in Equation (5.8), to arbitrary products of matrices in Σ [314]:

ρ̂i(Σ) = sup
{
‖A‖1/i : A ∈ Σi

}
ρ̂(Σ) = lim sup

i→∞
ρ̂i(Σ)

(5.15)

Using the JSR, we can characterize the stability of the system in Equation (5.14) by noting
that [197, Theorem 1], for any bounded set Σ,

ρ̂(Σ) < 1⇔ for all σ, lim
i→∞

∥∥Aσ(i)Aσ(i−1) · · ·Aσ(0)

∥∥ = 0. (5.16)

96

5.4. STABILITY CERTIFICATION OF ADAPTIVE CO-SIMULATIONS

To determine whether the system in Equation (5.14) is stable, note that the limit in Equa-
tion (5.15) exists, and any finite i satisfies:

ρ̂(Σ) ≤ ρ̂i(Σ) [197, Lemma 1.2].

Therefore, if there exists i, such that ρ̂i(Σ) < 1, then the switched system is stable. Note
however, that checking whether ρ̂(Σ) < 1 is undecidable in general [197, Proposition 2.9],
and in the cases where we know it is decidable, it is NP-Hard [49].

Other algorithms exist to estimate ρ̂(Σ), and we refer the reader to [164, 167, 198, 244,
293].

5.4 Stability Certification of Adaptive Co-simulations
In this section, we first describe how to use the concepts introduced in the previous section
to determine the numerical stability of an adaptive co-simulation. Then, we propose a way
to address the case when the adaptive co-simulation is not numerically stable.

5.4.1 Stability
Equation (5.13) represents a single co-simulation step, which, as we later shown in Equa-
tions (5.23) to (5.26), represents a specific: system arrangement; coupling approach;
simulator input approximation; internal solver method; internal simulator step size hj ; and
communication step size H . If any of these items changes from one co-simulation step to
the next, the co-simulation is adaptive, and is best described as a discrete time switched
system, of the form of Equation (5.14), where Σ includes every possible variation of the
matrix Ã in Equation (5.13), constructed as explained in Section 5.3.1.

To exemplify, in the co-simulation of the system in Figure 5.2, suppose that the decision
space is as follows:

Arrangement is the one in Figure 5.3;
Coupling is the one in Algorithm 6 but a Gauss-Seidel, Strong coupling, or others, could

have been used [165];
Input Approximation is the constant extrapolation but higher order input approximations

can be applied [71];
Solver can be forward Euler, or the midpoint method [373, Section II.1];
Communication Step Size H is 0.1;
Solver Step Size can be H/10 or H;

Then Σ contains 16 matrices, representing every possible combination of policies, per
simulator, from one co-simulation step to the next.

Applying the result in Equation (5.16) ensures that any possible decision sequence taken
by the co-simulation always produces a numerically stable co-simulation. This is a strong
result in the sense that we do not need to know anything about how the decisions are made
(to ensure stability preservation).

In the example proposed, ρ̂(Σ) ≥ 1, which means that there is a switching signal (always
use Acs 2 to compute the next co-simulation step) that causes the co-simulation to not be
stable. In fact, the result is the trajectory x1 cs 2, plotted in Figure 5.4. To see why

97

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

ρ̂(Σ) ≥ 1 holds, let Acs 2 denote that co-simulation step matrix that uses H = 0.1 and
solver step size equal to H . Then, computing the spectral radius ρ(A), one observes that
ρ(A) > 1.

5.4.2 Stabilization
As the paragraph above shows, if there is a matrix A ∈ Σ such that ρ(A) ≥ 1, then we have
that ρ̂(Σ) ≥ 1. This immediately suggests an procedure to be done before computing the
JSR: exclude all unstable matrices. That is, we set

Σ0 = Σ \ {A} ,∀A ∈ Σ : ρ(A) ≥ 1.

After computing Σ0, it can still be the case that ρ̂(Σ0) ≥ 1, as the product of stable matrices
is not necessarily stable (see, e.g., [197, Figure 1.2]). Furthermore, ρ̂(Σ0) ≥ 1 does not
imply that there exists a finite i and a A ∈ Σi0 such that ρ(A) ≥ 1 (see, e.g., [197, Section
2.4], with the case that ρ(A) = 1). This means that no algorithm can always ensure that
a stable co-simulation is attained (undecidability). Fortunately, in practice, the algorithm
proposed in [233] works well.

The work in [233] approximates ρ̂(Σ0), allowing us to check whether ρ̂(Σ0) < 1, and,
more importantly, returns a sequence p0, . . . , pi−1 such that ρ(Api−1 . . . Ap0) ≈ ρ̂(M0) to
any desired level of accuracy. Computing Σ1 = Σ0 \Apj for one j ∈ {0, . . . , i− 1} and
iterating allows one to obtain a Σ∗ such that ρ̂(Σ∗) < 1.

In the adaptive co-simulation of the system introduced in Figure 5.4, we have that Σ∗ = Σ0

excludes the matrix Acs 2, and ρ̂(Σ0) ≤ 0.992905.

5.4.3 Conservativeness
As the previous result shows, applying this procedure to the adaptive co-simulation in-
troduced in the previous sub-section results in a stable adaptive co-simulation that will
never use the matrix Acs 2. This is too restrictive. To see why, note that, as illustrated in
plots of Figure 5.4, a careful use of the decisions embedded in matrix Acs 2 actually yields
a co-simulation that outperforms the other non-adaptive co-simulations (see the stable
trajectory x1 cs 3 in Table 5.1).

For now, we propose a straightforward solution to this problem: apply the stabilization
procedure to Q = Σq , which includes all products of length q of matrices in Σ for a given
q > 0. The matrix products in the stabilized Q∗ may include combinations of matrices that
would otherwise have been removed.
Remark 2. There is little use in applying the stabilization to the set of all products of length
up to q. To see why, suppose we have an unstable product Alen n of length n < q. Such
product Alen n is the prefix of multiple products of length q. These products of length q
represent all possible policies that end with product Alen n, so the stabilization of the former
set of products might still allow for some products of which Alen n is a prefix.

In the adaptive co-simulation example, we set q = 2 and we obtain Q∗ that only excludes
the matrix Acs 2Acs 2, which means that the policies embedded in Acs 2 can still be used,
provided that they are alternated with any other policies. Applying the algorithm in [233]
yields ρ̂(Σ2

0) ≤ 0.982986.

98

5.4. STABILITY CERTIFICATION OF ADAPTIVE CO-SIMULATIONS

The next section discusses the implementation of the resulting stabilized master algo-
rithm.

5.4.4 Implementation

If the stabilization procedure terminates, we are left with Q∗: a set of sequences of matrix
products of length q. Since we abstracted how each decision is taken at each co-simulation
step, we still need to ensure that, at run-time, the decisions taken by the adaptive co-
simulation remain within the allowed decisions (in the set Q∗).

To shed light on this problem, note that each sequence p0, . . . , pq−1 that induces the matrix
product Apq−1

. . . Ap0 ∈ Σq, can be associated with one, and only one, natural number
dp0...pq−1

∈ N0 computed as a conversion from base-m digit to a decimal number:

dp0...pq−1
=

q−1∑
j=0

pj ·mj , (5.17)

where m is the number of matrices in Σ.

We therefore propose to allocate a mq-bit array, where the position dp0...pq−1 of the array
indicates whether the matrix product Apq−1

. . . Ap0 ∈ Q∗. Then, at time ti with i ≥
q − 1, the previous q policies are used to reconstruct dσi−q−1...σi and check whether the
corresponding sub-sequence is safe to take. If the policy σ(i) is not safe to take, then the
immediate neighbors of dσi−q−1...σi in the bit array can be inspected to find whether there
are safe policies that can be selected. Figure 5.6 illustrates a scenario where q = 3,m = 16
and the master is about to decide to use the policies embedded in matrix A14. A quick
look-up to position 2158, obtained with Equation (5.17), shows that this is not allowed.
The neighboring positions show alternative matrices that can be used.

2158 = 8 6 14

2157 = 8 6 13

...

2159 = 8 6 15

2160 = 8 7 0

...

10 16

10 16

10 16

10 16

1

0

1

1

Decision Sequence:

Allowed Decisions:

Figure 5.6: Runtime structures of decision sequence monitor. Matrices A8, A6, A14 are
arbitrary matrices.

99

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

5.5 Minimizing Forbidden Sequences
The previous section described a straightforward approach to minimize the cost of oppor-
tunity of forbidding unstable sequences. In this section, we focus on this problem, while
covering a broader spectrum of adaptive master algorithms: those whose set of past policies
can influence the future policies.

5.5.1 Constrained Switched Systems
In practice, some switching signals of System (5.14) may not be relevant, and a way to
represent the sensible ones is required. For instance, in the switched system described
in Example 19, it may not make sense that the Runge-Kutta method is used right after a
Forward Euler. This is because the convergence rate of each method is too different to
warrant a switch without first taking a step with the Midpoint method.

To model these constraints, we introduce the notion of constrained switched system. When
compared to System (5.14), constrained switched systems incorporate a representation of
the allowed switching signals using an automaton [240].
Definition 16. Given a bounded set of matricesA = {A1, . . . , Am}, we define an automa-
ton as a directed and labelled graph G = (V,E), with nodes V and edges E such that no
node has zero ingoing or outgoing degree. Each edge (v, w, σ) ∈ E represents a transition
from node v ∈ V to node w ∈ V , where σ ∈ {1, . . . ,m} is the label, corresponding to Aσ .

An example automaton, illustrating possible constraints on the system described in Exam-
ple 19, is shown in Figure 5.7.

We say that the switching signal, or word, s = σ0σ1 . . . σk−1 is accepted by an automaton
G if it corresponds to a path in G, that is, if there exists v0, v1, . . . , vk ∈ V , such that
(vj , vj+1, σj) ∈ E for all j = 0, . . . , k − 1. An accepted word induces an accepted matrix
product As = Aσk−1

· · ·Aσ1
Aσ0
∈ Ak.

For any k > 0, the word sk is the concatenation of s with itself k − 1 times.

For example, the word (fe, 0.001), (fe, 0.002), (md , 0.002) is accepted by the automaton
shown in Figure 5.7. This word induces the matrix product Ãmd,0.002Ãfe,0.002Ãfe,0.001.

We denote the set of accepted words of length k as Gk, and the set of all words accepted
by the automaton as G∗ =

⋃∞
k=1 Gk. Moreover, G◦k denotes the set of accepted cycles of

length k.

For example,
(fe, 0.001), (fe, 0.002), (md , 0.002) ∈ G3, and

(fe, 0.002), (fe, 0.001) ∈ G◦2.

One can see that given a word σ(0) . . . σ(k − 1) ∈ Gk, any sub-word σ(i) . . . σ(j) for any
0 ≤ i ≤ j < k, satisfies σ(i) . . . σ(j) ∈ Gj−i+1. Moreover, since every node has at least
one outgoing edge in Definition 16, for any k′ > k, there exists σ(k) . . . σ(k′ − 1) such
that σ(0) . . . σ(k′ − 1) ∈ Gk′ .
Definition 17 (CSS). Given a set of matrices A = {A1, . . . , Am}, and an automaton
G = (V,E), we define a constrained switched system (CSS) S = 〈A,G〉 as a system

100

5.5. MINIMIZING FORBIDDEN SEQUENCES

Figure 5.7: Example automaton for Example 19.

where the variable xk satisfies:

xk+1 = Aσkxk : σ0 . . . σk−1 ∈ Gk. (5.18)

We say that System (5.18) is stable iff

lim
k→∞

‖xk‖ = lim
k→∞

∥∥Aσk−1
· · ·Aσ0

x0

∥∥ = 0,

for any word σ0 . . . σk−1 ∈ Gk and any x0 ∈ Rn.

To determine the stability of a CSS, we introduce the constrained joint spectral ra-
dius.
Definition 18 ([101, Definition 1.2]). The constrained joint spectral radius is defined as

ρ̂(S) = lim
k→∞

ρ̂k(S) where ρ̂k(S) = sup
w∈Gk

‖Aw‖
1
k ,

and ‖·‖ is any matrix norm that satisfies the sub-multiplicative property.
Proposition 1 ([101, Lemma 3.1]). If ρ̂(S) < 1, then the CSS is stable.

It can be shown [197, Lemma 1.2] that limk→∞ ρ̂k(S) = infk≥1 ρ̂k(S). Therefore, for any
k > 0, ρ̂k(S) is an upper bound to ρ̂(S). This fact, together with Proposition 1, gives us a
way to check whether a given CSS S is stable:

1. Pick a finite k > 0, and compute ρ̂k(S);
2. If ρ̂k(S) < 1, then ρ̂(S) < 1 and S is stable;
3. Otherwise, pick a larger k and try again.

If the CSS is unstable, then the above procedure will never terminate.

A way to prove that a CSS is unstable is to find a switching signal that causes the system to
be unstable. For example, by finding a cycle c ∈ G◦k with ρ(Ac) ≥ 1, where ρ(Ac) denotes

101

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

the spectral radius of the matrix Ac induced by the cycle. In other words, finding a matrix
product that, when repeated forever, causes the system to be unstable.

Unstable cycles can be found by brute force or branch-and-bound variants [164, 167, 198].
Naturally, these methods look first for unstable cycles with a small length. However, finding
longer cycles becomes prohibitively high (see Section 5.10).

For example, a simple (and naive) procedure to find a cycle is to pick a finite k, enumerate all
cycles c ∈ G◦k, check whether ρ(Ac) ≥ 1, and stop when one such cycle is found.

The method introduced in [234] works well for finding long cycles. To certify the stability of
a given CSS, it solves a semidefinite program to compute polynomial Lyapunov functions of
degree 2d. If the program is infeasible, it uses the dual certificate of infeasibity to generate
an infinite switching signal of guaranteed growth rate. Subwords of this signal can be used
to find unstable cycles. As cycles are found along an infinite switching signal, finding long
unstable cycles is not particularly more difficult. Moreover, if no unstable cycle can be
found, one can retry with polynomial Lyapunov functions of degree 2(d + 1). There is
an improved guarantee on the growth rate of the infinite switching signal as the degree
increases.

The following definition formalizes the spectral radius of cycle induced matrix prod-
ucts.
Definition 19 ([101, Definition 1.2]). The generalized spectral radius of a CSS S is defined
as:

ρ(S) = lim sup
k→∞

ρk(S) where ρk(S) = sup
c∈G◦k

ρ(Ac)
1
k (5.19)

It follows [197, Proposition 1.6] that, for finite k > 0,

ρk(S) ≤ ρ(S) ≤ ρ̂(S) ≤ ρ̂k(S).

Moreover, since A is bounded, it is shown in [101, Theorem A] that ρ(S) = ρ̂(S).
Remark 3. The above discussion about proving that a CSS is unstable focused on finding
finite cycles, as opposed to infinite paths. In fact, there is no guarantee that if a CSS satisfies
ρ̂(S) ≥ 1 (i.e., is unstable), then a cycle c with finite length exists, with ρ(Ac) ≥ 1 (see
[197, Section 2.4] and [49, Theorem 2]). However, the systems we experimented with,
either satisfy ρ̂(S) > 1, or ρ̂(S) < 1. For these, the following result was used.
Proposition 2 ([197, Theorem 2.3]). If ρ̂(S) > 1, then there exists a cycle c ∈ G◦k of
length k that satisfies ρ(Ac) ≥ 1.

Our goal is to optimally modify a given CSS, by forbidding unstable switching signal cycles
from the language it generates. The problem of finding such cycles is outside the scope
of our work (see [233] for the algorithm we used, and references thereof for algorithms
with the same goal). As such, we introduce the following definition, which represents any
algorithm available for this purpose.
Definition 20 (Oracle). Given ε > 0, we define a stability oracle Oε : S → {Stable} ∪⋃∞
k=1 G

◦
k, where S is a CSS. The oracleOε returns either Stable certifying that ρ̂(S) < 1

or a cycle c ∈ G◦k such that ρ(Ac)
1/k > 1− ε.

We emphasize that the oracle has a (slightly) imperfect behaviour: in case 1−ε < ρ̂(S) < 1,
one cannot guarantee what the outcome of the oracle will be. This imperfection is intentional

102

5.5. MINIMIZING FORBIDDEN SEQUENCES

(see Remark 3), as it models the state of the art [292]. Proposition 2 ensures that if
ρ̂(S) > 1− ε, there exists a k and a cycle c ∈ G◦k such that ρ(Ac)

1/k > 1− ε.

We now proceed to define the set of possible different switching signals that are admissi-
ble.
Definition 21 (Admissible Regular Language). We say that L = G∗ is the language
recognized by the automaton G. A language is regular if it is recognized by a finite
automaton. A language L recognized by an automaton G is admissible for A if the
constrained switched system S = 〈A,G〉 satisfies ρ̂(S) < 1.

Let L0 denote the language recognized by the automaton G0 of a given S = 〈A,G0〉.
Informally, our goal is to find the “largest” regular language L? ⊆ L0 that is admissible. For
this optimization problem to be well defined we need to find a metric for the objective. This
metric should be in accordance to the fact that given L ⊆ L′, the objective should favor L′.
A widely used notion to describe the size of a regular language is that of Entropy.
Definition 22 (Entropy [239, Definition 4.1.1]). Given a regular language L recognized by
an automaton G, we define the entropy as

h(L) = lim
k→∞

1

k
log2 |Gk|.

In the above, |Gk| represents the number of words of length k accepted by the automaton
G.

We denote the entropy of the language G∗ recognized by an automaton G as h∗(G).

If L ⊆ L′, then Gk ⊆ G′k for any k, and so h(L) ≤ h(L′). Our problem can now be
formulated.
Problem 1. Given a CSS 〈A,G0〉, find the language L? solution of the following optimiza-
tion problem:

L? = sup
L regular

h(L) s.t.

L ⊆ L0,

L is admissible for A. (5.20)

where L0 is the language recognized by G0.
Remark 4. In Problem 1, we restrict our attention to regular languages. While there are
examples that highlight the benefit of using non-regular languages (see Example 20), in
practice, one needs an efficient way of generating accepted switching signals. For instance,
during a co-simulation, at any step, the simulators need to compute as quickly as possible
the set of policies that can be taken (see [155, Section 4.4] for how this can be done).
Automata allow the decision procedure to be fast, with little memory. In addition, as
hinted in Example 21, regular languages may be constructed to approximate an admissible
language with entropy arbitrarily close to the entropy of the optimal solution, even if that
optimal solution is a non-regular language.
Example 20. ConsiderA = {A1, A2}, with A1 = 2 and A2 = 1

2 , and G = (V,E), where
V = {v1} and E = {(v1, v1, 1), (v1, v1, 2)}. That is, G has the form

v11 2

103

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

1 3 5 7 9 11
0.0

0.5

1.0

Figure 5.8: Evolution of h(Lk) of Example 21 in terms of k.

The optimal solution L? of (relaxed) Problem 1 should include every word that has more
1s than 2s, because Ar1 ·As2 < 1 iff r < s. As shown in [333, Example 1.73], no automaton
can be built that accepts this language.
Example 21. Consider A = {A1, A2}, with A1 = 1 and A2 = 1

2 . A language is
admissible if it does not contain the infinite repetition of the symbol 1. Let Lk be language
of all words that do not contain k consecutive 1’s. Figure 5.8 suggests that h(Lk) tends to
log2(2) when k tends to infinity. The quantity log2(2) denotes the entropy of the optimal
solution.

5.6 Lift-and-Constrain Stabilization

5.6.1 Constraining for more stability
Algorithm 5 details an iterative procedure that stabilizes a given CSS S = 〈A,G〉, using
the oracle in Definition 20. At each iteration, if the oracle returns a cycle c = σk . . . σk,
then c is eliminated from G. The removal of a cycle can be accomplished by removing
an edge of G, thus potentially decreasing ρ̂(S). After removing the cycle c, any infinite
sequence in G∗ for which c is a subsequence will be eliminated too. This is illustrated in
Example 22. The algorithm can produce an empty CSS, which does not imply that the
original CSS is impossible to stabilize. An empty CSS is trivially stable.
Example 22. Consider the automaton in Figure 5.9, and suppose the oracle has returned
the cycle 234. This cycle is highlighted in red, in the figure. Any of the edges in red can
be removed to forbid the unstable sequence. If edge v1

2−→ v2 is removed, the infinite
sequences accepted by the resulting automaton end with either an infinite sequence of 2’s,
or an infinite sequence of 3’s. If edge v2

3−→ v3 is removed instead, the resulting automaton
accepts infinite sequences comprised of repeating subsequences which include 2, or 3, or
12.

v1 v2

v3

34
2
1

2

3

Figure 5.9: Automaton of Example 22.

As Example 22 shows, the choice of different edges to be removed has a different impact
in the entropy of the resulting automaton. Informally, removing the edge v2

3−→ v3 seems

104

5.6. LIFT-AND-CONSTRAIN STABILIZATION

to be the best choice because the resulting automata allows for more sequences. This
is corroborated by computing the entropy of the resulting automaton alternatives. See
Section 5.8 for how to compute the entropy in this example.

ALGORITHM 5: Stabilization algorithm for a constrained switched system. h∗(G) denotes the
entropy of the language recognized by G. The difference G− e denotes the automaton obtained
by removing the edge e from G.
Data: A CSS S = 〈A,G〉.
Result: A stable CSS S = 〈A,G〉.

1 while Oε(S) 6= Stable do
1. Find e ∈ arg max{h∗(G− e) | e ∈ E, e is

an edge of the cycle Oε(S) };
2. Set G := G− e;

2 end

The following result demonstrates that Algorithm 5 always terminates.
Theorem 1. Given a CSS S = 〈A,G〉 and an oracle satisfying Definition 20, Algorithm 5
terminates in finite time and the resulting CSS is stable.

Proof. At each iteration of the algorithm, the number of edges of the automaton G = (V,E)
decreases by one. Since at the beginning of the algorithm |E| is finite, the algorithm must
terminate after a finite number of iterations. The condition for termination of Algorithm 5
implies that the resulting system is stable.

Remark 5. In Theorem 1, the assumption that the oracle in Definition 20 always terminates
is crucial, as the problem solved by the oracle is undecidable in general (recall Remark 3).

5.6.2 Lifting for less conservativeness
Algorithm 5 takes a constrained switched system S = 〈A,G〉, and outputs a constrained
switched system S′ = 〈A′,G′〉 that is stable, while attempting to maximize the entropy
of the language recognized by G′. If we let L′ denote this language, then, relating this to
Problem 1, L′ is admissible and regular, and thereby a potential solution. However, it may
not be the optimal solution. Similarly, if the algorithm returns an empty CSS, this does
not mean that the original CSS is impossible to stabilize, as illustrated in Example 23. To
maximize the entropy of the stabilized CSS’s, we propose to take an M -Path-Dependent
lift of the automaton representing the input language L0.
Example 23. Consider the two graphs depicted in Figure 5.10, and assume that the ρ(A1) >
1, ρ(A2) > 1, and ρ(A1 ·A2) > 1 Our stabilization procedure, when applied to the graph
on the left will remove the two edges and return an empty CSS, but when applied to the
graph on the right, will return a non-empty CSS. The edges removed are highlighted in red.
Definition 23 ([300, Definition 3]). Given an automaton G, we define the lifted automaton
G[k] of degree k as follows. For each path v0, σ0, v1, σ1, . . . , σk, vk+1 with length k+ 1 of
G, G[k] has a node u− = v0σ0v1σ1 . . . σk−1vk, a node u+ = v1σ1v2σ2 . . . σkvk+1 and
an edge (u−, u+, σk).

Figure 5.11 shows the second degree (k = 2) lift of the automaton in Figure 5.9.

The lifted automaton represents the same language, as shown by Proposition 3, but, as
suggested by Theorem 2 (proved below) and illustrated by Example 21, lifting the automaton

105

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

Figure 5.10: Graphs described in Example 23.

before applying Algorithm 5 allows one to obtain an admissible language with higher
entropy.
Proposition 3. Let L be the language recognized by G and L[k] the language recognized
by G[k], where G[k] is the lift of degree k of G. Then L = L[k].

Proof. Consider a sequence σ0 . . . σi−1.

If σ0 . . . σi−1 ∈ Gi, there exists nodes v0, v1, . . . , vi of G such that

v0, σ0, v1, σ1, . . . , σi−1, vi

is a path of G. As no node has zero ingoing degree, there exists a path of length k that ends
in node v0, denoted as v−k, σ−k, . . . , σ−1, v0 in G. By Definition 23, for any j = 0, . . . , i,
uj = vj−kσj−k . . . σj−1vj is a node of G[k] and for any j = 0, . . . , i− 1, there is an edge
(uj , uj+1, σj) in G[k]. Therefore σ0 . . . σi−1 ∈ G

[k]
i .

If σ0 . . . σi−1 ∈ G
[k]
i , there exists nodes u0, u1, . . . , ui of G[k] such that u0, σ0, u1, σ1, . . . , σi−1, ui

is a path of G[k]. Let v−k, . . . , vi be the nodes of G and σ−k, . . . , σ−1 be the sym-
bols such that for any j = 0, . . . , i, uj = vj−kσj−k . . . σj−1vj . By Definition 23,
v0, σ0, v1, σ1, . . . , σi−1, vi is a path of G hence σ0 . . . σi−1 ∈ Gi.

The following theorem suggests that, at least for a single cycle, it is always better to stabilize
the lifted graph.
Theorem 2. Consider Algorithm 5 with input A,G[k]

0 (resp. A,G[k+1]
0) where G

[k]
0 (resp.

G
[k+1]
0) is the lift of degree k (resp. k + 1) of a given automaton G. If Oε(A,G[k]

0) and
Oε(A,G[k+1]

0) are cycles corresponding to the same word, then h∗(G[k]
1) ≤ h∗(G[k+1]

1).

Proof. Let e be the edge such that G[k]
1 = G

[k]
0 − e, that is, the edge removed by the

algorithm for G[k]
0 . Let σ1σ2 . . . σkσk+1σk+2 be a sub-word of the repetition of the cycle

c and v1, v2, . . . , vk+3 be such that

e = (v1σ1v2σ2 . . . σkvk+1, v2σ2 . . . σkvk+1σk+1vk+2, σk+1)

and (vk+2, vk+3, σk+2) is an edge of G. Let G[k+1]
0

′
be the graph obtained by removing

the node v1σ1v2σ2 . . . σk+1vk+2 in G
[k+1]
0 . The two automata G

[k]
1 and G

[k+1]
0

′
rec-

ognize the same language. Let G[k+1]
0

′′
be the graph obtained by removing the edge

106

5.7. IMPLEMENTATION

Figure 5.11: Second degree lifted automaton of Example 22.

e′ = (v1σ1v2σ2 . . . σk+1vk+2, v2σ2v3σ3 . . . σk+2vk+3, σk+2) in G
[k+1]
0 . The language

recognized by G
[k+1]
0

′
is a subset of the language recognized by G

[k+1]
0

′′
.

Moreover, as e′ is an edge of the cycleOε(A,G[k+1]
0), h∗(G[k+1]

0

′′
) ≤ h∗(G[k+1]

1). There-
fore

h∗(G[k]
0) = h∗(G

[k+1]
0

′
) ≤ h∗(G[k+1]

0

′′
) ≤ h∗(G[k+1]

1).

In Section 5.10 we show results corroborating Theorem 2.

5.7 Implementation
The implementation of the stabilization of a CSS is summarized as follows:

1. find all unstable cycles of length up to 3 using brute force enumeration;
2. since several cycles can be disallowed by removing a single edge, select the edge that

disallows the largest number of unstable cycles, and use the entropy of the resulting
graph to break ties;

3. repeat steps 1–2 until all allowed cycles have a spectral radius below 1;
4. Use the method of [234] to determine whether the resulting CSS is stable or whether

there is an unstable cycle.
5. if there is an unstable cycle, select the edge that maximizes the entropy of the resulting

system (steps 1–2 of Algorithm 5);

107

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

6. repeat steps 4–5 until the resulting system is stable.

It is easy to see that this implementation is a realization of Algorithm 5. Steps 1–4 are an
optimization since they execute relatively quickly, and make the execution of the method in
[234] take less time.

In Step 6, instead of computing the entropy, we compute the spectral radius of the adjacency
matrix of the resulting system. This is equivalent to maximizing the entropy, as the next
section shows.

5.8 Computation of the Entropy

5.8.1 Spectral Radius of Adjacency Matrix
Consider a given CSS S = 〈A,G〉, and let B be the adjacency matrix of G.

The matrix element bij of Bk gives the number of different paths of length k from node i
to node j [374]. Hence,

∥∥Bk∥∥ gives a measure of the number of different paths from each

node to each other node (see, e.g., [233, Remark 2]), and
∥∥Bk∥∥ 1

k gives the growth rate of
this quantity. Since we’re considering infinitely running co-simulations, taking the limit
k →∞, we have the spectral radius of the adjacency matrix:

ρ(B) = lim
k→∞

∥∥Bk∥∥1/k
.

Example 24. Recall Example 22, let B1 denote the adjacency matrix of the automata in
Figure 5.9 without the edge v1

2−→ v2, and let B2 denote the adjacency matrix of the same
automata, without the edge v2

3−→ v3. Then ρ(B1) = 1 < ρ(B2) ≈ 1.6180.

5.8.2 Edge Shift
The logarithm of the spectral radius of the adjacency matrix of an irreducible automaton
gives the entropy of its edge shift [239, Theorem 4.3.1]. An automaton is irreducible if
for every pair of nodes u, v, there exists a path from u to v accepted by the automaton. In
other words, the graph consists of a single strong component. It turns out that the entropy
of the edge shift is equal to the entropy of the language recognized by the automaton if the
automaton is right-resolving [239, Proposition 4.1.13].
Definition 24 ([239, Definition 2.2.5]). The edge shift of an automaton G = (V,E) is the
language recognized by the automaton G′ = (E,E′) with the transitions

((u, v, σ), (v, w, σ′), (v, w, σ′)) ∈ E′

for each (u, v, σ), (v, w, σ′) ∈ E.

An edge shift of automaton Figure 5.12a is illustrated in Figure 5.12b.
Definition 25 ([239, Definition 3.3.1]). An automaton G is right-resolving if for every
vertex v, the outgoing edges have different symbols.

Every regular language is recognized by a right-resolving automaton. Moreover, there are
automated ways to obtain such an automaton from a starting representation of a language
with an automaton that is not right-resolving [239, Section 3.3].

108

5.9. OPTIMALITY

v1 v2
0
0

1

(a)

v11v1

v20v1v10v2

v10v2 v11v1

v10v2

v20v1

v11v1

(b)

Figure 5.12: An automaton (a) and its edge shift (b).

Since the automata considered here are right resolving and irreducible, by [239, Theo-
rem 4.3.1] and [239, Proposition 4.1.13], the entropy is computed by computing the spectral
radius of the adjacency matrix of the CSS.

5.9 Optimality
The solution attained by Algorithm 5 is not necessarily the optimal solution. For once,
applying different lift degrees will yield different optimal solutions. Second, Algorithm 5
removes an edge before finding the next unstable cycle, which means that it misses the
chance of optimizing which edge to remove, when more cycles are available (recall steps
1–3 of the above implementation).

Unfortunately, we found no way of guessing which lift degree yields the optimal solution.
However, with small enough constrained switched systems (in the number of matrices and
states), it is possible to find the optimal solution, for a given lift degree k.

To find the optimal solution, suppose that, for a CSS with a lift degree k, we know what
the unstable cycles are. Now we can iterate over all possible procedures to disallow these
cycles in the CSS (each procedure is a sequence of edges to be removed), and compute
the entropy of the resulting CSS. The optimal solution is the one that has the maximal
entropy.

In order to collect all the unstable cycles, the following procedure can be used:

1. given a CSS with a lift of degree k, apply Algorithm 5 to find an admissible language,
and record all the cycles that were removed throughout the procedure;

2. iterate over all possible ways of disallowing the cycles on the original CSS with a lift
of degree k, and apply the one that results in a language with maximal entropy;

3. the resulting language is not necessarily admissible, because the best procedure
is not necessarily that same as the one picked by Algorithm 5 in Step 1, so apply
Algorithm 5 to identify and disallow the remaining cycles, adding these to the set of
unstable cycles.

4. now repeat Steps 2–3, collecting more and more unstable cycles, until the set of
unstable cycles does not change.

We stress that the above procedure can only be applied to very simple CSS.

The resulting set of unstable cycles represent all possible unstable cycles, and the admissible

109

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

language found is the optimal solution.

An example application is described in Section 5.10. See [197, 331] for other applications
of switched systems, where our technique could be applied as well.

5.10 Application
We apply our algorithm to generate a numerically stable adaptive master algorithm for the
co-simulation of a controlled inverted pendulum. We will consider two simulators.

As described in Section 5.3.1, in the context of co-simulation, time is discretized into a
countable set T = {t0, t1, t2, . . .} ⊂ R, where ti+1 = ti + Hi is the time at step i and
Hi is the communication step size at step i, with i = 0, 1, From time ti → ti+1, the
simulator Sj , with j = 1, 2, is a mapping,

x̃j(ti+1) = Fj(ti, x̃j(ti), uj(ti))

yj(ti) = Gj(ti, x̃j(ti), uj(ti))
(5.21)

with state vector x̃j , input vector uj and output vector yj .

Simulators exchange outputs only at times t ∈ T . We assume without loss of generality1

that the two simulators are coupled in a feedback loop, that is,

u1 = y2 and u2 = y1. (5.22)

In the interval t ∈ [ti, ti+1], each simulator Sj approximates the solution to a linear
ODE,

ẋj = Ajxj +Bjuj

yj = Cjxj +Djuj
(5.23)

where Aj , Bj , Cj , Dj are matrices, and the initial state xj(ti) is computed in the most
recent co-simulation step. To avoid algebraic loops and keep the exposition short, we
assume that either D1 or D2 is the zero matrix. Let D2 = 0.

Since the simulators only exchange outputs at times ti, ti+1 ∈ T , the input uj has to
be extrapolated in the interval [ti, ti+1). In the simplest co-simulation strategy2, this
extrapolation is often implemented as a zero-order hold: ũj(t) = uj(ti), for t ∈ [ti, ti+1).
Then, Equation (5.23) can be re-written to represent the unforced system being integrated
by each simulator: [

ẋj
˙̃uj

]
=

[
Aj Bj

0 0

][
xj

ũj

]
(5.24)

We can represent the multiple internal integration steps of System (5.24), performed by the
simulator Sj in the interval t ∈ [ti, ti+1], as[

x̃j(ti+1)

ũj(ti+1)

]
= Ã

kj
j

[
x̃j(ti)

ũj

]
(5.25)

1The procedure described here can be easily extended to more complex co-simulation scenarios.
2The derivation presented can be applied to more sophisticated input extrapolation techniques, see [71,

Equation (9)].

110

5.10. APPLICATION

where, e.g., Ãj = I + hj

[
Aj Bj

0 0

]
for the Forward Euler method, kj = (ti+1 − ti)/hj

is the number of internal steps, and 0 < hj ≤ Hi is the internal fixed step size that divides
Hi. Note that this equation implements the mapping in Equation (5.21).

At the beginning of the co-simulation step i, u1(ti) = y2(ti) and u2(ti) = y1(ti), as in
Equation (5.22). This, together with Equation (5.23), gives,

u1(ti) = C2x̃2(ti)

u2(ti) = C1x̃1(ti) +D1C2x̃2(ti).
(5.26)

Equations (5.24), (5.25), and (5.26) can be used to represent each co-simulation step by a
linear mapping

[
x̃1(ti+1)

x̃2(ti+1)

]
=

[
I 0 0 0

0 0 I 0

][
Ãk11 0

0 Ãk22

]
I 0

0 C2

0 I

C1 D1C2

︸ ︷︷ ︸

Ã

[
x̃1(ti)

x̃2(ti)

]

With the present work we generate a stabilized CSS, that encodes the set of all possi-
ble sequences of configurations that make the co-simulation stable, which can then be
consulted during the co-simulation, with little computational cost, as described in Sec-
tion 5.4.4.

Consider the co-simulation of an inverted pendulum that is kept at the equilibrium point
using a state feedback controller. Simulator S1 represents the controller, and simulator S2

represents the pendulum.

Around the equilibrium point, the pendulum can be approximated as a system of the form
of Equation (5.23), with

A2 =

0 1 0 0

0 −(I +ml2)(b/p) (m2gl2)/p 0

0 0 0 1

0 −(mlb)/p mgl(M +m)/p 0

B2 =

[
0 (I +ml2)/p 0 ml/p

]>
C2 = I D2 = 0

and parameters M = 0.5,m = 0.2, b = 0.1, I = 0.006, g = 9.8, l = 0.3.

The controller is a linear quadratic regulator, which, put in the form of Equation (5.23),
is

A1 = 0 B1 = 0

C1 = 0 D1 =
[
1.0000 1.6567 −18.6854 −3.4594

]
.

111

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

Assume we can use the Forward Euler and Midpoint methods, with internal fixed step sizes
in the set {0.01, 0.02, 0.1, 0.2}. Furthermore, the co-simulation step size can be H = 0.1
or H = 0.2. Note that the internal step sizes must always divide the communication step
size H , and that the numerical method and step size used in the controller simulator have no
impact in the co-simulation stability, because it has no internal dynamics. Then, applying
Equations (5.24), (5.25), and (5.26), we get a switched system over 8 matrices.

The matrices A2 (corresponding toH = 0.2, h1 = 0.2, Forward Euler), A3 (corresponding
toH = 0.2, h1 = 0.02, Midpoint) and A4 (corresponding toH = 0.2, h1 = 0.02, Forward
Euler) have a spectral radius larger than one. This means that the switching signals 222...,
333... and 444... should be forbidden.

Applying Algorithm 5 directly to the unconstrained switched system (which corresponds to
a lift of degree 0), leads to removal of the edges with labels 2, 3 and 4. This completely
disallows the use of the matrices A2,A3 and A4. The resulting language turns out to be
admissible, its entropy is log2(5).

Applying Algorithm 5 to a lift of degree 1, we get a constrained switched system with the
automaton shown in Figure 5.13, where the edges in red were removed by the algorithm.
We can see that the matrices A2, A3 and A4 are now allowed by the algorithm (only the
cyclic application of each one of these matrices is still disallowed). This solution is less
conservative than the one with degree 0. Its entropy is log2(7.26). One allowed cycle is
32645, where the symbols 5 and 6 seem to play the role of stabilizing the cycle.

1

83
5

4
6 7

2

Figure 5.13: Solution with entropy log2(7.2568898).

We applied Algorithm 5 to the lifts of degree 0, 1 and 2. At each application of the algorithm,
a stable constrained switched system was produced, with an entropy that increased with the
degree of the lift. These results, summarized in Table 5.2, corroborate Theorem 2.

Table 5.2: Entropy achieved per lift degree.

k Entropy [bit] CPU time [s]
0 log2(5) 0.13
1 log2(7.2568898) 1.8
2 log2(7.7083039) 280

This application to co-simulation illustrates an important advantage of the method presented
in [234]: it is capable of finding large unstable cycles. This method does not find the
unstable cycles by iterating through the cycles of some length K but instead extracts them
from an infinite switching signal, hence it is not harder for the method to find large unstable
cycles. For the lift of degree 2 for example, it found the unstable cycle 542245332 of length

112

5.11. RELATED WORK

9, and in a subsequent iteration found the cycle 224533542245335422453354224523254
of length 33. A brute force method would have to enumerate all 833 cycles to achieve the
stabilization of the adaptive solver.

Regarding the optimality of the solution found for the lift with degree 1, we have applied the
procedure detailed in Section 5.9 to confirm that log2(7.2568898) is indeed the maximal
entropy for that degree.

5.11 Related Work
There has been a huge effort to understand how to ensure that a (discrete time) switched
system is stable. We refer the interested reader to [16, 197, 238, 292, 342] for introductions
and surveys on this subject. To the best of our knowledge, the problem we introduce
here, i.e. finding the largest set of switching signals that guarantees the stability of the
system, has never been studied. In the broader field of stabilization of switched systems,
we can highlight the works in [168, 178, 221, 299, 306, 379, 380, 389, 390]. The key
difference with our work is the goal: we are not satisfied with a single stable switching
signal; we want to provide the maximum flexibility to the stabilized CSS, which can
make use of this flexibility to choose the most appropriate switching signal. The works in
[178, 221, 299, 306, 379, 380] are focused on continuous time systems, and [379, 380, 390]
aim at deriving state feedback laws (in addition to switching signals) that make the system
stable.

The approach followed in [390] assumes that each mode of the system is stable. In our case,
the goal is the same but we tolerate unstable modes.

The approach in [168] is interesting because it allows the combination of stable and
unstable modes, in order to ensure stability. However, no algorithm is provided to find these
combinations.

The aim of [221] is different as it describes the search for one particular stable trajectory
while we maximize the size of a language of stable switching signals.

[334] describes the stability analysis for continuous switched systems with parametric
uncertainties.

[389] focuses on proving that a system is stabilizable, rather than making the system stable.
It deals with forced discrete time switched systems, and the stabilization procedure finds a
control policy (switching signal, and input) that stabilizes the system. This is in contrast to
our goal, which is to find all policies that make the system stable, and maximize this set.
In the context of co-simulation, the reader can find stability analysis of traditional master
algorithms in [71, 153, 325, 326].

5.12 Concluding Remarks
We introduce a new problem in the context of constrained switched systems: 1) to restrict
the switching possibilities of the system, so as to ensure its stability, and 2) to leave as many
switching policies as possible (provided that the system becomes stable).

113

CHAPTER 5. STABILITY PRESERVATION IN ADAPTIVE CO-SIMULATION

The motivation for leaving as many switching policies as possible lies in the fact that, in
adaptive co-simulation, the master algorithm will make the best possible choice as a function
of information obtained during the simulation. We restrict the switching possibilities to be
representable by an automaton because of their great efficiency.

The problem is interesting in that it transforms a control problem into the problem of
building an optimal language, that is, optimizing the construction of an automaton. By
combining classical control concepts for switched systems (like the CJSR) , with classical
automata-theoretic concepts (like the entropy of shifts), one can design algorithms to
solve this problem. Our algorithm takes the form of a hierarchy of sufficient conditions,
where increasingly better solutions are found by lifting the automaton (see Figure 5.8 and
Table 5.2). Essentially, this allows one to control the optimality of the solution, at the cost
of processing power and memory.

