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Abstract—The rapid adoption of co-simulation techniques al-
lows for holistic complex system development. However, ensuring
trustworthy results when combining simulators requires a careful
consideration of their implementation and capabilities. Especially
in black box integration, these are frequently left implicit.

In this paper, we explore a way to account for simulator
capabilities, by formalizing the execution of a co-simulation that
respects such contracts. This formalization is specific to two kinds
of contracts, but could serve as a basis to a general approach to
black box co-simulation. An example application of the semantics
to generate master algorithms is presented.

Index Terms—co-simulation, prolog, contract-based design,
constraint solving.

I. INTRODUCTION

Traditional modeling and simulation techniques, where the
meaning of a model is described by a solver algorithm, are
no longer sufficient to foster integrated development processes
of complex systems [1]. To understand why, note that these
techniques require a model of the system, the construction
of which becomes a challenge due to the following factors:
(i) heterogeneous systems are best modeled with a mix of
formalisms [2], often creating the need for a hybrid model
conforming to an ad-hoc formalism that is specific to the
models being combined [3]; (ii) some parts of the system may
be difficult to model accurately, because the former might be
an assemblage of components supplied by third party com-
panies, with little interest in sharing detailed models of their
Intellectual Property (see, e.g., [4]). In short, complex systems
(item (i) above) impose complex development processes (item
(ii)).

While the study of model integration techniques can tackle
the first item, the second item restricts the scope to black box
model integration. Co-simulation is a technique to combine
multiple black-box simulators, each responsible for a model,
in order to compute the behavior of the combined models
over time [5]. The simulators, developed independently of each
other, are coupled using a master algorithm that communicates
with each simulator via its interface. This interface comprises
functions for setting/getting inputs/outputs, and computing the
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associated model behavior over a given interval of time. An
example of such interface is the Functional Mockup Interface
(FMI) Standard [6], [7].

Co-simulation is therefore a promising solution to evalu-
ate complex systems under complex development processes:
• Systems which are best represented by diverse sub-models
can be simulated using the most appropriate simulation tool
for each sub-model; and • Systems assembled from externally
supplied components can be simulated by integrating black-
box simulators, provided by those component manufacturers.
These advantages have led to a proliferation of tools that
support the import/export of simulators implementing the FMI
Standard, called Functional Mockup Units (FMUs), and an
increasing number of applications [8], [9].

This rapid adoption is hindered by the little guarantees on
the correctness of the results [10]. Traditionally, co-simulations
were developed among pairs of simulators, by practitioners
that have some control over how those simulators are im-
plemented. Now, practicioners have less control over how
FMUs are implemented. Indeed, a recent empirical survey
has shown that practitioners still experience difficulties in the
configuration of co-simulations [9], [11]. Moreover, recent
work [12] shows that one of the reasons for these difficulties
is the lack of information about the implementation of each
FMU, which constraints the ways they can be interacted with
(see Section II for other sources of errors and related work).

a) Contribution: In this paper, we formalize: (i) the
constraints imposed by a restricted set of FMU contracts,
and (ii) the meaning of a family of fixed step size co-
simulation algorithms that respect such contracts. We focus
on the FMI standard because it allows for simulators to be
represented as black boxes. While our long term research goal
is to consider arbitrary contracts, in this paper, we restrict
our attention to input approximation and output calculation
contracts. These contracts correspond to a partial view of
how the FMUs implement their input approximation schemes
and the algebraic dependencies used to calculate the outputs.
Hence, the contracts do not expose intellectual property. As
we argue next, respecting these contracts is a necessary (but
not sufficient) condition to obtaining correct results.

b) Prior Work: The need for these contracts has been
identified in prior work [13] and an incomplete solution is ad-
vanced in [12]. The solution proposed in [13] works under the



assumptions that FMUs have the same contract for every input
(because it assumes FMUs have a single vector input/output),
and the solution described in [12] neglects how the outputs
are computed [12, Assumption 2]. The current manuscript
addresses these omissions and sketches a framework that can
be extended to more complex contracts (Section V discusses
some of these).

c) Structure: The next section introduces preliminary
concepts and related work. Section III explores the research
problem and Section IV describes our contribution. Finally,
Section V discusses and concludes.

II. SOURCES OF ERROR IN CO-SIMULATION

This section introduces background concepts in an informal
manner, and discusses some of the sources of error.

A. Background

We adopt the definitions and nomenclature introduced in
[10] and refer the reader to it for a rigorous exposition.