Limitations and Assumptions This work is limited to LTI systems. A generalization to
non-linear systems could be done via piece-wise affine approximations.

This work is aimed to be a proof of concept, and we leave many research questions open.
We plan to investigate the conservativeness of restricting ourselves to regular languages
(see Example 20). Second, we want to understand how our method can be optimized for
the particularizes of co-simulation, and apply it to nonlinear systems. Finally, we plan to
modify Algorithm 5 so that stronger theoretical results can be proven.

114

Chapter 6

Stability Preservation in Hybrid
Co-simulation

Disclaimer The content in this chapter is adapted from:

• GOMES, CLÁUDIO, Paschalis Karalis, Eva M. Navarro-López, and Hans Vangheluwe.
“Approximated Stability Analysis of Bi-Modal Hybrid Co-Simulation Scenarios.” In
1st Workshop on Formal Co-Simulation of Cyber-Physical Systems, 345–60. Trento,
Italy: Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-74781-1 24.

• Ongoing work to prepare a manuscript for a conference submission.

In the previous chapter, we discussed how stability, a property that is often satisfied by
continuous physical systems, can be preserved under an adaptive co-simulation scheme.
In this chapter, we focus on the preservation of the same property, for a restricted class of
hybrid systems.

6.1 Introduction
As exemplified in Section 3.8, in hybrid systems, one distinguishes two types of dynamics:
the continuous dynamics (usually dictated by a differential equation), and the event-discrete-
related dynamics (usually dictated by a finite state machine or a transition system). As a
result, in order to make the computation of the combined behavior possible, one needs to
not only approximate the behavior of the continuous dynamics, but also to accurately and
efficiently detect when to compute the discrete-event dynamics. In order to accurately do so,
transition (or event) detection and location1 schemes [388] are employed. The efficiency
requirement is satisfied by setting the appropriate parameters of the transition location
scheme: wrong tolerance values can lead to unnecessary computations or inaccurate results
(see Section 6.2).

In real time simulation of hybrid systems, the efficiency requirement is stricter and often
only the transition detection is performed, skipping the event location part; or only a fixed
number of iterations to locate the transition are allowed [87, Section 10.8].

1Event location means the search for the exact time at which an event occurs.

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

Theoretically, any trajectory computed in a co-simulation should be the same as a solution
to the original system. In practice, just as with the simulation of systems described by
differential equations, this is not the case. As exemplified in Section 6.2, it can happen that
an inappropriate transition location scheme causes the co-simulation to fail to preserve the
stability of the original system.

Since the simulators have widely different capabilities the master algorithm often has to
assume the largest common denominator when coordinating a co-simulation (as happens in
the FMI Standard). This means that often there is no ability to rollback or accurately capture
state events that impact multiple simulators, making the task of choosing an appropriate
step size not trivial (see, e.g., [24] for how to do this with smooth systems), because it
directly impacts the transition detection abilities.

It is therefore of utmost importance that master algorithms can tweak the communication
frequency of the tools to ensure that system developers can trust the co-simulation results.
However, more frequent communication entails a performance toll. Hence, a valid research
question is: for a particular co-simulation scenario, what is the lowest frequency for which
tools can exchange values, that still ensures that the computed trajectories are bounded?
The question is not new: it has been studied for traditional simulation, but not for hybrid
system co-simulation. We make use of existing stability results for hybrid systems.

Stability of hybrid systems has been studied extensively (see, e.g., [62, 149, 195, 197,
236, 241, 272, 273, 387]). Most of the results define stability in the Lyapunov sense [207]
(bounded trajectories, adapted from the continuous smooth case), and can be classified
as: (i) the study of stability by using a common energy function for all the subsystems
[236], or (ii) the use of multiple Lyapunov functions, one for each subsystem [62, 203, 272].
The consideration of multiple equilibria is not common in the hybrid systems literature,
being typically focused on the study of systems with a unique equilibrium point for all the
subsystems. Among very few results considering multiple equilibria are [272, 273].

To the best of our knowledge, there is no work that applies these stability analysis techniques
to study the effects of co-simulation in hybrid systems. The dwell time approaches (e.g.,
[258]) can potentially be used, in the sense that they restrict the time that the system spends
in each mode, as we do. However we have no control other the time spent in each mode.
Hence, our approach controls the co-simulation step.

6.1.1 Contribution
In this chapter, we develop an approach for preserving the numerical stability of a hybrid
co-simulation algorithm.

We make use of a technique that samples the state space at pre-defined points (given by a
Poincare surface) and ensures that the state trajectories do not diverge. Inspired by the Joint
Spectral Radius theorem [119, 197], and the contribution in Chapter 5, we show how the
stability preservation problem can be solved for a restricted class of planar hybrid systems,
by reducing it to a problem of finding a non-trivial closed orbit in the transition-delayed
system. As an example application of these theoretical results, we provide an algorithm to
find such closed orbit in a non-linear hybrid system.

This algorithm can be applied before running co-simulations, to find the appropriate
parameterization of transition detection and location schemes, and/or the size of the (co-

116

6.2. MOTIVATING EXAMPLE: RELAXED BOUNCING BALL SIMULATION

)simulation step. Other potential applications include: (i) networked control systems (see,
e.g., [113, 381]), where the component responsible for deciding the mode of the plant may
be reacting to a delayed signal; and (ii) real-time simulation of hybrid systems, where state
transition location can be disabled, or relaxed.

6.1.2 Structure
The next section introduces a motivating example. Then, Section 6.3 formulates the problem
that Section 6.4 proposes to solve. The results of this effort are described in Section 6.5.
Finally, Section 6.6 discusses related work and Section 6.7 concludes.

6.2 Motivating Example: Relaxed Bouncing Ball Simula-
tion

Consider a bouncing ball modeled with two modes: free-fall, and contact. The free fall
mode is dictated by the following ordinary differential equation:

ẋ = f2(x) =

[
x2

−dam x2 |x2| − g

]
, (6.1)

where xi denotes the i-th component of vector x (e.g., x2 is the speed), and m, da, g denote
the mass, air drag, and gravity constants, respectively. The contact mode captures the
dynamics of the ball for the brief moments it is in contact with the floor, governed by the
following:

ẋ = f1(x) =

[
x2

c
m (r − x1)− dc

mx2 − da
m x2 |x2| − g

]
, (6.2)

where dc, c, r denote the compression damping, stiffness, and the ball radius, respec-
tively.

The ball changes from free fall mode to contact mode when it comes in contact with the
floor. Formally, that is when

g(x) =
[
1 0

]
x− r ≤ 0. (6.3)

Figure 6.1 shows an example trajectory. The parameters used throughout this document
were taken from [128]: r = 0.25, m = 0.650, c = 40000, dc = 10, da = 0.0136, and
g = 9.81 (SI Units).

In the same figure, the contact surface (dependent on the radius of the ball) dictates when
the mode changes. The moment that the ball changes from the free-fall mode to the contact
mode is accurately captured using a state transition location technique ([388]). This enables
the correct computation of the state of the ball immediately before entering the contact
mode.

One can readily recognize the importance of the state transition location by rendering it
inaccurate in the transition from mode free-fall to contact, thereby introducing a delay in
this transition. Figure 6.2 shows an example trajectory where the transition from free-fall

117

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

to contact mode is delayed by 0.002s. The execution indicates that the ball reaches the
same compression that it had on its initial state. Since the total energy is dissipated via air
friction and impact damping, the bouncing ball should tend to the equilibrium. As such, the
execution in Figure 6.2 does not constitute a valid execution with respect to the stability of
that equilibrium.

Figure 6.1: Example simulation of the bouncing ball. The horizontal axis refers to position,
and vertical refers to velocity. All units are SI.

Figure 6.2: Example simulation of the bouncing ball with a transition delay of 0.002s. The
horizontal axis refers to position, and vertical refers to velocity. All units are SI.

This experiment hints at the hypothesis that the larger the delay in the transition, the higher
the chances that the numerical system does not come to a rest. A natural research question
then follows: For a given hybrid system whose trajectories eventually tend to an equilibrium,
what is the largest delay in the transition that preserves that property? The next section
formulates this problem.

6.3 Problem Formulation
We adopt the usual definitions of Hybrid Automata.
Definition 26 (Hybrid automaton [194]). A hybrid automaton S is a collection

S = (Q,E,X ,Dom,F , Init,Guard, R)

where:

118

6.3. PROBLEM FORMULATION

• Q = {q1, q2, . . .} is a finite set of modes;
• E ⊆ Q×Q is a finite set of edges called transitions;
• X ⊆ Rn is the continuous state space, for some natural n;
• Dom : Q→ 2X is the mode domain;
• F = {fqi(x) : qi ∈ Q} is a collection of time-invariant vector fields such that each
fqi(x) is Lipschitz continuous on Dom(qi);

• Init ⊆ Q×X is a set of initial states;
• Guard : E → 2X defines a guard set for each transition.
• R : E × X → 2X specifies how the continuous state is reset at each transition by

mapping an an edge and old state to a set of possible new states.

Informally, at any time t, S is in a mode qi ∈ Q, with a state x(t). The state evolves
according to the vector field ẋ(t) = fqi(x(t)) associated with mode qi. S is allowed to stay
in mode qi for as long as x(t) ∈ Dom(qi) holds. S may switch to mode qj if (qi, qj) ∈ E
and x(t−) ∈ G((qi, qj)). When such switch happens at time ts, the continuous state is
reset to a new continuous state given by R((qi, qj), x(ts)). The new state will be the initial
state for the vector field associated with new mode.
Remark 6. Note that, for a given unique initial state, the behavior of S can still be non-
deterministic. To see why, note that S can find itself in a state (mode qi and continuous
state x) that satisfies the mode invariant (x ∈ Dom(qi)), and the guard of some edge
(qi, qj) ∈ E (x ∈ G((qi, qj))). In this case, S may stay in the mode or take the mode
transition.

It is common to represent S as a directed graph with nodes depicting each mode, and edges
depicting the transitions. The dynamics associated with each mode are represented inside
the corresponding node, and the guard and reset map of each transition are represented
near the corresponding edge. The guards are represented with conditions and the resets
with assignments of the form x := When the state is not changed at the transition,
that is x := x, we omit the assignment. We will often eliminate the time when writing the
continuous state x for the sake of simplicity.
Example 25. Figure 6.3 shows the graphical representation of the hybrid automaton for
the bouncing ball described in Section 6.2. where f1(x) is defined in Equation (6.2), f2(x)
is defined in Equation (6.1), and g(x) in Equation (6.3).

1 2

Figure 6.3: Example of bi-modal switched system: bouncing ball.

The Lipschitz continuity assumption in Definition 26 ensures the existence and continuity
of a solution inside a mode as shown by Lemma 1.
Definition 27 (Flow). Given a dynamical model ẋ(t) = f(x(t)), the flow of the vector
field f , denoted φf (x, t), is the state of the system after a time t if the initial state is x.
Lemma 1 (Flow continuity [341, Theorem 2.1.3, Theorem 2.1.12, Theorem 2.1.13]).
Given a dynamical model ẋ(t) = f(x(t)), if f is Lipschitz-continuous, then φf (x, t) is

119

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

well-defined and Lipschitz-continuous in x and t.
Definition 28 (Hybrid trajectory [148, Definition 2.3]). A hybrid trajectory of a system S
is a subset T ⊆ Q× R×X with

T =

J−1⋃
j=0

{qj} ×
{

(t, x) | tj ≤ t ≤ tj+1, x = φfqj (xj , t− tj) ∈ Dom(qj)
}

for some finite sequence of times t0 ≤ t1, · · · ≤ tJ , modes qj ∈ Q and state vector xj ∈
Dom(qj), such that (qj−1, qj) ∈ E, yj ∈ Guard((qj−1, qj)) and xj ∈ R((qj−1, qj), yj)
for j = 1, . . . , J , where yj = φfqj−1

(xj−1, tj − tj−1).

We define the following notations for trajectories:

T [t, t] = { (q, t, x) ∈ T | t ≤ t ≤ t }
TX = {x | ∃q, t : (q, t, x) ∈ T }

tmin(T) = inf
(q,t,x)∈T

t

tmax(T) = sup
(q,t,x)∈T

t

T1] T2 = T1 ∪ { (q, t+ tmax(T1)− tmin(T2), x) | (q, t, x) ∈ T2 }.

Note that if T is a hybrid trajectory then so is T [t, t], which allows us to define the combined
notation TX [t, t]. However, even if T1 and T2 are hybrid trajectories, T1] T2 may not
be a hybrid trajectory if for instance it induces a transition that does not respect a guard
set.

We say that an equilibrium of a hybrid automaton is Globally asymptotically stable (GAS)
if all trajectories of the system converge to the equilibrium.

As motivated in Section 6.2, we need to analyze the behavior of a hybrid automaton under
delay in the transition. It turns out that we can construct a hybrid automaton for which the
stability is equivalent to the stability under delay in the transition of the original system.
We present this reduction in the following restricted class of hybrid automata depicted in
Figure 6.3.
Definition 29 (Bi-modal Switched Systems). A Bi-modal Switched (BMS) system is a hy-
brid automaton as defined in Definition 26 such that there exists a continuously differentiable
function g such thatQ = {1, 2}, Dom(1) = {x | g(x) ≤ 0 }, Dom(2) = {x | g(x) ≥ 0 },
E = {(1, 2), (2, 1)}, Guard((1, 2)) = {x | g(x) ≥ 0 }, Guard((2, 1)) = {x | g(x) ≤
0 } and R((1, 2), x) = R((2, 1), x) = {x} for all x ∈ Rn.

The hybrid automaton introduced in Example 25, and depicted in Figure 6.3, is a BMS
system.
Definition 30. Given a BMS S, we define its transition-delayed SH counterpart, with
H > 0, as in Figure 6.4.
Remark 7. SH is non-deterministic, having trajectories where a transition can be delayed
by a maximum of H units of time. Moreover, SH has the same equilibrium point as the
original BMS system. However, the equilibrium point of SH may not be GAS, even though
the original system S is GAS, as exemplified in Figure 6.2.

The following results lead to our problem formulation.

120

6.4. ORBIT AND STABILITY

1 2

Figure 6.4: Transition delayed switching counterpart of a BMS system (Definition 29). The
variable z acts as a clock that is bounded by H .

Proposition 4. If T is a trajectory of SH , then it is also a trajectory of SH′ , for any
H ′ ≥ H .
Corollary 1. For any H ′ ≤ H , if the equilibrium x∗ ∈ Rn of SH is GAS, then the
equilibrium x∗ of SH′ is also GAS.

The previous results naturally prompt the following problem.
Problem 2. Given a hybrid automaton S (Definition 26) with a GAS equilibrium x∗, find

σ(S) = sup
H≥0

H s.t. x∗ is a GAS equilibrium of SH (6.4)

We call σ(S) the Maximum Stable Delay (MSD).

Intuitively, σ(S) gives us the maximal delay for which the GAS property x∗ is preserved
under delayed switching: by Corollary 1, x∗ of SH is GAS for all H < σ(S). Knowing
σ(S) allows one to define the time step of a simulation algorithm, or the tolerance of a state
transition location scheme.

As we have seen, Problem 2 can be reduced to the stability of a hybrid automaton of the
form given in Figure 6.4, and thus we can leverage classical tools developed for the stability
of hybrid automata. However, deciding the stability of a hybrid automaton is undecidable
in general [49], hence this does not provide an efficient approach and it only approximates
the σ(S) of Problem 2.

As we show in the following section, under mild assumptions, the stability of the subclass
of planar hybrid automata of the form given in Figure 6.4 is equivalent to the existence of a
closed orbit. As shown in Section 6.5, this theoretical result can lead to practical algorithms
to compute σ(S) with arbitrary accuracy.

6.4 Orbit and stability
Our approach is similar to the stabilization of a constrained switched system [101, 300].
In the theory of constrained switched systems, the asymptotic stability, can be proven by
showing that there are no closed orbits in the system (see [101, Theorem A], [223], and
example applications in [152, 154]). We show that there is an equivalence between the

121

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

absence of cyclic behaviors in the transition-delayed counterpart (Definition 30), and its
asymptotic stability. We start by defining the notion of closed orbit, to formalize cyclic
trajectories.
Definition 31 (Closed orbit). Given a trajectory T as defined in Definition 28, we say that
it is a closed orbit if there exists

(q0, t0, x0), (q̃, t̃, x̃), (q̄, t̄, x̄) ∈ T ,

such that q̃ 6= q̄ = q0, t0 < t̃ < t̄ and x̃ 6= x̄ = x0.
Remark 8. Given an equilibrium q∗ ∈ Q, x∗ ∈ Dom(q), the trajectory T = { (q∗, t, x∗) |
0 ≤ t ≤ 1 } is not a closed orbit as defined in Definition 31, since there does not exist
(q̃, t̃, x̃) ∈ T such that q̃ 6= q∗ and x̃ 6= x∗.
Proposition 5. If there is a closed orbit in SH , then the equilibrium x∗ of SH is not GAS.

The above proposition allows, for a given H , to prove the instability of SH by just finding
a closed orbit. By trying to find the smallest H for which there is a closed orbit, one can
approximate from above the solution σ(S) to Problem 2.

However, approximation from above may not be sufficient. To see why, imagine that the
smallest H for which there exists a closed orbit in SH is found. Then, it might still be the
case that there exists a H ′ < H such that x∗ in SH′ is not GAS.

Our contribution is to show that this is impossible, for a class of planar BMS systems,
satisfying assumptions 3 to 6, defined in the following.

For that we use classical results of analysis of planar non-linear systems such as continuity
and monotonicity of a Poincaré Map. Such classical notions need to be carefully used in
this setting since they are usually developed for non-hybrid systems.

We start by discussing the monotonicity. We will see in Corollary 2 that the Poincaré Map is
monotonous for the hybrid automaton S . However, for a non-deterministic hybrid automa-
ton such as SH , monotonicity of the Poincaré Map is not guaranteed as two trajectories can
intersect as long as they are in different modes. Nevertheless, the topological argument
commonly used to prove monotonicity (see e.g. [183, Section 10.4]) can still be used to
obtain the result given in Lemma 2 for planar BMS systems.

We start by defining the following connectedness concepts from topology; see e.g. [265,
Chapter 3].
Definition 32 (Path). Given a set X and two points x, y ∈ X , a path in X from x to y is
the image of a continuous map f : [0, 1]→ X such that f(0) = x and f(1) = y.

We denote the union of all paths in X from x to y as [x, y]X .
Definition 33 (Path components of X). We define an equivalence relation on the set X by
defining x ∼ y if there is a path in X from x to y. The equivalence classes are called the
path components of X .

Given a set U , we denote its closure by U and its relative interior by relint(U).

We denote the switching surface as

G = {x | g(x) = 0 }.

To avoid pathological cases, we assume that the equilibrium x∗ /∈ G. Without loss of

122

6.4. ORBIT AND STABILITY

generality, we consider that the equilibrium is in the interior of Dom(1) and assume that it
is GAS for the mode 1.

Given the vector field f1 of the first mode of a planar BMS S defined in Definition 29, we
assume the existence of a continuously differentiable function s : R2 → R such that the
curve

Sp = {x | s(x) = 0,∇s(x) · f1(x) > 0 } (6.5)

satisfies Sp ∩G = ∅. We refer to the closed section Sp as Poincaré curve, its definition is
similar to the notion of local sections; see [183, Section 10.2].

The following assumption constraints the Poincaré curve to be “connected” and ‘moving
towards the origin”.
Assumption 3. The Poincaré curve Sp has a single path component, Sp = Sp ∪ {x∗} and
the restriction of the euclidean norm to Sp is injective.

We use the following notations for the return time and Poincaré Map, given a vector field f
and a set U :

τfU (x) = inf{ t | t > 0, φf (x, t) ∈ U },

P fU (x) = φf (x, τfU (x)).

Note that P fU (x) is not defined when τfU (x) is infinite.

Given a trajectory T , a set U and a time t0 ∈ R, we define the following notation

τTU (t0) = inf{ t | (q, t, x) ∈ T , t > t0, x ∈ U },
PTU (t0) = { (q, t, x) ∈ T | t = τTU (t0) }.

Remark 9. Given a hybrid automaton S and a trajectory T , if PTG (0) is defined, then it is a
set of points representing the different modes the system undergoes at the switching surface
(recall Definition 28).

The following lemma shows that, whenever a trajectory T of SH intersects with itself, it
must be under a different mode. Figures 6.5a and 6.5b give representative examples of this
situation.

(a) (b)

Figure 6.5: Illustrations of Lemma 2. In both cases, the intersection, caused by the delayed
switching, happens under different modes, and never in the same mode. Each axis refer to
the dimensions in the state-space.

123

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

Lemma 2. Given a planar hybrid automaton SH as defined in Definition 30, with a
Poincaré curve Sp as defined in Equation (6.5) and a trajectory T of SH , consider
(q1, t1, x1) ∈ T with x1 ∈ Sp and (q2, t2, x2) ∈ PTSp(t1) with ‖x2 − x∗‖2 ≥ ‖x1 − x∗‖2.
Under Assumption 3, there exists a path component U of X \ (TX [t1, t2]∪ [x2, x1]Sp) such
that:

(1) x ∈ U for all x ∈ Sp such that ‖x− x∗‖2 ≤ ‖x2 − x∗‖2; and
(2) there exists ε > 0 such that TX [t2, t2 + ε] ∩ U = ∅.

Moreover, if TX [t2,∞] ∩ U 6= ∅ then the intersection (q3, t3, x3) ∈ PT
U

(t2) is such that
there exists (q4, t4, x3) ∈ T [t1, t2] with q3 6= q4.

Proof. Let U be the path component of X \ (TX [t1, t2]∪ [x2, x1]Sp), that contains x∗ ∈ U .
By Assumption 3, there is a path in Sp from x∗ to x2. This path is contained inU as it cannot
intersect the interior of TX [t1, t2] by definition of t2. Therefore, by the injectiviy assumption
of Assumption 3, the set U must contain all x ∈ Sp such that ‖x− x∗‖2 ≤ ‖x2 − x∗‖2.

As ∇s(x) · f1(x) > 0 for all x ∈ Sp (see Equation (6.5)) and ‖x2 − x∗‖2 ≥ ‖x1 − x∗‖2,
there exists ε > 0 such that TX [t2, t2 + ε] ∩ U = ∅. As the trajectory at t2 + ε is not in U ,
if TX [t2,∞]∩U 6= ∅ then (q3, t3, x3) ∈ PT

U
(t2) is defined. The point x3 cannot belong to

[y, x]Sp as∇s(x)·f1(x) > 0 hence x3 ∈ TX [t1, t2]. For any (q, t, x3) ∈ T [t1, t2], we must
have q 6= q3 since by Lemma 1, two trajectories in the same mode cannot intersect.

As a corollary, the monotonicity of the Poincaré Map holds for the mode 1, as stated in
Corollary 2. Additionally, the monotonicity also holds for the original hybrid automaton
without delay S , because, for two trajectories to intersect, they must be in the same domain
hence the same mode (except at the switching surface, they could be in different mode
but that is during a time interval of measure 0). However, when applying the same result
to the delayed hybrid automaton, care must be taken to consider only trajectories that
remain in mode 1, as these are not affected by the delayed switching. If a trajectory of
the delayed hybrid automaton remains in the domain of mode 1 between two consecutive
intersections with the Poincaré Map, Corollary 2 shows that the second intersection has a
smaller euclidean norm. In fact, as shown by Lemma 3, this implies that the trajectory will
remain in mode 1 until its end.
Corollary 2. Consider a planar hybrid automaton SH as defined in Definition 30 and a
Poincaré curve Sp as defined in Equation (6.5). For all x ∈ Sp, if for any t, φf (x, t) ∈
Dom(1), then

∥∥∥P f1Sp(x)− x∗
∥∥∥

2
< ‖x− x∗‖2.

Lemma 3. Given a delay H and a planar hybrid automaton SH as defined in Definition 30,
with a Poincaré curve Sp as defined in Equation (6.5), and a trajectory T of SH , con-
sider (1, t1, x1) ∈ T with x1 ∈ Sp and (1, t2, x2) ∈ PTSp(t1). Under Assumption 3, if
TX [t1, t2] ⊆ Dom(1), then TX [t2,∞] ⊆ Dom(1).

Proof. Let U be the path component of X \ (TX [t1, t2] ∪ [x2, x1]Sp) containing the equi-
librium x∗. If TX [t2,∞] 6⊆ U then given

(q′, t′, x′) ∈ PTTX [t1,t2]∪[x2,x1]Sp
(t2),

we know that x′ ∈ TX [t1, t2] since ∇s(x) · f1(x) > 0 for all x ∈ Sp. As TX [t1, t2] ⊆
Dom(1), q′ = 1 which is impossible by Lemma 1. Therefore TX [t2,∞] ⊆ U ⊆ Dom(1).

124

6.4. ORBIT AND STABILITY

G

Sp \ SpSp

Figure 6.6: Illustration of the set S̃p, defined in Equation (6.6), for the bouncing ball
example. The horizontal axis refers to position, and vertical refers to velocity. In blue is
represented the trajectory starting at the point x̄ ∈ Sp such that the trajectory is tangent to
the switching surface G represented in yellow. All trajectories starting at a point x ∈ Sp
such that ‖x− x∗‖2 > ‖x̄− x∗‖2 eventually cross the switching surface, these points
constitute the set S̃p, represented in brown.

In view of Corollary 2 and Lemma 3, if a trajectory does not intersect the switching surface
between two intersections of the Poincaré curve (hence staying in mode 1) then it will
repeat this behavior indefinitely. Therefore, as our aim is to find a closed orbit, we restrict
our attention to points of the Poincaré curve from which a trajectory of S intersects the
switching surface. See Figure 6.6. We denote the set of such points as follows:

S̃p = {x ∈ Sp | τf1G (x) is finite, τf1G (P f1G (x)) > 0 }. (6.6)

Since the equilibrium x∗ is GAS for the mode 1, by Corollary 2 and Lemma 1, any trajectory
of SH (independently of H) starting at a point in Sp \ S̃p will converge to x∗. Lemma 4
provides a converse result, that is, if x∗ is not GAS and SH does not admit any closed orbit,
then subsequent intersections with Sp will be farther from the origin.

However, extra care must be taken of where to place the Poincaré curve, to make sure all its
intersections with Sp happen in mode 1. Moreover, we need to assume that the dynamics
of mode 2, under the domain of mode 1, do not prevent these intersections (e.g., it could
lead to chattering [236, Section 1.2.4] around the switching surface, because any trajectory
starting in mode 2 will cross the switching surface to mode 1, by the stability of x∗ in
S).

The following assumption handles these scenarios. Figure 6.7 illustrate the concepts in this
assumption. Moreover, they show the impact of different Poincaré curves.
Assumption 4. Given a planar hybrid automaton SH , let

G̃ = {x ∈ G | ∇g(x) · f2(x) < 0 },

T2 = inf
x∈G̃

τf2Sp(x), and (6.7)

D = {φf2(x, h) | x ∈ G̃, 0 ≤ h < T2 }.

We assume that for every point x ∈ D, τf1Sp(x) is finite and smaller than τf1G (x) (which may
be infinite if the system never crosses the switching surface).

125

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

0.24987 0.24990 0.24993 0.24996 0.24999
-0.05

-0.04

-0.03

-0.02

-0.01

0.00
GSp

D

Figure 6.7: Illustration of Assumption 4 for the bouncing ball example introduced in
Section 6.2. The horizontal axis refers to position, and vertical refers to velocity. Note that,
in this example, by choosing s(x) = x2, the value T2 is infinite. Therefore, the requirement
σ(S) < T2 of Theorem 4 is automatically satisfied. In the figure, we represent the set D
for a value of T2 = 0.0005.

Under assumption 4, and a sufficiently small H in SH , trajectories that start in S̃p acquire a
predictable pattern, illustrated in Figure 6.8. We now define the notation and restrictions to
represent these trajectories.

Given a point x0 ∈ S̃p, 0 ≤ h1, h2, let

x1 = P f1G (x) x2 = φf1(x1, h1) (6.8)

x3 = P f2G (x2) x4 = φf2(x3, h2). (6.9)

If h1 < τf1G (x1) and h2 < T2, by Assumption 4, the following trajectory is admitted by
planar Smax(h1,h2).

T Q(x, h1, h2) = T P f1G (x)] T φf1(h1, x1)] T P f2G (x2) (6.10)

] T φf2(h2, x3)] T P f1Sp(x4). (6.11)

We also introduce the notation

Q(x, h1, h2) , P f1Sp(x4),

illustrated in Figure 6.8.

The following lemma is illustrated in Figure 6.9.
Lemma 4. Given a delay H < T2 (where T2 is defined in Equation (6.7)), a planar
hybrid automaton SH as defined in Definition 30, with a Poincaré curve Sp as defined
in Equation (6.5). Under assumptions 3 and 4, if the equilibrium x∗ is not GAS for SH ,
and SH does not admit any closed orbit, then there exists two points x, y ∈ S̃p and delays
0 ≤ h1, h2 ≤ H such that y = Q(x, h1, h2) and ‖y − x∗‖2 > ‖x− x∗‖2.

Proof. Since SH is not GAS, it admits a trajectory T that does not converge to the equilib-
rium x∗.

The proof is divided into two parts: first we prove that trajectory T contains infinitely
many mode transitions. Then we use that fact to prove that successive intersections satisfy

126

6.4. ORBIT AND STABILITY

0.2496 0.2497 0.2498 0.2499 0.2500 0.2501

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Gx

x1
x2

h1

x3x4
h2

(x, h1, h2)

Figure 6.8: Illustration of the mapping Q(x, h1, h2) for the bouncing ball example intro-
duced in Section 6.2. The x-axis and y-axis correspond respectively to the position and
velocity. The values used for this figure are x = 0.2496 and h1 = h2 = 0.001.

G

h1

h2

Figure 6.9: Illustration of Lemma 4 for the bouncing ball example. The horizontal axis
refers to position, and vertical refers to velocity. Since the equilibrium x∗ is not GAS for
SH , and SH does not admit any closed orbit, the figure shows a trajectory that Lemma 4
proves to exist.

the claim in the lemma. In the second part, we make use of a result that is proved later
(Lemma 7). Lemma 7 does not depend on Lemma 4.

We now prove by contradiction that trajectory T contains infinitely many mode transitions.
If it contains only finitely many transitions, there is a mode q∞ and time t∞ such that, for
all (q, t, x) ∈ T with t > t∞, we have q = q∞. We cannot have q∞ = 1 as the equilibrium
x∗ is GAS for mode 1. Similarly, we cannot have q∞ = 2 since the equilibrium x∗ is GAS
for S. In this case, (2, t′, x′) ∈ PTG (t∞) is defined. Let (2, t′′, x′′) ∈ PTG (t′). Then, by
Assumption 4, there must be t′′′, x′′′ such that (1, t′′′, x′′′) ∈ T [t′, t′′]. This concludes the
proof that trajectory T contains infinitely many mode transitions.

Now we focus on the second part of the proof. By Assumption 4, after each transition from
mode 2 to mode 1, the trajectory T must intersect the Poincaré curve before it transitions
from mode 1 to mode 2. Therefore the trajectory intersects the Poincaré curve an infinite
amount of times and is in mode 1 each time it intersects it. Let (1, t1, x1), (1, t2, x2), . . . ∈
T with t1 < t2 < · · · and x1, x2, . . . ∈ Sp be this sequence intersections.

There are no i 6= j such that ‖xi − x∗‖2 = ‖xj − x∗‖2 because, by Assumption 3,

127

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

‖xi − x∗‖2 = ‖xj − x∗‖2 implies that xi = xj which contradicts the statement that no
closed orbit is admitted. There are two possible cases.

• The sequence (‖xi − x∗‖2)i is decreasing with i. Since it is bounded below by
0, it converges. Let n = limi→∞ ‖xi − x∗‖2. Since the trajectory is not stable,
n > 0. By Assumption 3, there exists a unique x ∈ Sp such that ‖x− x∗‖2 = n. By
Lemma 7, SH admits a closed orbit containing x which contradicts the statement.
Hence this case cannot be true.

• There exists a k such that ‖xk+1 − x∗‖2 > ‖xk − x∗‖2. Let

K = { k | ‖xk+1 − x∗‖2 > ‖xk − x
∗‖2 }.

There are two possible sub-cases.
– If there exists k ∈ K, t ∈ R, x ∈ X such that (2, t, x) ∈ T [tk, tk+1] then we

are done.
– Otherwise, for all k ∈ K, xk+1 = P f1Sp(xk). Note that, by Corollary 2, it must

be the case that the trajectory between xk and xk+1 is going into the domain of
mode 2.
Let j ∈ K be such that j + 1 /∈ K, and

(q̃, t̃, x̃) ∈ PTTX [tj ,tj+1](tj+1),

as illustrated in Figures 6.10a and 6.10b. By Lemma 2, q̃ = 2. Let t̄ be such
that (1, t̄, x̃) ∈ T [tj , tj+1]. If x̃ ∈ Dom(1), as in Figure 6.10a, then T [t̄, t̃] is
a closed orbit which contradicts the statement. Otherwise, x̃ ∈ Dom(2)2, as
shown in Figure 6.10b. Let U be the path component of X \ TX [t̄, t̃] containing
the points x ∈ Sp such that ‖x− x∗‖2 < ‖xj+1 − x∗‖2 and j′ = min{ k ∈
K | k > j + 1, ‖xk+1 − x∗‖2 > ‖xj+1 − x∗‖2 }. Since xj′+1 /∈ U , by
Lemma 1, (q′, t′, x′) ∈ PTTX [t̄,t̃]

(tj′) is defined and is such that tj′ ≤ t̄ ≤ tj′+1,

q′ = 1 and there exists (2, t′′, x′) ∈ T [t̄, t̃]. The trajectory T [t′′, t′] is a closed
orbit which contradicts the statement.

(a) (b)

Figure 6.10: Illustrations of the second sub-case of Lemma 4. The axis refer to the
dimensions in the state-space.

2In this case, T [t̄, t̃] is not a closed orbit since it requires a transition between mode 2 and mode 1 at t̃ which
is not possible since x̄ ∈ Dom(2).

128

6.4. ORBIT AND STABILITY

The following lemma shows that by adjusting the delay in SH , one can find admissible
trajectories whose successive intersections with the Poincaré curve are getting closer to the
equilibrium. The lemma statement is illustrated in Figure 6.11.

Figure 6.11: Illustrations of Lemma 5. The axis refer to the dimensions in the state-space.

Lemma 5. Given a delay H < T2 (where T2 is defined in Equation (6.7)), a planar
hybrid automaton SH as defined in Definition 30, with a Poincaré curve Sp as defined
in Equation (6.5). Under Assumption 3, if there exist two points x, y ∈ S̃p and delays
0 ≤ h1, h2 ≤ H such that y = Q(x, h1, h2) and ‖y − x∗‖2 > ‖x− x∗‖2 then there exist
delays 0 ≤ h1, h1 ≤ h1 and 0 ≤ h2, h2 ≤ h2 such that

x ∈ [Q(x, h1, h2),Q(x, h1, h2)]Sp .

Proof. Consider a trajectory T of S starting at y. Let y0 = y, t0 = 0 and

(1, tk+1, yk+1) ∈ PTSp(tk), (6.12)

for k = 0, 1, . . . This sequence is illustrated in Figure 6.12. By Corollary 2, the sequence
(‖yk − x∗‖2)k is non-increasing in k. Let j = inf{ k | ‖yk − x∗‖2 < ‖x− x∗‖2 }, we
know that j < ∞ since the equilibrium x∗ is GAS for S. In Figure 6.12, j = 3. We
show by recurrence the existence of a sequence of delays h1,k ≤ h1 and h2,k ≤ h2 for
k = 0, 1, . . . , j such that yk = Q(x, h1,k, h2,k), where yk is defined in Equation (6.12).
We set h1,0 = h1 and h2,0 = h2. For k ≥ 0, given h1,k ≤ h1 and h1,k ≤ h2, let

(q′, t′, x′) ∈ PTTXQ(x,h1,k,h2,k)(tk),

as illustrated in Figure 6.12, and

(q′′, t′′, x′) ∈ T Q(x, h1,k, h2,k),

where T Q(x, h1,k, h2,k) is defined in Equation (6.10). By Lemma 2, we only have the
following two cases to consider3: if q′ = 2, q′′ = 1 and x′ ∈ Dom(2) then we set
h2,k+1 = 0 and h1,k+1 = t′′ − τf1G (x); otherwise, if q′ = 1, q′′ = 2 and x′ ∈ Dom(1)

then we set h1,k+1 = h1,k and h2,k+1 = t′′ − (τf1G (x) + h1,k + τf2G (φf1(P f1G (x), h1,k))).
The lemma is proved with h1 = h1,j−1, h1 = h1,j , h2 = h2,j−1and h2 = h2,j .

3Note that in both cases, we have T Q(x, h1,k+1, h2,k+1) = T Q(x, h1,k, h2,k)[0, t′′]] T [t′, tk+1].

129

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

Figure 6.12: Illustration of the sequence defined in Equation (6.12).

From the existence of an unstable trajectory, Lemma 4 combined with Lemma 5 ensures the
existence of a point x such that for different delays, the next intersection with the Poincaré
curve is either “above” or “below” it. We now prove the continuity of the Poincaré Map to
show that there are delays such that the next intersection is exactly x.

The continuity of Poincaré Map is classically deduced from the Implicit Function Theorem,
see e.g. [313, Section 5.2, Theorem 2.1]:
Theorem 3 (Implicit Function Theorem). Consider a continuously differentiable function
F : Rn+1 → R and x0 ∈ Rn, y0 ∈ R such that ∂F

∂y (x0, y0) is non-zero. Then there
exists an open set U ⊆ Rn containing x0 such that there exists a unique continuously
differentiable function h : U → R such that h(x0) = y0 and F (x, h(x)) = F (x0, y0) for
all x ∈ U .
Lemma 6 (Continuity of Poincaré Map). Consider two continuously differentiable func-
tions f, g : R2 → R, and let G = {x | g(x) = 0 }. Consider any open set A for which
A ∩ G = ∅. If for all x ∈ A, z = P fG(x) is defined, and ∇g(z) · f(z) 6= 0, then the
Poincaré Map P fG(x) restricted to A is continuous.

Proof. Consider a point x0 ∈ A. Let t0 = τfG(x0) and F (x, t) = g(φf (x, t)), we have
F (x0, t0) = 0. Furthermore

∂F

∂t
(x0, t0) = ∇g(φf (x0, t0)) · ∂φf (x0, t0)

∂t
= ∇g(φf (x0, t)) · f(φf (x0, t0))

which is nonzero by assumption. Therefore, by Theorem 3, there exists an open set U ⊆ R2

containing x0 and a unique continuously differentiable function h such that F (x, h(x)) = 0

for each x ∈ U . By the unicity of h, we know that P fG(x) = φf (x, h(x)) for each x ∈ U .
Since the function h(x) is continuous in x and the function φ is continuous in x and t by
Lemma 1, the Poincaré Map P fG(x) is continuous in x0.

Remark 10. The continuity of the Poincaré Map cannot be readily generalized to the hybrid
automaton context. Given planar SH , the Poincaré Map may have discontinuities in x and
in the delay in the transition. Discontinuities in x may happen if the trajectory is tangent to
the switching surface while discontinuities in the delay in the transition may happen when
the time spent in Dom(2) is exactly the delay in the transition. Figures 6.13a and 6.13b
illustrate these examples.

130

6.4. ORBIT AND STABILITY

While the Poincaré Map is not continuous everywhere, under some assumptions that will be
stated, our argument only relies on its continuity on regions where it is locally continuous.

(a) (b)

Figure 6.13: Illustrations of Remark 10. Discontinuities in x may happen if the trajectory
is tangent to the switching surface (a), and discontinuities in the delay in the transition may
happen when the time spent in Dom(2) is exactly the delay in the transition (b). The axis
refer to the dimensions in the state-space.

In view of the statement of Lemma 6, we add the following two assumptions.
Assumption 5. We assume that for every point x ∈ relint(Dom(2)), the point y =

P f2G (x) is such that the surface normal ∇g(y) and f2(y) are not perpendicular, that is,
∇g(y) · f2(y) 6= 0.
Assumption 6. We assume that for every point x ∈ S̃p, the point y = P f1G (x) is such that
the surface normal ∇g(y) and f1(y) are not perpendicular, that is,∇g(y) · f1(y) 6= 0.
Lemma 7. Consider a planar BMS S as defined in Definition 29 satisfying Assump-
tion 5, and a Poincaré curve Sp satisfying Assumptions 4 and 6. For any point x0 ∈ S̃p,
the Poincaré Map Q(x0, h1, h2) is defined and continuous with respect to x0, h1 ∈
[0; τf1G (P f1G (x))[and h2 ∈ [0;T2[where T2 is defined in Equation (6.7).

Proof. Let x1, x2, x3, x4 be as defined in Equations (6.8) and (6.9) and x5 denoteQ(x, h1, h2).

By Assumption 4 and Lemma 6, x5 depends continuously on x4 and by Lemma 1, x4

depends continuously on h2 hence x5 depends continuously on h2.

By Lemma 1, x4 depends continuously on x3 and by Assumption 5 and Lemma 6, x3

depends continuously on x2 hence x5 depends continuously on x2.

By Lemma 1, x2 depends continuously on h1 hence x5 depends continuously on h1.

By Lemma 1, x2 depends continuously on x1 and by Assumption 6 and Lemma 6, x1

depends continuously on x0 hence x5 depends continuously on x0.

131

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

Remark 11. Continuity of trajectories with respect to the state x is similar to incremental
stability, see e.g. [146] for a definition of this concept. However, incremental stability is a
stronger notion as it requires contraction in addition to continuity.
Proposition 6. Given a delay H < T2 (where T2 is defined in Equation (6.7)), a planar
hybrid automaton SH as defined in Definition 30, with a Poincaré curve Sp as defined in
Equation (6.5). Under assumptions 3 to 6, If the equilibrium x∗ ∈ Rn of SH is not GAS
and H < T2, then SH admits a closed orbit.

Proof. Suppose by contradiction that there exists H such that SH is not GAS but does not
admit any closed orbit. Consider one such value of H . By Lemma 4 and Lemma 5, there a
point x ∈ Rn, delays 0 ≤ h1, h1 ≤ H and 0 ≤ h2, h2 ≤ H such that

x ∈ [Q(x, h1, h2),Q(x, h1, h2)]Sp .

By Lemma 7, there exists min(h1, h1) ≤ h1 ≤ max(h1, h1) and min(h2, h2) ≤ h2 ≤
max(h2, h2) such that Q(x, h1, h2) = x. This contradicts the fact that SH admits no
closed orbit. Hence the proof is complete.

The above claim allows us to find the maximum switching delay σ(S) (solution to Prob-
lem 2) by solving the following problem:

σ̂(S) = inf
H≥0

H s.t. SH admits a closed orbit. (6.13)

Theorem 4. Given a planar BMS S as defined in Definition 29 satisfying Assumption 5
and a Poincaré curve Sp as defined in Equation (6.5) satisfying Assumptions 3, 4 and 6,
and σ(S) < T2 (where T2 is defined in Equation (6.7)), the identity σ(S) = σ̂(S) holds.

Proof. The inequality σ(S) ≤ σ̂(S) follows from Proposition 5 and we show σ(S) ≥ σ̂(S)
by contradiction. If σ(S) < σ̂(S) then there exists a delay H such that σ(S) < H < σ̂(S).
Since σ(S) < H , the equilibrium x∗ is not GAS for SH . Therefore, by Proposition 6, SH
admits a closed orbit. This is in contradiction with H < σ̂(S).

6.5 Results
This section shows how Theorem 4 can be applied to compute the MSD σ(Swc) in Prob-
lem 2, for the bouncing ball example, introduced in Section 6.2.

As discussed in Section 6.4, we can restrict our attention to orbits of the form T Q(x, h1, h2)
where x ∈ S̃p. That is, we have

σ̂(S) = inf
(x,h1,h2)

max(h1, h2) s.t. Q(x, h1, h2) = x.

This constrained 3-dimensional nonlinear optimization problem can be reduced to the
following unconstrained 2-dimensional nonlinear optimization problem:

σ̂(S) = inf
(x,h1)

max(h1, h2
?(x, h1)) (6.14)

132

6.5. RESULTS

0.24 0.242 0.244 0.246 0.248

1.42

1.44

1.46

1.48

1.5
·10−3

x

m
a
x
(0
,h

2
?
(x
,0

))

Figure 6.14: Upper bound provided by the closed orbit as a function of the point of the
Poincaré curve contained in the orbit. The delay h1 used by the orbit is 0 and the delay h2

is h2
?(x, 0).

where h2
?(x, h1) = min{h2 | Q(x, h1, h2) = x }. This reduction is possible because,

given fixed values of x and h1, the value of h2
?(x, h1) is straightforward to compute.

Indeed, let y ∈ G be such that P f1Sp(y) = x, we have

h2
?(x, h1) = τf2T (x2)− τf2G (x2)

where T = T P f1Sp(y) and x2 is defined in Equation (6.8). For a given accuracy, h2
?(x, h1)

can be computed using classical simulation methods for nonlinear systems (see e.g. [87])
as follows. For a given point x ∈ S̃p, we precompute the trajectory T with a time steps
determined by the required accuracy. Then we compute the point τf2T (x2) by first simulating
the trajectory with a coarse time step. Let t, z be the last element of the sampled trajectory
before the intersection with T . We have τf2T (x2) = t+ τf2T (z) and τf2T (z) is smaller than
the time step used to simulate the trajectory starting at x2. We can therefore estimate τf2T (z)
with a refined time step. This procedure can be applied recursively. This recursion is rather
cheap computationaly but increasing the number of recursion layers is not sufficient as at
some point, the accuracy will be limited by the time step used for computing the trajectory
T .

In the example introduced in Section 6.2, the optimal solution of the problem (6.14)
with accuracy 10−9 is given at x? ≈ 0.24579453, h1

? = 0 and h2 = h2
?(x?, 0) ≈

0.0014128697. We illustrate the objective function along the line h1 = 0 in Figure 6.14.
We used the library described in [311] to simulate the nonlinear system.

6.5.1 Comparison with State of the Art
Reachability techniques can be used to approximate σ(S) by trial and error. For ex-
ample, replacing the non-linear drag term in the bouncing ball example (−da/mx2 |x2|

133

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

−0.8 −0.6 −0.4
1.62

1.62

1.62

1.62 ·10−3

x

h
2
?
(x
,0
.0

)
Figure 6.15: Affine bouncing ball model results. Plot of h2

?(x, h1) as a function of the
point of the Poincaré curve, and h1 = 0 (recall Equation (6.14)).

in Equations (6.1) and (6.2)) by a linear term −da/m with da = 10−6, allows us to
use SpaceEx [129] with the model depicted in Figure 6.16, which is the same as SH
except the equations are affine. Applying our algorithm to the affine bouncing ball
model with h1 = 0, yields the values for h2 as plotted in Figure 6.15. The mini-
mum is h2

?(x, 0.0) = 0.001623205 at x = −0.4991045. To check these results, we
ran SpaceEx with the initial conditions x = −0.4991045, v = 0.0 and parameters
h1 = 0, 0 < h2 < 0.001623205. A fixed point was not reached, but the intermediate
state space, shown in Figure 6.17, hints at the correctness of our result: the trajectories
do not reach x < −0.4991045. Compared to our algorithm, this trial and error process to
find the solution to Equation (6.14) is not feasible in practice, but can be used to check the
solution found.

Figure 6.16: Delayed transition SpaceEx affine model of the bouncing ball example.

134

6.6. RELATED WORK

Figure 6.17: Clipped state space output, produced with SpaceEx.

6.6 Related Work
We have collected related works from three fields: stabilization of Networked Control
Systems (NCS), simulation of colliding bodies, and co-simulation of hybrid systems.
Compared to our work, most research works focus on linear (or affine) systems while
our approach, although restricted to planar system, is developed in the general setting of
nonlinear systems.

In the domain of network control, we found only one paper ([199]) that considered explicitly
the delays in the switching signal. In [199], the authors focus on the state-feedback
stabilization of LTI systems that can be remotely controlled over a multi-hop network.
In contrast, we focus on non-linear planar systems with one switching surface. Their
approach uses Joint Spectral Radius to prove stability, which is undecidable in general
(recall Chapter 5).

The works in [36, 113, 174, 175, 177, 381] consider the stabilization of a NCS under
delayed sampling and actuation signals, communication constraints, quantization, and
packet dropouts. Our work focuses solely on the delays regarding the mode switching
signal. Depending on the dynamics of each mode, it can be possible to encode the delayed
counterpart of a BMS (Definition 30) as a NCS where the delayed switch between modes
is emulated by the delayed input to the plant in the NCS. However, this is not in general
possible for non-linear dynamics.

In the domain of animation of colliding multi-body systems, the focus is on detecting that
collisions have occurred without allowing too much interpenetration of objects (see, e.g.,
[96, 111, 259, 347]). This is usually attained by relying on step-size control algorithms
and backtracking. Our work might be applied to determine the simulation step size that
ensures stable simulation results, without relying on expensive backtracking and correction
techniques.

Regarding the approach followed, we highlight [36, 145].

In [36], the delayed system is formulated as a hybrid system. Then, the stability of which

135

CHAPTER 6. STABILITY PRESERVATION IN HYBRID CO-SIMULATION

is proven if a Lyapunov function can be found, using the sum of squares [290] approach.
This allows to cover polynomial hybrid systems. Note that their approach only provides a
procedure to approximate the optimal value of Problem 2.

The work in [145] provides a comprehensive study of the dynamics of planar systems with
the form ẋ = Ax+ sign(wTx)v, with A a constant matrix. Moreover, Poincaré maps are
also used to analyze the stability of periodic motions ([145, Section 5.2]).

6.7 Concluding Remarks
Motivated by practical problems in the numerical simulation of Hybrid Systems, we have
studied how a delay in the detection of mode transitions can impact the quality of the
result of the numerical simulation. It turns out that this delay may have a crucial impact
on the result, as it may turn a stable Hybrid System into an unstable behaviour in the
numerics.

Our goal was to provide a fundamental study of this phenomenon, and we have focused here
on planar systems. A natural first research question aiming at understanding the problem is
to characterize the threshold between stability and instability of the simulated trajectories,
when the true system is stable. Already for this simple case, the results that allow us to
compute the maximal allowed delay ensuring stability of the simulated trajectories are
non-trivial.

We have connected the problem with classical techniques in the analysis of Dynamical
Systems, such as Poincaré maps and topological arguments. However, we showed that in
Hybrid Systems, more complex phenomena can occur, which make these classical tools
insufficient to solve the problem. We pushed further these techniques, which allowed us,
under mild assumptions, to compute this maximal delay for planar systems.

Limitations and Assumptions Regarding the generalization of these results to non-
planar systems, the major obstacle is that Theorem 4 cannot be generalized: it is easy to
image a system with a 3-D spiraling behavior, which is unstable, but no cycle can ever be
found. If one can prove that a projection of the system can be made onto a plane, and that
the hidden variables are not affected by the delay, then maybe we can apply the results in
this chapter.

Most of the assumptions made constraint the placement of the Poincaré surface, and are
there in order to ensure continuity of the Poincaré map, which we need to reduce the
problem of stability into a problem of finding a cycle. For systems with more than two
modes, it might be possible to generalize if we consider all permutations of modes where
cycle can occur.

We showed that traditional reachability analysis techniques do not scale to solve this
problem satisfactorily.

We hope that this work will provide a better understanding of the problem, of high im-
portance in numerical simulation, and will lead to the estimation of the maximal allowed
delay for more complex, or higher dimensional, hybrid systems than the ones studied
here.

136

Chapter 7

Semantic Adaptation

Disclaimer The content in this chapter is adapted from:

• GOMES, CLÁUDIO, Bart Meyers, Joachim Denil, Casper Thule, Kenneth Laus-
dahl, Hans Vangheluwe, and Paul De Meulenaere. “Semantic Adaptation for
FMI Co-Simulation with Hierarchical Simulators.” SIMULATION, 2018, 1–29.
https://doi.org/10.1177/0037549718759775.

The previous two chapters have focused on fundamental challenges in co-simulation, and
have shown the impact of the configuration of each simulator in the co-simulation. In this
chapter, motivated by practical issues, we develop an approach to change the configuration
of each simulator, without having to ask its original developer.

7.1 Introduction
The FMI standard provides a common interface to allow a uniform communication with
the black boxes, solving the combinatorial explosion of import/export formats (recall
Section 3.7). However, it does not ensure that the black boxes are interacted with in a
semantically correct manner, and that their implementation is satisfactory.

These aspects are important because:

• as shown in Chapter 5, and later in Chapter 8, different implementations of an FMU
can lead to fundamentally different co-simulation results (.e.g, failure to preserve
stability); and

• as shown in Chapter 3, the accuracy of a co-simulation is often controlled by the input
approximation schemes of the FMUs, which means that a single badly implemented
FMU can make the co-simulation results worthless.

When an FMU does not behave as it is expected to, we say that there is an interaction
mismatch between the FMU and the co-simulation scenario. Prior work [59, 61, 110, 251,
267] suggests that these mismatches can be roughly classified as:

Signal Data Mismatch happens when the signals provided by the FMU are not compatible
with the ones that are expected (e.g., different frame of reference, different physical

CHAPTER 7. SEMANTIC ADAPTATION

units).
Model of Computation Mismatch happens when the provided FMU assumes a different

model of computation [231] than the one actually used to compute the overall
behavior of the system (e.g., FMUs exported by a timed automata modelling and
simulation tool [288, 353] have to make assumptions about the other interacting
FMUs).

Capability Mismatch happens when a given FMU lacks some capabilities (recall the
capabilities identified in Chapter 3) that affect the simulation performance (e.g.,
FMUs that lack higher order input extrapolation, an important capability that affects
the accuracy and stability of the co-simulation [24, 71]).

Rather than requiring the original producer of the FMU to correct an interaction mismatch,
it can be useful that the team is able to correct it immediately. Moreover, as we later show
in Chapter 8, it is not always clear what the correct implementation of the FMU should
be. This means that mismatches can happen between a given FMU and a usage intent, and
therefore it is not necessarily the case that the best correction of a mismatch is done by the
producer, if the FMU is to be reused. In fact, as [24, 35, 153, 155] and Chapter 8 show,
some mismatches occur because of the way the FMUs are coupled, and the correction has
to be done for that specific co-simulation scenario.

Informally, we call semantic adaptation of an FMU to the set of modifications made to the
inputs/outputs and interaction with environment, of the FMU, with the purpose of correcting
an interaction mismatch.

The above arguments motivate the need for semantic adaptations, and lead to the following
research question:

RQ1 How can we describe the most common semantic adaptations on multiple types
of black box FMUs in a productive manner, and realise them without violating
modularity and transparency.

Productivity is related to the effort required to describe an adaptation. Modularity refers
to the fact that any FMU should be adapted by changing how it is interacted with, and not
how it is implemented. Transparency means that any tool that imports FMUs should not
have to be changed in order to import, and interact with, an adapted FMU.

The descriptions should be made in an independently developed language because it is
impractical that every tool capable of importing FMUs is able to implement the adaptations.
Furthermore, one cannot expect that any user of an FMU has the ability to modify the
importing tool to support these. Compared to implementing these adaptations manually,
a language reduces the accidental complexity, prevents mistakes, and allows soundness
analyses to be carried out.

In this chapter, we build on prior work [110, 251, 358] to define a language that allows
for the descriptions of the most common semantic adaptations that can be used in FMI
co-simulation, surveyed in [157]. A distinct feature of the language proposed here is that it
describes adaptations for groups of interconnected FMUs in the same way as for a single
FMU, thanks to a sound definition of hierarchical co-simulation.

The definition of hierarchical co-simulation, and the semantics of the language, are pre-
sented in a bottom up approach, as illustrated in Figure 7.1. In Section 7.2, we introduce a
co-simulation abstraction with simulation units and how these relate to FMUs. Section 7.4

138

7.2. BACKGROUND

contains the formal foundations of a special kind of simulation unit that is the template to
implement any semantic adaptation. In Section 7.3, a running example is described, and in
Section 7.5 the language and its semantics are described. Section 7.6 judges how well we
have addressed the research question. Section 7.7 discusses the flaws of our approach and
research opportunities. Finally, Sections 7.8 and 7.9 present the related work and conclude
this chapter, respectively.

DSL

maps to

Init, In, MapIn,
Ctrl, MapOut, Out

Generic Hierarchical
Simulation Unituses

specializes

Simulation Unit

maps to

FMU

Section ``A DSL for Semantic Adaptation"

Section ``Hierarchical Co-simulation
 for Semantic Adaptation"

Section ``Background"

Figure 7.1: Overview of DSL semantics and chapter structure.

7.2 Background
In this section, we introduce the concepts, terminology, and assumptions used throughout
this chapter. These refine the concepts introduced in Chapter 2 and Section 3.7. We cover
the Functional Mockup Interface (FMI) standard, semantic adaptation, and domain specific
languages.

7.2.1 Co-simulation
Recall the following concepts, described in Section 3.7: dynamical model, simulation,
simulation unit, master algorithm, and co-simulation scenario.
Definition 34 (Simulation Unit). We capture the essence of a simulation unit with reference
i, using the discrete time system notation, in one of the following four possible ways:〈

xi(t+ H̃i), H̃i

〉
= Fi(t,H,xi(t),ui(t+H)︸ ︷︷ ︸

reactive

or ui(t)︸ ︷︷ ︸
delayed

)

yi(t) = Gi(t,xi(t),ui(t))︸ ︷︷ ︸
Mealy

or Gi(t,xi(t))︸ ︷︷ ︸
Moore

xi(0) = Init i(ui(0))︸ ︷︷ ︸
reactive

or Init i()︸ ︷︷ ︸
delayed

,

(7.1)

where t denotes the simulated time, xi denotes the state vector, ui the input vector,
Init i computes the initial state, H > 0 denotes the requested communication step size,
0 < H̃i ≤ H denotes the communication step size taken by the unit, Fi is the state
transition function, and Gi the output function.

139

CHAPTER 7. SEMANTIC ADAPTATION

Bold symbols will always refer to vectors in this chapter.

Definition 34 covers the different kinds of simulation units considered (based on the master
algorithms surveyed in [157]): Reactive Mealy, Reactive Moore, Delayed Mealy, and
Delayed Moore. The difference is in how the unit expects all inputs to be provided. For
example, a delayed Moore unit can compute its output without requiring an input, and can
compute its future state (xi(t+ H̃i)) with just the current input ui(t). A reactive Mealy
unit, on the other hand: requires an initial input to compute the initial state; and needs to
know the next input in order to compute the next state/output.

We use shortcuts such as Fi(t,H,xi(t), . . .), Gi(t, . . .), and Init i(. . .), to denote the
appropriate function depending on the kind of unit i. Furthermore, note that Fi and Gi are
mathematical functions (also denoted pure).

We make the following assumptions about each simulation unit i.
Assumption 7. The internal definition of Fi and Gi is unknown, but the kind of unit
(Definition 34) is known.
Assumption 8. If

〈
·, H̃i

〉
= Fi(t,H,xi(t), . . .) and H̃i < H , then unit i rejects the

step size H requested. Furthermore, for any H̃ ≤ H̃i, we assume that
〈
·, H̃

〉
=

Fi(t, H̃,xi(t), . . .).

Assumption 7 reflects the fact that the FMI standard does not include information about
the reactivity of the units. Therefore, the works in the state of the art make a similar
assumption. Assumption 8 reflects the FMI standard protocol to detect when a step size as
been rejected.

Given a set of unique unit references D = {1, . . . , n}, a co-simulation scenario is defined
as the aggregation of each simulation unit (Definition 34), plus a coupling function that
defines the input of i as a function of the outputs of units {j : j ∈ D \ {i}}. Formally,
combining the notation used in [24, 217], a scenario is given by:

〈
xi(t+ H̃i), H̃i

〉
= Fi(t,H, . . .)

yi(t) = Gi(t, . . .)

ui = ci(y1, . . . ,yi−1,yi+1, . . . ,yn)

xi(0) = Init i(. . .)

for each i ∈ D

(7.2)

where ci denotes the coupling function, and each Fi, Gi follows Definition 34. Commonly,
ci is linear and maps at most one component of one of the inputs (the inputs/outputs are
vector quantities), onto one component of the output. We assume that ci is linear.

Let i, j ∈ D be two different units, and 0̄ be the zero matrix of appropriate dimension.
If ∂ci

∂yi
6= 0̄, then i gets part of its input from j. Informally, this means that at least one

component of ui = ci(. . .) is determined by at least one component of yi. We say that a
unit i ∈ D depends algebraically on unit j ∈ D, if i gets part of its input from j and i is
not a delayed Moore. So, e.g., if i gets part of its input from j, but it is a delayed Moore,
then i does not depend algebraically on j.

Using the algebraic dependency relationship, one can build a directed graph — called
the dataflow graph — with one node ni per simulation unit i ∈ D, and an edge (nj , ni)

140

7.2. BACKGROUND

between two nodes nj , ni whenever the unit i depends algebraically on unit j. This
procedure is based on the Causal Block Diagram Simulation algorithm [151, 304]. A
topological order of the resulting graph gives an execution order that respects the units’
algebraic dependencies.

Depending on the coupling function and on the kind of simulation units being coupled,
algebraic loops may occur. An algebraic loop includes any input/output/state that depends
on itself, at the same time point [217].

If an algebraic loop exists between the units, then it is not possible to compute a topological
ordering of the dataflow graph. For now, to simplify the explanation, we assume that such
topological order can always be computed for a given co-simulation scenario. We denote
that order via a mapping σ : N→ D, that returns the unit reference σ(j) that is the j-th in
the topological order. So σ(1) gives a unit that is first in the topological order, i.e., has no
algebraic dependencies. This procedure is revisited in Chapter 8.

With a well defined topological order, the master only has to provide inputs to, execute,
and get outputs from, the units in that order. Algorithm 6 formalizes what is known in
the state of the art as the Gauss-Seidel master. It computes the behavior trace of a given
co-simulation scenario as described in Equation (7.2). To be concise, we abbreviate the
output and state transition function calls, which depend on the kind of unit (lines 11, 19,
and 21). Furthermore, the master provides the inputs (ucσ(j) or upσ(j), in line 19) that
each unit expects, working for both reactive and delayed units alike.

We single out Algorithm 6 in this chapter because it supports all kinds of simulation units.
It therefore forms the basis for the formalization of hierarchical co-simulation units.

Without loss of generality, we assume the most basic step size control policy in Algorithm 6:
the communication step size is never increased after being rejected by some unit1. The
master uses the most recent consistent state.

7.2.2 Functional Mock-up Interface Standard (FMI)
The FMI standard [48] defines the interface and interaction pattern that allows simulation
units to communicate. In the standard, a simulation unit is called a Functional Mockup
Unit (FMU).

7.2.2.1 FMUs and Simulation units

This subsection establishes the equivalence between FMUs and simulation units (recall
Figure 7.1), and the assumptions we make throughout this document.

Given a simulation unit i (Definition 34) we define its equivalent FMU, and vice versa, as
follows:

FMU State – The state of the FMU corresponds to the state of the unit xi. The FMU does
not make the state explicit, but instead implements functions that can be used to set
and retrieve the state.

Inputs – FMUs have input ports, each accepting a scalar quantity. Each dimension in the in-
put ui corresponds to one input port of the FMU. The FMU implements functions that

1Algorithm 6 can be greatly optimized (e.g., rolling back as soon as a reject occurs).

141

CHAPTER 7. SEMANTIC ADAPTATION

ALGORITHM 6: Gauss-seidel master for co-simulation scenarios can be topologically sorted.
Data: The stop time T , a starting communication step size Ĥ , and a set of unit referencesD = {1, . . . , n}.

1 t := 0 ; // Simulation time

2 H := Ĥ ; // Communication step size
// Initialize variables

3 for i = 1, . . . , n do
4 xi := 0 ; // State vector
5 uci := yi := 0 ; // Current I/O variables
6 upi := 0 ; // Previous input variables
7 end
// Compute initial states

8 for j = 1, . . . , n do
9 ucσ(j) := cσ(j)(y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn) ;

10 xσ(j) := Initσ(j)(ucσ(j)) or Initσ(j)()
11 yσ(j) := Gσ(j)(t,xσ(j), ucσ(j)) or Gσ(j)(t,xσ(j));
12 upσ(j) := ucσ(j) ;
13 end
14 while t < T do
15 accepted := false ;
16 while not accepted do
17 for j ∈ (1, . . . , n) do
18 ucσ(j) := cσ(j)(y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn) ;

19
〈
x̃σ(j), H̃σ(j)

〉
:= Fσ(j)(t,H,xσ(j), ucσ(j) or upσ(j)) ;

20 yσ(j) := Gσ(j)(t+ H̃σ(j),xσ(j), ucσ(j))

21 or Gσ(j)(t+ H̃σ(j),xσ(j));
22 end
23 H̃ := mini∈D(H̃i) ;
24 if H̃ < H then
25 H := H̃ ;
26 else
27 accepted := true ;
28 end
29 end

// Commit state and update I/O
30 for j = 1, . . . , n do
31 xi := x̃i ;
32 upi := uci ;
33 end
34 t := t+H ; // Advance time
35 end

allow the master to set those inputs (e.g., fmi2SetReal and fmi2SetInteger)
and a single vector quantity ui can be set via multiple calls to those functions.

Outputs – The outputs of the FMU are analogous to the inputs. To obtain an output
yi, multiple calls are made to the dedicated functions (e.g., fmi2GetReal and
fmi2GetInteger).

Initial State – The initial state computed by the Init i function corresponds to the compu-
tation performed by the FMU in the initialization mode.

Co-simulation Step – A state transition invocation
〈
x̃i, H̃i

〉
:= Fi(t,H,xi,ui) is mapped

to (in order): an optional invocation to set the state of the FMU to xi; multiple invo-
cations to set the input ui; an invocation to the fmi2DoStep function; a query to
find out up to which time the FMU computed the step (to get H̃i); and an (optional)
invocation to get the new state of the FMU x̃i. The manipulation of the state is
optional for master algorithms that do not perform rollback operations.

Output Function – If the unit is a Mealy unit, then the execution of the output function
yi := Gi(t,xi(t),ui(t)) corresponds to setting the inputs to the FMU, and then

142

7.2. BACKGROUND

getting the outputs. If the unit is a Moore unit, then the outputs can be enquired
without first setting the inputs.

Assumption 9. We assume that an initial state of a unit/FMU can always be found from
the Init(. . .) function (and initial input, in case of a reactive unit).
Assumption 10. Every FMU supports rollback.

Assumption 9 is in accordance with the FMI Standard, but it restricts our scope to scenarios
were the consistent initial state of one unit depends on factors (e.g., the initial state of
another unit) other than its initial inputs.

It is the role of the master to set the appropriate inputs depending on whether the FMU is
reactive or delayed, or Mealy and Moore.
Assumption 11. We define the type of the FMU by applying the following rules, in order:

1. If the unit does not disclose any input-to-output feed-through, it is assumed to be
Mealy.

2. If at least one output variable depends instantaneously on an input variable, we
assume that the unit is Mealy.

3. If the previous two do not apply, the unit is assumed to be Moore.
4. If the capability flag canInterpolateInputs is set, then the unit is reactive.
5. Otherwise, the unit is delayed.

To establish the equivalence of the couplings restrictions of units and those of FMUs, we
note that the definition of algebraic dependency remains the same between FMUs. Thus,
the dataflow graph can be built as described in the previous subsection.

Having established the equivalence between simulation units and FMUs, we will henceforth
use the two terms interchangeably.

7.2.3 Semantic Adaptation
The interface of an FMU (or of a simulation unit) comprises not only the specification of
the inputs and outputs, but also how it is to be interacted with [251]. It may be the case that
in different co-simulation scenarios, the same FMU has to be interacted with differently
(e.g., for accuracy/performance concerns). While modifying the master to support a new
interaction pattern will solve the problem, it is not ideal since: (i) the interaction pattern
may be specific to a single FMU (therefore not reusable), and (ii) modifications to the
master may require extensive testing to ensure that it retains its correctness properties (e.g.,
see [143]).

Our work avoids changes to the underlying master algorithm, and focuses those changes
around the FMU itself in the form of semantic adaptations, using hierarchical co-simulation.

An adaptation targets an FMU, or group of FMUs, which we will call the internal FMU(s),
and the end result of an adaptation is a new FMU, which we call external FMU. The
external FMU interacts with the internal FMU(s), without requiring them to be modified
(modularity). The adjectives internal and external reflect the hierarchical nature of our
approach and are illustrated in Figure 7.2.

We introduce below a non-exhaustive list of semantic adaptations that can be classified
according to the interaction mismatch they intent to correct:

Signal Data Mismatch: Conversion of Units and Reference Frame translation.

143

CHAPTER 7. SEMANTIC ADAPTATION

FMU 1

Coupling

FMU N

Internal FMUs

External FMU

Semantic Adaptation

Figure 7.2: Internal FMUs, External FMU, and Semantic Adaptation.

Model of Computation Mismatch: Hold, Quantization, Data Triggered Execution, and
Timed Transitions.

Capability Mismatch: Interpolation/Extrapolation of Inputs, Fixed Point Iteration, Multi-
Rate Adaptation, Time and Partial Derivative Adaptation, Accurate Threshold Cross-
ing, and Re-Initialisation.

See [150, 157] and references thereof, for variants of these adaptations.

7.2.3.1 Conversion of Units and Reference Frame Translation

The conversion of units and reference frame adaptations, take an internal FMU and create
an external FMU whose inputs/outputs are algebraic transformations of the input/outputs of
the internal FMU.

7.2.3.2 Interpolation/Extrapolation of Inputs

An FMU that stands for a continuous system, such as a DC motor, approximates its behavior
trace by discretizing the time continuum into a finite set of points [87] and applying a
numerical method at each of those points.

In co-simulation, when the master asks an FMU to compute the behavior trace over an
interval of time, from t to t+H , the FMU discretizes the interval and computes the internal
solution at each of these points, called micro-steps. The most common FMUs assume that,
in between t and t+H the inputs provided by the master are constant. Naturally, for large
H , this assumption causes a significant error in the co-simulation [19, 23, 71, 329].

Instead of reducing H , it is possible to adapt the FMU to better approximate its inputs.
Essentially, the external FMU discretizes the interval t→ t+H and runs the state transition
function of the internal FMU multiple times, providing an approximated input at each of the
time points. The internal FMU will still assume a constant input, but will do so in smaller
intervals of time.

7.2.3.3 Fixed Point Iteration

If an algebraic loop exists, then the involved units will belong to the same cycle in the
corresponding dependency graph.

As proposed in [150, 358], given a co-simulation scenario (recall Equation (7.2)) that has
one cycle involving at least two simulation units (non-trivial), it is possible to create an

144

7.2. BACKGROUND

external FMU that replaces all the units in the cycle. All the couplings external to the cycle
become couplings to the hierarchical simulation unit.

At each state transition of the external FMU, a fixed point iteration technique is applied to
the inputs/outputs of the internal FMUs.

If a scenario has multiple non-trivial cycles, this adaptation can be applied to reduce the
scenario to one where all the algebraic loops are solved [358]. Algorithm 6 can then be
applied to compute the co-simulation.

7.2.3.4 Multi-Rate Adaptation

For FMUs simulating first order Ordinary Differential Equations (ODE), the larger the inter-
val between the points, the less accurate the computed behavior trace will be [69].

The multi-rate adaptation is used to increase the accuracy while not sacrificing the per-
formance in a co-simulation. Applied to co-simulation, the technique, well known in the
circuit simulation domain [235], consists of a groups of interconnected internal FMUs
that communicate more frequently [162, 358]. This can serve two purposes: optimize the
communication cost between the internal units [150], or optimize the accuracy of the co-
simulation (especially when the internal units are physically tightly coupled [157]).

Similarly to the input extrapolation adaptation, the state transition function of the external
unit instructs the internal units to perform multiple steps and exchange values at each of
those steps. The higher the rate of the adaptation, the higher the number of internal steps
performed.

This adaptation can be combined with the approximation of inputs adaptation, to provide
for approximated inputs at each of the internal state transition invocations.

7.2.3.5 Time and Partial Derivative Adaptation

Time and partial derivative information about each simulation unit’s outputs can be used to
optimize the co-simulation process in many different ways (e.g., see [332]).

In the FMI standard, since the FMUs can optionally provide time and partial derivative
information, it is often the case that some units do not support it. To mitigate this, a
derivative adaptation can be used to produce an external FMU that provides (numerically
estimated) partial and time derivatives.

7.2.3.6 Accurate Threshold Crossing

A co-simulation trace is more accurate if all units exchange values at the time when a
certain signal crosses a given threshold. The problem of accurately finding that time is well
known in the hybrid system simulation domain [260, 388] and many techniques exist to
address it [69, 87]. In FMI co-simulation, the most basic technique to accurately locate a
crossing consists of rejecting a step size and proposing a new one, that possibly coincides
with the threshold crossing moment.

The accurate zero crossing adaptation ensures that the external FMU rejects the proposed
step size when one of the inputs of the internal FMU crosses a significant threshold too late
[110].

145

CHAPTER 7. SEMANTIC ADAPTATION

7.2.3.7 Re-Initialisation

An internal FMU that is expecting a smooth input signal may yield unexpected behavior
trace when given a discontinuous signal (we consider a discontinuous signal to be a
sufficiently rapid changing one in between co-simulation communication points) [70, 71,
116]. For example, an FMU that is using a multi-step numerical solver which assumes the
input to be continuous (see, e.g., [20] for a possible solution to this problem).

A re-initialization adaptation ensures that the external unit: (1) locates accurately the time
of the discontinuity (e.g., in the same manner as the accurate crossing adaptation), and (2)
the external unit is properly reset before handling the new value of the input. In the FMI
standard, item (2) requires three steps: save the unit state; reset and initialize the unit; and
restore the state.

7.2.3.8 Quantization

Quantization is an adaptation commonly used to convert a continuous signal into a discrete
event one. The (continuous) set of possible input values is discretized into regions and,
during the co-simulation, whenever the continuous signal enters a new region, an event is
produced [53, 211].

In co-simulation, this adaptation transforms an internal FMU that expects continuous inputs
and produces continuous outputs, into an external FMU that deals with events (see, e.g.,
[31, 54, 79, 310]).

The realization of this adaptation is very similar to the zero crossing one, except that the
thresholds to locate are induced by the input space discretization.

7.2.3.9 Hold

The hold family of adaptations can be seen as the dual of the multi-rate adaptations.

If an internal FMU should run slower than the rest of the simulation units, then it can
be adapted with a hold adaptation. The external FMU will trick the master and obey to
the proposed step sizes, but will avoid executing the internal FMU every time a step is
requested. For example, if a zero order Hold adaptation is used, then the external unit
will produce an output that is equal to the most recent output produced by the internal
unit.

There are many variants of this adaptation, with varying degrees of accuracy, borrowed
from well known approximation techniques [69].

The two adaptations below are novel in FMI based co-simulation domain, but well known
in the discrete event domain.

7.2.3.10 Data Triggered Execution

The data triggered execution is an adaptation most useful when the modeller knows that a
particular internal FMU will only produce relevant behavior when certain conditions are
true over its inputs. The adaptation executes the internal FMU only when these conditions
are met.

146

7.3. RUNNING EXAMPLE

7.2.3.11 Timed Transitions

The time transition adaptation can be used when the internal FMU is known to have internal
state changes, triggered after a known amount of time. The adaptation will query the
internal FMU to know when exactly should the next state transition function call take place,
and will call it only when that time is arrived. It can be combined with the data triggered
execution to achieve a lazy execution of units.

Each of the semantic adaptations described above has many variants that make its ad-hoc
implementations not only error prone, but also tedious. Additionally, one can extract the
shared commonalities in the implementation of all semantic adaptations. The interplay
between many small variants and shared commonalities is one of the motivating factors to
use a Domain Specific Language for the description of the adaptations.

7.2.4 Domain-Specific Languages

Domain-specific languages (DSLs) offer a way to deal with the essential complexity of a
given domain, while avoiding its accidental complexity [205].

We highlight two important advantages that come from the use of a DSL in the context of
our contribution:

1. The most common tasks in the target domain are performed in a very simple, pro-
ductive, and intuitive manner (for a trained domain expert) — the descriptions made
in our DSL do not deal with the idiosyncrasies of an implementation of the FMI
Standard, even though a FMI compliant external FMU can be generated.

2. By maximally constraining the user, a DSL ensures that he/she makes less mistakes
and allows domain level validation — our DSL allows the user to specify extra infor-
mation that can be used to detect mistakes (a simple validation being the compatibility
of units in inputs/outputs).

7.3 Running Example
To showcase the language, the case study we present is adapted from a power window
system, described in [107, 307]. This system is the familiar automated car window, which
responds to the driver/passenger pressing up/down buttons to raise/lower it. If an obstruction
is detected, the window retracts for a few moments to avoid injury. This example was
chosen for its heterogeneity and need for semantic adaptations, described later.

power windowspeed (rad/s)

controller

armature_current (A)

up (Bool)

down (Bool)
environment

passenger_up (Bool)

passenger_down (Bool)

obstacle

height (cm)

reaction_torque (N.m)passenger_stop (Bool)

driver_down (Bool)

obj_detected (Bool)
reaction_force (N)

stop (Bool)

disp (m)

u (Real)

d (Real)

displacement (rad)

FMU

Legend

input/output (kind/units)

tau (N.m)driver_up (Bool)

driver_stop (Bool)

?

?
?

?
R./MooreR./Mealy R./Moore

R./Mealy

R./Mealy

Figure 7.3: Power window co-simulation scenario.

147

CHAPTER 7. SEMANTIC ADAPTATION

7.3.1 The Example Scenario
Figure 7.3 shows the co-simulation scenario of the power window, consisting of five FMUs,
with the illustrated input and output ports. The figure is a block representation of a co-
simulation scenario as described in Equation (7.2). The FMUs were produced by the
authors using independent tools.

The environment FMU, coded manually, is an abstraction of the behavior of the driver and
passenger. Whenever the driver/passenger pushes a button up/down, the respective output
will pulse to signal the event. When the button is released, the stop output pulses.

The controller FMU, produced from the Yakindu Statecharts tool, represents the software
subsystem that ensures the safe operation of the window. It gets boolean pulse inputs and
decides whether the motor should go up or down, through its boolean pulse outputs. If an
object is detected (that is, obj detected pulses) and the passenger (or driver) has pushed the
up button, then the controller should instruct the DC motor to go down for one second. This
is done by pulsing the down output and, after 1 second, pulsing the stop output.

The power is an ODE based unit, exported with OpenModelica, representing the DC motor
and the up/down switched circuit that drives the motor. Whenever the u input is bigger than
0.5, the DC motor moves the window up. Analogously, whenever the d input is bigger than
0.5, it moves the window down.

The window and obstacle are stateless units, coded manually, that map the inputs to the
outputs using algebraic equations. The obstacle FMU outputs a force proportional to how
compressed it is. Non-zero compression happens only when the input displacement exceeds
a given threshold (e.g., 0.45m).

An object is detected when the armature current spikes, caused by a sudden increase in the
reaction torque input of the DC motor, cause in turn by an increase in the reaction forced of
the object being compressed.

As illustrated in the figure, all units in this example are reactive, so the controller, power,
window, and obstacle form a single cycle. The power and controller are Moore and the
remaining units are Mealy.

Figure 7.4 shows the behavior trace of the example produced via a monolithic model
produced in OpenModelica [133]. In the figure, the driver continuously pushes the up
button, asking the controller to move the window up, but the controller detects an object
at about 2.5 seconds (due to the armature current spike), which causes it to override the
requests of the driver and retract the window for 1 second.

7.3.2 Semantic Adaptations
The scenario presented in Figure 7.3 cannot be used as is to compute a co-simulation as the
one shown in Figure 7.4 because the FMUs are incompatible.

The adaptations that need to be made were introduced in the “Background” section, and are
detailed in the list below and illustrated in Figure 7.5. These will be referred to throughout
this document.

lazy sa – for controller:
• execute only if the inputs change (data triggered execution).

148

7.3. RUNNING EXAMPLE

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
Time (s)

controller
u
d

−5

0

5

10

0 1 2 3 4
Time (s)

power
armature_current

0

1

2

3

4

0 1 2 3 4
Time (s)

window_sa
window.displacement

Figure 7.4: Power window monolithic simulation results.

• execute only when its state transition needs to be called (timed transition
adaptation) due to internal triggers. In FMI, this information can be obtained
by asking controller to perform a very large step.

• zero order hold its outputs.
controller sa – for lazy sa:

• map the armature current to a boolean signal object detected that is true when-
ever there is a threshold crossing. The condition that defines the crossing is
|armature current| > 52 and the lazy sa unit should be invoked at the time of
crossing.

• convert output, taking into account the stop signal.
window sa – for window:

• negate the reaction torque value;
• convert the units of height from centimetres to metres.

power sa – for power:
• ignore the algebraic loop between controller and power, and between the power

and window, by delaying the outputs of the power by one co-simulation step.
This effectively makes the external FMU a delayed unit.

loop sa – for window sa and obstacle:
• solve the algebraic loop between obstacle and window sa by successive substi-

tution providing an initial guess for height.
rate sa – in order to prevent divergence in the fixed point iteration caused by the above

adaptation, smaller communication step sizes should be taken between the obstacle
and the window FMUs. To this end:
• use a multi-rate adaptation, where loop sa is executed 10 times faster than the

remaining scenario.
• interpolate the input signal motor speed.

2The value 5 is used here for the purposes of illustration. In practice, it is obtained by calibration with the DC
Motor.

149

CHAPTER 7. SEMANTIC ADAPTATION

semantic_adaptation

power speed (rad/s)

armature_current (A)

up (Bool)

down (Bool)

tau (N.m)

obj_detected (Bool)

stop (Bool)

u (Real)

d (Real)

displacement (rad)

controller_sa

FMU
Legend

input/output (kind/units)

power_sa

Signal transform

window

obstacle

height (cm)

reaction_force (N) disp (m)

window_sa

loop_sa

controllerenvironment

passenger_up (Bool)

passenger_down (Bool)

passenger_stop (Bool)

driver_down (Bool)

driver_up (Bool)

driver_stop (Bool)

rate_sa

lazy_sa

R./MooreR./Mealy R./Moore

R./Mealy

R./Mealy

Figure 7.5: The modelled adaptations in the power window example.

7.4 Hierarchical Co-simulation for Semantic Adaptation

The most straightforward way of dealing with semantic adaptations is by creating a master
algorithm that implements them. There are multiple problems with this approach: 1) it
forces the master algorithm to be specific to the scenario, which hinders the potential
for reuse; and 2) it violates the transparency principle by not allowing the FMU (plus
adaptations) to be easily imported onto other tools that perform co-simulation, such as
Simulink R©, INTO-CPS [226], or DACCOSIM [136].

To avoid these problems, we implement the semantic adaptations as FMUs, in a hierarchical
way. In fact, our language defines semantic adaptations (plus internal FMUs) as FMUs
themselves, allowing for adaptations to be described “on top of” other adaptations. This
way, the master and semantic adaptations can be clearly separated, as well as the semantic
adaptations between themselves.

As part of our contribution, we extend the definitions provided in Section 7.2 to explain
what hierarchical co-simulation is, and we give an overview on how the main semantic
adaptations are implemented.

7.4.1 Hierarchical Co-simulation

Before giving the formal definition of hierarchical co-simulation, we start with an example
of a “default” hierarchical co-simulation unit is and does.

A default hierarchical simulation unit is one that wraps a set of connected internal units,
along with their inter-dependencies, and behaves in a manner that is indistinguishable from
any other simulation unit. The internal FMUs have internal inputs/outputs (in between the
units) and external inputs/outputs. This is called the default hierarchical unit because it
does not adapt the behavior of the internal units. It merely wraps them.