A co-simulation is the behaviour trace of a coupled system,
produced by the coordination of FMUs. The behaviour trace
is a function mapping time to values, representing the times-
tamped outputs of each FMU. An example behaviour trace is
shown at the bottom of Figure 1.
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Figure 1: Simula-
tor behavior.

An FMU is an executable software
entity responsible for simulating a part
of the system. To communicate with
other FMUs, each FMU implements
the Functional Mockup Interface (FMI)
Standard [7]. This allows a master algo-
rithm, described below, to communicate
with it. The main functionality of an
FMU is encoded in three main C func-
tions: a function to set inputs, a function
to perform a step with a given step size,
and a function to get outputs.

A master is a software component that
sets/gets inputs/outputs of each FMU
and asks it to estimate the state of its
allocated subsystem at a future time. For
example, in Figure 1, the master sets an
input to the FMU at time ti, and asks it
to compute the state at time ti+H , where H > 0 is denoted the
step size. The FMU in turn might perform multiple micro-steps
and employ an input approximation scheme (this computation
is hidden from the master). Then, once the FMU has reached
time ti +H , the master requests an output, illustrated at the
bottom of the figure.

The master follows the co-simulation scenario to know the
order in which to ask the FMU to simulate and where to copy
their outputs. A co-simulation scenario, or just scenario, is
a description of how the FMUs are interconnected and the
configuration of the co-simulation, e.g. step size. Example
master algorithms and scenarios are presented in Section III.

B. Related Work

In order to focus only on the errors caused by the co-
simulation, we make the assumption that the models and
corresponding FMUs are correct and consistent with each
other1. Under this assumption, the error in the co-simulation
can come from input approximations and failure to detect and
handle discontinuities in the behavior computed by the FMUs.

1) Input Approximation: As discussed in the previous sec-
tion, in between communication times, each FMU performs
an approximation of its input (recall Figure 1). Any error
in these approximations translates into errors in the internal
state approximation, which in turn translates into errors in the
outputs produced. Naturally, the larger the communication step
size, the larger the input approximation error might be.

Traditional convergence analysis shows that, in the absence
of algebraic loops, the growth rate of the error in the co-
simulation is dominated by the growth rate of the error in the
input approximation functions, which in turn is dependent on
the size of the co-simulation step [5], [14].

These results apply only to continuous co-simulations, that
is, co-simulation that comprise FMUs of continuous models.
We next look at the errors introduced in hybrid co-simulations.

2) Event Detection: Hybrid co-simulations are those that
comprise continuous, discrete, and hybrid FMUs. A hybrid
FMU computes the solution to a hybrid model, which exhibits
continuous behavior, interleaved with discrete changes [15].

When a discrete change happens in a hybrid FMU in
between communication times, the other FMUs need to know
about that change, as it can affect their inputs. If they only
know about that change in the next communication time, the
error might be so big that it renders the results useless (see
e.g., [16]).

Much work has focused on producing masters that ensure
the other FMUs know the time at which the discontinuity
happened. For instance, the works in [17]–[21] focus on the
correct synchronization of a discrete event simulator with a
continuous simulator. This seminal work assumes a standard
synchronization algorithm, where, in the presence of possible
state events, the discrete simulator is always one step behind
the continuous simulator, to avoid rollbacks.

Instead of enforcing a correct synchronization, some work
has focused on finding the maximum allowed delay in the
event detection. For instance, the work in [16] explores how
the energy of a hybrid system can be increased when state
events are not accurately reproduced by the co-simulation.
It presents a way to find the largest co-simulation step that
prevents this from happening.

III. PROBLEM STATEMENT

In this section, we show, through a simple but representa-
tive example, that controlling the error in the co-simulation
involves a careful consideration of both master and FMU

1As one reviewer pointed out, it may happen that a model makes an
assumption about another model, which may not be true during the co-
simulation, leading to nonsensical results. We exclude these scenarios although
they may happen in practice.



implementations. We first formalize the concept of FMU, and
we then show that we need the notion of contract to reduce
the error in a co-simulation.

Definition 1. An FMU with identifier c is a structure
〈Sc, Uc, Yc, setc, getc, doStepc〉 , where: • Sc represents the
state space; • Uc and Yc the set of input and output variables,
respectively; • setc : Sc×Uc×V → Sc and getc : Sc×Yc →
V are functions to set the inputs and get the outputs, respec-
tively (we abstract the set of values that each input/output
variable can take as V); and • doStepc : Sc × R≥0 → Sc is
a function that instructs the FMU to compute its state after a
given time step.