To give details about how the default hierarchical unit is constructed, we extend the
definition of co-simulation scenario to make the distinction between internal and external
inputs. Let uext denote the input vector that is external to the co-simulation scenario. A
co-simulation scenario with D = {1, . . . , n} units, and with external input uext , is then

150

7.4. HIERARCHICAL CO-SIMULATION FOR SEMANTIC ADAPTATION

described as:

〈
xi(t+ H̃i), H̃i

〉
= Fi(t,H, . . .)

yi(t) = Gi(t, . . .)

ui(t) = ci(uext(t),y1(t), . . . ,yi−1(t),yi+1(t), . . . ,yn(t))

xi(0) = Init(. . .)

for each i ∈ D

(7.3)

Given then a co-simulation scenario as defined in Equation (7.3), and assuming that the
topological order σ : N→ D is well defined, the default hierarchical reactive Mealy FMU
is constructed by:

1. aggregating the state xi and the previous input upi of each FMU i, into a single
entity x that becomes the state of the hierarchical unit;

2. implementing the state transition function as a single co-simulation step of Algo-
rithm 6.

Formally, the unit is defined as:〈
x(t+ H̃), H̃

〉
= F (t,H,x(t),uext (t+H))

y(t) = G(t,x(t),uext (t))

x(0) = Init(uext (0))

(7.4)

where: x = [up1, . . . ,upn,x1, . . . ,xn]
T is the total state vector and [·]T is the matrix

transpose operation; the initial state vector is calculated by the Init function, defined in
Algorithm 7, which finds the initial inputs and states to each of the internal units depending
on their types; uext is the external input vector; function G is described in Algorithm 8,
which computes the outputs of all internal units from the given inputs; and function F is
detailed in Algorithm 9, which executes a single co-simulation step of Algorithm 6 and
returns the minimum step size selected.

The construction of the default hierarchical reactive Moore, delayed Mealy, or delayed
Moore, is done similarly and we omit it. The next subsection presents similar constructions
for all kinds of units, incorporating adaptations.

The default hierarchical unit gives the basic transformation that underlies the semantic
adaptation of one, or a connected group of, internal FMUs. In the subsection below, we
describe the generic mechanism that enables the creation of hierarchical units with semantic
adaptations.

7.4.2 Generic Semantic Adaptation
Previous work [110, 251] supports the hypothesis that any semantic adaptation can be
described by the following elements, that mediate the interactions of the external FMU with
the internal units:

• external input rules, describing how the inputs provided to the external FMU are
stored in the state of the external FMU;

151

CHAPTER 7. SEMANTIC ADAPTATION

ALGORITHM 7: Init function of the default hierarchical reactive Mealy, described in Equa-
tion (7.4). This function initializes the child units according to their type (recall Definition 34).
The input to the initialization of each child unit may depend on the outputs of other units after
their initialization, hence this algorithm needs to propagate outputs to inputs.

1 Function Init(uext)
2 for i = 1, . . . , n do
3 xi := upi := yi := 0 ;
4 end
5 for j ∈ (1, . . . , n) do
6 upσ(j) := cσ(j)(uext ,y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);
7 xσ(j) := Initσ(j)(upσ(j)) or Initσ(j)() ;
8 yσ(j) := Gσ(j)(0,xσ(j), upσ(j))

9 or Gσ(j)(0,xσ(j));
10 end
11 return [up1, . . . , upn,x1, . . . ,xn]T ;
12 end

ALGORITHM 8: Output function of the default hierarchical reactive Mealy, described in
Equation (7.4). This function needs to exchange data of the child units before compute the output
of the hierarchical unit.

1 FunctionG(t, [up1, . . . , upn,x1, . . . ,xn]T ,uext)
2 for i = 1, . . . , n do
3 uci := yi := 0 ;
4 end
5 for j ∈ (1, . . . , n) do
6 ucσ(j) := cσ(j)(uext ,y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);
7 yσ(j) := Gσ(j)(t,xσ(j), ucσ(j))

8 or Gσ(j)(t,xσ(j));
9 end

10 return [y1, . . . ,yn]T ;
11 end

• internal input rules, detailing how the values stored internally are mapped into inputs
of the internal FMUs;

• control rules, determining what happens when the state transition function of the
external FMU is invoked;

• internal output rules, describing how the outputs of the internal FMUs are stored in
the state of the external FMU;

• external output rules, detailing how the values stored in the state of the external FMU
are mapped to output values of the external FMU;

This subsection formalizes how a generic external FMU incorporating the above rules is
constructed.

To formalize the above rules, we define the state of the external FMU. The external
FMU is constructed from a given co-simulation scenario, defined in Equation (7.3), with
D = {1, . . . , n} units and external input vector uext . Its state is then defined as

x = [xin ,xctrl ,xout ,x1, . . . ,xn]
T

with xin , xctrl , and xout , denoting the input, output and control storage vectors, respec-
tively, and x1, . . . ,xn being the internal units’ states. The vectors xin , xctrl , and xout

form the semantic adaptation storage and depend on the adaptations implemented in the
external FMU.

152

7.4. HIERARCHICAL CO-SIMULATION FOR SEMANTIC ADAPTATION

ALGORITHM 9: State transition function of the default hierarchical reactive Mealy, described
in Equation (7.4). This function needs to exchange data of the child units, and step them, to
ensure that every child unit is at time t+H . If a unit rejects the step size, then the hierarchical
unit needs to informs its environment of the smallest step size that could be taken.

1 Function F (t,H, [up1, . . . , upn,x1, . . . ,xn]T ,uext)
2 for i = 1, . . . , n do
3 uci := yi := 0 ;
4 end
5 for j ∈ (1, . . . , n) do
6 ucσ(j) := cσ(j)(uext ,y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);

7
〈
x̃σ(j), H̃σ(j)

〉
:= Fσ(j)(t,H,xσ(j), ucσ(j) or upσ(j)) ;

8 yσ(j) := Gσ(j)(t+ H̃σ(j), x̃σ(j), ucσ(j))

9 or Gσ(j)(t+ H̃σ(j), x̃σ(j));
10 end
11 H̃ := mini∈D(H̃i);

12 return
〈

[uc1, . . . , ucn, x̃1, . . . , x̃n]T , H̃
〉

;

13 end

Depending on the kind of external FMU being constructed, its initial state is computed
by

Init(uext) = [xin ,xctrl ,xout ,x1, . . . ,xn]
T

or Init() = [xin ,xctrl ,xout ,x1, . . . ,xn]
T

where Init(), to be detailed shortly, makes use of the initialization functions Init i of the
internal units to get their initial states.

We now introduce the formal representation of the semantic adaptation rules, introduced at
the beginning of this subsection:

• The application of the external input rules to the provided input is

In([xin ,xctrl ,xout]
T
,uext) = x̃in

• The application of the internal input rules to create the internal input vector is denoted
as

MapIn([xin ,xctrl ,xout]
T
, h, dt) = [ũ1, . . . , ũn]

T

This function is used whenever the input to any of the internal units needs to be
computed. It is used in the Ctrl rules (defined next) and in the output function of
the external unit. In most adaptations, this function is invoked immediately before
a call to the state transition function Fi of any internal unit. In line with the FMU
interface, h is the communication step size that will be passed to the state transition
Fi invocation, dt is the displacement of the time in unit i, relative to the external unit,
and ũi denotes the vector that will be used as external input to unit i, or ignored if
the unit does not depend on the external input. Multiple calls to this function can be
made: potentially one per internal state transition call.

• The application of the control rules, to compute the new state x̃i of each internal unit
i, the step size advanced H̃ , and the new control/output storage state x̃ctrl , x̃out of
the semantic adaptation, is

Ctrl(t,H, [xin ,xctrl ,xout]
T
, [x1, . . . ,xn]

T
) =〈

x̃ctrl , x̃out , [x̃1, . . . , x̃n]
T
, H̃
〉

153

CHAPTER 7. SEMANTIC ADAPTATION

This function invokes the MapIn/MapOut functions before/after a state transition
of an internal unit is invoked.

• The application of the internal output rules

MapOut([xin ,xctrl ,xout]
T
, [y1, . . . ,yn]

T
, h, dt) =

x̃out

Analogously to the MapIn , the invocation of this function is controlled by the Ctrl .
Parameters h and dt denote the communication step size, and time displacement,
passed as arguments to the most recently invoked state transition function Fi.

• The application of the external output rules to compute the external outputs, from
the semantic adaptation state

Out([xin ,xctrl ,xout]
T

) = y

Intuitively, the internal input/output functions serve to decouple the rate of execution of the
internal units, from the rate of execution of the external FMU.

A semantic adaptation is a concrete definition of:

• Storage structure — xin , xctrl , and xout ;
• Initialization — Init();
• External input rules — In;
• Internal input rules — MapIn;
• Control rules — Ctrl ;
• Internal output rules — MapOut ;
• External output rules — Out ;

We now describe how these functions are used in the specification of an external FMU.

The generic external unit is defined exactly as a simulation unit (recall Definition 34):〈
x(t+ H̃), H̃

〉
= F (t,H,x(t),uext(t+H) or uext(t))

y(t) = G(t,x(t),uext(t)) or G(t,x(t))

x(0) = Init(uext) or Init()

(7.5)

where x = [xin ,xctrl ,xout ,x1, . . . ,xn]
T denotes the state of the external FMU. Both

an external reactive or delayed unit has the same implementation of F , described in
Algorithm 10 (but note that the definition of Ctrl will likely differ). The definitions of G
differ for a Mealy or Moore external unit, and are detailed in Algorithm 11.

In Algorithm 11, we stress the following:

• The definitions take into account that it may not be possible to sort the internal
units topologically, so the semantic adaptations support dependency cycles (recall
algebraic loops in Section 3.7.3).

• Multiple calls to G can be made without changing the state of the external unit.
• If a Moore external FMU has at least one internal unit which depends on external

input, then this input must be stored in the input storage xin of the semantic adaptation
by the In function (Line 2 of Algorithm 10), and then retrieved by the MapIn function
(Line 8 of Algorithm 11).

154

7.4. HIERARCHICAL CO-SIMULATION FOR SEMANTIC ADAPTATION

ALGORITHM 10: State transition function of the generic external FMU, defined in Equa-
tion (7.5).

1 Function F (t,H, [xin ,xctrl ,xout ,x1, . . . ,xn]T ,uext)

2 x̃in := In([xin ,xctrl ,xout]
T ,uext);

3
〈
x̃ctrl , x̃out , [x̃1, . . . , x̃n]T , H̃

〉
:= Ctrl(t,H, [x̃in ,xctrl ,xout]

T , [x1, . . . ,xn]T);

4 return
〈

[x̃in , x̃ctrl , x̃out , x̃1, . . . , x̃n]T , H̃
〉

;

5 end

To make these definitions easier to understand, we provide two examples: the default
reactive Mealy hierarchical unit presented in the sub-previous section, and the algebraic
loop semantic adaptation that involves the obstacle and window sa units of the power
window example (loop sa).

The default reactive Mealy hierarchical unit can be informally described as follows:

• the state xctrl of the semantic adaptation includes the previous inputs of the internal
units;

• the Init function is analogue to the one described in Algorithm 7;
• the In , MapIn , MapOut , and Out , are roughly identity functions;
• and the Ctrl function implements the body of F , in Algorithm 9;

Formally, functions Init and Ctrl are defined in Algorithm 12, and:

In([xin ,xctrl ,xout]
T
,uext) = uext

MapIn([xin ,xctrl ,xout] , h, dt) =

[ũ1, . . . , ũn]
T , with ũi = xin

MapOut([xin ,xctrl ,xout]
T
, [y1, . . . ,yn]

T
, h, dt) =

[y1, . . . ,yn]
T

Out([xin ,xctrl ,xout]
T

) = xout

(7.6)

The second example refers to the adaptation loop sa, which essentially performs a fixed
point iteration between the obstacle and window sa units, computing improved values for
their input/outputs via successive substitution.

The external FMU, called loop sa in Figure 7.5 is a reactive Moore unit, and has an input
uext ∈ R2 with two dimensions — displacement and speed — and one output – tau.
Whenever the state transition of the external FMU is called, a successive substitution is
performed between the two internal units, using the most recently found value of disp as an
initial guess. Formally, let the index 1 refer to the window sa unit, and 2 to obstacle, so that,
e.g., uc2 refers to the input to the obstacle unit. For the sake of simplicity, we assume that
the system starts with all inputs/outputs being zero. Then, the functions that characterize
the adaptation are shown in Equation (7.7). Note that had we not assumed that the system
starts with zero inputs/outputs, the Init would have to compute a fixed point iteration to
find a consistent initial state. This is possible with our formalization.

The next section describes a DSL for the definition of such semantic adaptations. The
examples provided in that section clarify the need for the semantic adaptation functions

155

CHAPTER 7. SEMANTIC ADAPTATION

ALGORITHM 11: Output functions of the generic external FMU, per kind of unit, defined in
Equation (7.5).

1 FunctionG(t, [xin ,xctrl ,xout ,x1, . . . ,xn]T ,uext)

2 x̃in := In([xin ,xctrl ,xout]
T ,uext);

3 if σ is defined then
4 for i = 1, . . . , n do
5 uci := yi := ỹi := 0;
6 end
7 for j ∈ (1, . . . , n) do
8 [ũ1, . . . , ũn]T := MapIn([x̃in ,xctrl ,xout]

T , 0, 0);
9 ucσ(j) := cσ(j)(ũσ(j),y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);

10 yσ(j) := Gσ(j)(t,xσ(j), ucσ(j))

11 or Gσ(j)(t,xσ(j));
12 x̃out := MapOut([x̃in ,xctrl ,xout]

T , [y1, . . . ,yn]T , 0, 0);
13 end
14 else
15 x̃out := xout ;
16 end
17 y := Out([x̃in ,xctrl , x̃out]

T);
18 return y;
19 end
20 FunctionG(t, [xin ,xctrl ,xout ,x1, . . . ,xn]T)
21 if σ is defined then
22 for i = 1, . . . , n do
23 uci := yi := ỹi := 0;
24 end
25 for j ∈ (1, . . . , n) do
26 [ũ1, . . . , ũn]T := MapIn([xin ,xctrl ,xout]

T , 0, 0);
27 ucσ(j) := cσ(j)(ũσ(j),y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);
28 yσ(j) := Gσ(j)(t,xσ(j), ucσ(j))

29 or Gσ(j)(t,xσ(j));
30 x̃out := MapOut([xin ,xctrl ,xout]

T , [y1, . . . ,yn]T , 0, 0);
31 end
32 else
33 x̃out := xout ;
34 end
35 y := Out([xin ,xctrl , x̃out]

T);
36 return y;
37 end

defined in the current section.

Init(uext) = [0,0,0, Init1(0), Init2(0)]
T

In([xin ,xctrl ,xout]
T
,uext) = uext

MapIn([xin ,xctrl ,xout]
T
, h, dt) = [xin ,0]

T

MapOut([xin ,xctrl ,xout]
T
, [y1,y2]

T
, h, dt) = y1

Out([xin ,xctrl ,xout]
T

) =

[
1 0 0

0 1 0

]
xout

Ctrl is defined in Algorithm 13

(7.7)

156

7.5. A DSL FOR SEMANTIC ADAPTATION

ALGORITHM 12: Init and Ctrl functions of the default reactive Mealy hierarchical unit.
1 Function Init(uext)
2 for i = 1, . . . , n do
3 xi := upi := yi := 0 ;
4 end
5 for j ∈ (1, . . . , n) do
6 upσ(j) := cσ(j)(uext ,y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);
7 xσ(j) := Initσ(j)(upσ(j)) or Initσ(j)() ;
8 yσ(j) := Gσ(j)(0,xσ(j), upσ(j))

9 or Gσ(j)(0,xσ(j));
10 end
11 xin := xout := 0 ;
12 xctrl := [up1, . . . , upn]T ;
13 return [xin ,xctrl ,xout ,x1, . . . ,xn]T ;
14 end

15 Function Ctrl(t,H,
〈
xin , [up1, . . . , upn]T ,xout

〉
, [x1, . . . ,xn]T)

16 xctrl := [up1, . . . , upn]T ;
17 for i = 1, . . . , n do
18 uci := yi := 0;
19 end
20 for j ∈ (1, . . . , n) do
21 [ũ1, . . . , ũn]T := MapIn([xin ,xctrl ,xout]

T , 0, 0);
22 ucσ(j) := cσ(j)(ũσ(j),y1, . . . ,yσ(j)−1,yσ(j)+1, . . . ,yn);

23
〈
x̃σ(j), H̃σ(j)

〉
:= Fσ(j)(t,H,xσ(j), ucσ(j) or upσ(j)) ;

24 yσ(j) := Gσ(j)(t+ H̃σ(j), x̃σ(j), ucσ(j))

25 or Gσ(j)(t+ H̃σ(j), x̃σ(j));
26 x̃out := MapOut([xin ,xctrl ,xout]

T , [y1, . . . ,yn]T , 0, 0);
27 end
28 H̃ := mini∈D(H̃i);

29 return
〈

[uc1, . . . , ucn]T , x̃out , [x̃1, . . . , x̃n]T , H̃
〉

;

30 end

7.5 A DSL for Semantic Adaptation
Any semantic adaptation has an essential structure: it transforms one or more FMUs into a
single FMU, providing a wrapper implementation for the co-simulation operations.

As such, we introduce a DSL for the specification of the set of rules introduced in the
previous section (which form a semantic adaptation). Since research in semantic adaptation
is ongoing, the language should be expressive enough to cover future semantic adapta-
tions. Additionally, the implementation should not violate the modularity and transparency
principles.

To these ends, the DSL — named baseSA— mixes imperative concepts with convenient
functions that perform common operations on simulation units. A description made in this
DSL can be used to generate hierarchical units.

The language and the examples used in this paper are available for download3.

The baseSA allows the description of the internal FMUs and their couplings (that is, the
internal scenario as described in Equation (7.3)), and how semantic adaptation rules (Init ,
In , MapIn , Ctrl , MapOut , and Out), are implemented.

The remainder of this section is organised as follows. First, the baseSA DSL is introduced

3https://github.com/INTO-CPS-Association/hybrid-cosim

157

https://github.com/INTO-CPS-Association/hybrid-cosim

CHAPTER 7. SEMANTIC ADAPTATION

ALGORITHM 13: Ctrl function of external FMU loop sa, illustrated in Figure 7.5.
1 Function Ctrl(t,H, [xin , yp1,xout]

T , [x1,x2]T)
2 u1 := 0;
3 y1 := yp1;
4 u2 := yp2 := y2 := 0;
5 [ũ1, ũ2]T := MapIn([xin , yp1,xout]

T , 0, 0);
6 for i ∈ (1, . . . ,MAX ITERATIONS) do
7 u2 := c2(ũ2,y1);

8
〈
x̃2, H̃2

〉
:= F2(t,H,x2,u2) ;

9 y2 := G2(t+ H̃2, x̃2,u2);
10 u1 := c1(ũ1,y2);

11
〈
x̃1, H̃1

〉
:= F1(t,H,x1,u1) ;

12 y1 := G1(t+ H̃1, x̃1,u1);
13 if ‖y1 − yp1‖ ≈ 0 and ‖y2 − yp2‖ ≈ 0 then
14 x̃out := MapOut([xin ,xctrl ,xout]

T , [y1,y2]T , 0, 0);
15 break;
16 else
17 yp1 := y1;
18 yp2 := y2;
19 end

20 return
〈
y1, x̃out , [x̃1, x̃2]T , H

〉
;

21 end

by describing the semantic adaptations of the running example and what their intended
meaning is. Then, a more detailed description of the language (syntax and semantics) is
provided.

7.5.1 The baseSA DSL
7.5.1.1 The window sa adaptation

1 semanticadaptationreactive mealy WindowSA windowSA
2 at "./path/to/WindowSA.fmu"
3

4 for inner fmu Window window
5 at "./path/to/Window.fmu"
6 with input ports displacement (rad), speed (rad/s), reaction_force (N)
7 with output ports height (cm), reaction_torque (N.m)
8

9 output ports disp (m) <- window.height, tau
10

11 out rules {
12 true -> {} --> {
13 windowSA.tau := -window.reaction_force;
14 };
15 }

Listing 7.1: The simple data adaptation window sa in baseSA.

Listing 7.1 shows the baseSA definition of the semantic adaptation that generates the
window sa in Figure 7.5. The first few lines (Line 1 and 2 in the example) of any description,
declare the name of the semantic adaptation and where the resulting external FMU will be
generated.

Following that, the internal scenario is declared. The example listing (Lines 4 – 7) declares
a single internal FMU and its ports.

158

7.5. A DSL FOR SEMANTIC ADAPTATION

baseSA descriptions work by exclusion: the user only specifies what needs to be changed,
and the rest is assumed from the information provided. Hence, Listing 7.1 only needs to
declare the output ports of the external FMU (disp and tau), in Line 13, and how they
get their values: disp gets its value implicitly from the height port, and tau gets its value
explicitly (via the specification of output rules).

Lines 11–15 declare the output rules. These specify how the tau output port of the external
FMU gets its value, and this is done by assigning it the value of the reaction torque

output port, of the window FMU. The examples declares a single output rule, but in
general multiple output rules can be declared. In general, each output rule has three parts:
a condition, a MapOutRule part (syntactically preceded by “->”), and a OutRule part
(syntactically preceded by “-->”). The condition decides whether the rule should be
applied, and the other two parts contribute to the definition of the corresponding functions
MapOut and Out , respectively.

Following the exclusion principle, Listing 7.1 omits several bits of information about the
external FMU, that are required for a full definition of a semantic adaptation: input ports;
Init function; In function; MapIn function; and Ctrl function;

In general, this information is assumed by applying multiple conventions, detailed in
Section 7.5.3. The intended behavior is to follow the default hierarchical unit definition
wherever the information is omitted (recall Equation (7.6) and Algorithm 12). For the
example in Listing 7.1, the following is applicable:

• The external FMU (windowSA) has an input port for every input port of any internal
FMU that has no incoming connection. This means that windowSA has three input
ports, each bound to the corresponding input port of the internal FMU window.

• Each of the input ports of the internal FMU that have no incoming connections,
gets its value from the corresponding external input port declared by the previous
convention. The implementation of bindings is made via a storage variable. In
Listing 7.1, this means that an extra input rule is created to encode the transfer of
values. The input storage variables are also created.
• Any output variable bindings are realized in a manner similar to the previous conven-

tion: add an output rule and declare the necessary output variables to perform the
transfer of values.

• Any expression referring ot the output of any internal FMU, in the Out part of an
output rule, is assumed to refer to the storage variable with the most recent value of
that output (output variables are created for the outputs of each internal FMU). In
Listing 7.1, this means that window.reaction force, in Line 13, gets replaced by a
reference to an output variable.

• After applying the previous two conventions, the implicit bindings are removed.

1 semanticadaptationreactive mealy WindowSA windowSA
2 at "./path/to/WindowSA.fmu"
3

4 for inner fmu Window window
5 at "./path/to/Window.fmu"
6 with input ports displacement (rad), speed (rad/s), reaction_force (N)
7 with output ports height (m), reaction_torque (N.m)
8

9 input ports reaction_force,
10 displacement,
11 speed

159

CHAPTER 7. SEMANTIC ADAPTATION

12

13 output ports disp,
14 tau
15

16 param INIT_WINDOWSA_REACTION_FORCE := 0.0,
17 INIT_WINDOWSA_DISPLACEMENT := 0.0,
18 INIT_WINDOWSA_SPEED := 0.0,
19 INIT_WINDOW_REACTION_TORQUE := 0.0,
20 INIT_WINDOW_REACTION_HEIGHT := 0.0;
21

22 control rules {
23 var H_window := do_step(window, t, H);
24 return H_window;
25 }
26

27 in var stored_windowsa_reaction_force := INIT_WINDOWSA_REACTION_FORCE,
28 stored_windowsa_displacement := INIT_WINDOWSA_DISPLACEMENT,
29 stored_windowsa_speed := INIT_WINDOWSA_SPEED;
30

31 in rules {
32 true -> {
33 stored_windowsa_reaction_force := windowSA.reaction_force;
34 stored_windowsa_displacement := windowSA.displacement;
35 stored_windowsa_speed := windowSA.speed;
36 } --> {
37 window.reaction_force := stored_windowsa_reaction_force;
38 window.displacement := stored_windowsa_displacement;
39 window.speed := stored_windowsa_speed;
40 };
41 }
42

43 out var stored_window_reaction_torque := INIT_WINDOW_REACTION_TORQUE,
44 stored_window_height := INIT_WINDOW_REACTION_HEIGHT;
45

46 out rules {
47 true -> {
48 stored_window_reaction_torque := window.reaction_torque;
49 stored_window_height := window.height;
50 } --> {
51 windowSA.disp := stored_window_height / 100;
52 };
53 true -> { } --> {
54 windowSA.tau := -stored_window_reaction_torque;
55 };
56 }

Listing 7.2: The adaptation window sa in explicit form.

Listing 7.2, on page 159, shows the same adaptation as Listing 7.1, after applying the
conventions introduced above:

• All input ports and output ports of the external FMU are declared, with no implicit
bindings defined.

• Input storage variables, and their initial values, are declared (stored windowsa reaction force,
and stored windowsa displacement, stored windowsa speed). These are part of the
xin state vector of the semantic adaptation.

• Output storage variables, and their initial values, are declared (stored window reaction torque
and stored window height), comprising part of the xout state vector.

• A parameter per storage variable is added to allow the configuration of the initial value
of that variable (technical detail: the parameters are mapped to FMI parameters).

• Input rules, as the one in Lines 31–41, are in general comprised of two parts: the
InRule part, which in the example assigns values to the input storage variables; and
the MapInRule part, which assigns the stored values to the input ports of the internal
FMUs in the example. These make up the respective functions In and MapIn .

160

7.5. A DSL FOR SEMANTIC ADAPTATION

• The control rules make use of the special function H window := do step(window,

t, H), which automatically: uses the MapIn function to compute the inputs to the
internal FMU window, computes any extra internal input (this applies to internal
interconnected units), invokes the state transition function of windowwith t and H ,
and invokes the MapOut function to compute its outputs. do step also takes into
account the type (Mealy/Moore and reactive/delayed) of the internal unit invoked.
The returned value is the step size taken by the unit.
• Output rules defined the functions MapOut (which stores the outputs of window in

the output storage variables), and Out (which sets the outputs of the external FMU
from the output storage variables). Notice that the conversion of units between the
height and disp ports is also done.

In any baseSA description, there is no need to define explicitly the initial state (computed
by the Init function). It is inferred from the input, control and output storage variables, plus
the information about the internal units (extracted from their xml description file).

7.5.1.2 The loop sa adaptation

1 semanticadaptationreactive moore LoopSA loop_sa
2 at "./path/to/LoopSA.fmu"
3

4 for inner fmu WindowSA window_sa
5 at "./path/to/WindowSA.fmu"
6 with input ports displacement (rad), speed (rad/s), reaction_force (N)
7 with output ports disp (m), tau (N.m)
8

9 for inner fmu Obstacle obstacle
10 at "./path/to/Obstacle.fmu"
11 with input ports disp (m)
12 with output ports reaction_force (m)
13

14 with window_sa.disp -> obstacle.disp
15 with obstacle.reaction_force -> window_sa.reaction_force
16

17 output ports tau <- window_sa.tau
18

19 param MAXITER := 10,
20 REL_TOL := 1e-05,
21 ABS_TOL := 1e-05;
22

23 control var prev_disp := 0.0;
24 control rules {
25 var repeat := false;
26 for (var iter in 0 .. MAXITER) {
27 save_state(obstacle);
28 save_state(window_sa);
29 obstacle.disp := prev_disp;
30 do_step(obstacle,t,H);
31 do_step(window_sa,t,H);
32

33 repeat := is_close(prev_disp, window_sa.disp, REL_TOL, ABS_TOL);
34 prev_disp := window_sa.disp;
35 if (repeat) {
36 break;
37 } else {
38 rollback(obstacle);
39 rollback(window_sa);
40 }
41 }
42 return H;
43 }

Listing 7.3: Adaptation that generates loop sa.

161

CHAPTER 7. SEMANTIC ADAPTATION

Listing 7.3 describes the adaptation defining the external FMU loop sa in Figure 7.5. The
adaptation is targeted at two internal FMUs (window sa and obstacle) that are interconnected
as specified in Lines 14–15. In general, the internal connectivity information is needed
so that the generated code knows how to set the inputs to the internal FMUs. The listing
does not declare input ports, therefore, according to the general conventions, the external
FMU has all the input ports that that have no incoming connections (displacement and
speed). A single output port is declared (tau), which gets its value from the tau output of
window sa.

Notice that the external FMU is declared as reactive Moore, and that the internal FMUs
cannot be topologically sorted. Whenever this is the case, when the external output function
is called, the values of the output ports returned (in the example, the value of tau) are the
ones computed in the most recent state transition function.

The control block of Listing 7.3 implements Algorithm 13 with the following differ-
ences.

• As part of the semantics of the do step function: the MapInRule and MapOutRule in-
structions (which are implicit in Listing 7.3 by convention) are executed automatically
to set the inputs of the internal FMUs; and the inputs of each FMU, if unspecified by
an assignment, are set according to the internal connectivity information declared in
Lines 14–15.

• The convergence test (Line 33) is made only in the disp port (to simplify).
• The state manipulation of the internal FMUs is facilitated by the use of the save state

and rollback functions.

7.5.1.3 The rate sa adaptation

1 semanticadaptationreactive moore RateSA rate_sa
2 at "./path/to/RateSA.fmu"
3

4 for inner fmu LoopSA loop_sa
5 at "./path/to/LoopSA.fmu"
6 with input ports displacement (rad), speed (rad/s)
7 with output ports tau (N.m)
8

9 input ports speed
10 output ports tau <- loop_sa.tau
11

12 param RATE := 10;
13

14 control var previous_speed := 0;
15 control rules {
16 var micro_step := H/RATE;
17 var inner_time := t;
18

19 for (var iter in 0 .. RATE) {
20 do_step(loop_sa,inner_time,micro_step);
21 inner_time := inner_time + micro_step;
22 }
23

24 previous_speed := current_speed;
25 return H;
26 }
27

28 in var current_speed := 0;
29 in rules {
30 true -> {
31 current_speed := speed;

162

7.5. A DSL FOR SEMANTIC ADAPTATION

32 } --> {
33 loop_sa.speed := previous_speed + (current_speed - previous_speed)*(dt + h);
34 };
35 }

Listing 7.4: Adaptation that generates rate sa.

The rate sa adaptation is implemented in Listing 7.4. It is worth noticing the MapIn
portion of the input rules, in Line 33, which calculates the interpolation of the speed
value. This function is called whenever inputs to the internal FMUs need to be provided,
with h = micro step being the communication step size asked to the internal FMU
(micro step refers to the argument used in the state transition invocation, in Line 20),
and dt = inner time − t (where inner time is the argument used for the state transition
call).

7.5.1.4 The lazy sa adaptation

1 semanticadaptationreactive moore LazySA lazy_sa
2 at "./path/to/LazySA.fmu"
3

4 for inner fmu Controllercontroller
5 at "./path/to/Controller.fmu"
6 with input ports obj_detected, passenger_up, passenger_down, passenger_stop, driver_up, driver_down,

driver_stop
7 with output ports up, down, stop
8

9 input ports obj_detected -> controller.obj_detected,
10 passenger_up -> controller.passenger_up,
11 passenger_down -> controller.passenger_down,
12 passenger_stop -> controller.passenger_stop,
13 driver_up -> controller.driver_up,
14 driver_down -> controller.driver_down,
15 driver_stop -> controller.driver_stop
16

17 output ports up, down, stop
18

19 param INIT_OBJ_DETECTED := false,
20 INIT_PASSENGER_UP := false,
21 INIT_PASSENGER_DOWN := false,
22 INIT_PASSENGER_STOP := false,
23 INIT_DRIVER_UP := false,
24 INIT_DRIVER_DOWN := false,
25 INIT_DRIVER_STOP := false;
26

27 control var tn :=-1.0,
28 tl :=-1.0,
29 prev_obj_detected := INIT_OBJ_DETECTED,
30 prev_passenger_up := INIT_PASSENGER_UP,
31 prev_passenger_down := INIT_PASSENGER_DOWN,
32 prev_passenger_stop := INIT_PASSENGER_STOP,
33 prev_driver_up := INIT_DRIVER_UP,
34 prev_driver_down := INIT_DRIVER_DOWN,
35 prev_driver_stop := INIT_DRIVER_STOP;
36

37 control rules {
38 if (tl < 0.0){
39 tl := t;
40 }
41

42 var step_size := min(H, tn - t);
43 if (lazy_sa.obj_detected != prev_obj_detected or
44 lazy_sa.passenger_up != prev_passenger_up or
45 lazy_sa.passenger_down != prev_passenger_down or
46 lazy_sa.passenger_stop != prev_passenger_stop or

163

CHAPTER 7. SEMANTIC ADAPTATION

47 lazy_sa.driver_up != prev_driver_up or
48 lazy_sa.driver_down != prev_driver_down or
49 lazy_sa.driver_stop != prev_driver_stop or
50 (t+H) >= tn
51){
52 var step_to_be_done := (t+H-tl);
53 var step_done := do_step(controller, t, step_to_be_done);
54 tn := tl + step_done + get_next_time_step(controller);
55 step_size := tl + step_done - t;
56 tl := tl + step_done;
57 }
58

59 prev_obj_detected := lazy_sa.obj_detected;
60 prev_passenger_up := lazy_sa.passenger_up;
61 prev_passenger_down := lazy_sa.passenger_down;
62 prev_passenger_stop := lazy_sa.passenger_stop;
63 prev_driver_up := lazy_sa.driver_up;
64 prev_driver_down := lazy_sa.driver_down;
65 prev_driver_stop := lazy_sa.driver_stop;
66

67 return step_size;
68 }

Listing 7.5: Adaptation that generates lazy sa.

Listing 7.5 implements adaptation lazy sa. This adaptation assumes the default mappings
for the inputs, but is declares them because they are referred to in the Ctrl block.

In general, every reference to an input port of the external FMU, made outside of the In
block, is replaced with a reference to the variable that stores the most recently given value
of that. For example, the expression lazy sa.obj detected, is replaced by the variable that
stores that input.

The adaptation in Listing 7.5 performs two tasks: it keeps track of the previous value
of each signal, and invokes the internal unit state transition function (i.e., the do step)
whenever there is a change; and it keeps track of the next time to execute the internal unit
(assuming that no inputs change) and invokes it when such time arrives, to cater for internal
timed transitions. At the same time, the output signals are always available (held constant)
because of the storage output variables.

7.5.1.5 The controller sa

1 semanticadaptationreactive moore ControllerSAcontroller_sa
2 at "./path/to/ControllerSA.fmu"
3

4 for inner fmu LazySA lazy
5 at "./path/to/LazySA.fmu"
6 with input ports obj_detected, passenger_up, passenger_down, passenger_stop, driver_up, driver_down,

driver_stop
7 with output ports up, down, stop
8

9 input ports armature_current -> lazy.obj_detected,
10 passenger_up -> lazy.passenger_up,
11 passenger_down -> lazy.passenger_down,
12 passenger_stop -> lazy.passenger_stop,
13 driver_up -> lazy.driver_up,
14 driver_down -> lazy.driver_down,
15 driver_stop -> lazy.driver_stop
16

17 output ports u,
18 d
19

164

7.5. A DSL FOR SEMANTIC ADAPTATION

20 param RTOL := 0.0001,
21 ATOL := 1e-8,
22 T := 5.0,
23 INIT_V := 0.0;
24

25 control var c := false,
26 p_v := INIT_V;
27 control rules {
28 var step_size := H;
29 var aux_obj_detected := false;
30 var crossedTooFar := false;
31 if ((not is_close(p_v, T, RTOL, ATOL) and p_v < T)
32 and (not is_close(f_v, T, RTOL, ATOL) and f_v > T)) {
33 crossedTooFar := true;
34 var negative_value := p_v - T;
35 var positive_value := f_v - T;
36 step_size := (H * (- negative_value)) / (positive_value - negative_value);
37 } else {
38 if ((not is_close(p_v, T, RTOL, ATOL) and p_v < T)
39 and is_close(f_v, T, RTOL, ATOL)) {
40 c := true;
41 }
42 }
43

44 if (not crossedTooFar){
45 step_size := do_step(lazy, t, H);
46 }
47

48 if (is_close(step_size, H, RTOL, ATOL)) {
49 p_v := f_v;
50 }
51 return step_size;
52 }
53

54 in var f_v := INIT_V;
55 in rules {
56 true -> {
57 f_v := controller_sa.armature_current;
58 } --> {
59 lazy.obj_detected := c;
60 };
61 }
62

63 out rules {
64 lazy.up -> { } --> {controller_sa.u := 1.0; };
65 not lazy.up -> { } --> {controller_sa.u := 0.0; };
66

67 lazy.down -> { } --> {controller_sa.d := 1.0; };
68 not lazy.down -> { } --> {controller_sa.d := 0.0; };
69

70 lazy.stop -> { } --> {controller_sa.u := 0.0 ; controller_sa.d := 0.0; };
71 }

Listing 7.6: Adaptation that generates controller sa.

The adaptation controller sa is shown in Listing 7.6. The control rules apply regula falsi to
locate the crossing of the armature signal into the threshold T.

This example shows how the conditions in the output rules can be used to select which
rules are applied. Informally, in general, at the end of each external state transition, when
MapOut is invoked, all the conditions in the rules are evaluated. The ones that evaluate to
true, are recorded as part of the xout state. Afterwards, whenever Out is called, only the
rules that evaluated to true contribute to the output of Out .

The power sa adaptation was omitted due to its simplicity. It declares the external FMU as
a delayed Moore and lists the output port bindings.

165

CHAPTER 7. SEMANTIC ADAPTATION

The above adaptations generate the FMUs for the co-simulation scenario illustrated in
Figure 7.5. The master in Algorithm 6 then computes the results shown in Figure 7.6.
Comparing these results with the ones in Figure 7.4, one sees that they are similar, except
for the fact that the armature current has a higher peak in the co-simulation. This is because
the threshold crossing adaptation was disabled, since the power FMU does not support
rollback.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
Time (s)

controller_sa
u
d

−5

0

5

10

0 1 2 3 4
Time (s)

power_sa
armature_current

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4
Time (s)

window_sa
disp

Figure 7.6: Power window co-simulation results.

In the following subsections, we describe the language (syntax and semantics) in more detail.
The syntax is described using extended Backus–Naur form (EBNF) [377], and the semantics
are presented informally by describing a transformation of baseSA descriptions, to the Init ,
In , MapIn , Ctrl , MapOut , and Out functions, introduced in Section 7.4.2.

7.5.2 Syntax
The partial syntax of baseSA is detailed in Listing 7.7. We omit the definition of the most
common symbols:

• ID is an identifier;
• URL is a URL;
• PhysicalUnit denotes any physical unit;
• Expression is an expression that defines a value, e.g., comparison, addition, constant,

variable reference, etc.
• Statement is a programming language statement. It includes if-statement, static for

loop, local variable declarations, assignments, references to variables/parameters,
built-in function calls, etc.

1 SemanticAdaptation = ’semantic’, ’adaptation’, KindInput, KindOutput, UnitName, UnitInstance,
2 ’at’, URL,
3 InnerUnits,
4 ’input’, ’ports’, Port, {’,’, Port},
5 ’output’, ’ports’, Port, {’,’, Port},
6 {ParamDeclarations},[ControlRuleBlock],[InRulesBlock],[OutRulesBlock];

166

7.5. A DSL FOR SEMANTIC ADAPTATION

7 KindInput = ’reactive’ | ’delayed’;
8 KindOutput = ’moore’ | ’mealy’
9 UnitName = ID;

10 UnitInstance = ID;
11 InnerUnits = {’for’, InnerUnit} {’with’, Connection};
12 InnerUnit = ’inner’, ’fmu’, UnitName, UnitInstance,
13 ’at’, URL,
14 ’with’, ’input’, ’ports’, Port, {’,’, Port},
15 ’with’, ’output’, ’ports’, Port, {’,’, Port},
16 Port = ID, [’(’, PhysicalUnit, ’)’], [PortBinding];
17 PortBinding = (’->’, ID) | (’<-’, ID);
18 Connection = ID, ’->’, ID;
19 ParamDeclarations = ’param’, SingleDeclaration, {’,’, SingleDeclaration};
20 SingleDeclaration = ID ’:=’ Expression;
21 ControlRuleBlock = {’control’, VarDeclarations}, ControlRule;
22 VarDeclarations = ’var’, SingleDeclaration, {’,’, SingleDeclaration};
23 ControlRule = ’control’, ’rules’, ’{’, {Statement}, ’}’;
24 InRulesBlock = {’in’, VarDeclarations}, ’in’ ’rules’, ’{’, {DataRule}, ’}’;
25 DataRule = RuleCondition, "->", InRule, "-->", MapInRule, ’;’;
26 RuleCondition = BooleanExpression;
27 InRule = ’{’, {Statement}, ’}’;
28 MapInRule = ’{’, {Statement}, ’}’;
29 OutRulesBlock = RuleCondition, "->", MapOutRule, "-->", OutRule, ’;’;

Listing 7.7: The (partial) EBNF grammar of baseSA.

Table 7.1 summarizes the special functions and variables.

The full grammar definition, and an editor of baseSA descriptions, developed with Xtext [12],
is available for download 4. Figure 7.7 shows the editor interface.

Figure 7.7: The baseSA editor.

4https://github.com/INTO-CPS-Association/hybrid-cosim

167

https://github.com/INTO-CPS-Association/hybrid-cosim

CHAPTER 7. SEMANTIC ADAPTATION

Table 7.1: List of built-in symbols and their meaning.

Symbol Availability Description
t ∈ R ControlRule

(Ctrl)
Argument provided in the state tran-
sition function of the external FMU.

H ∈ R ControlRule
(Ctrl)

Co-simulation step size passed as ar-
gument to the state transition func-
tion of the external FMU.

do step(fmu, ti , h) ∈ R ControlRule
(Ctrl)

Asks an internal FMU to perform a
co-simulation step and returns the
size of the computed interval.

h ∈ R MapInRule,
MapOutRule
(MapIn,MapOut)

Co-simulation step size passed as ar-
gument to the state transition func-
tion of the internal FMU.

dt ∈ R MapInRule,
MapOutRule
(MapIn,MapOut)

Let ti denote the time given as ar-
gument to the state transition func-
tion of an internal FMU. Then dt =
ti − t.

save state(fmu) ControlRule
(Ctrl)

Stores the state of an internal FMU.

rollback(fmu) ControlRule
(Ctrl)

Rolls back an internal FMU to the
last saved state.

is close(x , y , rtol , atol) ∈ Bool Everywhere Approximate equality.

get next time step(fmu) ∈ R Everywhere Returns the maximum time step an
internal FMU is willing to accept.

sin, cos,min, . . . Everywhere Implements the corresponding math-
ematical function.

7.5.3 Semantics
In this subsection, we define the semantics by describing informally how each syntactic
construction in baseSA is mapped to the definition of Init , In , MapIn , Ctrl , MapOut ,
and Out functions, introduced in Section 7.4 (recall Figure 7.1). This is done in two stages:
first we detail how any baseSA description is reduced to its explicit form; and then we
describe how each baseSA description in explicit form can be mapped to the semantic
functions.

7.5.3.1 Reduction to Explicit Form

Let sa be the name of a given baseSA description. For the sake of brevity, we make the
assumption that every port has a unique name (this is not assumed by the code genera-
tor).

In order to reduce the given baseSA description to its explicit form, the following rules are
applied in order, with the description resulting from the application of one rule being used
in the next rule.

168

7.5. A DSL FOR SEMANTIC ADAPTATION

AddInPorts – For each input port ip of any internal FMU f that has no incoming connec-
tions, create an external input port declaration ip -> f.ip, if there is none already
declared with the same name.

AddInParams – For each external input port declaration ip, create a parameter declara-
tion INIT SA IP := v (if it does not exist already), where v is the default value of
the parameter.

AddInVars – For each declared external input port ip, declare an input variable stored sa ip

:= INIT SA IP (if it does not exist) with initial value equal to the corresponding de-
clared parameter in the previous rule.

AddInRule – Prepend a new rule to the input rules block, with a true condition, and:
in the InRule part, for each declared external input port ip, add an assignment
stored sa ip := sa.ip; in the MapInRule part, for each input binding declared ip

-> f.ip, create an assignment f.ip := ip. If units need to be converted, the right
hand side of the assignment is replaced accordingly.

RemoveInBindings – For each input binding declared ip -> f.ip, replace it by just ip.
Any physical unit declaration is also removed.

AddOutPorts – If no output ports are declared, create an output port declaration op <-

f.op per output port op of each internal unit f.
AddOutParams – Analogous to AddInParams: for each output port declaration op

of each internal FMU f, create a parameter declaration INIT F OP := v (if such
parameter does not exist), with v being the default value.

AddOutVars – Analogous to AddInVars: for each output port declaration op of each
internal FMU f, create an output variable declaration stored f op := INIT F OP, if
it does not exist already.

AddOutRule – Prepend a new output rule to the output rules block, with a true condition,
and: in the MapOutRule part, add an assignment stored f op := f.op, per output
port op of each internal unit f; in the OutRule part, for each output binding op <-

f.op declared, add an assignment sa.op := f.op. If units need to be converted, the
assignment is replaced accordingly.

RemoveOutBindings – Analogous to RemoveInBindings: for each declared output bind-
ing op <- f.op, remove the binding (and any unit declaration), leaving just the
output declaration op.

CreateCtrlRules – If there is no control rules block declared, create one, and: compute
the topological order σ of the internal scenario (if it cannot be computed, abort with
an error); for each internal unit declaration f, in topological order, append var Hf
:= do step(f, t, H); append (at the end of the block) either return H f if there is
only one internal FMU, or return min(H1, ..., Hn), where Hi refers to each of
the local variables declared in the previous assignments.

ImplementInternalBinding – For each connection in the internal scenario f1.op ->

f2.ip, locate the do step(f2, ...) instruction in the control rules block. Before
this instruction, if there is no assignment of the form f2.ip := ..., insert f2.ip

:= f1.op immediately before the instruction do step(f2, ...).
ReplacePortsRefsByVars – For every input rule, go through the MapInRule part and re-

place every reference to an external input port ip, by a reference to the stored sa ip

input variable. In the control rules block, replace every reference to an output port op

of an internal unit fby a reference to the corresponding storage variable stored f op.
For each output rule, in the OutRule part, replace any reference to an output port opof
an internal unit f by a reference to the corresponding storage variable stored f op.

169

CHAPTER 7. SEMANTIC ADAPTATION

Listing 7.2 is the result of applying the above rules to Listing 7.1.

7.5.3.2 Mapping to Generic Semantic Adaptation

Given a baseSA description in explicit form, we now explain how it is mapped to the
formal definition of a generic external unit. In the generic external unit definition (recall
Equation (7.5)), the elements that need to be defined are:

• The space of xin , xctrl , and xout ;
• Init(uext) or Init(), depending on the kind of external unit;
• In([xin ,xctrl ,xout]

T
,uext);

• MapIn([xin ,xctrl ,xout]
T
, h, dt);

• Ctrl(t,H, [xin ,xctrl ,xout]
T
, [x1, . . . ,xn]

T
);

• MapOut([xin ,xctrl ,xout]
T
, [y1, . . . ,yn]

T
, h, dt);

• Out([xin ,xctrl ,xout]
T

);

Each of the above elements are now defined.

Part of xin is determined by the input variables declared: xin has one dimension per
declared input variable. The type of the dimension (real, boolean, etc. . .) corresponds to
the type of the declared variable. In addition, xin has one boolean dimension per input
rule. For example, is there are three numeric variables declared, and one input rule, then
xin ∈ R3 × Bool .

Analogously to xin , xout has one dimension per declared output variable, and an additional
boolean dimension per declared output rule.

The control storage vector xctrl has one dimension per declared control variable. Addition-
ally, if the semantic adaptation is a reactive one and the initial baseSA description (not the
explicit one) does not include any control rules, the xctrl has one dimension per internal
delayed unit.

The external input function

In([xin ,xctrl ,xout]
T
,uext) = x̃in

is defined to perform the the following steps in order:

1. Evaluate all conditions of the input rules in the order that they are declared, and for
each condition, mark the corresponding location of x̃in with the outcome (true or
false).

2. For the input rules whose conditions evaluated to true in the previous step, execute
the InRule part, in the order that the rules are declared (this computes the remainder
of x̃in).

Function
MapIn([xin ,xctrl ,xout]

T
, h, dt) = [ũ1, . . . , ũn]

T

executes the MapInRule part of the input rules whose condition evaluated to true (this infor-
mation is stored in xin) in order of their declaration. The executed input port assignments
form [ũ1, . . . , ũn]

T .

Function
MapOut([xin ,xctrl ,xout]

T
, [y1, . . . ,yn]

T
, h, dt) = x̃out

170

7.5. A DSL FOR SEMANTIC ADAPTATION

is analogous to In . It evaluates all the conditions of the output rules in the order that they
are declared, and for each of those conditions, marks the appropriate location of x̃out with
the outcome of the condition evaluation. Then it computes the remaining portion of x̃out

by executing the MapOutRule part of each of the output rules whose conditions evaluated
to true.

Function
Out([xin ,xctrl ,xout]

T
) = y

is analogous to MapIn . It executes the OutRule part of the output rules whose condition
evaluated to true (in the order in which they are declared) to compute the output vector
y.

The role of the initialization function (derived automatically from the baseSA description)
is to find a consistent initial state, defining the initial values of the storage vectors xin , xout ,
and xctrl . If the semantic adaptation is declared as reactive, then Init requires the initial
input, according to Definition 34.

First, the parts of xin , xctrl , and xout that correspond to the declared input/control/output
variables are initialized according to the initial value that is declared for them.

If it exists, the part of xctrl that corresponds to the previous inputs to the internal units
is initialized by compting the initial input to all the internal units in the topological order
(such order exists by assumption). This is similar to Algorithm 7, except that the functions
In , MapIn , and MapOut , are invoked to adapt any external input to the internal units, and
initialize the condition flags.

Function
Ctrl(t,H, [xin ,xctrl ,xout]

T
, [x1, . . . ,xn]

T
) =〈

x̃ctrl , x̃out , [x̃1, . . . , x̃n]
T
, H̃
〉

runs the instructions declared in the control rules block, in the order that they are declared.
The assignments performed to control variables make up part of the output vector x̃ctrl .
The executed assignments to the input ports of each internal FMU i, up to the instruction
do step(i , ti , hi), make up part of the unit input vector ui.

Any variable reference in the control rules block refers to the most recently given value of
that variable.

Each instruction do step(i , ti , hi) maps to the following steps, performed in Ctrl :

• Invoke MapIn function to compute the external input of unit i:

[. . . , ũi, . . .]
T

:=

MapIn([xin , x̃ctrl ,xout]
T
, hi, ti − t)

(7.8)

Note that x̃ctrl represents the control state vector that was affected by the assignments
made since the beginning of the execution of the Ctrl function. xin and xout

represent the (unchanged) vector provided as input to Ctrl .
• Merge the input vector ui computed by previous assignments with ũi to form the

unit input uci;

171

CHAPTER 7. SEMANTIC ADAPTATION

• Invoke the state transition function of the unit:〈
x̃i, H̃i

〉
:= Fi(t,H,xi,uci or upi) (7.9)

• Get the output of the unit:

yi := Gi(t+ H̃i, x̃i,uci) or Gσ(j)(t+ H̃i, x̃i) (7.10)

• Invoke the MapOut function to compute an updated output storage vector:

x̃out :=

MapOut([xin , x̃ctrl ,xout]
T , [y1, . . . ,yn]T , hi, ti − t)

(7.11)

Finally, upon returning, if the external FMU is a reactive unit, and the initial baseSA
description does not declare a control rules block, Ctrl stores the most recent inputs
provided to each delayed internal units in the x̃ctrl vector, to be used as delayed inputs
in a subsequent external state transition call. This instruction is similar to Line 29 of
Algorithm 12.

7.6 Evaluation
In this section, we judge how well our approach answers the research question posed in this
work.

The requirements set by the research question are:

Productivity – Does the language have impact in the productivity of its users?
Expressivity – Is the language expressive enough to cover current and future needs?
Modularity – Does the internal FMUs need to be changed?
Transparency – Does the external FMU behave exactly as an FMU?

7.6.1 Productivity
In general, DSLs have the potential to boost its users’ productivity [205, 208]. For baseSA,
we describe an early experiment to assess the productivity.

7.6.1.1 Goals

Productivity is measured by comparing the time it takes for a trained user to: (1) create an
external FMU using our DSL; and (2) code the same external FMU.

As a surrogate measure, we compare the approximate number of lines of code (LOC)
required for a semantic adaptation coded by hand, with the LOC of the corresponding
semantic adaptation expressed in baseSA.

7.6.1.2 Experimental Setup

As part of the development of the code generator, all semantic adaptations identified in
Figure 7.5, except the rate sa, were coded by hand and the effort taken was recorded.

172

7.6. EVALUATION

7.6.1.3 Results

Table 7.2 shows the adaptation, the approximated lines of code (LOC), and the effort in
coding the semantic adaptations in C.

Table 7.2: Effort in hand-coding hierarchical semantic adaptations.

Semantic Adaptation LOC Effort (man-hour)
lazy sa 700 9
controller sa 750 24
power sa 680 16
window sa 690 8
loop sa 690 16

Total 3510 73

As Table 7.2 shows, even though the semantic adaptations differ in complexity, they have
a similar number of LOC. This is evidence that there is a large portion of code dedicated
to common FMI-related management tasks. With baseSA, the user does not have to
code:

• Memory management – The inputs, outputs, and local variables, of the external FMU
are stored in dynamically allocated memory.

• Variable de-referencing – To set/get values to/from an internal FMU, a list of value
references (integers which identify a variable) has to be provided. Any mistake here
may cause the internal FMU to give wrong results, but not necessarily crash, which
makes it hard to debug.

• State management – The external FMU has to support rollback, and for that, the
state variables must be properly serialized and de-serialized. In the case study, each
semantic adaptation requires approximately 140 LOC to implement the set/get state.

• Consistent inputs management – The external FMU which is reactive and has internal
delayed units, has to keep track of the previous inputs to these.

7.6.1.4 Threats to Validity

LOC is only a surrogate measure for the productivity of a DSL, albeit a common one [50],
and depends on the programmer. However, the tasks described in the above list are handled
automatically by the code generator of baseSA.

The values provided in Table 7.2 lack external validation. We intend to perform a second
round of experiments, where we will ask a participant to code a semantic adaptation, then
train him/her, and measure the effort it takes to code the same adaptation, in baseSA.

7.6.2 Expressivity
The baseSA DSL is imperative in the sense that it describes how the semantic adaptations
are performed. However, it forces a structure in the definition of the semantic adaptations,
aided by the distinction between data (input/output rules) and control adaptations. We argue
that this structure does not restrict the expressiveness of the semantic adaptations.

173

CHAPTER 7. SEMANTIC ADAPTATION

To provide evidence for this, we describe how the adaptations used in the case study are rep-
resentative of the semantic adaptations and coupling algorithms surveyed in [157].

Extrapolation/interpolation schemes These techniques, used in [39, 64, 69, 70, 71, 116,
339], are similar to the rate sa.

Jacobi-based master This master algorithm, used in [35, 73, 120, 132, 136, 165, 214,
375], is similar to the Gauss-seidel coupling except that it assumes that all units are
delayed. A way to implement it as a semantic adaptation is to define a control rule
that sets explicitly the inputs to the internal FMUs, and then invokes the do step

function on them.
Algebraic constraint couplings This coupling technique, reported in [23, 166, 329, 332],

can be implemented by a fixed point iteration (recall adaptation loop sa) and extra
algebraic computations on the units inputs and outputs.

Semi-implicit coupling These techniques, presented in [324, 326, 327, 328, 329], are
similar to the ones above, except they perform two iterations only.

Error control Richard extrapolation [24, 26, 136] can be implemented by creating a
semantic adaptation which runs a whole scenario at twice the rate of the original one;
Multi-order input extrapolation [73, 75] amounts to implementing two approximation
schemes (see item above) and run in parallel; Embedded method [184] requires that
a semantic adaptation is implemented to perform a discretized numerical integration
of some of the signals in the internal scenario; Energy based [318] techniques can be
implementing by coding semantic adaptations which monitor for energy dissipativity
in some of the signals in the internal FMUs.

We do restrict the expressiveness of the language, with the intent of guaranteing that it
terminates:

• No function definitions are allowed;
• No recursive definitions of semantic adaptations are allowed;
• For loops must have a static range.

These restrictions make expressing some of the above techniques more cumbersome, but
not impossible.

7.6.3 Modularity
The simulation unit specification, introduced in Definition 34 was shown to be a valid
abstraction of an implementation of an FMU in Section 7.2. Furthermore, it is clear that
changing the implementation of any of the functions Init , G, F implies a change in the FMU
implementation. In Section 7.5.3, these functions are invoked as part of the implementation
of each semantic adaptation, but never changed, thus showing that the corresponding FMU
implementations are not affected by the implementation of the language.

7.6.4 Transparency
Section 7.4 describes how a generic semantic adaptation forms a simulation unit that obeys
Definition 34 (see Equation (7.5)). Furthermore, Section 7.5.3 describes how a baseSA is
implemented by “filling in” the semantic adaptation functions, that are used in Section 7.4.
The semantics does not require the hierarchical unit definition, in Equation (7.5), to be
changed. Therefore, our approach does not violate transparency.

174

7.7. DISCUSSION AND FUTURE WORK

7.7 Discussion and Future Work
This section discusses some of the characteristics and limitations of our contribution, and
research opportunities for the future.

Automatic Semantic Adaptation Identification. Throughout this work, we assumed
that the user knows that an adaptation is required in order to make the co-simulation
possible. An interesting research direction is to explore what means can be employed in
trying to identify the need for specific semantic adaptations.

Runtime Performance. Despite not being our primary goal, the performance of the
generated FMU should be similar to a custom coded one. To this end, the code generator
under development performs most tasks at compile time. However, we have not carried out
any experiments to measure the performance of the generated code.

A research direction is to explore how to merge multiple adaptations, to avoid generating
the intermediate hierarchical FMUs. For example, in Figure 7.5, adaptations loop sa and
rate sa could be merged into one single adaptation, provided that the user has no intention
of using loop sa for other purposes. However, while it is clear what the result should be
for this example, in general this is non-trivial task: When can two arbitrary adaptations be
merged?

Solving this problem brings a performance benefit, but also provides new insights into
the nature of adaptations. In addition, one can ask: If two semantic adaptations can
be combined, are they commutative? This question is important because it allows us to
optimize: if there is a semantic adaptations which will cause rollbacks, we want it to be
the first to execute, to avoid wasting computation. An example of this is the controller sa,
which performs the crossing location before the lazy sa gets the opportunity to run.

Trying to answer the above questions will inevitably lead to another question: what is
the right level of abstraction to analyse the combination of semantic adaptations? This
question is related to the next discussion topic.

Usability and Productivity. As part of trying to find out what the right level of abstrac-
tion to analyze semantic adaptations is, we are developing a new language that allows
for a more declarative description of semantic adaptations. This language, as opposed
to baseSA, allows for a much more concise description of the most common semantic
adaptations by just enumerating what semantic adaptations should be used to form the
external FMU.

The descriptions made in this language compile to baseSA, whose role is to provide a solid
foundation.

The main benefits of using this language are:

1. The user does not to know how semantic adaptations are implemented.
2. It is minimal, meaning that it enables the user to specify common semantic adap-

tations (e.g., multi-rate, successive substitution) as concisely as describing them in
natural language;

3. It further restricts the user into using well known semantic adaptations, which prevents
mistakes.

175

CHAPTER 7. SEMANTIC ADAPTATION

4. It may provide insight into the research questions identified in the previous subsection.

1 importPowerWindowModel
2

3 semanticadaptationreactive moore RateLoopSArate_loop
4 at "./path/to/RateLoopSA.fmu"
5 for fmu WindowSA windowSA, Obstacle obstacle
6 successivesubstitution starts at height with absolute tolerance = 1e-8 and relative tolerance = 0.0001
7 multiply rate 10 times with first order interpolation

Listing 7.8: Example description in higher level semantic adaptation DSL.

Listing 7.8 shows an example of what such DSL looks like. The syntax reuses part of the
syntax of baseSA. The description of the FMUs can be done in a separate module, which
is then imported (Line 1). For this example, the FMUs are described as in Lines 4–15 of
Listing 7.3. After the preliminaries, the description of each semantic adaptation occupies
one line (Line 6 for loop sa, and Line 7 for rate sa). In this language, adaptations are
applied in order, meaning that the outer most adaptation is the multi-rate one.

Each adaptation has some degree of configuration. For example, the multi-rate is con-
figurable with an input approximation adaptation. This highlights another interesting
research direction, related to the combination of semantic adaptations: how and when
can semantic adaptations interface with each other? In this example, it is clear that any
input approximation adaptations can complement a multi-rate adaptation, but what are the
essential characteristics of input approximation and multi-rate adaptations, that make them
so compatible? The same question applies to output approximation adaptations (the family
of Hold adaptations) and the lazy related ones. A possible direction to explore is to look at
the object oriented world, and study how can semantic adaptations define interfaces and
specialization, so that their interaction is well defined.

Discrete Event FMU Implementation. The current version of the FMI standard (version
2.0) lacks essential features to enable accurate hybrid co-simulation (see, e.g., [66, 67, 88,
98, 122]).

Until new extensions are made, there are many different ways in which a cyber system (e.g.,
a state chart) can be simulated in an FMU [98, 100, 122, 288, 303, 353]. At least one of the
implementations the authors used before (the Stategraph [288]), already includes semantic
adaptations, to facilitate its integration with the FMI.

Our work shows that, when implementing an FMU that simulates a cyber system, it is
best to leave as many semantic adaptations as possible out. The more adaptations an FMU
already contains, the harder it is to adapt it to other contexts.

7.8 Related Work
Outside the context of FMI, the problem of composing and adapting operational semantics
of multiple languages is discussed in [60, 61, 103, 105, 222, 251, 267, 371] and references
therein.

Within the context of FMI, we can divide the related works in two categories: (A) those
whose prime purpose is to describe co-simulation scenarios; and (B) those that target the

176

7.9. CONCLUDING REMARKS

description of master algorithms. Both these categories do not target primarily the descrip-
tion of semantic adaptations, but can potentially be extended to include simple descriptions.
Due to our pure hierarchical co-simulation approach, our contribution complements any of
these works.

Under Category (A), we highlight [358], [226], [136], and [77]. These works introduce
a language for the description of a co-simulation scenario, with the purpose of running a
co-simulation. The work in [136, 226] assumes that a generic master algorithm is used,
whereas [77, 358] aim at generating an master that is specific to the scenario described. Our
DSL allows for the description of a co-simulation scenario, and a specific master algorithm
can be generated from that description.

DACCOSIM [136] follows a related approach with respect to hierarchical co-simulation,
allowing the scenario to grouped by computational nodes. In contrast to our work, this
hierarchy is computational and not functional. Moreover, it is not transparent, as the
distinction is made between local (internal to computational nodes) and global master
algorithms. Nevertheless, each FMU is wrapped with code that performs error control,
highlighting the need for semantic adaptation.

In Category (B), we highlight [77], [143], and [27]. The work in [77] allows the description
of master algorithms using the Business Process Modelling Notation. We argue that the
visual notation for the description of an master algorithm works well for simple cases, with
two units. However, when multiple semantic adaptations become necessary, or the number
of simulation units increases, the visual notation rapidly becomes cluttered. The work
does not describe any intention of using the notation to describe semantic adaptations, but
the notation has an extension mechanism that can in principle be used to describe simple
semantic adaptations.

The most related to our own is [27]. It introduces an object oriented framework for co-
simulation that allows for both the development of FMUs, as well as for master algorithms,
in C++. Class specialization is used extensively to maximize reuse, sharing some of the
benefits with our contribution. The main difference to our work is the level of abstraction
and the intention to use semantic adaptations. While their work is capable of expressing
semantic adaptations, our work is targeted towards that purpose. One can position their
work as helping develop FMUs for simulators that need to support the FMI Standard, and
our work can be used to adapt already existing FMUs. Furthermore, the description of a
complex adaptations such as rate sa is more compact in our DSL.

7.9 Concluding Remarks
This chapter addressed the problem of describing the most common semantic adaptations
on multiple types of black box simulation units in a productive manner while avoiding the
modification of the units (modularity) and tools for co-simulation (transparency).

To make this possible, we propose a DSL, available for download5, that is both expressive
(due to its imperative nature) but also productive (due to its conventions and high level
constructs). Each description refers to a group of interconnected FMUs and dictates how
those FMUs interact with the environment.

5https://github.com/INTO-CPS-Association/hybrid-cosim

177

https://github.com/INTO-CPS-Association/hybrid-cosim

CHAPTER 7. SEMANTIC ADAPTATION

The essential mechanism that enables the semantic adaptations is the concept of hierarchical
co-simulation, formalized in this work. The meaning of each adaptation is given by mapping
it onto hierarchical co-simulation units, which in turn is mapped to units and FMUs, as
illustrated in Figure 7.1.

The main distinguishing factor from the related work, is our focus in semantic adaptations
for FMI based co-simulation, which imposes the modularity and transparency require-
ments.

Limitations and Assumptions. Regarding the implementation of the FMU, we assumed
that we know how its inputs are handled, and how the outputs depend on the inputs.
Moreover, we assumed that FMUs can reject the step size and inform us of the largest step
size they can take. We also did not consider the initialization problem. It can be treated as a
separate problem, so the results presented here do not lose their generality. We assumed
that FMUs rollback, because that is crucial for many semantic adaptations. In practice,
many FMUs do not support this feature, as it is optional in the FMI standard.

This work opens up new opportunities for research into semantic adaptations, for example,
how to find higher levels of abstraction to describe semantic adaptations, and explore how
different semantic adaptations can interface and complement each other. We intend to
explore these in the future.

178

Chapter 8

Hint-Based Configuration of
Co-simulations

Disclaimer The content in this chapter is adapted from:

• Gomes, Cláudio, Bentley James Oakes, Mehrdad Moradi, Alejandro Torres Gamiz,
Juan Carlos Mendo, Stefan Dutre, Joachim Denil, and Hans Vangheluwe. 2019.
“HintCO - Hint-Based Configuration of Co-Simulations.” In International Conference
on Simulation and Modeling Methodologies, Technologies and Applications, best
student paper award. Prague, Czech Republic.

As discussed in Chapters 2 to 4, the black-box nature of co-simulation amplifies the
difficulties in ensuring that the results can be trusted. This chapter focuses on exploring the
problem of configuring a co-simulation in a way that preserves the qualitative properties of
the original system. This is recognized as one of the challenges faced in industry, a fact that
we confirmed with our industrial partners.

8.1 Introduction

Co-simulation is typically used as part of: an optimization loop (e.g., design space explo-
ration), physical system integration analysis (e.g., hardware-in-the-loop), and/or impact
analysis of sub-model refinements. In any of these use cases the coupled models being
simulated are under constant change. Therefore, the person interested in the results of
the analysis, henceforth denoted as the user, may be unable to properly configure each
individual co-simulation.

Moreover, when a co-simulation result is incorrect (see Section 8.3 for a more rigorous
definition), there can be multiple causes [23, 24, 159, 325]:

• Sub-models are incorrect;
• FMUs use the incorrect simulation algorithm;
• The master algorithm is incorrect.

CHAPTER 8. HINT-BASED CONFIGURATION OF CO-SIMULATIONS

This means that the user has to be familiar with a wide range of domains in order to correctly
configure the co-simulation.

For example, an FMU can be labeled as a software controller allowing the framework to
generate master algorithms that: 1) respect the execution rate of the FMU, and 2) ensure
the causality of software execution in digital platforms. Further examples are given in
Section 8.2.

The survey described in Chapter 4 corroborates the fact that users do not always know how
to configure the co-simulation.

In this chapter, we propose a way to tackle the challenge of configuring co-simulations,
formalized in Section 8.3. Motivated by discussions with our industrial partners, we noticed
that, while users may not know how to configure the co-simulation, they have intuition
about the behaviour of the system and when the simulation result is not correct.

Hence, we propose a language to describe hints, i.e., properties about the co-simulation
scenario and coupled model, and a framework, called HintCO, that uses those hints to
propose co-simulation master algorithms that are good candidates to produce correct
results.

We make use of the results introduced in Chapter 7, and the good practices identified in
Chapter 3.

Figure 8.1 lays out the HintCO framework. There are three main components:

a) HintCO Hint Language which allows the user to specify their expectations for the
results of a correct co-simulation (Section 8.4). Common hints are provided in a built-
in library so the user may easily choose and adapt them to a specific co-simulation.

b) Generation of Candidate Master Algorithms which is the method for mapping a
given set of hints to sets of master algorithms (Sections 8.5.1 and 8.5.2). In short, the
hints provided induce a search space of possible master algorithms, and a ranking of
the most important features for a good master algorithm.

c) Execution of the Master Algorithms where each master algorithm produced by the
search is executed (Section 8.5.3). The results are presented to the user for inspection.

In Section 8.6, we discuss other approaches that complement our own, and Section 8.7
summarizes of our research and the steps to extend our framework further.

8.2 Industrial Example
This section describes the added value of co-simulation for our industrial partners. Then,
we introduce the case study made available by Boeing and illustrate the challenge of finding
the correct configuration for the co-simulation. Finally, we argue that to know which
configuration is likely to be the best, we need domain knowledge.

8.2.1 Value of Co-simulation for Boeing
Boeing’s vision on the Digital Twin era of aviation involves the integration of models coming
from different physical domains, software environments and numerical characteristics into
a single virtualized aircraft [51]. This vision requires the creation of unified modeling

180

8.2. INDUSTRIAL EXAMPLE

Figure 8.1: HintCO framework overview.

environments, where engineers can seamlessly evaluate the impact of a local modifications
in the global system. However, these systems are comprised of many heterogeneous
models, which cannot be integrated seamlessly in a single monolithic simulation. As such,
Boeing regards co-simulation as one of the key technologies to enable the Digital Twin
vision.

8.2.2 Boeing’s Case Study
The case study presented was developed by Boeing. It constitutes a representative generic
Flight Controls System, in the form of a co-simulation scenario. The FMUs are black boxes,
having only the description of the input/output variables, and parameters. Moreover, no
source code was made available, thereby protecting Boeing’s Intellectual Property (IP), and
the parameters given do not represent accurate values.

The IP-protected case study was shared with the University of Antwerp for co-simulation
optimization, and the circumstances represent a faithful reproduction of Supplier–OEM
relationships, where IP management tends to be an issue.

Case Study Consider a control system, represented as a co-simulation scenario in Fig-
ure 8.2. The Controller FMU represents a software controller, the Plant and Load
FMUs represent the physical subsystems. The Environment FMU produces a constant
signal for psu, and a step signal for ref.

We do not have access to the correct behavior of the co-simulation scenario described in
Figure 8.2. However, the Load FMU has been designed and tested against abstractions
of the Plant and Load FMUs, hence we can assume that its behavior should not be
fundamentally different in the co-simulation. Moreover, the Plant and Load FMUs
are produced by specialized teams, which know how the behavior of the corresponding
subsystems should look like. Therefore, we make the following assumptions.

181

CHAPTER 8. HINT-BASED CONFIGURATION OF CO-SIMULATIONS

Environment

Controller Plant

Load

vx f

xaft

refpsu
Legend

FMU

I/O Port

o

w

Figure 8.2: Case study co-simulation scenario.

Assumption 12. The Controller FMU is a software controller designed for a sample
rate of 1× 106 Hz. The Plant and Load FMUs model physical subsystems connected
by a power connection, where v represents the effort, and f the flow.

Assumption 12 represents the domain specific knowledge that users of co-simulation use to
judge the correctness of the results. For example, the movement of the Plant and Load
subsystems should be smooth.
Assumption 13. The FMUs do not support rollback, never reject a step size, and do not
have I/O feed-through information.

Assumption 13 reflects the fact that the FMU providers have implemented only the manda-
tory part of the FMI Standard.
Assumption 14. The Controller, Plant, and Load FMUs are correct in the sense
that, if they are provided with valid inputs, they will produce valid outputs with respect to
their intended function. That is, the FMUs are correctly built.

Assumption 14 means that, if the co-simulation results are not accurate, it is only because
the co-simulation is not correctly configured.

The precise definition of co-simulation configuration is found in Section 8.3. In brief, the
configuration includes the order in which the outputs are propagated to the inputs, the order
of execution of each FMU, and the size of communication step. Even for small systems,
the number of possible configurations can be infinite.

8.2.3 Analysis
The paragraphs that follow discuss why most co-simulation algorithms will fail to accurately
reproduce the behavior of the co-simulation scenario in Figure 8.2. This is illustrated by
showing two representative co-simulation algorithms that produce incorrect results with
respect to assumption 12, which details information about FMUs and signals.
Experiment 1. Taking the hint that the Controller needs to sample the system every
1× 10−6 s, the first co-simulation algorithm we apply is the fixed-step-Jacobi. This algo-
rithm keeps the FMUs in sync by propagating outputs to inputs before asking each FMU to
compute the next interval [35].

Figure 8.3 shows the output computed by this algorithm for the Load FMU, which is
examined because it is the most sensitive to the master algorithm. As clearly evident in the
figure, the trace produced is not smooth.
Experiment 2. A user’s intuition may be that the Load and Plant FMUs need to com-
municate at a higher rate than the sample of the Controller FMU due to assumption 12.
Hence, we apply a multi-rate co-simulation algorithm such as the one described in [358], to
produce the results shown in Figure 8.4. In this trial, we chose the communication rate of

182

8.2. INDUSTRIAL EXAMPLE

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.04

0.02

0.00

0.02 v

Figure 8.3: Output of Load FMU in experiment 1. Step size is 1× 10−6 s.

the Load and Plant FMUs to be ten times higher. However, the result is still not smooth.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.04

0.02

0.00

0.02 v

Figure 8.4: Output of Load FMU in experiment 2. Communication rate between Plant
and Load is 1× 107 Hz.

The results of experiments 1 and 2 suggest that an adaptive step size co-simulation algorithm
(e.g., [24, 48, 75, 317]) will fail: the step size of 1× 10−7 s is already the minimum that can
be used before the run-time execution time becomes intolerable by our industrial partners.
For reference, the result in Figure 8.4 takes on average 32 minutes to compute on a Core i7
3.5GHz laptop.

To address the run-time execution issue, we turn to corrective co-simulation approaches:
either a global error correction technique is used, or the input approximation of each FMU
can be improved, so that less error is introduced. However, the global error correction
technique cannot be applied, because the co-simulation scenario includes FMUs whose
output is discontinuous (Scenario, and Controller). This thus violates the continuity
assumptions that both these techniques make.
Experiment 3. To improve the input approximations on each FMI, a Gauss-Seidel co-
simulation algorithm [35] can be employed to determine whether interpolations can be
used instead of extrapolations on some of the FMUs. This algorithm executes each FMU
in order, using the most recently computed outputs to feed the FMUs that still need to be
executed.

For example, at the beginning of each co-simulation step, the Load FMU is given the output
produced by the Plant and asked to compute the next interval. Then, the output xaft is
propagated to the Controller, which is then asked to computed the next interval, and
so on.

Figure 8.5 shows the results of this experiment. As can be seen, the trajectory is preferable
to the other experiments, but is still not smooth enough for the system to be considered
properly configured.

The Gauss-Seidel algorithm is more difficult to configure because it assumes that some
FMUs can be executed with inputs “from a future simulated time”. This is not the case
for the Controller, because a software controller cannot predict the state of the Load
or Plant FMU 1× 10−6 s ahead. Similarly, the Plant can only react to a change in

183

CHAPTER 8. HINT-BASED CONFIGURATION OF CO-SIMULATIONS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.05

0.04

0.03

0.02

0.01

0.00

0.01 v

Figure 8.5: Output of Load FMU in experiment 3. Step size is 1× 10−6 s, the signals x
and v are extrapolated, and f is interpolated.

the output of the software controller after this change has occurred (this is formalized in
Section 8.3). For the remaining FMUs used in the case study, causality is not an issue,
because we are anyhow relaxing the higher frequencies at which they affect each other in
reality [215]. Moreover, higher-order input approximation techniques can only be applied
to signals that are continuous (i.e., signals x,v, and f).

These restrictions imply that most state-of-the-art algorithms relying on correction of signals
(e.g., [40, 43, 161]) cannot be applied without some form of configuration.

8.3 Problem Formulation
In this section, we detail our research problem. In brief, we search through the configuration
parameters of the co-simulation master algorithm in order to generate good co-simulation
candidates. Preferable candidates more closely match the user’s intuition of the properties
of the system, as expressed through the hints.

8.3.1 Co-simulation Formalization
In this section, we define some core concepts that allows us to formalize the notion of
model behavior approximations, when there is no reference solution.

A dynamical model has the purpose of approximating the relevant behavior of the original
system with respect to some properties of interest, denoted by P . We assume every
dynamical model has a behavior trace, which is the set of trajectories followed by the state
(and outputs) of a dynamical model. We refer to the time variable t ∈ R as simulated
time—or simply time, when no ambiguity exists.

When the behavior trace of dynamical model M satisfies property p ∈ P , we write
M � p.
Definition 35. A dynamic model is valid when its behavior satisfies the same properties as
the original system.
Remark 12. The satisfaction relation � used in Definition 35 provides a binary result. In
practice, a model M can partially satisfy a property p. For simplicity, we assume that the
set P is such that the partial satisfaction can be encoded with the � relation.

A simulator (or solver) A is an algorithm that computes the behavior trace of a dynamical
model.

For a given model M and simulator A, we denote the induced model by JMKA. With
this notation, the behavior trace computed is exact iff JMKA = M , and approximate

184

8.3. PROBLEM FORMULATION

otherwise.

In the case that JMKA 6= M , we define the error of the simulator as the abstract difference
between the original model and the induced model: ‖M − JMKA‖, for some given norm
‖·‖.

A simulator is accurate when ‖M − JMKA‖ is small enough to understand whether M
satisfies the set of properties P .

Because we do not always have access to the behavior trace of the model, it is more realistic
to redefine the notion of accuracy in terms of properties.
Definition 36. Given a set of properties P , a simulator A is accurate when it satisfies the
same subset of properties as the model:

∀p ∈ P,M � p⇔ JMKA � p (8.1)

The measure of accuracy can then be the number of properties that satisfy Equation (8.1).
Remark 13. Definition 35 excludes performance related properties (e.g., execution time of
the simulation algorithm). We argue that these are secondary properties whose satisfaction
only makes sense when the primary properties P are satisfied (which means the simulation
results can be trusted).

We use the term FMU to denote an executable artifact that produces a behavior trace, when
inputs are provided. The FMU combines a simulationA with a model M , and produces the
behavior trace of JMKA.

A simulation is the behavior trace obtained with an FMU. The correctness of the simulation
depends on the accuracy of the simulator (Definition 36) and the validity of the dynamical
model (Definition 35).

A coupled model is a dynamical model that is comprised of sub-models. When the sub-
models are represented by different FMUs, we need co-simulation to approximate the
behavior trace of the coupled model.

A co-simulation is the behavior trace of a coupled model approximated by a master algo-
rithm applied to a co-simulation scenario. A co-simulation scenario is a set of FMUs and
their I/O mappings (e.g., see Figure 8.2). A master algorithm represents the approach to
compute the co-simulation. It typically determines the communication rate, and which data
is exchanged between FMUs. When an FMU represents a continuous sub-model, its inputs
need to be approximated. As such, we consider the input approximation schemes as being
part of the master algorithm.

In the following, we formalize the concepts of FMU, co-simulation scenario, and master
algorithm, with the intent of exposing the nuances in configuring a co-simulation.

We adapt the notations introduced in [66]. To simplify and follow assumption 13, we
leave out the notation for the initialization and feed-through. However, our implementation
accounts for these omissions.
Definition 37. An FMU with identifier c is a structure 〈Sc, Uc, Yc, Rc, setc, getc, doStepc〉 ,
where:

• Sc represents the state space;
• Uc and Yc the set of input and output variables, respectively;
• Rc : Uc → {true, false} the reactivity of each input (see Definition 39);

185

CHAPTER 8. HINT-BASED CONFIGURATION OF CO-SIMULATIONS

• setc : Sc × Uc × V → Sc and getc : Sc × Yc → V are functions to set the inputs
and get the outputs, respectively (we abstract the set of values that each input/output
variable can take as V); and
• doStepc : Sc × R≥0 → Sc is a function that instructs the FMU to compute its state

after a given time duration.

The following definition reflects the fact that the FMI Standard leaves implicit the current
time of each FMU. However, this information is crucial to correctly configure the co-
simulation.
Definition 38 (State timestamp). Given a communication step size H ∈ R≥0 and H > 0,
we say that the state sc ∈ Sc of an FMU c has timestamp t, denoted as ϕ(sc) = t when
doStepc has been called t

H times with H as parameter.

According to Definition 38, if an FMU is in state sc at time t, doStepc(sc, H) approximates
the state of the corresponding model at time t + H . If this model is a continuous one,
the FMU will approximate the evolution of the state in the interval [t, t+H], using an
approximation function to estimate the values of the inputs in that interval. In our notation,
we choose to leave this function implicit in the doStepc, as reflected in the current version
of the FMI Standard. However, we make explicit the requirements of each kind of input
approximation in the form of the reactivity Rc.

Intuitively, an FMU with a reactive input must wait until the FMU that feeds that input
executes a step before getting that input value. The reactivity therefore imposes an order in
the execution of the FMUs. This concept was first introduced in [158].
Definition 39 (Reactivity). For a given FMU c with input u ∈ Uc, Rc(u) = true if
the function doStepc makes use of an interpolation of input u. Formally, let t be the
timestamp of the state sc prior to a call to doStepc(sc, H), and let d denote the FMU
whose output y ∈ Yd is connected to u. Then, Rc(u) = true means that sc must have been
produced from a call to setc(. . . , u, getd(sd, y)) where the state sd of FMU d satisfies
ϕ(sd) = t+H . Conversely, Rc(u) = false means that sc must have been produced from
a call to setc(. . . , u, getd(sd, y)) where ϕ(sd) = t.

Since knowing the reactivity of each FMU is related to having access to the input ap-
proximation implementation, and since the FMI Standard version 2.0 does not include
information about reactivity, we make the following assumption.
Assumption 15. If an FMU c does not disclose its input approximation scheme for an
input u, then we assume that u is approximated with a constant extrapolation. Therefore,
Rc(u) = false .

Fortunately, the input approximation scheme of an FMU input, and therefore its reactivity,
can be controlled by semantic adaptation.
Definition 40. Semantic adaptation is a technique that allows a new FMU c to be con-
structed from an old set of FMUs, using a custom implementation of the setc,getc, and
getc functions (recall Chapter 7).
Definition 41. A co-simulation scenario is a structure 〈C,L〉 where each FMU identifier
c ∈ C is associated with an FMU, as defined in Definition 37, and L(u) = y means that the
output y is connected to input u. Let U =

⋃
c∈C Uc and Y =

⋃
c∈C Yc, then L : U → Y .

A master algorithm is considered here as everything that influences the co-simulation
result. The following concepts are a way to isolate and formalize these different compo-
nents.

186

8.3. PROBLEM FORMULATION

Definition 42 (Co-simulation Step). Given a co-simulation scenario 〈C,L〉, a co-simulation
step is an ordered sequence of FMU function calls (f)i∈N with

f ∈ F =
⋃
c∈C
{setc, getc, doStepc} ,

and i denoting the order of the function call. A function call fi comes before a function
call fj , written as fi � fj , if i < j, and comes immediately before, written as fi → fj , if
i = j − 1.