Note the black box nature of this definition. The setting
of an input s

(1)
c = setc(s

(0)
c , uu, v) changes the internal

state of the FMU from s
(0)
c to s

(1)
c , to reflect the fact that

the input value v has been recorded for input variable uu.
We use the notation s

(0)
c , s

(1)
c , ... to stress the transformations

on the internal state of the FMU. The index is independent
of the co-simulation time, so the state can undergo multiple
transformations at the same co-simulation time. The stepping
function s

(1)
c = doStepc(s

(0)
c , H) computes a new state s

(1)
c ,

representing the internal state of the FMU after H units of
time from the state s

(0)
c . That is, if an FMU is in state s

(0)
c

at time t, doStepc(s
(0)
c , H) approximates the behavior of

the corresponding model at time t + H . The result of this
approximation is encoded in state s

(1)
c . If this model is a

continuous one, the FMU will internally approximate the evo-
lution in the interval [t, t+H], using an estimation function
to estimate the values of the inputs in that interval (recall
Figure 1). In our notation, we choose to leave this function
implicit in the doStepc, as reflected in the current version of
the FMI Standard. There is no restriction as to when should
the inputs be set, outputs computed, and stepping function
invoked. Indeed, different interpretations of the FMI Standard
(version 2.0) lead to different master algorithms, which in turn
lead to different constraints on the implementation of FMUs.

a b

Figure 2: Running
Example.

As we show next, these constraints
arise out of the way the FMUs are con-
nected, and how they are implemented.

Definition 2. A scenario is a structure
〈C,L〉 where each identifier c ∈ C is
associated with an FMU, as defined in
Definition 1, and L(u) = y means that
the output y is connected to input u. Let U =

⋃
c∈C Uc and

Y =
⋃

c∈C Yc, then L : U → Y . Figure 2 shows an example
scenario.

Definition 3 (Co-simulation Step). Given a scenario 〈C,L〉,
a co-simulation step, or just step, is a finite ordered sequence
of FMU function calls (fi)i∈N = f0, f1, . . . with fi ∈ F =⋃

c∈C {setc, getc, doStepc} , and i denoting the order of the
function call.

Definition 4 (Initialization). Given a scenario 〈C,L〉, we
define the initialization procedure (Ii)i∈N in the same way

as a step, with Ii ∈ F .

Definition 5. Given a scenario 〈C,L〉, a step size H ,
a step (fi)i∈N, and an initialization procedure (Ii)i∈N,
a master algorithm is a structure defined as A =〈
C,L,H, (Ii)i∈N , (fi)i∈N

〉
.

The following are examples of master algorithms, for the
scenario introduced in Figure 2. Algorithms 1 and 2 need no
initialization. Their step is indicated in Lines 1–6 (inclusive).
Algorithm 3 contains the initialization instructions in Lines
1–4, and the step in Lines 5–12.

All these algorithms respect the constraints imposed by the
scenario, but they assume different implementations of the
same FMUs. For instance, suppose that the output ya depends
instantaneously on the input ua. Formally, ∃v, v′ ∈ V , such
that s(1)a = seta(s

(0)
a , ua, v) and

s
(2)
a = seta(s

(0)
a , ua, v

′) and
geta(s

(1)
a , ya) 6= geta(s

(2)
a , ya). In addition, suppose the

output yb does not depend instantaneously on ub.

With these suppositions, Algorithm 1 is inadequate, because
the value of ya can only be computed after the value of ua

is known. The only value known of ua is the one from the
previous step.

Algorithm 1

1: v ← geta(s
(0)
a , ya)

2: s
(1)
b ← setb(s

(0)
b , ub, v)

3: v ← getb(s
(1)
b , yb)

4: s
(1)
a ← seta(s

(0)
a , ua, v)

5: s
(2)
a ← doStepa(s

(1)
a , H)

6: s
(2)
b ← doStepb(s

(1)
b , H)

7: s
(0)
a ← s

(2)
a

8: s
(0)
b ← s

(2)
b

9: Go to Line 1

Algorithm 2

1: v ← getb(s
(0)
b , yb)

2: s
(1)
a ← seta(s

(0)
a , ua, v)

3: v ← geta(s
(1)
a , ya)