It is important that the co-simulation step respects the reactivity of each FMU (recall
Definition 39), and the couplings of the FMUs.
Definition 43 (Valid Co-simulation Step). Given a co-simulation step size H > 0, a
co-simulation is valid with respect to reactivity and couplings if it satisfies the following
conditions:

1. Each function call uses the most recent FMU State as parameter. For example, if fj =
getc(sc, y) then sc must be the result of the most recent call to setc or doStepc,
that is, the maximal i such that i < j, and fi = setc(. . .) or fi = doStepc(. . .).

2. For every c ∈ C, there exists one, and only one, call to doStepc, and it is done with
argument H .

3. Each call to doStepc for c ∈ C must come after every call to setc on the input
variables of c.

4. Each call to get is immediately followed by a sequence of calls to set to set the
affected input variables.

5. For each c ∈ C and u ∈ Uc satisfying Rc(u) = true, doStepd � getd(L(u), . . .),
where L(u) ∈ Yd and d ∈ C.

6. For each c ∈ C and u ∈ Uc satisfying Rc(u) = false, the call to setc(. . . , u)
setc(. . . , u)� doStepd, where L(u) ∈ Yd and d ∈ C.

Remark 14. Regarding Definition 43:

• The most common master algorithms will satisfy conditions 1–3;
• Condition 4 is not mandatory but it facilitates the description of Conditions 5 and 6.

Furthermore, it makes the implementation simpler.
• Conditions 5 and 6 ensure that the reactivity of each input is respected, according to

Definition 39.
• This definition is consistent with assumption 13. Relaxing this assumption requires

modifications that are outside the scope of this work.

In addition to Definition 43, we make the following assumption, which is not strictly
required to ensure a valid co-simulation step, but makes the description of the techniques
employed in later sections simpler.
Assumption 16. In a valid co-simulation step there is only one call to getd(y, . . .)

Assumption 16 restricts the reactivity of every two input variables u, v that are fed by the
same output variable, that is P (u) = P (v), to be the same. We do not lose generality by
making this assumption since one can perform multiple calls to getd(y, . . .), before and
after doStepd to get the right values.

Executing a co-simulation step in a co-simulation scenario 〈C,L〉 where all FMUs c ∈ C
have a state sc satisfying ϕ(sc) = t, will update each FMU state sc to satisfy ϕ(sc) = t+H ,
where H is the argument of every call to doStep.

187

CHAPTER 8. HINT-BASED CONFIGURATION OF CO-SIMULATIONS

Definitions 42 and 43 and assumption 16 purposefully exclude the case where a group of
FMUs needs to communicate more frequently per co-simulation step, as in experiment 2.
This is because this group can be transformed to a single FMU using semantic adaptation
(Definition 40). Therefore, we do not lose generality. We revisit this in Section 8.5.4.
Definition 44. Given a co-simulation scenario 〈C,L〉, a co-simulation step sizeH , and a co-
simulation step (f)i∈N, a master algorithm is a structure defined asA =

〈
C,L,H, (f)i∈N

〉
.

With this formalization, we can summarize the configuration parameters of a master
algorithm:

• co-simulation step size H;
• FMUs and their semantic adaptations C,L; and
• co-simulation step (f)i∈N.

Each different parameter induces a model that is likely to be different than the original
coupled model.
Definition 45. The induced coupled model, denoted by JMKA, is the model whose behavior
trace is computed by a given master algorithm A, with the intent of approximating the
behavior trace of a coupled model M .

8.3.2 Research Problem
With these assumptions and definitions, we can formalize our main goal.

For a given coupled modelM , find a master algorithmA that minimizes ‖M − JMKA‖.

Since in realistic conditions we do not have access to the behavior trace of M , we relax the
above problem to the following.
Problem 3. For a given set of properties P , a coupled model M , find a master algorithm

A =
〈
C,L,H, (f)i∈N

〉
,

that maximizes the size of the set

{p : p ∈ P,M � p =⇒ JMKA � p} ,

such that (f)i∈N satisfies Definition 43 and assumption 16.

Intuitively, the solution A to Problem 3 can be seen as having maximal relaxed accuracy
(recall Definition 36).

Multiple solutions to Problem 3 are possible. In this work, we provide a way to generate
multiple potential solutions for the user to evaluate.

Note that if the coupled model M is invalid (recall Definition 35), the optimal solution A
would have to not satisfy the same properties that the model does not satisfy. Therefore, we
make the following assumption:
Assumption 17. When solving Problem 3, we assume that M is valid, according to
Definition 35.

As well, in practice the set of properties P is not completely specified. This motivates
our proposal of using hints as an approximation of P , to be derived from requirements, or
declared by engineers. Assumption 18 reflects that we must rely on these hints to obtain
information about M .

188

8.4. HINT LANGUAGE

Figure 8.6: The ExecRate and PowerBond hints.

Assumption 18. We assume that M ’s behavior satisfies the hints provided.

In the next section, we describe how these hints are represented such that the user does not
need to understand the co-simulation domain. Then, in Section 8.5 we discuss our approach
to solve Problem 3.

8.4 Hint Language
In this section, we describe how to represent the hints used to configure co-simulation
as defined in Problem 3. This is done through the creation of a small domain-specific
language (DSL). DSLs allow experts in the problem space (the system engineers) to
describe hints, without having to become experts in the solution space (the co-simulation
domain) [368].

As an example, Figure 8.6 show the hints described in assumption 12. Each hint has
a number of fields. The description field is an unstructured text, as commonly seen in
industrial requirements. Following this are statements, which can be events or properties.
Finally, the scope and the pattern specify when the hint is valid.

Statements As seen in Figure 8.6, Statements define the Events and Properties which
refer to FMUs and their signals in the system.

For brevity, we omit the description of several other operators that can be used as statements.
For example, hints can be specified over the average or derivative of a signal. The language
is defined to be easily extensible, and we are collaborating with our industrial partners to
define further useful operators.

Scopes and Patterns The example hints in Figure 8.6 are applicable throughout the entire
simulated time. This is denoted by the Globally scope of the hint, and the Universality
pattern. These scopes and patterns are sourced from [29].

Scopes define when the hint is valid: Globally, Before an event, After an event, Between
two events, and After an event until another event.

Patterns define the precise manner in which a statement holds. We refer the reader to [29]
for a full description and syntax of the patterns. As an example, the MinDuration pattern
means once [an event] holds, it will hold for [an amount of time]. This allows the engineer
to precisely define how the statements defined in the hint should hold.

189

CHAPTER 8. HINT-BASED CONFIGURATION OF CO-SIMULATIONS

Implementation The hint language was created with the XText DSL framework1, which
produces a XML Metadata Interchange (XMI) file representing each hint. These files
are then used for the generation of the master algorithms that are candidate solutions to
Problem 3.

8.5 Master Generation
This section describes the search algorithm that enumerates potential solutions to Problem 3
using a given set of hints.

8.5.1 Search Space Representation
Given a co-simulation scenario, the search space is the set of all master algorithms that
can be used to compute the co-simulation. According to Definition 44, we identify the
following dimensions of the search space:

• the set of all communication step sizes;
• the set of all co-simulation steps;
• the set of all semantic adaptations applied to the FMUs.

The search space is therefore infinite, though as shown below we consider only a finite
subset of this space.

The problem of representing a search space is not new, and there is a rich literature in
design space exploration from where we draw inspiration. In particular, we borrow concepts
from feature models [202] for the representation, and the use of domain-specific hints for
optimization (e.g., [364, 370]).

Figure 8.7 shows an excerpt metamodel of the search space representation. The search
space, represented by class Candidates, comprises multiple RootCandidateScenarios. The
latter represent alternative master algorithms. These comprise the co-simulation step size,
the co-simulation unit instances (FMUs), their connections, and semantic adaptations. The
co-simulation step operations are left implicit, restricted by the semantic adaptations used
(see Section 8.5.3).

Semantic adaptations can be applied to FMUs and input ports, and since FMUs can be
hierarchical, this enables the representation of multi-rate master algorithms. Of the currently
supported semantic adaptations, we highlight:

Extrapolation/Interpolation Adaptation Applies the approximation to the affected FMU
input port.

MultiRateAdaptation Makes an FMU perform multiple steps per co-simulation step. Can
be combined with Extrapolation/Interpolation adaptations, and can also be applied
to hierarchical FMUs.

PowerBond Adaptation Whenever two FMUs share a power connection, the PowerBond
adaptation changes one of the FMU’s input ports to correct for the energy dissipated,
using the technique introduced in [43].

XOR Adaptation Can be combined with other adaptations to represent alternatives.

1https://www.eclipse.org/Xtext/

190

https://www.eclipse.org/Xtext/

8.5. MASTER GENERATION

Figure 8.7: Excerpt of search space representation metamodel.

The variability of the co-simulation candidates is therefore encoded in alternative root
candidate scenarios and XorAdaptations.
Example 26. Figure 8.8 shows an example search space. The Load and Plant FMUs
have a PowerBond adaptation, and the Environment FMU has an XorAdaptation
with two alternative multi-rate adaptations. This search space represents four alterna-
tive master algorithms, because of the two Environment FMU rates, represented as
R = {100, 10} in the figure, and two possible communication step sizes, represented as
H =

{
1× 10−7, 1× 10−6

}
.

Environment

Controller Plant

Load

ee
e

e

<R={100,10}> <PB(v,f)>

<PB(v,f)>

H={1e-7,1e-6} vx f

xaft

refpsu

Legend

FMU

<Adaptation>

I/O Port

e

Extrapolation

o

w

Figure 8.8: Example search space.

Given a set of hints, our tool generates a search space representation, according to the
algorithm described in Section 8.5.5. In order to explain the algorithm, we first have to
describe how different master algorithm variants are generated and executed.

8.5.2 Variant Generation
Definition 46. Given a search space representation, a master algorithm variant represents
a set of decisions made about each variation point represented in the search space.
Definition 47. A variant diagram represents all possible variants in the search space. It is
a rooted, connected, directed, and acyclic graph, where each node has the same children as
every other sibling node. Each node is associated with a weight and represents a decision
relevant to the master algorithm. The children of the same node represent a set of mutually
exclusive choices, where the weight of each child represents the preference for each choice.

191

CHAPTER 8. HINT-BASED CONFIGURATION OF CO-SIMULATIONS

The higher the weight of a node, the closer to the root that node and its siblings will be.
Example 27. Figure 8.9 shows a variant diagram representing the variants encoded in
Example 26. The co-simulation step nodes are just below the root because the co-simulation
step 1× 10−7 s has the maximal weight of the whole tree.

For now, we assume for brevity that these co-simulation scenarios do not have hierarchical
FMUs. This assumption is relaxed in Section 8.5.4.

Root

H=1e-7 H=1e-6

R=100 R=10

w=10 w=3

w=8 w=5

Figure 8.9: An example variant diagram.

Definition 48. Given a variant diagram, a master algorithm variant is defined as being a
path from the root node to a leaf node.

The number of possible variants in a diagram is the number of different paths from the root
to a leaf node. Since it is not feasible to try all variants for a large co-simulation scenario,
we rank them.

The variants are ranked according to the weight on each node, using the search procedure
defined below. These weights are set by the procedure that generates the search space from
the hints (Section 8.5.5).

1 Starting at the root, each child node with the highest weight is visited first. A variant is created
when the search reaches a leaf of the tree. The search then continues in the tree using
backtracking, heading up to the closest sibling node with the highest weight (among siblings)
not yet chosen.

Example 28. Line 14 generates the following variants, in order:
〈
H = 1× 10−7, R = 100

〉
;〈

H = 1× 10−7, R = 10
〉
;
〈
H = 1× 10−6, R = 100

〉
; and

〈
H = 1× 10−6, R = 10

〉
.

Note that that the weight value is assigned by our system, but is only valid to select between
child nodes. That is, weights cannot be compared between branches of the tree, and a path’s
weight cannot be compared to another path.

As well, currently the weights are statically assigned when the diagram is created. A future
implementation may be to dynamically assign weights based on the decisions already
taken.

8.5.3 Variant Execution
A variant encodes the co-simulation scenario, semantic adaptations to be applied, and
parameter values. A master algorithm comprises the co-simulation step, as defined in Defi-
nitions 42 and 44, which needs to satisfy the conditions in Definition 43 and assumption 16,
which in turn depend on the semantic adaptations selected for the variant. For example, an
input that is bound to a interpolation adaptation must be reactive (recall Definition 39). In
order to represent all the constraints in the execution order of operations, we introduce the
following structure.

192

8.5. MASTER GENERATION

Definition 49. Given a variant, we define the corresponding operation schedule as a
directed graph where each node represents an operation in F (Definition 42), and each
edge between nodes i and j means that the operation represented by i must be executed
before the operation represented by node j. The edges are created according to the semantic
adaptations selected for each unit and port, as described in Definition 43.
Example 29. Figure 8.10 shows the operation schedule of all variants described in Exam-
ple 27.

Topological Order:

Figure 8.10: Example operation schedule for variants in Figure 8.9. The edges represent
ordering constraints, as in Definition 49. A possible topological order is displayed on the
left.

Definition 50. A variant is executable if the corresponding operation schedule has a
topological sort.

Furthermore, according to the assumptions we have made, if there are multiple topological
orderings, they are all behaviorally equivalent.

8.5.4 Hierarchical FMUs
To keep the explanation simple, we omitted how hierarchical FMUs are handled. Since a
Hierarchical FMU represents essentially a co-simulation scenario, they are treated the same
way when it comes to variant representation and generation. The main difference lies in the
creation of the operation schedule.

1 Given a variant that contains hierarchical FMUs, we build the operation schedule according to
Definition 49, but excluding the operations that correspond to child FMUs of the hierarchical
FMUs. Then, we recursively create the operation schedule of the FMUs inside each hierarchical
FMU. The operation schedule of each Hierarchical FMU c is run whenever the doStepc
operation is invoked.

8.5.5 Search Space Generation
The previous sections cover the generation and execution of variants once the search space
is defined. In this section, we focus on how the search space is created. To be succinct, we
will only focus on the hints that were applied to the case study.

8.5.6 Results
We applied the above procedure to the co-simulation scenario introduced in our motivating
example in Section 8.2, with the ExecRate and PowerBond hints described in Section 8.4.

193

CHAPTER 8. HINT-BASED CONFIGURATION OF CO-SIMULATIONS

1 Given a set of hints and a co-simulation scenario, the search space is created as follows:
1. For each FMU with a software controller hint, add an extrapolation adaptation to each of its

input ports and to each of the input ports that are connected to its outputs.
2. If there are multiple software hints with different configured frequency rates, define the

scenario step size to be the inverse of the minimum of the frequency rates, and define the
appropriate multi-rate adaptations on the software FMUs.

3. For each PowerBond hint, add a power bond adaptation to each of the FMUs sharing the bond.
4. Select the FMUs that are not affected by any hint, and add a multi-rate adaptation (if not

already defined) with alternative step sizes at different orders of magnitude, and two
alternative first order input approximations (interpolation and extrapolation). Higher weights
are given to smaller step sizes and interpolations.

5. If the co-simulation step has not been defined yet, define multiple alternative co-simulation
steps with different orders of magnitude. Higher weights are given to smaller step sizes.

This resulted in the search space in Figure 8.8, and the four possible master algorithms,
described in Example 28.

All variants produced a smooth signal, shown in Figure 8.11. The fastest variant took 6
minutes, on average, to produce the result. The slowest variant took 38 minutes.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time(s)

0.03

0.02

0.01

0.00

v

Figure 8.11: Co-simulation computed from the hints provided in Figure 8.6, with the variant〈
H = 1× 10−6 s, R = 10

〉
.

8.6 Related Work
The problem of adequately configuring a co-simulation is not new. We can classify the
approaches in two categories: adaptive and static configuration.

In the adaptive category, we highlight the adaptive co-simulation schemes:

Input Approximation/Correction [39, 40, 43, 71, 116, 161]; and
Step-size Correction [24, 26, 48, 66, 73, 75, 136, 184, 317]

Our approach complements the state of the art in providing a way to select which methods
are best applicable. More importantly, our approach acknowledges that the same tech-
nique cannot be applied to every FMU in the co-simulation scenario. For example, the
energy correction scheme in [161] works very well, but requires each FMU to provide an
energy function. Our work can be used to describe which signals represent the energy
function.

In the static configuration category, the following works have the same goal as this pa-
per.

194

8.7. CONCLUDING REMARKS

The authors in [214] propose to use system models to configure the co-simulation. However,
their approach to configure the co-simulation differs from ours by not attempting to generate
multiple candidate master algorithms. They also focus only on ensuring the configuration
is syntactically correct (e.g., the FMU connections are not consistent with the model).
In principle, it is possible to adapt their proposed language to include hints and explore
multiple good master algorithms.

The work in [41] recognizes the need to take into account the input/output feed-through,
and the kind of model underlying the FMU, in order to configure the co-simulation. It
shows that the input approximation techniques and the step size adaptation can interfere
with each other. We complement this work by showing that there is more information that
can be used to configure the co-simulation. Additionally, we acknowledge that multiple
master algorithms can perform well, instead of focusing on generating just one.

The approach in [185] is similar to our own, as it formulates an optimization problem to
find the best co-simulation step (as defined in Definition 42). However, in contrast with
our work, they make the assumption that FMUs can perform interpolation or extrapolations
equally well. We make the distinction between reactive and delayed inputs. As well, we
formulate an optimization problem whose solution attempts to satisfy the hints provided
by the user. In contrast, they assume that it is always better to have interpolations over
extrapolations. For example, as we discussed in Section 8.2, a software controller FMU
should not be forced to make interpolations, as that violates causality. In the future, it
would be interesting to incorporate the contribution in [185] to solve the sequence ordering
sub-problem, within the larger optimization loop of finding a master algorithm that satisfies
the given hints.

8.7 Concluding Remarks
Due to the circumstances in which co-simulation is applied, there are often no analytical
results to guide the search for a correct configuration of the co-simulation.

This chapter represents a first step to this goal, by presenting a framework that allows users
to explore various options for configuring their co-simulation scenarios, using hints. These
hints are used to produce a search plan for the different co-simulation variants, taking into
account the best practices in the state of the art. Each variant is then evaluated and the
results are presented to the user.

Limitations and Assumptions. A major assumption that we have made is that the cou-
pled model being co-simulated satisfies the hints described by the engineers (assumptions 17
and 18). However, it is often the case that the users of co-simulation are trying to understand
the model and therefore may not describe correct hints. Our contribution can help by show-
ing whether there is agreement between master algorithms on the satisfiability of a particular
set of hints. A hint that is not satisfied by any of the co-simulation algorithms generated
suggests that perhaps the problem is in the model and not in the co-simulation.

Ongoing work is focused on supporting more hints, including proprietary hints. In the
future, we intent to formalize some of the hints in Signal Temporal Logic, and compute a
degree of satisfaction per hint (Remark 12). This will allow us to use global optimization
techniques to improve the recommended master algorithms. Another direction is to derive

195

CHAPTER 8. HINT-BASED CONFIGURATION OF CO-SIMULATIONS

the hints from prior experience with the components. For example, descriptions of previous
physical experiments, in the form of experimental frames [109], could be used.

For Boeing, the candidate master algorithms suggested by the HintCO tool represent a first
step towards enabling seamless integrated large scale simulation of heterogeneous models.
However, there are still challenges that need to be overcome. For example, tool vendors need
to improve the maturity level of FMU support, to focus on enhanced cross compatibility
and integration checks (assumption 13). Furthermore, there is a need to develop a common
methodology and modeling guidelines for industrial applications.

196

Chapter 9

Conclusion

Co-simulation tackles the challenges originating from concurrency and specialization in the
development of complex systems. However, the characteristics that allow the technique this
privilege, are also the ones that aggravate the fundamental challenge in simulation based
analyses: deciding whether the results can be trusted.

This work represents a first step towards allowing co-simulation to seamlessly become
integral part of existing development processes. We have studied the state of the art, and
queried practitioners for their views. Moreover, we have advanced our knowledge by
tackling some of the challenges identified.

In order to understand the state of the art, we performed a systematic literature survey,
which was then used to formulate the questions for an empirical survey. The conclusions
draw from these studies guided our subsequent contributions in the stability analysis, and
configuration, of co-simulations.

The main limitation of our contributions in stability of co-simulations (Chapters 5 and 6), is
that they are not applicable to more complex models. As a first step, simple models, for
which we have the analytical simulation. These models allow one to understand the trade-
offs involved, the limitations of each contribution, and provide good benchmark models
for future research work. More fundamental research is needed to make these techniques
applicable to more complex models. For now, one can use abstract simplified models to
apply the analyses, and draw hypotheses about the co-simulation of more complex models.
These can then be corroborated with experiments.

In practice, as we show later in Chapters 7 and 8, practitioners seldom have access to the
analytical behavior of the system. We worked around this problem by showing which
information can be used to improve the chances of producing correct results, without sacri-
ficing the Intellectual Property in the models. This information concerns implementation
details of each simulator, and domain knowledge regarding the expected behavior of the
system.

Recognizing that the challenges we tackled are far from trivial, each technical contribution
attempts to rigorously formulate the problem we proposed to solve, discusses the limita-
tions of our solution, and highlights potential research directions. As an example, both

CHAPTER 9. CONCLUSION

stability analyses techniques that we develop highlight challenges that are not specific to
co-simulation: the stability analysis of adaptive co-simulations can also be used to study
the stability of consensus algorithms; and the stability analysis of hybrid co-simulations
can be used to study the stability of network controllers.

It is our hope that this work will help practitioners using co-simulation, and entice re-
searchers of every background to work in this exciting field.

198

Bibliography

[1] ACOSAR: Research Project. Cited on page 28.

[2] COSIBAS: Research project. Cited on page 28.

[3] CyDER: Research Project. Cited on page 28.

[4] DESTECS: Research Project. Cited on page 28.

[5] EMPHYSIS: Research Project. Cited on page 28.

[6] ERIGrid: Research Project. Cited on page 28.

[7] INTO-CPS: Reseach Project. Cited on page 28.

[8] MODELISAR: Research Project. Cited on page 28.

[9] ODETTE: Research Project. Cited on page 28.

[10] OpenCPS: Research Project. Cited on page 28.

[11] PEGASUS: Research Project. Cited on page 28.

[12] Xtext - Language Engineering for Everyone. Cited on page 167.

[13] Modelica - A Unified Object-Oriented Language for Physical Systems Modeling,
2007. Pages: Version 3.0. Cited on page 49.

[14] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)
- Federate Interface Specification, 2010. Cited on pages 18, 38, and 64.

[15] M. ADLER AND E. ZIGLIO, Gazing Into the Oracle: The Delphi Method and Its
Application to Social Policy and Public Health, Jessica Kingsley Publishers, London
and Philadelphia, 1996. Cited on pages 74 and 75.

[16] A. A. AHMADI, R. JUNGERS, P. A. PARRILO, AND M. ROOZBEHANI, Analysis
of the joint spectral radius via lyapunov functions on path-complete graphs, in
Proceedings of the 14th International Conference on Hybrid Systems: Computation
and Control - HSCC ’11, Chicago, IL, USA, 2011, ACM Press, p. 13. Cited on
page 113.

[17] R. ALUR, C. COURCOUBETIS, N. HALBWACHS, T. A. HENZINGER, P. H. HO,
X. NICOLLIN, A. OLIVERO, J. SIFAKIS, AND S. YOVINE, The algorithmic analysis
of hybrid systems, Theoretical Computer Science, 138 (1995), pp. 3–34. Cited on
page 60.

BIBLIOGRAPHY

[18] A. A. ALVAREZ CABRERA, K. WOESTENENK, AND T. TOMIYAMA, An architec-
ture model to support cooperative design for mechatronic products: A control design
case, Mechatronics, 21 (2011), pp. 534–547. Cited on pages 2 and 19.

[19] C. ANDERSSON, Methods and Tools for Co-Simulation of Dynamic Systems with
the Functional Mock-up Interface, PhD thesis, Lund University, 2016. Series Title:
Doctoral Theses in Mathematical Sciences. Cited on pages 43, 58, 63, and 144.

[20] C. ANDERSSON, C. FÜHRER, AND J. ÅKESSON, Efficient Predictor for Co-
Simulation with Multistep Sub-System Solvers, tech. rep., Centre for Mathematical
Sciences, Lund University, 2016. Publication Title: Technical Report in Mathemati-
cal Sciences. Cited on pages 58, 63, and 146.

[21] E. P. ANDERT JR. AND D. MORGAN, Collaborative Virtual Prototyping and Test,
Naval Engineers Journal, 110 (1998), pp. 17–23. Cited on page 17.

[22] F. ARBAB, I. HERMAN, AND P. SPILLING, An Overview of Manifold and Its
Implementation, Concurrency: Pract. Exper., 5 (1993), pp. 23–70. Cited on page 17.

[23] M. ARNOLD, Stability of Sequential Modular Time Integration Methods for Coupled
Multibody System Models, Journal of Computational and Nonlinear Dynamics, 5
(2010), p. 9. Cited on pages 43, 45, 47, 51, 53, 54, 57, 83, 91, 144, 174, and 179.

[24] M. ARNOLD, C. CLAUSS, AND T. SCHIERZ, Error Analysis and Error Estimates
for Co-simulation in FMI for Model Exchange and Co-Simulation v2.0, in Progress
in Differential-Algebraic Equations, Berlin, Heidelberg, 2014, Springer Berlin Hei-
delberg, pp. 107–125. Cited on pages 51, 53, 83, 116, 138, 140, 174, 179, 183,
and 194.

[25] M. ARNOLD AND M. GÜNTHER, Preconditioned Dynamic Iteration for Coupled
Differential-Algebraic Systems, BIT Numerical Mathematics, 41 (2001), pp. 1–25.
Cited on pages 18, 19, 45, 47, 51, 53, and 54.

[26] M. ARNOLD, S. HANTE, AND M. A. KÖBIS, Error analysis for co-simulation with
force-displacement coupling, PAMM, 14 (2014), pp. 43–44. Cited on pages 53, 174,
and 194.

[27] M. ASLAN, U. DURAK, AND K. TAYLAN, MOKA: An Object-Oriented Framework
for FMI Co-Simulation, in Conference on Summer Computer Simulation, Chicago,
Illinois, July 2015, Society for Computer Simulation International San Diego, CA,
USA, pp. 1–8. Cited on page 177.

[28] K. J. ASTRÖM AND R. M. MURRAY, Feedback Systems: An Introduction for
Scientists and Engineers, Princeton university press, 2010. Cited on page 39.

[29] M. AUTILI, L. GRUNSKE, M. LUMPE, P. PELLICCIONE, AND A. TANG, Aligning
Qualitative, Real-Time, and Probabilistic Property Specification Patterns Using
a Structured English Grammar, IEEE Transactions on Software Engineering, 41
(2015), pp. 620–638. Cited on page 189.

[30] M. U. AWAIS, W. MUELLER, A. ELSHEIKH, P. PALENSKY, AND E. WIDL, Using
the HLA for Distributed Continuous Simulations, in 8th EUROSIM Congress on
Modelling and Simulation, Cardiff, UK, Sept. 2013, IEEE, pp. 544–549. Cited on
pages 19 and 64.

200

BIBLIOGRAPHY

[31] M. U. AWAIS, P. PALENSKY, A. ELSHEIKH, E. WIDL, AND S. MATTHIAS, The
high level architecture RTI as a master to the functional mock-up interface compo-
nents, in International Conference on Computing, Networking and Communications,
San Diego, USA, Jan. 2013, IEEE, pp. 315–320. Cited on pages 19, 61, and 146.

[32] M. U. AWAIS, P. PALENSKY, W. MUELLER, E. WIDL, AND A. ELSHEIKH,
Distributed hybrid simulation using the HLA and the Functional Mock-up Interface,
in IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society,
Vienna, Austria, Nov. 2013, IEEE, pp. 7564–7569. Cited on page 19.

[33] R. BALASUBRAMANIAN AND D. AGARWAL, Delphi Technique- A Review, Interna-
tional Journal of Public Health Dentistry, 3 (2012), pp. 16–25. Cited on page 74.

[34] F. J. BARROS, Modeling formalisms for dynamic structure systems, ACM Transac-
tions on Modeling and Computer Simulation, 7 (1997), pp. 501–515. Place: New
York, NY, USA. Cited on pages 37 and 64.

[35] J. BASTIAN, C. CLAUSS, S. WOLF, AND P. SCHNEIDER, Master for Co-Simulation
Using FMI, in 8th International Modelica Conference, Dresden, Germany, June 2011,
Linköping University Electronic Press, Linköpings universitet, pp. 115–120. Cited
on pages 45, 51, 138, 174, 182, and 183.

[36] N. W. BAUER, P. J. H. MAAS, AND W. P. M. H. HEEMELS, Stability analysis
of networked control systems: A sum of squares approach, Automatica, 48 (2012),
pp. 1514–1524. Cited on page 135.

[37] G. BELTRAME, D. SCIUTO, AND C. SILVANO, Multi-Accuracy Power and Perfor-
mance Transaction-Level Modeling, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 26 (2007), pp. 1830–1842. Cited on pages 19
and 88.

[38] T. BELYTSCHKO, H.-J. YEN, AND R. MULLEN, Mixed methods for time integration,
Computer Methods in Applied Mechanics and Engineering, 17-18 (1979), pp. 259–
275. Cited on page 16.

[39] A. BEN KHALED, L. DUVAL, M. E. M. B. GAÏD, AND D. SIMON, Context-
based polynomial extrapolation and slackened synchronization for fast multi-core
simulation using FMI, in 10th International Modelica Conference, Lund, Sweden,
2014, Linköping University Electronic Press, pp. 225–234. Cited on pages 43, 174,
and 194.

[40] A. BEN KHALED-EL FEKI, L. DUVAL, C. FAURE, D. SIMON, AND M. BEN GAID,
CHOPtrey: Contextual online polynomial extrapolation for enhanced multi-core
co-simulation of complex systems, SIMULATION, 93 (2017). Cited on pages 43,
184, and 194.

[41] M. BENEDIKT AND F. R. HOLZINGER, Automated configuration for non-iterative
co-simulation, in 17th International Conference on Thermal, Mechanical and Multi-
Physics Simulation and Experiments in Microelectronics and Microsystems (Eu-
roSimE), Montpellier, Apr. 2016, IEEE, pp. 1–7. Cited on page 195.

[42] M. BENEDIKT, D. WATZENIG, J. ZEHETNER, AND A. HOFER, Macro-step-size
selection and monitoring of the coupoling error for weak coupled subsystems in

201

BIBLIOGRAPHY

the frequency-domain, V International Conference on Computational Methods for
Coupled Problems in Science and Engineering, (2013), pp. 1–12. Cited on page 83.

[43] M. BENEDIKT, D. WATZENIG, J. ZEHETNER, AND A. HOFER, NEPCE-A Nearly
Energy Preserving Coupling Element for Weak-coupled Problems and Co-simulation,
in IV International Conference on Computational Methods for Coupled Problems
in Science and Engineering, Coupled Problems, Ibiza, Spain, June 2013, pp. 1–12.
Cited on pages 184, 190, and 194.

[44] A. BENVENISTE, B. CAILLAUD, AND P. LE GUERNIC, Compositionality in
Dataflow Synchronous Languages: Specification and Distributed Code Genera-
tion, Information and Computation, 163 (2000), pp. 125–171. Cited on page 51.

[45] C. BERTSCH, E. AHLE, AND U. SCHULMEISTER, The Functional Mockup
Interface-seen from an industrial perspective, in 10th International Modelica Confer-
ence, 2014. Cited on pages 1 and 19.

[46] R. BJORNSON, N. CARRIERO, D. GELERNTER, T. MATTSON, D. KAMINSKY,
AND A. SHERMAN, Experience with linda, Yale University Computer Science
Department, Technical Report RR-866, (1991). Cited on page 17.

[47] T. BLOCHWITZ, M. OTTER, M. ARNOLD, C. BAUSCH, C. CLAUSS, H. ELMQVIST,
A. JUNGHANNS, J. MAUSS, M. MONTEIRO, T. NEIDHOLD, D. NEUMERKEL,
H. OLSSON, J.-V. PEETZ, AND S. WOLF, The Functional Mockup Interface for
Tool independent Exchange of Simulation Models, in 8th International Modelica
Conference, Dresden, Germany, June 2011, Linköping University Electronic Press;
Linköpings universitet, pp. 105–114. Cited on pages 1, 19, 59, and 83.

[48] T. BLOCKWITZ, M. OTTER, J. AKESSON, M. ARNOLD, C. CLAUSS,
H. ELMQVIST, M. FRIEDRICH, A. JUNGHANNS, J. MAUSS, D. NEUMERKEL,
H. OLSSON, AND A. VIEL, Functional Mockup Interface 2.0: The Standard for
Tool independent Exchange of Simulation Models, in 9th International Modelica
Conference, Munich, Germany, Nov. 2012, Linköping University Electronic Press,
pp. 173–184. Cited on pages 49, 52, 54, 62, 64, 66, 141, 183, and 194.

[49] V. D. BLONDEL AND J. N. TSITSIKLIS, The boundedness of all products of a pair
of matrices is undecidable, Systems & Control Letters, 41 (2000), pp. 135–140.
Cited on pages 97, 102, and 121.

[50] B. W. BOEHM, C. ABTS, A. W. BROWN, S. CHULANI, B. K. CLARK,
E. HOROWITZ, R. MADACHI, D. J. REIFER, AND B. STEECE, Software Cost
Estimation with Cocomo II, Prentice Hall, 2000. Cited on page 173.

[51] BOEING, Developing Airplane Systems Faster and with Higher Quality through
Model-Based Engineering, May 2017. Cited on page 180.

[52] S. BOGOMOLOV, M. GREITSCHUS, P. G. JENSEN, K. G. LARSEN,
M. MIKUČIONIS, T. STRUMP, AND S. TRIPAKIS, Co-Simulation of Hybrid Systems
with SpaceEx and Uppaal, in 11th International Modelica Conference, Paris, France,
Sept. 2015, Linköping University Electronic Press, pp. 159–169. Cited on page 64.

202

BIBLIOGRAPHY

[53] J.-S. BOLDUC AND H. VANGHELUWE, Expressing ODE models as DEVS: Quan-
tization approaches., in AI, Simulation and Planning in High Autonomy Systems,
Lisbon, Portugal, 2002, IEEE, pp. 163–169. Cited on pages 61 and 146.

[54] , Mapping ODES to DEVS: Adaptive quantization, in Summer Computer
Simulation Conference, Montreal, Quebec, Canada, July 2003, Society for Computer
Simulation International, pp. 401–407. Cited on pages 61, 62, and 146.

[55] M. BOMBINO AND P. SCANDURRA, A model-driven co-simulation environment
for heterogeneous systems, International Journal on Software Tools for Technology
Transfer, 15 (2013), pp. 363–374. Cited on page 62.

[56] S. BOSCHERT AND R. ROSEN, Digital Twin—The Simulation Aspect, in Mecha-
tronic Futures, Springer International Publishing, Cham, 2016, pp. 59–74. Cited on
page 20.

[57] F. BOUCHHIMA, M. BRIÈRE, G. NICOLESCU, M. ABID, AND E. ABOULHAMID,
A SystemC/Simulink Co-Simulation Framework for Continuous/Discrete-Events
Simulation, in IEEE International Behavioral Modeling and Simulation Workshop,
IEEE, Sept. 2006, pp. 1–6. Cited on page 62.

[58] O. BOUISSOU, A. CHAPOUTOT, AND A. DJOUDI, Enclosing Temporal Evolution of
Dynamical Systems Using Numerical Methods, in NASA Formal Methods, Moffett
Field, CA, USA, 2013, Springer Berlin Heidelberg, pp. 108–123. Cited on pages 22
and 83.

[59] F. BOULANGER, A. DOGUI, C. HARDEBOLLE, C. JACQUET, D. MARCADET,
AND I. PRODAN, Semantic Adaptation Using CCSL Clock Constraints, in Models in
Software Engineering SE - 12, J. Kienzle, ed., vol. 7167, Springer Berlin Heidelberg,
2012, pp. 104–118. Series Title: Lecture Notes in Computer Science. Cited on
page 137.

[60] F. BOULANGER AND C. HARDEBOLLE, Simulation of Multi-Formalism Models
with ModHel’X, in 1st International Conference on Software Testing, Verification,
and Validation, Lillehammer, Norway, 2008, IEEE Computer Society, pp. 318–327.
Cited on pages 19 and 176.

[61] F. BOULANGER, C. HARDEBOLLE, C. JACQUET, AND D. MARCADET, Semantic
Adaptation for Models of Computation, in 11th International Conference on Applica-
tion of Concurrency to System Design (ACSD), Newcastle Upon Tyne, UK, 2011,
IEEE, pp. 153–162. Cited on pages 61, 64, 137, and 176.

[62] M. BRANICKY, Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems, IEEE Transactions on Automatic Control, 43 (1998), pp. 475–
482. Cited on page 116.

[63] M. S. BRANICKY, V. S. BORKAR, AND S. K. MITTER, A unified framework for
hybrid control: Model and optimal control theory, IEEE Transactions on Automatic
Control, 43 (1998), pp. 31–45. Cited on page 63.

[64] J. BREMBECK, A. PFEIFFER, M. FLEPS-DEZASSE, M. OTTER, K. WERNERSSON,
AND H. ELMQVIST, Nonlinear State Estimation with an Extended FMI 2.0 Co-
Simulation Interface, in 10th International Modelica Conference, Lund, Sweden,

203

BIBLIOGRAPHY

Mar. 2014, Linköping University Electronic Press; Linköpings universitet, pp. 53–62.
Cited on pages 43 and 174.

[65] D. BROMAN, Hybrid Simulation Safety: Limbos and Zero Crossings, in Principles of
Modeling, vol. 10760, Springer International Publishing, Cham, 2018, pp. 106–121.
Cited on pages 63 and 83.

[66] D. BROMAN, C. BROOKS, L. GREENBERG, E. A. LEE, M. MASIN, S. TRIPAKIS,
AND M. WETTER, Determinate composition of FMUs for co-simulation, in Eleventh
ACM International Conference on Embedded Software, Montreal, Quebec, Canada,
2013, IEEE Press Piscataway, NJ, USA, p. Article No. 2. Cited on pages 44, 51, 54,
62, 176, 185, and 194.

[67] D. BROMAN, L. GREENBERG, E. A. LEE, M. MASIN, S. TRIPAKIS, AND M. WET-
TER, Requirements for Hybrid Cosimulation Standards, in 18th International Con-
ference on Hybrid Systems: Computation and Control, Seattle, Washington, 2015,
ACM New York, NY, USA, pp. 179–188. Series Title: HSCC ’15. Cited on pages
30, 62, 64, and 176.

[68] J. T. BUCK, S. HA, E. A. LEE, AND D. G. MESSERSCHMITT, Ptolemy: A frame-
work for simulating and prototyping heterogeneous systems, International Journal of
Computer Simulation, 4 (1994), pp. 155–182. Cited on page 64.

[69] R. L. BURDEN AND J. D. FAIRES, Numerical Analysis, Cengage Learning, 9 ed.,
2010. Cited on pages 145, 146, and 174.

[70] M. BUSCH, Zur Effizienten Kopplung von Simulationsprogrammen, PhD thesis,
Kassel university, Germany, 2012. Cited on pages 146 and 174.

[71] , Continuous approximation techniques for co-simulation methods: Analysis of
numerical stability and local error, Journal of Applied Mathematics and Mechanics,
96 (2016), pp. 1061–1081. Cited on pages 43, 51, 57, 58, 83, 91, 95, 97, 110, 113,
138, 144, 146, 174, and 194.

[72] M. BUSCH AND B. SCHWEIZER, Numerical stability and accuracy of different
co-simulation techniques: Analytical investigations based on a 2-DOF test model, in
1st Joint International Conference on Multibody System Dynamics, 2010, pp. 25–27.
Cited on pages 55, 57, 83, and 91.

[73] , An explicit approach for controlling the macro-step size of co-simulation meth-
ods, in 7th European Nonlinear Dynamics, Rome, Italy, 2011, European Mechanics
Society, pp. 24–29. Cited on pages 45, 53, 54, 83, 174, and 194.

[74] , Stability of Co-Simulation Methods Using Hermite and Lagrange Approxi-
mation Techniques, in ECCOMAS Thematic Conference on Multibody Dynamics,
Brussels, Belgium, July 2011, pp. 1–10. Cited on pages 57 and 91.

[75] , Coupled simulation of multibody and finite element systems: An efficient and
robust semi-implicit coupling approach, Archive of Applied Mechanics, 82 (2012),
pp. 723–741. Cited on pages 54, 174, 183, and 194.

[76] J. BUUR ET AL., Mechatronics Design in Japan, PhD thesis, Institute for Engineering
Design, Technical University of Denmark (DTH), 1989. Cited on pages 1 and 8.

204

BIBLIOGRAPHY

[77] D. CAMPAGNA, C. KAVKA, A. TURCO, B. POGACE, AND C. POLONI, Solving
time-dependent coupled systems through FMI co-simulation and BPMN process
orchestration, in IEEE International Symposium on Systems Engineering (ISSE),
Edinburgh, Scotland, Oct. 2016, IEEE, pp. 1–8. Cited on page 177.

[78] B. CAMUS, C. BOURJOT, AND V. CHEVRIER, Combining DEVS with multi-agent
concepts to design and simulate multi-models of complex systems (WIP), in Sympo-
sium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium,
Society for Computer Simulation International, 2015, pp. 85–90. Cited on page 61.

[79] B. CAMUS, V. GALTIER, M. CAUJOLLE, V. CHEVRIER, J. VAUBOURG, L. CIAR-
LETTA, AND C. BOURJOT, Hybrid Co-simulation of FMUs using DEV&DESS in
MECSYCO, in Symposium on Theory of Modeling & Simulation - DEVS Integrative
M&S Symposium (TMS/DEVS 16), Pasadena, CA, United States, 2016, Society for
Computer Simulation International San Diego, CA, USA, p. No. 8. Cited on pages
61, 62, and 146.

[80] L. P. CARLONI, R. PASSERONE, A. PINTO, AND A. L. ANGIOVANNI-
VINCENTELLI, Languages and Tools for Hybrid Systems Design, Foundations and
Trends R© in Electronic Design Automation, 1 (2006), pp. 1–193. Cited on page 60.

[81] C. D. CAROTHERS, K. S. PERUMALLA, AND R. M. FUJIMOTO, Efficient optimistic
parallel simulations using reverse computation, ACM Transactions on Modeling and
Computer Simulation, 9 (1999), pp. 224–253. Place: New York, NY, USA. Cited on
page 18.

[82] A. B. CARROLL AND R. T. WETHERALD, Application of Parallel Processing to
Numerical Weather Prediction, Journal of the ACM, 14 (1967), pp. 591–614. Cited
on page 16.

[83] R. CARTER AND E. M. NAVARRO-LÓPEZ, Dynamically-Driven Timed Automaton
Abstractions for Proving Liveness of Continuous Systems, in Formal Modeling
and Analysis of Timed Systems, London, United Kingdom, 2012, Springer Berlin
Heidelberg, pp. 59–74. Cited on page 22.

[84] F. E. CELLIER, Combined Continuous/Discrete System Simulation Languages:
Usefulness, Experiences and Future Development, Special Interest Group (SIG) on
SImulation and Modeling (SIM), 9 (1977), pp. 18–21. Place: New York, NY, USA.
Cited on page 60.

[85] , Combined Continuous Discrete Simulation by Use of Digital Computers:
Techniques and Tools, PhD thesis, Swiss Federal Institute of Technology Zurich,
1979. Cited on page 58.

[86] , Continuous System Modeling, Springer Science & Business Media, 1991.
Cited on page 6.

[87] F. E. CELLIER AND E. KOFMAN, Continuous System Simulation, Springer Science
& Business Media, 2006. Cited on pages 2, 11, 39, 52, 58, 63, 89, 90, 115, 133, 144,
and 145.

[88] S. CENTOMO, J. DEANTONI, AND R. DE SIMONE, Using SystemC Cyber Models
in an FMI Co-Simulation Environment: Results and Proposed FMI Enhancements,

205

BIBLIOGRAPHY

in Euromicro Conference on Digital System Design (DSD), Limassol, Cyprus, Aug.
2016, IEEE, pp. 318–325. Cited on page 176.

[89] K. CHANDY AND J. MISRA, Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs, IEEE Transactions on Software Engineering,
SE-5 (1979), pp. 440–452. Cited on page 36.

[90] W.-T. CHANG, A. KALAVADE, AND E. A. LEE, Effective Heterogenous Design and
Co-Simulation, in Hardware/Software Co-Design, Springer Netherlands, Dordrecht,
1996, pp. 187–212. Cited on page 18.

[91] D. CHAZAN AND W. L. MIRANKER, A Nongradient and Parallel Algorithm for
Unconstrained Minimization, SIAM Journal on Control, 8 (1970), pp. 207–217.
Cited on page 16.

[92] B.-C. CHEN AND H. PENG, Differential-Braking-Based Rollover Prevention for
Sport Utility Vehicles with Human-in-the-loop Evaluations, Vehicle System Dynam-
ics, 36 (2001), pp. 359–389. Cited on page 2.

[93] K. B. CLARK, Project scope and project performance: The effect of parts strategy
and supplier involvement on product development, Management science, 35 (1989),
pp. 1247–1263. Cited on pages 1 and 8.

[94] E. M. CLARKE, O. GRUMBERG, AND D. E. LONG, Model checking and abstraction,
ACM Transactions on Programming Languages and Systems, 16 (1994), pp. 1512–
1542. Cited on page 7.

[95] M. J. CLAYTON, Delphi: A technique to harness expert opinion for critical decision-
making tasks in education, Educational Psychology, 17 (1997), pp. 373–386. Cited
on pages 74 and 75.

[96] F. CONTI AND O. KHATIB, A Framework for Real-Time Multi-Contact Multi-
Body Dynamic Simulation, in Robotics Research, vol. 114, Springer International
Publishing, Cham, 2016, pp. 271–287. Cited on page 135.

[97] {CONTROLLAB PRODUCTS}, Design of a Compensated Motion Crane using INTO-
CPS, tech. rep., Press Release EU, Enschede, Netherlands, 2018. Cited on pages vii,
24, and 25.

[98] F. CREMONA, M. LOHSTROH, D. BROMAN, M. DI NATALE, E. A. LEE, AND
S. TRIPAKIS, Step Revision in Hybrid Co-simulation with FMI, in 14th ACM-IEEE
International Conference on Formal Methods and Models for System Design, Kanpur,
India, Nov. 2016, IEEE. Cited on page 176.

[99] F. CREMONA, M. LOHSTROH, D. BROMAN, E. A. LEE, M. MASIN, AND S. TRI-
PAKIS, Hybrid co-simulation: It’s about time, Software & Systems Modeling, 10270
(2017). Cited on pages 64 and 83.

[100] F. CREMONA, M. LOHSTROH, S. TRIPAKIS, C. BROOKS, AND E. A. LEE, FIDE:
An FMI integrated development environment, in 31st Annual ACM Symposium on
Applied Computing, Pisa, Italy, 2016, ACM New York, NY, USA, pp. 1759–1766.
Cited on pages 61 and 176.

206

BIBLIOGRAPHY

[101] X. DAI, A Gel’fand-type spectral radius formula and stability of linear constrained
switching systems, Linear Algebra and its Applications, 436 (2012), pp. 1099–1113.
Cited on pages 101, 102, and 121.

[102] N. DALKEY AND O. HELMER, An Experimental Application of the Delphi Method
to the Use of Experts, Management Science, 9 (1963), pp. 458–467. Cited on
page 74.

[103] J. DAVIS II, M. GOEL, C. HYLANDS, B. KIENHUIS, E. A. LEE, J. LIU, X. LIU,
L. MULIADI, S. NEUENDORFFER, AND J. REEKIE, Overview of the Ptolemy project,
tech. rep., ERL Technical Report UCB/ERL, 1999. Cited on page 176.

[104] C. W. DE SILVA, Mechatronics: An Integrated Approach, CRC press, 2004. Cited
on pages 1 and 8.

[105] J. DEANTONI, Modeling the Behavioral Semantics of Heterogeneous Languages
and their Coordination, in Architecture-Centric Virtual Integration (ACVI), Venice,
Italy, Apr. 2016, IEEE, pp. 12–18. Cited on page 176.

[106] A. L. DELBECQ, A. H. VAN DE VEN, AND D. H. GUSTAFSON, Group Techniques
for Program Planning: A Guide to Nominal Group and Delphi Processes, Scott-
Foresman and Company, Glenview, Illinois, 1975. Cited on page 75.

[107] J. DENIL, Design, Verification and Deployment of Software Intensive Systems - A
Multiparadigm Approach, PhD thesis, University of Antwerp, 2013. Cited on pages
7 and 147.

[108] J. DENIL, P. DE MEULENAERE, S. DEMEYER, AND H. VANGHELUWE, DEVS for
AUTOSAR-based system deployment modeling and simulation, SIMULATION, 93
(2017), pp. 489–513. Cited on page 2.

[109] J. DENIL, S. KLIKOVITS, P. J. MOSTERMAN, A. VALLECILLO, AND
H. VANGHELUWE, The experiment model and validity frame in M&S, in Proceedings
of the Symposium on Theory of Modeling & Simulation, vol. 49, Virginia Beach,
Virginia, USA, 2017, Society for Computer Simulation International, p. Article No.
10. Cited on pages 6, 79, 83, and 196.

[110] J. DENIL, B. MEYERS, P. DE MEULENAERE, AND H. VANGHELUWE, Explicit
Semantic Adaptation of Hybrid Formalisms for FMI Co-Simulation, in Symposium
on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, Alexan-
dria, Virginia, Apr. 2015, Society for Computer Simulation International San Diego,
CA, USA, pp. 99–106. Cited on pages 61, 62, 137, 138, 145, and 151.

[111] J. DINGLIANA AND C. O’SULLIVAN, Graceful Degradation of Collision Handling
in Physically Based Animation, Computer Graphics Forum, 19 (2000), pp. 239–248.
Cited on page 135.

[112] P. A. M. DIRAC, The Principles of Quantum Mechanics, Oxford university press,
1981. Cited on page 62.

[113] M. C. F. DONKERS, W. P. M. H. HEEMELS, N. VAN DE WOUW, AND L. HETEL,
Stability Analysis of Networked Control Systems Using a Switched Linear Systems
Approach, IEEE Transactions on Automatic Control, 56 (2011), pp. 2101–2115.
Cited on pages 117 and 135.

207

BIBLIOGRAPHY

[114] E. DRAUGHON, R. GRISHMAN, J. SCHWARTZ, AND A. STEIN, Programming
considerations for parallel computers, Tech. Rep. IMM 362, Courant Institute, New
York, NY, USA, 1967. Cited on page 16.

[115] E. DRENTH, M. TÖRMÄNEN, K. JOHANSSON, B.-A. ANDERSSON, D. ANDER-
SSON, I. TORSTENSSON, AND J. ÅKESSON, Consistent Simulation Environment
with FMI based Tool Chain, in 10th International Modelica Conference, 2014. Cited
on page 19.

[116] S. DRONKA AND J. RAUH, Co-simulation-interface for user-force-elements, in
SIMPACK User Meeting, Baden-Baden, Germany, Mar. 2006. Cited on pages 43,
58, 146, 174, and 194.

[117] J. EKER, J. JANNECK, E. LEE, JIE LIU, XIAOJUN LIU, J. LUDVIG, S. NEUEN-
DORFFER, S. SACHS, AND YUHONG XIONG, Taming heterogeneity - the Ptolemy
approach, Proceedings of the IEEE, 91 (2003), pp. 127–144. Cited on page 19.

[118] H. EL TAHAWY, D. RODRIGUEZ, S. GARCIA-SABIRO, AND J.-J. MAYOL, VHD/-
sub e/LDO: A new mixed mode simulation, in Proceedings of EURO-DAC 93 and
EURO-VHDL 93- European Design Automation Conference, IEEE Comput. Soc.
Press, 1993, pp. 546–551. Cited on page 18.

[119] L. ELSNER, The generalized spectral-radius theorem: An analytic-geometric proof,
Linear Algebra and its Applications, 220 (1995), pp. 151–159. Cited on page 116.

[120] O. ENGE-ROSENBLATT, C. CLAUSS, A. SCHNEIDER, AND P. SCHNEIDER, Func-
tional Digital Mock-up and the Functional Mock-up Interface–Two Complementary
Approaches for a Comprehensive Investigation of Heterogeneous Systems, in 8th
International Modelica Conference, Dresden, Germany, 2011, Linköping University
Electronic Press; Linköpings universitet, pp. 748–755. Cited on pages 45 and 174.

[121] K. ERIKSSON, D. ESTEP, AND C. JOHNSON, Applied Mathematics: Body and
Soul, Springer Berlin Heidelberg, Berlin, Heidelberg, volume 1 ed., 2004. Cited on
page 53.

[122] Y. A. FELDMAN, L. GREENBERG, AND E. PALACHI, Simulating Rhapsody SysML
Blocks in Hybrid Models with FMI, in 10th International Modelica Conference, Lund,
Sweden, Mar. 2014, Linköping University Electronic Press, pp. 43–52. Cited on
pages 61 and 176.

[123] C. A. FELIPPA AND T. L. GEERS, Partitioned analysis for coupled mechanical
systems, Engineering Computations, 5 (1988), pp. 123–133. Cited on page 16.

[124] C. A. FELIPPA, K. PARK, AND C. FARHAT, Partitioned analysis of coupled me-
chanical systems, Computer Methods in Applied Mechanics and Engineering, 190
(2001), pp. 3247–3270. Cited on pages 16 and 18.

[125] P. FEY, H. CARTER, AND P. WILSEY, Parallel synchronization of continuous time
discrete event simulators, in International Conference on Parallel Processing (Cat.
No.97TB100162), IEEE Comput. Soc, 1997, pp. 227–231. Cited on pages 18 and 61.

[126] FMI, Functional Mock-up Interface for Model Exchange and Co-Simulation, tech.
rep., FMI development group, 2014. Cited on pages 66 and 67.

208

BIBLIOGRAPHY

[127] F. F. FOLDAGER, P. G. LARSEN, AND O. GREEN, Development of a Driverless
Lawn Mower Using Co-simulation, in Software Engineering and Formal Methods,
vol. 10729, Springer International Publishing, Cham, 2018, pp. 330–344. Cited on
pages vii, 23, and 25.

[128] J. J. FONTANELLA, The Physics of Basketball, JHU Press, 2008. Cited on page 117.

[129] G. FREHSE, C. LE GUERNIC, A. DONZÉ, S. COTTON, R. RAY, O. LEBELTEL,
R. RIPADO, A. GIRARD, T. DANG, AND O. MALER, SpaceEx: Scalable Verifica-
tion of Hybrid Systems, in Computer Aided Verification, Springer Berlin Heidelberg,
2011, pp. 379–395. Cited on page 134.

[130] P. FREY, R. RADHAKRISHNAN, H. W. CARTER, AND P. A. WILSEY, Optimistic
synchronization of mixed-mode simulators, in 1998 First Merged International on Par-
allel Processing Symposium and Symposium on Parallel and Distributed Processing,
1998, pp. 694–699. Cited on page 18.

[131] J. FRIEDMAN AND J. GHIDELLA, Using Model-Based Design for Automotive
Systems Engineering - Requirements Analysis of the Power Window Example, in
Transactions Journal of Passenger Cars: Electronic and Electrical Systems, vol. 115
of Automotive Systems Engineering, Detroit, USA, Apr. 2006, SAE Technical Paper,
p. 8. Cited on page 1.

[132] M. FRIEDRICH, Parallel Co-Simulation for Mechatronic Systems, PhD thesis,
Fakultät für Maschinenwesen, Germany, 2011. Cited on pages 45 and 174.

[133] P. FRITZSON, P. ARONSSON, A. POP, H. LUNDVALL, K. NYSTROM, L. SAL-
DAMLI, D. BROMAN, AND A. SANDHOLM, OpenModelica - A free open-source
environment for system modeling, simulation, and teaching, in Conference on Com-
puter Aided Control System Design, International Conference on Control Applica-
tions, International Symposium on Intelligent Control, Munich, Germany, Oct. 2006,
IEEE, pp. 1588–1595. Cited on page 148.

[134] R. M. FUJIMOTO, Parallel discrete event simulation, Communications of the ACM,
33 (1990), pp. 30–53. Place: New York, NY, USA. Cited on page 16.

[135] , Parallel and distributed simulation systems, in Winter Simulation Conference
(Cat. No.01CH37304), vol. 300, Arlington, VA, USA, 2001, Wiley New York,
pp. 147–157. Cited on pages 6, 36, 37, and 63.

[136] V. GALTIER, S. VIALLE, C. DAD, J.-P. TAVELLA, J.-P. LAM-YEE-MUI, AND
G. PLESSIS, FMI-Based Distributed Multi-Simulation with DACCOSIM, in Spring
Simulation Multi-Conference, Alexandria, Virginia, USA, 2015, Society for Com-
puter Simulation International San Diego, CA, USA, pp. 804–811. Cited on pages
19, 45, 52, 53, 62, 150, 174, 177, and 194.

[137] C. E. GARCÍA, D. M. PRETT, AND M. MORARI, Model predictive control: Theory
and practice—A survey, Automatica, 25 (1989), pp. 335–348. Cited on pages 17
and 88.

[138] D. GARLAN AND MARY SHAW, An Introduction to Software Architecture, Advances
in Software Engineering and Knowledge Engineering, I (1993). Cited on page 17.

209

BIBLIOGRAPHY

[139] A. GARRO AND A. FALCONE, On the integration of HLA and FMI for supporting
interoperability and reusability in distributed simulation, in Spring Simulation Multi-
Conference, Society for Computer Simulation International, 2015, pp. 774–781.
Cited on pages 61 and 64.

[140] C. W. GEAR AND D. R. WELLS, Multirate linear multistep methods, BIT, 24 (1984),
pp. 484–502. Cited on page 17.

[141] C. W. GEART AND D. S. WATANABE, Stability and Convergence of Variable Order
Multistep Methods, SIAM Journal on Numerical Analysis, 11 (1974), pp. 1044–1058.
Cited on page 89.

[142] D. GELERNTER AND N. CARRIERO, Coordination Languages and Their Signifi-
cance, Commun. ACM, 35 (1992), pp. 96–. Cited on page 17.

[143] L. GHEORGHE, F. BOUCHHIMA, G. NICOLESCU, AND H. BOUCHENEB, A Formal-
ization of Global Simulation Models for Continuous/Discrete Systems, in Summer
Computer Simulation Conference, San Diego, CA, USA, July 2007, Society for
Computer Simulation International San Diego, CA, USA, pp. 559–566. Series Title:
SCSC ’07. Cited on pages 143 and 177.

[144] A. GHOSH, M. BERSHTEYN, R. CASLEY, C. CHIEN, A. JAIN, M. LIPSIE, D. TAR-
RODAYCHIK, AND O. YAMAMOTO, A hardware-software co-simulator for embed-
ded system design and debugging, in Design Automation Conference, Chiba, Japan,
1995, pp. 155–164. Cited on page 63.

[145] F. GIANNAKOPOULOS AND K. PLIETE, Planar systems of piecewise linear differen-
tial equations with a line of discontinuity, Nonlinearity, 14 (2001), pp. 1611–1632.
Cited on pages 135 and 136.

[146] A. GIRARD, G. POLA, AND P. TABUADA, Approximately bisimilar symbolic models
for incrementally stable switched systems, IEEE Transactions on Automatic Control,
55 (2010), pp. 116–126. Cited on page 132.

[147] E. GLAESSGEN AND D. STARGEL, The Digital Twin Paradigm for Future NASA
and U.S. Air Force Vehicles, in Structures, Structural Dynamics, and Materials
Conference: Special Session on the Digital Twin, Reston, Virigina, Apr. 2012,
American Institute of Aeronautics and Astronautics, pp. 1–14. Cited on pages 19
and 20.

[148] R. GOEBEL, R. G. SANFELICE, AND A. R. TEEL, Hybrid dynamical systems, IEEE
Control Systems, 29 (2009), pp. 28–93. Cited on page 120.

[149] , Hybrid Dynamical Systems: Modeling, Stability, and Robustness, Princeton
University Press, 2012. Publication Title: Book. Cited on page 116.

[150] C. GOMES, Foundations for Continuous Time Hierarchical Co-simulation, in ACM
Student Research Competition (MoDELS), Saint Malo, France, Oct. 2016, ACM
New York, NY, USA, p. to appear. Cited on pages 47, 64, 144, and 145.

[151] C. GOMES, J. DENIL, AND H. VANGHELUWE, Causal-Block Diagrams, tech. rep.,
University of Antwerp, 2016. Cited on page 141.

210

BIBLIOGRAPHY

[152] C. GOMES, R. JUNGERS, B. LEGAT, AND H. VANGHELUWE, Minimally Con-
strained Stable Switched Systems and Application to Co-simulation, Tech. Rep.
arXiv:1809.02648, University of Antwerp, Belgium, 2018. Cited on page 121.

[153] C. GOMES, P. KARALIS, E. M. NAVARRO-LÓPEZ, AND H. VANGHELUWE, Ap-
proximated Stability Analysis of Bi-modal Hybrid Co-simulation Scenarios, in 1st
Workshop on Formal Co-Simulation of Cyber-Physical Systems, Trento, Italy, 2017,
Springer, Cham, pp. 345–360. Cited on pages 63, 83, 113, and 138.

[154] C. GOMES, B. LEGAT, R. JUNGERS, AND H. VANGHELUWE, Minimally Con-
strained Stable Switched Systems and Application to Co-simulation, in IEEE Con-
ference on Decision and Control, Miami Beach, FL, USA, 2018, p. to be published.
Cited on pages 83 and 121.

[155] C. GOMES, B. LEGAT, R. M. JUNGERS, AND H. VANGHELUWE, Stable Adap-
tive Co-simulation: A Switched Systems Approach, in IUTAM Symposium on Co-
Simulation and Solver Coupling, Darmstadt, Germany, 2017, p. to appear. Cited on
pages 63, 83, 103, and 138.

[156] C. GOMES, B. MEYERS, J. DENIL, C. THULE, K. LAUSDAHL, H. VANGHELUWE,
AND P. DE MEULENAERE, Semantic Adaptation for FMI Co-simulation with Hier-
archical Simulators, SIMULATION, 95 (2018), pp. 1–29. Cited on pages 62, 64,
and 83.

[157] C. GOMES, C. THULE, D. BROMAN, P. G. LARSEN, AND H. VANGHELUWE,
Co-simulation: State of the art, tech. rep., University of Antwerp, Feb. 2017. Cited
on pages 9, 22, 23, 83, 138, 140, 144, 145, and 174.

[158] , Co-simulation: A Survey, ACM Computing Surveys, 51 (2018), p. Article 49.
Cited on pages 9, 83, 87, and 186.

[159] C. GOMES, C. THULE, P. G. LARSEN, J. DENIL, AND H. VANGHELUWE, Co-
simulation of Continuous Systems: A Tutorial, Tech. Rep. arXiv:1809.08463 [cs,
math], University of Antwerp, Sept. 2018. Cited on page 179.

[160] C. GOMES, Y. VAN TENDELOO, J. DENIL, P. DE MEULENAERE, AND
H. VANGHELUWE, Hybrid System Modelling and Simulation with Dirac Deltas,
in Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS
Integrative M&S Symposium, Virginia Beach, Virginia, USA, 2017, Society for
Computer Simulation International, p. Article No. 7. Series Title: DEVS ’17. Cited
on page 62.

[161] F. GONZÁLEZ, S. ARBATANI, A. MOHTAT, AND J. KÖVECSES, Energy-leak
monitoring and correction to enhance stability in the co-simulation of mechanical
systems, Mechanism and Machine Theory, 131 (2019), pp. 172–188. Cited on pages
54, 71, 184, and 194.

[162] F. GONZÁLEZ, M. A. NAYA, A. LUACES, AND M. GONZÁLEZ, On the effect
of multirate co-simulation techniques in the efficiency and accuracy of multibody
system dynamics, Multibody System Dynamics, 25 (2011), pp. 461–483. Cited on
page 145.

211

BIBLIOGRAPHY

[163] M. GRIEVES AND J. VICKERS, Digital Twin: Mitigating Unpredictable, Unde-
sirable Emergent Behavior in Complex Systems, in Transdisciplinary Perspectives
on Complex Systems, Springer International Publishing, Cham, 2017, pp. 85–113.
Cited on page 20.

[164] G. GRIPENBERG, Computing the joint spectral radius, Linear Algebra and its
Applications, 234 (1996), pp. 43–60. Cited on pages 97 and 102.

[165] B. GU AND H. H. ASADA, Co-simulation of algebraically coupled dynamic sub-
systems, in American Control Conference, vol. 3, Arlington, VA, USA, 2001, IEEE,
pp. 2273–2278. Cited on pages 19, 45, 47, 57, 97, and 174.

[166] , Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclo-
sure of Proprietary Subsystem Models, Journal of Dynamic Systems, Measurement,
and Control, 126 (2004), p. 1. Cited on pages 47 and 174.

[167] N. GUGLIELMI AND M. ZENNARO, An algorithm for finding extremal polytope
norms of matrix families, Linear Algebra and its Applications, 428 (2008), pp. 2265–
2282. Cited on pages 97 and 102.

[168] GUISHENG ZHAI, BO HU, K. YASUDA, AND A. MICHEL, Qualitative analysis
of discrete-time switched systems, in Proceedings of the 2002 American Control
Conference (IEEE Cat. No.CH37301), IEEE, 2002, pp. 1880–1885 vol.3. Cited on
page 113.

[169] R. K. GUPTA, C. N. COELHO JR., AND G. DE MICHELI, Synthesis and Simulation
of Digital Systems Containing Interacting Hardware and Software Components, in
Proceedings of the 29th ACM/IEEE Design Automation Conference, Los Alamitos,
CA, USA, 1992, IEEE Computer Society Press, pp. 225–230. Series Title: DAC ’92.
Cited on page 18.

[170] I. HAFNER, B. HEINZL, AND M. ROESSLER, An Investigation on Loose Coupling
Co-Simulation with the BCVTB, SNE Simulation Notes Europe, 23 (2013). Cited on
pages 53 and 83.

[171] I. HAFNER AND N. POPPER, On the terminology and structuring of co-simulation
methods, in Proceedings of the 8th International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, New York, New York, USA, 2017,
ACM Press, pp. 67–76. Cited on page 26.

[172] M. R. HALLOWELL AND J. A. GAMBATESE, Qualitative Research: Application
of the Delphi Method to CEM Research, Journal of Construction Engineering and
Management, 136 (2010), pp. 99–107. Cited on page 75.

[173] F. HASSON, S. KEENEY, AND H. MCKENNA, Research guidelines for the Delphi
survey technique, Journal of Advanced Nursing, (2000). Cited on page 76.

[174] W. P. M. H. HEEMELS, A. R. TEEL, N. VAN DE WOUW, AND D. NEŠIĆ, Net-
worked Control Systems With Communication Constraints: Tradeoffs Between Trans-
mission Intervals, Delays and Performance, IEEE Transactions on Automatic Con-
trol, 55 (2010), pp. 1781–1796. Cited on page 135.

[175] W. P. M. H. HEEMELS, N. VAN DE WOUW, R. H. GIELEN, M. C. F. DONKERS,
L. HETEL, S. OLARU, M. LAZAR, J. DAAFOUZ, AND S. NICULESCU, Comparison

212

BIBLIOGRAPHY

of overapproximation methods for stability analysis of networked control systems, in
13th ACM International Conference on Hybrid Systems: Computation and Control -
HSCC ’10, Stockholm, Sweden, 2010, ACM Press, p. 181. Cited on page 135.

[176] E. HERNANDEZ-VARGAS, P. COLANERI, R. MIDDLETON, AND F. BLANCHINI,
Discrete-time control for switched positive systems with application to mitigating
viral escape, International Journal of Robust and Nonlinear Control, 21 (2011),
pp. 1093–1111. Cited on page 96.

[177] J. HESPANHA, P. NAGHSHTABRIZI, AND Y. XU, A Survey of Recent Results in
Networked Control Systems, Proceedings of the IEEE, 95 (2007), pp. 138–162. Cited
on page 135.

[178] L. HETEL, J. DAAFOUZ, AND C. IUNG, Stabilization of Arbitrary Switched Linear
Systems With Unknown Time-Varying Delays, IEEE Transactions on Automatic
Control, 51 (2006), pp. 1668–1674. Cited on page 113.

[179] D. R. HICKEY, P. A. WILSEY, R. J. HOEKSTRA, E. R. KEITER, S. A. HUTCHIN-
SON, AND T. V. RUSSO, Mixed-signal simulation with the Simbus backplane, in
39th Annual Simulation Symposium, 2006, Huntsville, AL, 2006. Cited on page 18.

[180] A. HIMMLER, Hardware-in-the-Loop Technology Enabling Flexible Testing Pro-
cesses, in 51st AIAA Aerospace Sciences Meeting Including the New Horizons
Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas, Jan.
2013, American Institute of Aeronautics and Astronautics, pp. 1–8. Cited on page 2.

[181] K. HINES AND G. BORRIELLO, Dynamic Communication Models in Embedded
System Co-simulation, in Proceedings of the 34th Annual Design Automation Con-
ference, New York, NY, USA, 1997, ACM, pp. 395–400. Series Title: DAC ’97.
Cited on page 18.

[182] , Selective focus as a means of improving geographically distributed embed-
ded system co-simulation, in 8th IEEE International Workshop on Rapid System
Prototyping, 1997, 1997, pp. 58–62. Cited on pages 18 and 88.

[183] M. W. HIRSCH, S. SMALE, AND R. L. DEVANEY, Differential Equations, Dynami-
cal Systems, and an Introduction to Chaos, Academic press, 2012. Cited on pages
122 and 123.

[184] M. HOEPFER, Towards a Comprehensive Framework for Co- Simulation of Dy-
namic Models With an Emphasis on Time Stepping, PhD thesis, Georgia Institute of
Technology, USA, 2011. Cited on pages 51, 54, 174, and 194.

[185] F. R. HOLZINGER AND M. BENEDIKT, Hierarchical Coupling Approach Utilizing
Multi-Objective Optimization for Non-Iterative Co-Simulation, in 13th International
Modelica Conference 2019, Regensburg, Germany, 2019, Linköping University
Electronic Press, p. 6. Cited on page 195.

[186] C.-C. HSU AND B. SANDFORD, The delphi technique: Making sense of consensus,
Practical Assessment, Research & Evaluation, 12 (2007), pp. 1–8. Cited on page 74.

[187] T. J. R. HUGHES AND W. K. LIU, Implicit-Explicit Finite Elements in Transient
Analysis: Implementation and Numerical Examples, Journal of Applied Mechanics,
45 (1978), p. 375. Cited on page 16.

213

BIBLIOGRAPHY

[188] IEEE, IEEE Standard for Distributed Interactive Simulation–Application Protocols,
Tech. Rep. 10.1109/IEEESTD.2012.6387564, IEEE, 2012. Cited on page 38.

[189] F. IMMLER, Formally Verified Computation of Enclosures of Solutions of Ordinary
Differential Equations, in NASA Formal Methods, vol. 8430 LNCS, Houston, TX,
USA, 2014, Springer Berlin Heidelberg, pp. 113–127. Cited on page 22.

[190] K. R. JACKSON, A survey of parallel numerical methods for initial value problems
for ordinary differential equations, IEEE Transactions on Magnetics, 27 (1991),
pp. 3792–3797. Cited on page 16.

[191] A. JANTSCH AND I. SANDER, Models of computation and languages for embedded
system design, IEE Proceedings - Computers and Digital Techniques, 152 (2005),
pp. 114–129(15). Cited on pages 6 and 9.

[192] D. R. JEFFERSON, Virtual time, ACM Transactions on Programming Languages and
Systems, 7 (1985), pp. 404–425. Place: New York, NY, USA. Cited on page 36.

[193] H. H. JO, H. R. PARSAEI, AND W. G. SULLIVAN, Principles of concurrent en-
gineering, in Concurrent Engineering, Springer US, Boston, MA, 1993, pp. 3–23.
Cited on pages 1 and 17.

[194] K. H. JOHANSSON, M. EGERSTEDT, J. LYGEROS, AND S. SASTRY, On the
regularization of Zeno hybrid automata, Systems & Control Letters, 38 (1999),
pp. 141–150. Cited on pages 63 and 118.

[195] M. JOHANSSON, Piecewise Linear Control Systems, vol. 284, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003. Series Title: Lecture Notes in Control and
Information Sciences. Cited on page 116.

[196] N. JØRGENSEN, The Boeing 777: Development Life Cycle Follows Artifact, in World
Conference on Integrated Design and Process Technology (IDPT), Citeseer, 2006,
pp. 25–30. Cited on pages 1 and 17.

[197] R. JUNGERS, The Joint Spectral Radius: Theory and Applications, vol. 385, Springer
Science & Business Media, 2009. Cited on pages 63, 88, 96, 97, 98, 101, 102, 110,
113, and 116.

[198] R. M. JUNGERS, A. CICONE, AND N. GUGLIELMI, Lifted Polytope Methods
for Computing the Joint Spectral Radius, SIAM Journal on Matrix Analysis and
Applications, 35 (2014), pp. 391–410. Cited on pages 97 and 102.

[199] R. M. JUNGERS, A. D’INNOCENZO, AND M. D. DI BENEDETTO, Feedback
stabilization of dynamical systems with switched delays, in 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC), Maui, HI, USA, Dec. 2012, IEEE,
pp. 1325–1330. Cited on page 135.

[200] R. M. JUNGERS, V. PROTASOV, AND V. D. BLONDEL, Efficient algorithms for
deciding the type of growth of products of integer matrices, Linear Algebra and its
Applications, 428 (2008), pp. 2296–2311. Cited on page 96.

[201] T. KALMAR-NAGY AND I. STANCIULESCU, Can complex systems really be simu-
lated?, Applied Mathematics and Computation, 227 (2014), pp. 199–211. Cited on
pages 51, 57, and 91.

214

BIBLIOGRAPHY

[202] K. C. KANG, S. COHEN, J. HESS, W. NOVAK, AND A. PETERSON, Feature-
Oriented Domain Analysis. Feasibility study,, tech. rep., Carnegie Mellon University,
1990. Cited on pages 65 and 190.

[203] P. KARALIS AND E. M. NAVARRO-LÓPEZ, Feedback stability for dissipative
switched systems, in Proceedings of the 20th IFAC World Congress, Toulouse,
France, 2017, IFAC, pp. 3442–3448. Cited on page 116.

[204] M. KARNER, E. ARMENGAUD, C. STEGER, AND R. WEISS, Holistic Simulation
of FlexRay Networks by Using Run-time Model Switching, in Proceedings of the
Conference on Design, Automation and Test in Europe, 3001 Leuven, Belgium,
Belgium, 2010, European Design and Automation Association, pp. 544–549. Series
Title: DATE ’10. Cited on pages 19 and 88.

[205] S. KELLY AND J.-P. TOLVANEN, Domain-Specific Modeling: Enabling Full Code
Generation, John Wiley & Sons, 2008. Cited on pages 147 and 172.

[206] J. KENT PEACOCK, J. WONG, AND E. G. MANNING, Distributed simulation using
a network of processors, Computer Networks (1976), 3 (1979), pp. 44–56. Cited on
page 16.

[207] H. K. KHALIL, Nonlinear Systems, Prentice-Hall, New Jersey, 1996. Cited on
page 116.

[208] R. B. KIEBURTZ, L. MCKINNEY, J. M. BELL, J. HOOK, A. KOTOV, J. LEWIS,
D. P. OLIVA, T. SHEARD, I. SMITH, AND L. WALTON, A software engineering
experiment in software component generation, in 18th International Conference
on Software Engineering, Berlin, Germany, Mar. 1996, IEEE Computer Society,
pp. 542–552. Cited on page 172.

[209] J. E. KLECKNER, Advanced Mixed-Mode Simulation Techniques, ph.D., University
of California, Berkeley, 1984. Cited on page 18.

[210] E. KOFMAN, A Second-Order Approximation for DEVS Simulation of Continuous
Systems, SIMULATION, 78 (2002), pp. 76–89. Cited on page 62.

[211] E. KOFMAN AND S. JUNCO, Quantized-state systems: A DEVS Approach for con-
tinuous system simulation, Transactions of The Society for Modeling and Simulation
International, 18 (2001), pp. 123–132. Cited on pages 61, 62, and 146.

[212] A. KOSSIAKOFF, W. N. SWEET, S. J. SEYMOUR, AND S. M. BIEMER, Structure
of Complex Systems, in Systems Engineering Principles and Practice, John Wiley &
Sons, Inc., Hoboken, NJ, USA, Mar. 2011, pp. 41–67. Cited on page 36.

[213] V. KOUNEV, D. TIPPER, M. LEVESQUE, B. M. GRAINGER, T. MCDERMOTT, AND
G. F. REED, A microgrid co-simulation framework, in Workshop on Modeling and
Simulation of Cyber-Physical Energy Systems (MSCPES), Lévesque, McDermott,
Apr. 2015, IEEE, pp. 1–6. Cited on page 61.

[214] M. KRAMMER, J. FRITZ, AND M. KARNER, Model-Based Configuration of Auto-
motive Co-Simulation Scenarios, in 48th Annual Simulation Symposium, Alexandria,
Virginia, 2015, Society for Computer Simulation International San Diego, CA, USA,
pp. 155–162. Cited on pages 45, 174, and 195.

215

BIBLIOGRAPHY

[215] P. KRUS, Modeling of Mechanical Systems Using Rigid Bodies and Transmission
Line Joints, Journal of Dynamic Systems, Measurement, and Control, 121 (1999),
p. 606. Cited on page 184.

[216] R. KÜBLER AND W. SCHIEHLEN, Modular Simulation in Multibody System Dy-
namics, Multibody System Dynamics, 4 (2000), pp. 107–127. Cited on pages 2, 57,
and 91.

[217] , Two Methods of Simulator Coupling, Mathematical and Computer Modelling
of Dynamical Systems, 6 (2000), pp. 93–113. Cited on pages 19, 50, 51, 53, 83, 140,
and 141.

[218] F. KUHL, R. WEATHERLY, AND J. DAHMANN, Creating Computer Simulation
Systems: An Introduction to the High Level Architecture, Prentice Hall PTR, 1999.
Cited on page 18.

[219] T. KÜHNE, What is a Model?, in Language Engineering for Model-Driven Software
Development, vol. 04101, Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), 2005. Cited on page 6.

[220] T. KUHR, T. FORSTER, T. BRAUN, AND R. GOTZHEIN, FERAL - Framework for
simulator coupling on requirements and architecture level, in Eleventh IEEE/ACM
International Conference on Formal Methods and Models for Codesign (MEM-
OCODE), Portland, OR, USA, 2013, IEEE, pp. 11–22. Cited on pages 61, 62,
and 69.

[221] A. KUNDU AND D. CHATTERJEE, Stabilizing switching signals: A transition from
point-wise to asymptotic conditions, Systems & Control Letters, 106 (2017), pp. 16–
23. Cited on page 113.

[222] S. LACOSTE-JULIEN, H. VANGHELUWE, J. DE LARA, AND P. J. MOSTERMAN,
Meta-modelling hybrid formalisms, in IEEE International Symposium on Computer
Aided Control Systems Design, New Orleans, LA, USA, Sept. 2004, IEEE, pp. 65–
70. Cited on page 176.

[223] J. C. LAGARIAS AND Y. WANG, The finiteness conjecture for the generalized
spectral radius of a set of matrices, Linear Algebra and its Applications, 214 (1995),
pp. 17–42. Cited on page 121.

[224] L. LAMPORT, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM, 21 (1978), pp. 558–565. Place: New York, NY, USA.
Cited on pages 16 and 36.

[225] J. LANDETA, Current validity of the Delphi method in social sciences, Technological
Forecasting and Social Change, 73 (2006), pp. 467–482. Cited on page 74.

[226] P. G. LARSEN, J. FITZGERALD, J. WOODCOCK, P. FRITZSON, J. BRAUER,
C. KLEIJN, T. LECOMTE, M. PFEIL, O. GREEN, S. BASAGIANNIS, AND
A. SADOVYKH, Integrated tool chain for model-based design of Cyber-Physical
Systems: The INTO-CPS project, in 2nd International Workshop on Modelling, Anal-
ysis, and Control of Complex CPS (CPS Data), Vienna, Austria, Apr. 2016, IEEE,
pp. 1–6. Cited on pages 150 and 177.

216

BIBLIOGRAPHY

[227] D. P. Y. LAWRENCE, C. GOMES, J. DENIL, H. VANGHELUWE, AND D. BUCHS,
Coupling Petri nets with Deterministic Formalisms Using Co-simulation, in Sympo-
sium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium,
Pasadena, CA, USA, 2016, pp. 6:1–6:8. Cited on pages 10, 61, and 83.

[228] P. LE MARREC, C. A. VALDERRAMA, F. HESSEL, A. A. JERRAYA, M. ATTIA,
AND O. CAYROL, Hardware, software and mechanical cosimulation for automotive
applications, in 9th International Workshop on Rapid System Prototyping, 1998,
pp. 202–206. Cited on page 18.

[229] B.-S. LEE, W. CAI, S. J. TURNER, AND L. CHEN, Adaptive dead reckoning
algorithms for distributed interactive simulation, International Journal of Simulation,
1 (2000), pp. 21–34. Cited on page 37.

[230] E. A. LEE, Cyber Physical Systems: Design Challenges, in 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC), 2008,
pp. 363–369. Cited on pages 1 and 8.

[231] E. A. LEE AND A. SANGIOVANNI-VINCENTELLI, A framework for comparing
models of computation, Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17 (1998), pp. 1217–1229. Cited on page 138.

[232] E. A. LEE AND H. ZHENG, Operational semantics of hybrid systems, in Hybrid
Systems: Computation and Control, vol. 3414, Springer Berlin Heidelberg, 2005,
pp. 25–53. Series Title: Lecture Notes in Computer Science. Cited on pages 9
and 62.

[233] B. LEGAT, R. M. JUNGERS, AND P. A. PARRILO, Generating Unstable Trajectories
for Switched Systems via Dual Sum-Of-Squares Techniques, in 19th International
Conference on Hybrid Systems: Computation and Control, New York, New York,
USA, 2016, ACM Press, pp. 51–60. Cited on pages 88, 98, 102, and 108.

[234] B. LEGAT, P. A. PARRILO, AND R. M. JUNGERS, Certifying unstability of Switched
Systems using Sum of Squares Programming, tech. rep., Université catholique de
Louvain, Oct. 2017. Cited on pages 88, 102, 107, 108, and 112.

[235] E. LELARASMEE, A. E. RUEHLI, AND A. L. SANGIOVANNI-VINCENTELLI, The
Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated
Circuits, in IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 1, 1982, pp. 131–145. Cited on pages 16, 51, and 145.

[236] D. LIBERZON, Switching in Systems and Control, Springer Science & Business
Media, 2012. Cited on pages 116 and 125.

[237] G. LIBONI, J. DEANTONI, A. PORTALURI, D. QUAGLIA, AND R. DE SIMONE,
Beyond Time-Triggered Co-simulation of Cyber-Physical Systems for Performance
and Accuracy Improvements, in 10th Workshop on Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools, Manchester, United Kingdom, Jan. 2018.
Cited on page 22.

[238] H. LIN AND P. J. ANTSAKLIS, Stability and Stabilizability of Switched Linear
Systems: A Survey of Recent Results, IEEE Transactions on Automatic Control, 54
(2009), pp. 308–322. Cited on page 113.

217

BIBLIOGRAPHY

[239] D. LIND AND B. MARCUS, An Introduction to Symbolic Dynamics and Coding,
Cambridge university press, 1995. Cited on pages 103, 108, and 109.

[240] P. LINZ, An Introduction to Formal Languages and Automata, Jones & Bartlett
Publishers, 2011. Cited on page 100.

[241] J. LU AND L. J. BROWN, A multiple Lyapunov functions approach for stability of
switched systems, in Proceedings of the 2010 American Control Conference, IEEE,
June 2010, pp. 3253–3256. Cited on page 116.

[242] J. LYGEROS, Lecture notes on hybrid systems, tech. rep., Department of Electrical
and Computer Engineering University of Patras, 2004. Cited on page 60.