4: s
(1)
b ← setb(s

(0)
b , ub, v)

5: s
(2)
b ← doStepb(s

(1)
b , H)

6: s
(2)
a ← doStepa(s

(1)
a , H)

7: s
(0)
a ← s

(2)
a

8: s
(0)
b ← s

(2)
b

9: Go to Line 1

In addition to the previous suppositions, assume that the
input approximation scheme of FMU a is an interpolation.
This requires that FMU b do a step before FMU a, so that
when doStepa is called, the most recent input known to FMU
a has been computed from a FMU that is at time t+H . Now
Algorithm 2 is incorrect, because, even though doStepb is
invoked before doStepa, there is no exchange of values after
doStepb is called, and before doStepa is called. In contrast,
Algorithm 3 satisfies all the previous suppositions.



Algorithm 3

1: v ← getb(s
(1)
b , yb)

2: s
(1)
a ← seta(s

(0)
a , ua, v)

3: v ← geta(s
(1)
a , ya)

4: s
(2)
b ← setb(s

(1)
b , ub, v)

5: s
(1)
b ← doStepb(s

(0)
b , H)

6: v ← getb(s
(1)
b , yb)

7: s
(1)
a ← seta(s

(0)
a , ua, v)

8: v ← geta(s
(1)
a , ya)

9: s
(2)
b ← setb(s

(1)
b , ub, v)

10: s
(2)
a ← doStepa(s

(1)
a , H)

11: s
(0)
a ← s

(2)
a

12: s
(0)
b ← s

(2)
b

13: Go to Line 5

t-H t t+H
Legend

inputs of a

t-H t t+H

Figure 3: Comparison of Al-
gorithms 2 and 3.

The main difference between Algorithm 2 and Algorithm 3
is a characteristic delay shift in the input signal of FMU a. An
illustration is shown in Figure 3. In the top, FMU a guesses
correctly at time t that the input provided is at time t + H .
Therefore, the linear interpolation is correct. On the bottom
figure however, the FMU thinks it is getting an input at time
t + H , whereas it is just getting the input at time t. This
causes a delay in the input approximation, which can increase
the error, or lead to abrupt behavior changes, as is shown in
[22].

For examples where these suppositions occur, refer to [23].
We now formalize the input/output instantaneous dependen-

cies as feed-through, and the interpolation as reactivity. These
form our notion of contracts. The reason we use the term
reactivity is because it can be used for purposes other input
approximation. For example, a software FMU may be reactive
to reflect the fact that it contains a very short sampling interval
(short relative to H).

Definition 6 (Feed-through). The input uc ∈ Uc feeds through
to output yc ∈ Yc, that is, (uc, yc) ∈ Dc, when there exists
v1, v2 ∈ V and sc ∈ Sc, such that

getc(setc(sc, uc, v1), yc) 6= getc(setc(sc, uc, v2), yc).

Definition 7 (Reactivity). For a given FMU c with input
uc ∈ Uc, Rc(uu) = true if the function doStepc assumes that
the input uu comes from a FMU that has advanced forward
relative to FMU c.

Our problem can now be formalized as:

Problem 1. Given a scenario 〈C,L〉, and the set of contracts⋃
c∈C {(Rc, Dc)}, find a master algorithm

A =
〈
C,L,H, (Ii)i∈N , (fi)i∈N

〉
,

that satisfies those contracts.

IV. SEMANTICS OF CO-SIMULATION ALGORITHMS

The long term objective of this research is to provide a
framework for generating master algorithms from a set of
arbitrary unit contracts. As such, we choose to use Prolog.

We assume the reader is familiar with the basic features of
the language (see, e.g., [24] for a tutorial). In the following,
capitalized identifiers denote variables, whereas un-capitalized
identifiers denote facts.

A. Co-simulation Semantics

We first describe the representation of a scenario, using
Figure 2 as running example. Then we describe the symbolic
state of the co-simulation, and what the pre/post conditions of
each operation on the state. Finally, we describe the meaning
of a step.

Definition 8 (Scenario). A scenario is given by a list of FMUs,
and a list of connections. An fmu is defined by its identifier,
a list of input ports, and a list of output ports (recall Defini-
tion 1). Each port has an identifier and a contract. The contract
of an input port relates to its reactivity (recall Definition 7),
and the contract of an output port is the list of input ports
that it depends instantaneously on (recall Definition 6). For
example, the following is the Prolog equivalent to Figure 2.
scenario_example_feedback([
fmu(a,[port(u1,delayed)],[port(y1,[])]),
fmu(b,[port(u2,reactive)],[port(y2,[u2])])],
[connect(y2,u1),connect(y1,u2)]).