[243] N. LYNCH, R. SEGALA, AND F. VAANDRAGER, Hybrid I/O automata, Information
and Computation, 185 (2003), pp. 105–157. Cited on page 64.

[244] M. MAESUMI, An efficient lower bound for the generalized spectral radius of a set
of matrices, Linear Algebra and its Applications, 240 (1996), pp. 1–7. Cited on
page 97.

[245] O. MALER AND G. BATT, Approximating Continuous Systems by Timed Automata,
in Formal Methods in Systems Biology, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008, pp. 77–89. Cited on page 22.

[246] O. MALER, Z. MANNA, AND A. PNUELI, From timed to hybrid systems, Real-Time:
Theory in Practice, 600 (1992), pp. 447–484. Cited on pages 9 and 60.

[247] Z. MANNA AND A. PNUELI, Verifying hybrid systems, in Hybrid Systems SE - 2,
vol. 736, Springer Berlin Heidelberg, 1993, pp. 4–35. Series Title: Lecture Notes in
Computer Science. Cited on page 9.

[248] J. A. MARTINEZ, T. P. KURZWEG, S. P. LEVITAN, P. J. MARCHAND, AND D. M.
CHIARULLI, Mixed-Technology System-Level Simulation, Analog Integrated Circuits
and Signal Processing, 29 (2001), pp. 127–149. Cited on page 18.

[249] P. MAYRING, Qualitative Content Analysis, Forum: Qualitative Social Research,
(2004), pp. 170–183. Cited on page 75.

[250] W. J. MCCALLA, Fundamentals of Computer-Aided Circuit Simulation, vol. 37,
Springer Science & Business Media, 1987. Cited on page 17.

[251] B. MEYERS, J. DENIL, F. BOULANGER, C. HARDEBOLLE, C. JACQUET, AND
H. VANGHELUWE, A DSL for Explicit Semantic Adaptation, in 7th International
Workshop on Multi-Paradigm Modeling, Miami, United States, Sept. 2013, Springer,
Berlin, Heidelberg, pp. 47–56. Series Title: CEUR Workshop Proceedings. Cited on
pages 62, 137, 138, 143, 151, and 176.

[252] U. MIEKKALA AND O. NEVANLINNA, Convergence of Dynamic Iteration Methods
for Initial Value Problems, SIAM Journal on Scientific and Statistical Computing, 8
(1987), pp. 459–482. Cited on page 16.

[253] D. MILLER AND J. THORPE, SIMNET: The advent of simulator networking, Pro-
ceedings of the IEEE, 83 (1995), pp. 1114–1123. Cited on pages 17 and 38.

218

BIBLIOGRAPHY

[254] W. L. MIRANKER, Parallel Methods for Approximating the Root of a Function, IBM
Journal of Research and Development, 13 (1969), pp. 297–301. Cited on page 16.

[255] , A Survey of Parallelism in Numerical Analysis, SIAM Review, 13 (1971),
pp. 524–547. Cited on page 16.

[256] W. L. MIRANKER AND W. LINIGER, Parallel methods for the numerical integration
of ordinary differential equations, Mathematics of Computation, 21 (1967), pp. 303–
303. Cited on page 16.

[257] D. MITRA, Asynchronous Relaxations for the Numerical Solution of Differential
Equations by Parallel Processors, SIAM Journal on Scientific and Statistical Com-
puting, 8 (1987), pp. s43–s58. Cited on page 16.

[258] S. MITRA, D. LIBERZON, AND N. LYNCH, Verifying average dwell time of hybrid
systems, ACM Transactions on Embedded Computing Systems, 8 (2008), pp. 1–37.
Cited on page 116.

[259] M. MOORE AND J. WILHELMS, Collision detection and response for computer
animation, in Proceedings of the 15th Annual Conference on Computer Graphics
and Interactive Techniques - SIGGRAPH ’88, New York, New York, USA, 1988,
ACM Press, pp. 289–298. Cited on page 135.

[260] P. J. MOSTERMAN, An Overview of Hybrid Simulation Phenomena and Their
Support by Simulation Packages, in Hybrid Systems: Computation and Control SE
- 17, vol. 1569, Berg en Dal, The Netherlands, 1999, Springer Berlin Heidelberg,
pp. 165–177. Series Title: Lecture Notes in Computer Science. Cited on pages 60,
62, 88, and 145.

[261] P. J. MOSTERMAN AND G. BISWAS, A theory of discontinuities in physical system
models, Journal of the Franklin Institute, 335 (1998), pp. 401–439. Cited on page 63.

[262] P. J. MOSTERMAN AND G. BISWAS, A comprehensive methodology for building
hybrid models of physical systems, Artificial Intelligence, 121 (2000), pp. 171–209.
Cited on page 60.

[263] P. J. MOSTERMAN AND H. VANGHELUWE, Computer Automated Multi-Paradigm
Modeling: An Introduction, Simulation, 80 (2004), pp. 433–450. Cited on page 2.

[264] W. MÜLLER AND E. WIDL, Using FMI components in discrete event systems,
in Workshop on Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), Seattle, WA, USA, 2015, pp. 1–6. Cited on page 62.

[265] J. R. MUNKRES, Topology, Prentice Hall, second ed., 2000. Cited on page 122.

[266] S. MUSTAFIZ, B. BARROCA, C. GOMES, AND H. VANGHELUWE, Towards Modu-
lar Language Design Using Language Fragments: The Hybrid Systems Case Study,
in 13th International Conference on Information Technology - New Generations
(ITNG), S. Latifi, ed., Las Vegas, NV USA, Apr. 2016, Springer, Cham, pp. 785–797.
Cited on pages 8 and 61.

[267] S. MUSTAFIZ, C. GOMES, B. BARROCA, AND H. VANGHELUWE, Modular Design
of Hybrid Languages by Explicit Modeling of Semantic Adaptation, in Proceedings
of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S

219

BIBLIOGRAPHY

Symposium, Pasadena, California, Apr. 2016, IEEE, pp. 29:1–29:8. Series Title:
DEVS ’16. Cited on pages 8, 137, and 176.

[268] S. MUSTAFIZ AND H. VANGHELUWE, Explicit Modelling of Statechart Simulation
Environments, in Summer Computer Simulation Conference, Vista, CA, 2013, Soci-
ety for Modeling & Simulation International, pp. 21:1–21:8. Series Title: SCSC ’13.
Cited on page 12.

[269] A. MUZY, L. TOURAILLE, H. VANGHELUWE, O. MICHEL, M. K. TRAORÉ, AND
D. R. C. HILL, Activity Regions for the Specification of Discrete Event Systems,
in Spring Simulation Multiconference, San Diego, CA, USA, 2010, Society for
Computer Simulation International, pp. 136:1–136:7. Cited on page 37.

[270] E. M. NAVARRO-LÓPEZ, Hybrid-automaton models for simulating systems with
sliding motion: Still a challenge, IFAC Proceedings Volumes, 42 (2009), pp. 322–
327. Cited on page 60.

[271] E. M. NAVARRO-LÓPEZ AND R. CARTER, Hybrid automata: An insight into
the discrete abstraction of discontinuous systems, International Journal of Systems
Science, 42 (2011), pp. 1883–1898. Cited on page 60.

[272] , Deadness and how to disprove liveness in hybrid dynamical systems, Theoret-
ical Computer Science, 642 (2016), pp. 1–23. Cited on page 116.

[273] E. M. NAVARRO-LÓPEZ AND D. S. LAILA, Group and Total Dissipativity and
Stability of Multi-Equilibria Hybrid Automata, IEEE Transactions on Automatic
Control, 58 (2013), pp. 3196–3202. Cited on page 116.

[274] H. NEEMA, J. GOHL, Z. LATTMANN, J. SZTIPANOVITS, G. KARSAI, S. NEEMA,
T. BAPTY, J. BATTEH, H. TUMMESCHEIT, AND C. SURESHKUMAR, Model-based
integration platform for FMI co-simulation and heterogeneous simulations of cyber-
physical systems, in 10th International Modelica Conference, 2014, pp. 10–12. Cited
on page 61.

[275] A. R. NEWTON AND A. L. SANGIOVANNI-VINCENTELLI, Relaxation-Based Elec-
trical Simulation, SIAM Journal on Scientific and Statistical Computing, 4 (1983),
pp. 485–524. Cited on page 16.

[276] C. B. NIELSEN, P. G. LARSEN, J. FITZGERALD, J. WOODCOCK, AND J. PELESKA,
Systems of Systems Engineering: Basic Concepts, Model-Based Techniques, and
Research Directions, ACM Computing Surveys, 48 (2015), pp. 18:1–18:41. Place:
New York, NY, USA. Cited on page 1.

[277] J. NIEVERGELT, Parallel methods for integrating ordinary differential equations,
Communications of the ACM, 7 (1964), pp. 731–733. Cited on page 16.

[278] H. NILSSON, Functional automatic differentiation with Dirac impulses, ACM SIG-
PLAN Notices, 38 (2003), pp. 153–164. Place: New York, NY, USA. Cited on
page 62.

[279] P. NILSSON AND N. OZAY, On a Class of Maximal Invariance Inducing Control
Strategies for Large Collections of Switched Systems, in Proceedings of the 20th
International Conference on Hybrid Systems: Computation and Control, 2017,
pp. 187–196. Cited on page 96.

220

BIBLIOGRAPHY

[280] K. NORLING, D. BROMAN, P. FRITZSON, A. SIEMERS, AND D. FRITZSON,
Secure distributed co-simulation over wide area networks, in 48th Conference on
Simulation and Modelling, Göteborg, Sweden, 2007, pp. 14–23. Cited on page 37.

[281] M. NOWACK, J. ENDRIKAT, AND E. GUENTHER, Review of Delphi-based scenario
studies: Quality and design considerations, Technological Forecasting and Social
Change, 78 (2011), pp. 1603–1615. Cited on page 74.

[282] J. NUTARO, Designing power system simulators for the smart grid: Combining
controls, communications, and electro-mechanical dynamics, in IEEE Power and
Energy Society General Meeting, Detroit, MI, USA, July 2011, IEEE, pp. 1–5. Cited
on page 61.

[283] , A method for bounding error in multi-rate and federated simulations, in
Winter Simulation Conference, Washington, DC, USA, Dec. 2016, IEEE, pp. 967–
976. Cited on page 62.

[284] J. NUTARO, P. T. KURUGANTI, V. PROTOPOPESCU, AND M. SHANKAR, The
split system approach to managing time in simulations of hybrid systems having
continuous and discrete event components, SIMULATION, 88 (2012), pp. 281–298.
Cited on page 61.

[285] S. OH AND S. CHAE, A Co-Simulation Framework for Power System Analysis,
Energies, 9 (2016), p. 131. Cited on page 58.

[286] C. OKOLI AND S. D. PAWLOWSKI, The Delphi method as a research tool : An
example , design considerations and applications, Information & Management, 42
(2004), pp. 15–29. Cited on pages 74 and 75.

[287] M. OTTER AND H. ELMQVIST, The DSblock model interface for exchanging model
components, in Proceedings of the Eurosim’95 Simulation Congress, 1995, pp. 505–
510. Cited on pages 18 and 59.

[288] M. OTTER, M. MALMHEDEN, H. ELMQVIST, S. E. MATTSSON, AND C. JOHNS-
SON, A New Formalism for Modeling of Reactive and Hybrid Systems, in 7th In-
ternational Modelica Conference, Como, Italy, Oct. 2009, Linköping University
Electronic Press; Linköpings universitet, pp. 364–377. Cited on pages 138 and 176.

[289] P. PALENSKY, A. A. VAN DER MEER, C. D. LOPEZ, A. JOSEPH, AND K. PAN,
Cosimulation of Intelligent Power Systems: Fundamentals, Software Architecture,
Numerics, and Coupling, IEEE Industrial Electronics Magazine, 11 (2017), pp. 34–
50. Cited on page 27.

[290] A. PAPACHRISTODOULOU AND S. PRAJNA, A tutorial on sum of squares techniques
for systems analysis, in American Control Conference, Portland, OR, USA, 2005,
IEEE, pp. 2686–2700. Cited on page 136.

[291] K. PARK, C. FELIPPA, AND J. DERUNTZ, Stabilization of staggered solution
procedures for fluid-structure interaction analysis, Computational methods for fluid-
structure interaction problems, 26 (1977), p. 51. Cited on page 16.

[292] P. A. PARRILO AND A. JADBABAIE, Approximation of the Joint Spectral Radius
of a Set of Matrices Using Sum of Squares, in Hybrid Systems: Computation and

221

BIBLIOGRAPHY

Control, Pisa, Italy, 2007, Springer, Berlin, Heidelberg, pp. 444–458. Cited on pages
103 and 113.

[293] , Approximation of the joint spectral radius using sum of squares, Linear
Algebra and its Applications, 428 (2008), pp. 2385–2402. Cited on page 97.

[294] H. M. PAYNTER, Analysis and Design of Engineering Systems, MIT press, 1961.
Cited on pages 54 and 71.

[295] N. PEDERSEN, T. BOJSEN, AND J. MADSEN, Co-simulation of Cyber Physical
Systems with HMI for Human in the Loop Investigations, in Symposium on Theory of
Modeling & Simulation, Virginia Beach, Virginia, USA, 2017, Society for Computer
Simulation International, pp. 1:1–1:12. Series Title: TMS/DEVS ’17. Cited on
page 2.

[296] N. PEDERSEN, T. BOJSEN, J. MADSEN, AND M. VEJLGAARD-LAURSEN, FMI
for Co-Simulation of Embedded Control Software, in The First Japanese Modelica
Conferences, Tokyo, Japan, May 2016, Linköping University Electronic Press,
pp. 70–77. Cited on page 62.

[297] N. PEDERSEN, K. LAUSDAHL, E. VIDAL SANCHEZ, P. G. LARSEN, AND J. MAD-
SEN, Distributed Co-Simulation of Embedded Control Software with Exhaust Gas
Recirculation Water Handling System using INTO-CPS, in 7th International Confer-
ence on Simulation and Modeling Methodologies, Technologies and Applications,
SCITEPRESS - Science and Technology Publications, 2017, pp. 73–82. Cited on
pages 6, 8, 22, 24, and 66.

[298] N. C. PETRELLIS, A. N. BIRBAS, M. K. BIRBAS, E. P. MARIATOS, AND G. D.
PAPADOPOULOS, Simulating Hardware, Software and Electromechanical Parts
Using Communicating Simulators, Design Automation for Embedded Systems, 3
(1998), pp. 187–198. Cited on page 18.

[299] S. PETTERSSON, Synthesis of switched linear systems, in 42nd IEEE International
Conference on Decision and Control (IEEE Cat. No.03CH37475), vol. 5, IEEE,
2003, pp. 5283–5288. Cited on page 113.

[300] M. PHILIPPE, R. ESSICK, G. E. DULLERUD, AND R. M. JUNGERS, Stability of
discrete-time switching systems with constrained switching sequences, Automatica,
72 (2016), pp. 242–250. Cited on pages 105 and 121.

[301] R. PLATEAUX, J. CHOLEY, O. PENAS, AND A. RIVIERE, Towards an integrated
mechatronic design process, in International Conference on Mechatronics, vol. 00,
Malaga, Spain, 2009, IEEE, pp. 1–6. Cited on page 1.

[302] A. PLATZER, Logical Analysis of Hybrid Systems, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010. Publication Title: Descriptional Complexity of Formal
Systems. Cited on page 64.

[303] U. POHLMANN, W. SCHÄFER, H. REDDEHASE, J. RÖCKEMANN, AND R. WAG-
NER, Generating Functional Mockup Units from Software Specifications, in 9th
International MODELICA Conference, Munich, Germany, Nov. 2012, Linköping
University Electronic Press; Linköpings universitet, pp. 765–774. Cited on page 176.

222

BIBLIOGRAPHY

[304] E. POSSE, J. DE LARA, AND H. VANGHELUWE, Processing causal block diagrams
with graphgrammars in atom3, in Workshop on Applied Graph Transformation
(AGT), Grenoble, France, Apr. 2002, Springer, Berlin, Heidelberg, pp. 23–34. Cited
on page 141.

[305] C. POWELL, The Delphi Technique: Myths and realities, Methodological Issues in
Nursing Research, 41 (2003), pp. 376–382. Cited on page 74.

[306] P. PRABHAKAR AND M. GARCÍA SOTO, Formal Synthesis of Stabilizing Controllers
for Switched Systems, in Proceedings of the 20th International Conference on Hybrid
Systems: Computation and Control, 2017, pp. 111–120. Cited on page 113.

[307] S. M. PRABHU AND P. J. MOSTERMAN, Modeling, Simulating, and Validating a
Power Window System Using a Model-Based Design Approach. Cited on page 147.

[308] C. PTOLEMAEUS, System Design, Modeling, and Simulation: Using Ptolemy II,
Berkeley: Ptolemy.org, 2014. Cited on pages 29 and 61.

[309] D. QUAGLIA, R. MURADORE, R. BRAGANTINI, AND P. FIORINI, A SystemC/Mat-
lab co-simulation tool for networked control systems, Simulation Modelling Practice
and Theory, 23 (2012), pp. 71–86. Cited on page 61.

[310] G. QUESNEL, R. DUBOZ, D. VERSMISSE, AND E. RAMAT, DEVS coupling of
spatial and ordinary differential equations: VLE framework, in Open International
Conference on Modeling and Simulation, vol. 5, Citeseer, June 2005, pp. 281–294.
Cited on pages 61 and 146.

[311] C. RACKAUCKAS AND Q. NIE, Differentialequations. jl–a performant and feature-
rich ecosystem for solving differential equations in Julia, Journal of Open Research
Software, 5 (2017). Cited on page 133.

[312] M. RADETZKI AND R. S. KHALIGH, Accuracy-adaptive Simulation of Transaction
Level Models, in Proceedings of the Conference on Design, Automation and Test in
Europe, New York, NY, USA, 2008, ACM, pp. 788–791. Series Title: DATE ’08.
Cited on pages 19 and 88.

[313] C. ROBINSON, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC
press, 1998. Cited on page 130.

[314] G. C. ROTA AND W. STRANG, A note on the joint spectral radius, in Proceedings
of the Netherlands Academy 22, 1960, pp. 379–381. Cited on page 96.

[315] J. A. ROWSON, Hardware/Software Co-Simulation, in 31st Conference on Design
Automation, 1994, pp. 439–440. Cited on page 18.

[316] L. SACHS, Angewandte Statistik, Springer-Verlag, Berlin Heidelberg, 1997. Cited
on page 75.

[317] S. SADJINA, L. T. KYLLINGSTAD, S. SKJONG, AND E. PEDERSEN, Energy
conservation and power bonds in co-simulations: Non-iterative adaptive step size
control and error estimation, Engineering with Computers, 33 (2017), pp. 607–620.
Cited on pages 54, 83, 183, and 194.

223

BIBLIOGRAPHY

[318] S. SADJINA AND E. PEDERSEN, Energy Conservation and Coupling Error Reduc-
tion in Non-Iterative Co-Simulations, tech. rep., SINTEF Alesund, June 2016. Cited
on pages 58, 71, and 174.

[319] S. E. SAIDI, N. PERNET, Y. SOREL, AND A. B. KHALED, Acceleration of FMU Co-
Simulation On Multi-core Architectures, in The First Japanese Modelica Conferences,
Tokyo, Japan, May 2016, Linköping University Electronic Press, pp. 106–112. Cited
on page 83.

[320] R. A. SALEH, S.-J. JOU, AND A. R. NEWTON, Mixed-Mode Simulation and Analog
Multilevel Simulation, vol. 279, Springer Science & Business Media, 2013. Cited on
page 18.

[321] D. SCHRAMM, W. LALO, AND M. UNTERREINER, Application of Simulators and
Simulation Tools for the Functional Design of Mechatronic Systems, Solid State
Phenomena, 166-167 (2010), pp. 1–14. Cited on page 1.

[322] G. SCHWEIGER, G. ENGEL, J. SCHOEGGL, I. HAFNER, C. GOMES, AND
T. NOUIDUI, Co-Simulation - an Empirical Survey: Applications, Recent Devel-
opments and Future Challenges, in MATHMOD 2018 Extended Abstract Volume,
Vienna, Austria, 2018, ARGESIM Publisher Vienna, pp. 125–126. Cited on page 74.

[323] G. SCHWEIGER, C. GOMES, G. ENGEL, I. HAFNER, J. SCHOEGGL, A. POSCH,
AND T. NOUIDUI, Functional Mock-up Interface: An empirical survey identifies
research challenges and current barriers, in The American Modelica Conference,
Cambridge, MA, USA, 2018, Linköping University Electronic Press, Linköpings
universitet, pp. 138–146. Cited on pages xi, 74, 78, and 81.

[324] SCHWEIZER AND D. LU, Predictor/corrector co-simulation approaches for solver
coupling with algebraic constraints, ZAMM - Journal of Applied Mathematics and
Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 95 (2015),
pp. 911–938. Cited on pages 46, 47, 51, 54, and 174.

[325] B. SCHWEIZER, P. LI, AND D. LU, Explicit and Implicit Cosimulation Methods:
Stability and Convergence Analysis for Different Solver Coupling Approaches, Jour-
nal of Computational and Nonlinear Dynamics, 10 (2015), p. 051007. Cited on
pages 54, 57, 91, 113, and 179.

[326] B. SCHWEIZER, P. LI, D. LU, AND T. MEYER, Stabilized implicit co-simulation
methods: Solver coupling based on constitutive laws, Archive of Applied Mechanics,
85 (2015), pp. 1559–1594. Cited on pages 113 and 174.

[327] B. SCHWEIZER AND D. LU, Semi-implicit co-simulation approach for solver cou-
pling, Archive of Applied Mechanics, 84 (2014), pp. 1739–1769. Cited on page 174.

[328] , Stabilized index-2 co-simulation approach for solver coupling with alge-
braic constraints, Multibody System Dynamics, 34 (2015), pp. 129–161. Cited on
page 174.

[329] B. SCHWEIZER, D. LU, AND P. LI, Co-simulation method for solver coupling
with algebraic constraints incorporating relaxation techniques, Multibody System
Dynamics, 36 (2016), pp. 1–36. Cited on pages 43, 47, 51, 54, 144, and 174.

224

BIBLIOGRAPHY

[330] L. F. SHAMPINE AND M. W. REICHELT, The matlab ode suite, SIAM journal on
scientific computing, 18 (1997), pp. 1–22. Cited on page 89.

[331] R. SHORTEN, F. WIRTH, O. MASON, K. WULFF, AND C. KING, Stability Criteria
for Switched and Hybrid Systems, SIAM Review, 49 (2007), pp. 545–592. Cited on
page 110.

[332] S. SICKLINGER, V. BELSKY, B. ENGELMANN, H. ELMQVIST, H. OLSSON,
R. WÜCHNER, AND K. U. BLETZINGER, Interface Jacobian-based Co-Simulation,
International Journal for Numerical Methods in Engineering, 98 (2014), pp. 418–444.
Cited on pages 47, 145, and 174.

[333] M. SIPSER, Introduction to the Theory of Computation, Thomson Course Technol-
ogy, 2013. Cited on page 104.

[334] C. SLOTH AND R. WISNIEWSKI, Robust stability of switched systems, in 53rd IEEE
Conference on Decision and Control, Los Angeles, CA, USA, Dec. 2014, IEEE,
pp. 4685–4690. Cited on page 113.

[335] J. SOMERVILLE, Critical Factors Affecting the Assessment of Student Learning
Outcomes: A Delphi Study of the Opinions of Community College Personnel, Journal
of Applied Research in the Community College, (2008). Cited on page 74.

[336] M. SPIEGEL, P. REYNOLDS, AND D. BROGAN, A Case Study of Model Context for
Simulation Composability and Reusability, in Proceedings of the Winter Simulation
Conference, 2005., vol. 2005, IEEE, 2005, pp. 437–444. Cited on pages 7, 79,
and 83.

[337] H. STACHOWIAK, Allgemeine Modelltheorie, Springer-Verlag, Wien and New York,
1973. Cited on page 6.

[338] G. STETTINGER, M. BENEDIKT, M. HORN, J. ZEHETNER, AND C. GIEBENHAIN,
Control of a magnetic levitation system with communication imperfections: A model-
based coupling approach, Control Engineering Practice, 58 (2017), pp. 161–170.
Cited on page 43.

[339] G. STETTINGER, M. HORN, M. BENEDIKT, AND J. ZEHETNER, Model-based
coupling approach for non-iterative real-time co-simulation, in European Control
Conference (ECC), Strasbourg, France, 2014, IEEE, pp. 2084–2089. Cited on pages
43, 59, and 174.

[340] G. STETTINGER, J. ZEHETNER, M. BENEDIKT, AND N. THEK, Extending Co-
Simulation to the Real-Time Domain, in SAE Technical Paper, Apr. 2013. Cited on
page 59.

[341] A. STUART AND A. R. HUMPHRIES, Dynamical Systems and Numerical Analysis,
vol. 2, Cambridge University Press, 1998. Cited on pages 94 and 119.

[342] Z. SUN AND S. GE, Analysis and synthesis of switched linear control systems,
Automatica, 41 (2005), pp. 181–195. Cited on page 113.

[343] J. M. SUSSMAN, Collected views on complexity in systems, tech. rep., Massachusetts
Institute of Technology. Engineering Systems Division, 2002. Cited on page 6.

225

BIBLIOGRAPHY

[344] R. TARJAN, Depth-first search and linear graph algorithms, in 12th Annual Sym-
posium on Switching and Automata Theory (Swat 1971), vol. 1, East Lansing, MI,
USA, Oct. 1971. Cited on page 51.

[345] J.-P. TAVELLA, M. CAUJOLLE, S. VIALLE, C. DAD, C. TAN, G. PLESSIS,
M. SCHUMANN, A. CUCCURU, AND S. REVOL, Toward an accurate and fast hybrid
multi-simulation with the FMI-CS standard, in 21st IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, Sept.
2016, IEEE, pp. 1–5. Cited on pages 61, 62, and 64.

[346] B. TAYLOR, Methodus Incrementorum Directa et Inversa, London, (1715). Cited on
page 39.

[347] M. TESCHNER, S. KIMMERLE, B. HEIDELBERGER, G. ZACHMANN, L. RAGHU-
PATHI, A. FUHRMANN, M.-P. CANI, F. FAURE, N. MAGNENAT-THALMANN,
W. STRASSER, AND P. VOLINO, Collision Detection for Deformable Objects, Com-
puter Graphics Forum, 24 (2005), pp. 61–81. Cited on page 135.

[348] C. THULE, C. GOMES, J. DEANTONI, P. G. LARSEN, J. BRAUER, AND
H. VANGHELUWE, Towards Verification of Hybrid Co-simulation Algorithms, in 2nd
Workshop on Formal Co-Simulation of Cyber-Physical Systems, Toulouse, France,
2018, Springer, Cham, p. to be published. Cited on pages 67 and 83.

[349] C. THULE AND P. LARSEN, Investigating Concurrency in the Co-Simulation Orches-
tration Engine for INTO-CPS, Proceedings of the Institute for System Programming
of the RAS, 28 (2016), pp. 139–156. Cited on page 83.

[350] C. THULE, K. LAUSDAHL, C. GOMES, G. MEISL, AND P. G. LARSEN, Mae-
stro: The INTO-CPS Co-simulation Framework, Simulation Modelling Practice and
Theory, 92 (2019), pp. 45–61. Cited on page 23.

[351] T. TOMIYAMA, V. D’AMELIO, J. URBANIC, AND W. ELMARAGHY, Complexity
of Multi-Disciplinary Design, CIRP Annals - Manufacturing Technology, 56 (2007),
pp. 185–188. Cited on pages 1 and 8.

[352] M. TRCKA, M. WETTER, AND J. HENSEN, Comparison of co-simulation ap-
proaches for building and HVAC/R system simulation, in International IBPSA Con-
ference, Beijing, China, 2007. Cited on page 51.

[353] S. TRIPAKIS, Bridging the semantic gap between heterogeneous modeling for-
malisms and FMI, in International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), Samos, Greece, July 2015,
IEEE, pp. 60–69. Cited on pages 61, 62, 138, and 176.

[354] F. TSENG AND G. HULBERT, Network-distributed multibody dynamics simula-
tion—gluing algorithm, Advances in Computational Multibody Dynamics, (1999),
pp. 521–540. Cited on page 18.

[355] A. TUKKER, Product services for a resource-efficient and circular economy – a
review, Journal of Cleaner Production, 97 (2015), pp. 76–91. Cited on page 20.

[356] S. UCHITEL AND D. YANKELEVICH, Enhancing architectural mismatch detection
with assumptions, in Engineering of Computer Based Systems, 2000. (ECBS 2000)

226

BIBLIOGRAPHY

Proceedings. Seventh IEEE International Conference and Workshopon The, 2000,
pp. 138–146. Cited on page 8.

[357] A. M. UHRMACHER, Variable structure models: Autonomy and control answers
from two different modeling approaches, in AI, Simulation and Planning in High
Autonomy Systems, IEEE Comput. Soc. Press, 1993, pp. 133–139. Cited on page 37.

[358] B. VAN ACKER, J. DENIL, P. D. MEULENAERE, AND H. VANGHELUWE, Genera-
tion of an Optimised Master Algorithm for FMI Co-simulation, in Symposium on
Theory of Modeling & Simulation-DEVS Integrative, Alexandria, Virginia, USA,
Apr. 2015, Society for Computer Simulation International San Diego, CA, USA,
pp. 946–953. Cited on pages 45, 66, 138, 144, 145, 177, and 182.

[359] H. VAN DER AUWERAER, J. ANTHONIS, S. DE BRUYNE, AND J. LEURIDAN,
Virtual engineering at work: The challenges for designing mechatronic products,
Engineering with Computers, 29 (2013), pp. 389–408. Cited on pages 1, 6, 8, 19,
and 20.

[360] A. J. VAN DER SCHAFT AND J. M. SCHUMACHER, An Introduction to Hybrid
Dynamical Systems, vol. 251, Springer London, 2000. Cited on page 63.

[361] S. VAN MIERLO, Explicitly Modelling Model Debugging Environments, in ACM
Student Research Competition (ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems), CEUR, 2015, pp. 24–29. Cited on
page 12.

[362] Y. VAN TENDELOO AND H. VANGHELUWE, Activity in PythonPDEVS, ITM Web
of Conferences, 3 (2014), p. 10. Cited on page 37.

[363] , PythonPDEVS: A distributed Parallel DEVS simulator, in Spring Simulation
Multiconference, Alexandria, Virginia, 2015, Society for Computer Simulation
International, pp. 844–851. Series Title: SpringSim ’15. Cited on page 37.

[364] , Increasing the performance of a Discrete Event System Specification simulator
by means of computational resource usage “activity” models, SIMULATION, 93
(2017), pp. 1045–1061. Cited on page 190.

[365] , An Introduction to Classic DEVS, tech. rep., University of Antwerp, 2017.
Cited on pages 29 and 33.

[366] H. VANGHELUWE, DEVS as a common denominator for multi-formalism hybrid
systems modelling, in International Symposium on Computer-Aided Control System
Design (Cat. No.00TH8537), Anchorage, AK, USA, 2000, IEEE, pp. 129–134. Cited
on pages 29 and 61.

[367] , Foundations of Modelling and Simulation of Complex Systems, Electronic
Communications of the EASST, 10 (2008). Cited on pages 6 and 9.

[368] H. VANGHELUWE, J. DE LARA, AND P. J. MOSTERMAN, An introduction to
multi-paradigm modelling and simulation, in AI, Simulation and Planning in High
Autonomy Systems, SCS, 2002, pp. 9–20. Cited on pages 6 and 189.

[369] H. L. VANGHELUWE, G. C. VANSTEENKISTE, AND E. J. KERCKHOFFS, Simula-
tion for the Future : Progress of the Esprit Basic Research Working Group 8467, in

227

BIBLIOGRAPHY

Proceedings of the 1996 European Simulation Symposium, Genoa, 1996, Society
for Computer Simulation International, pp. XXIX–XXXIV. Cited on page 18.

[370] K. VANHERPEN, J. DENIL, P. DE MEULENAERE, AND H. VANGHELUWE, Design-
Space Exploration in Model Driven Engineering: An Initial Pattern Catalogue, in 1st
International Workshop on Combining Modelling with Search and Example-Based
Approaches (CMSEBA), CEUR Workshop Proceedings (Vol-1340), Sept. 2014,
pp. 42–51. Cited on page 190.

[371] M. E. VARA LARSEN, J. DE ANTONI, B. COMBEMALE, AND F. MALLET, A
Behavioral Coordination Operator Language (BCOoL), in 18th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS), Ottawa,
ON, Canada, Sept. 2015, IEEE, pp. 186–195. Cited on page 176.

[372] A. VERHOEVEN, B. TASIC, T. G. J. BEELEN, E. J. W. TER MATEN, AND R. M. M.
MATTHEIJ, BDF compound-fast multirate transient analysis with adaptive stepsize
control, Journal of numerical analysis, Industrial and Applied Mathematics, 3 (2008),
pp. 275–297. Cited on page 54.

[373] G. WANNER AND E. HAIRER, Solving Ordinary Differential Equations I: Nonstiff
Problems, vol. 1, Springer-Verlag, springer s ed., 1991. Cited on pages 53, 58,
and 97.

[374] D. B. WEST, Introduction to Graph Theory, vol. 2, Prentice hall Upper Saddle River,
2001. Cited on page 108.

[375] M. WETTER, Co-simulation of building energy and control systems with the Building
Controls Virtual Test Bed, Journal of Building Performance Simulation, 4 (2010),
pp. 185–203. Cited on pages 45 and 174.

[376] E. WIDL, W. MÜLLER, A. ELSHEIKH, M. HÖRTENHUBER, AND P. PALENSKY,
The FMI++ library: A high-level utility package for FMI for model exchange,
in Workshop on Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), Berkeley, CA, USA, 2013, IEEE, pp. 1–6. Cited on page 61.

[377] N. WIRTH, Extended backus-naur form (EBNF), 1996. Pages: 2996 Publication
Title: ISO/IEC. Cited on page 166.

[378] M.-C. WU AND M.-C. SHIH, Simulated and experimental study of hydraulic anti-
lock braking system using sliding-mode PWM control, Mechatronics, 13 (2003),
pp. 331–351. Cited on page 2.

[379] X. XU AND P. ANTSAKLIS, Optimal Control of Switched Systems Based on Param-
eterization of the Switching Instants, Automatic Control, 49 (2004), pp. 2–16. Cited
on page 113.

[380] X. XU AND P. J. ANTSAKLIS, Optimal control of switched systems via non-linear
optimization based on direct differentiations of value functions, International Journal
of Control, 75 (2002), pp. 1406–1426. Cited on page 113.

[381] T. YANG, Networked control system: A brief survey, IEE Proceedings - Control
Theory and Applications, 153 (2006), pp. 403–412. Cited on pages 117 and 135.

228

BIBLIOGRAPHY

[382] F. YILMAZ, U. DURAK, K. TAYLAN, AND H. OĞUZTÜZÜN, Adapting Functional
Mockup Units for HLA-compliant Distributed Simulation, in 10th International
Modelica Conference, 2014. Cited on page 61.

[383] B. P. ZEIGLER, Theory of Modelling and Simulation, New York, Wiley, 1976. Cited
on pages 6, 29, and 38.

[384] , Embedding DEV&DESS in DEVS, in DEVS Integrative Modeling & Simula-
tion Symposium, vol. 7, 2006. Cited on pages 61 and 64.

[385] B. P. ZEIGLER AND J. S. LEE, Theory of quantized systems: Formal basis for DE-
VS/HLA distributed simulation environment, in Enabling Technology for Simulation
Science II, vol. 3369, Orlando, FL, United States, Aug. 1998, SPIE 3369, pp. 49–58.
Cited on page 62.

[386] B. P. ZEIGLER, H. PRAEHOFER, AND T. G. KIM, Theory of Modeling and Sim-
ulation: Integrating Discrete Event and Continuous Complex Dynamic Systems,
Academic press, 2 ed., 2000. Cited on pages 32, 34, 63, and 64.

[387] G. ZHAI, B. HU, K. YASUDA, AND A. N. MICHEL, Piecewise Lyapunov Functions
for switched systems with average dwell time, Asian Journal of Control, 2 (2000),
pp. 192–197. Cited on page 116.

[388] F. ZHANG, M. YEDDANAPUDI, AND P. J. MOSTERMAN, Zero-Crossing Location
and Detection Algorithms For Hybrid System Simulation, in IFAC Proceedings
Volumes, vol. 41, Seoul, Korea, July 2008, Elsevier Ltd, pp. 7967–7972. Cited on
pages 62, 115, 117, and 145.

[389] W. ZHANG, A. ABATE, J. HU, AND M. P. VITUS, Exponential stabilization of
discrete-time switched linear systems, Automatica, 45 (2009), pp. 2526–2536. Cited
on page 113.

[390] X. ZHAO, L. ZHANG, P. SHI, AND M. LIU, Stability and Stabilization of Switched
Linear Systems With Mode-Dependent Average Dwell Time, Automatic Control, 57
(2012), pp. 1809–1815. Cited on page 113.

[391] V. ŽIVOJNOVIC AND H. MEYR, Compiled HW/SW Co-simulation, in Proceedings
of the 33rd Annual Design Automation Conference, New York, NY, USA, 1996,
ACM, pp. 690–695. Series Title: DAC ’96. Cited on page 18.

[392] M. ZWOLINSKI, C. GARAGATE, Z. MRCARICA, T. J. KAZMIERSKI, AND A. D.
BROWN, Anatomy of a simulation backplane, IEE Proceedings - Computers and
Digital Techniques, 142 (1995), pp. 377–385(8). Cited on page 18.

229

	Introduction
	Motivation
	Main Challenge and Contributions
	Limitations
	Structure

	Background
	Complexity in the Real World
	Complexity in the Simulation World
	Model Integration
	Taxonomy of Dynamical Model Formalisms
	Simulation
	Co-simulation

	State of the Art
	Main Milestones
	60s
	70s and 80s
	90s
	2000s
	2010s

	Emerging Trends and Challenges
	Design Space Exploration
	X-in-The-Loop
	Incremental Testing/Certification

	Co-simulation in Industry
	Exhaust Gas Recirculation (MAN Diesel & Turbo)
	Driverless Lawn Mower (AGROINTELLI)
	Motion Compensated Crane (ControlLab)

	Co-simulation in Research
	Recent Survey Work
	Hafner and Popper
	Palensky et al.
	Our Survey

	Discrete-Event-Based Co-simulation
	DE Simulation Units
	DE Co-simulation Orchestration
	Technical Challenges
	Standards for DE Co-simulation
	Summary

	Continuous-Time-Based Co-simulation
	CT Simulation Units
	CT Co-simulation Orchestration
	Technical Challenges
	Standards for CT Co-simulation

	Hybrid Co-simulation Approach
	Hybrid Co-simulation Scenarios
	Challenges
	Standards for Hybrid Co-simulation

	Classification and Applications
	Methodology
	Taxonomy
	Applications
	An Industrial Application
	A Framework
	A Standard

	The State of the Art
	Discussion

	Concluding Remarks

	Empirical Survey
	Method and Rationale
	Delphi Method
	Expert selection and response rate
	Presentation of the results
	Threats to validity and limitations of the study

	Results and Discussion
	Simulator and Co-simulation Characterization
	Dissemination channels
	Ranking of Standards and Tools
	Current challenges
	Research needs

	Concluding Remarks

	Stability Preservation in Adaptive Co-simulation
	Introduction
	Contribution
	Structure

	Motivational Examples
	Adaptive Simulation
	Adaptive Co-simulation

	Background
	(Numerical) Stability
	Joint Spectral Radius

	Stability Certification of Adaptive Co-simulations
	Stability
	Stabilization
	Conservativeness
	Implementation

	Minimizing Forbidden Sequences
	Constrained Switched Systems

	Lift-and-Constrain Stabilization
	Constraining for more stability
	Lifting for less conservativeness

	Implementation
	Computation of the Entropy
	Spectral Radius of Adjacency Matrix
	Edge Shift

	Optimality
	Application
	Related Work
	Concluding Remarks

	Stability Preservation in Hybrid Co-simulation
	Introduction
	Contribution
	Structure

	Motivating Example: Relaxed Bouncing Ball Simulation
	Problem Formulation
	Orbit and stability
	Results
	Comparison with State of the Art

	Related Work
	Concluding Remarks

	Semantic Adaptation
	Introduction
	Background
	Co-simulation
	Functional Mock-up Interface Standard (FMI)
	FMUs and Simulation units

	Semantic Adaptation
	Conversion of Units and Reference Frame Translation
	Interpolation/Extrapolation of Inputs
	Fixed Point Iteration
	Multi-Rate Adaptation
	Time and Partial Derivative Adaptation
	Accurate Threshold Crossing
	Re-Initialisation
	Quantization
	Hold
	Data Triggered Execution
	Timed Transitions

	Domain-Specific Languages

	Running Example
	The Example Scenario
	Semantic Adaptations

	Hierarchical Co-simulation for Semantic Adaptation
	Hierarchical Co-simulation
	Generic Semantic Adaptation

	A DSL for Semantic Adaptation
	The baseSA DSL
	The window_sa adaptation
	The loop_sa adaptation
	The rate_sa adaptation
	The lazy_sa adaptation
	The controller_sa

	Syntax
	Semantics
	Reduction to Explicit Form
	Mapping to Generic Semantic Adaptation

	Evaluation
	Productivity
	Goals
	Experimental Setup
	Results
	Threats to Validity

	Expressivity
	Modularity
	Transparency

	Discussion and Future Work
	Related Work
	Concluding Remarks

	Hint-Based Configuration of Co-simulations
	Introduction
	Industrial Example
	Value of Co-simulation for Boeing
	Boeing's Case Study
	Analysis

	Problem Formulation
	Co-simulation Formalization
	Research Problem

	Hint Language
	Master Generation
	Search Space Representation
	Variant Generation
	Variant Execution
	Hierarchical FMUs
	Search Space Generation
	Results

	Related Work
	Concluding Remarks

	Conclusion