Definition 9 (Co-simulation State). The state of a co-
simulation is given by a list of the states of each fmu. The
state of an fmu is the list of state of each of its ports, and
the timestamp of its internal state. The state of each port
comprises the timestamp of the port value, and whether it has
been defined at that timestamp. The values for timestamp are
t or tH, represent the current step, and the next, respectively.
For example, the following shows three states: the state at
the beginning of the co-simulation, where no value has been
computed yet; the state at time t, where every value has
been defined and has timestamp t; and the state after a
step concludes, where every value has been defined and is
at timestamp tH.
initial_state([
fstate(a,t,
[pstate(u1,undefined,t)],[pstate(y1,undefined,t)]),
fstate(b,t,
[pstate(u2,undefined,t)],[pstate(y2,undefined,t)])]).

state_at_t([
fstate(a,t,
[pstate(u1,defined,t)],[pstate(y1,defined,t)]),
fstate(b,t,
[pstate(u2,defined,t)],[pstate(y2,defined,t)])]).

state_at_tH([
fstate(a,tH,
[pstate(u1,defined,tH)],[pstate(y1,defined,tH)]),
fstate(b,tH,
[pstate(u2,defined,tH)],[pstate(y2,defined,tH)])]).

Definition 10 (Output Computation). The getOut(F, O)
represents the calculation of output O of fmu F. Given a co-
simulation state SB, it checks whether all inputs that feed-
through to O are defined and have the same timestamp T. If
such is the case, then the SA is related to SB by replacing the
state of O with defined and timestamp T:
executeOp(getOut(F,O),FMUs,_,SB,SA):-
member(fmu(F,_,Outports),FMUs),member(port(O,Deps),Outports),
member(fstate(F,T,InSB,OutSB),SB),member(pstate(O,_,T),OutSB),
namesInState(Deps,InSB,defined,T),setDefine(O,defined,SB,SA).



Example 1. The following shows an example use of the
getOut(F, O) predicate.
FMUs=[fmu(a,[port(u1, delayed)],[port(y1,[u1])])],
SB=[fstate(a,t,

[pstate(u1,defined,t)],[pstate(y1,undefined,t)])],
SA=[fstate(a,t,

[pstate(u1,defined,t)],[pstate(y1,defined,t)])],
executeOp(getOut(a,y1),FMUs,_,SB,SA).

Definition 11 (Input Computation). The setIn(F, I) rep-
resents the setting of input I of fmu F. Given a co-simulation
state SB, it checks whether all outputs connected to I are
defined and have the same timestamp T. If that is the case,
then the state after the computation SA is related to SB by
replacing the state of I with defined and timestamp T:
executeOp(setIn(F,I),FMUs,Conns,SB,SA):-
member(fmu(F,Inports,_),FMUs),member(port(I,_),Inports),
member(fstate(F,_,InSB,_),SB),member(pstate(I,_,_),InSB),
member(connect(_,I),Conns),
connectionsState(I,Conns,defined,T,SB),
setDefine(I,defined,SB,SAUX),setTimestamp(I,T,SAUX,SA).

Definition 12 (Step Computation). The doStep(F) repre-
sents the advancement in time of an fmu F whose timestamp
is t. The success of this function depends on the state of the
co-simulation, SB, and the contracts on its input ports. If F
contains an input port that is delayed, then the state of that
port must be defined at timestamp t. If, on the other hand,
F contains an input port that is reactive, then the state of that
port must be defined at timestamp t. If these conditions
hold for every input port of the FMU, then the timestamp of
F and its output ports becomes tH, and the outputs become
undefined:
executeOp(doStep(F),FMUs,_,SB,SA):-
member(fmu(F,Inps,Outps),FMUs),
member(fstate(F,t,InSB,OutSB),SB),
checkInputContract(Inps,InSB),
portsInSameTimeStamp(Outps,OutSB,t),
setTimestamp(F,tH,SB,SX),
setPortsDefine(Outps,undefined,SX,SX2),
setPortsTimestamp(Outps,tH,SX2,SA).

Example 2. The following shows an example application of
the doStep(F) predicate.
FMUs=[fmu(a,[port(u1, reactive)],[port(y1,[u1])])],
SB=[fstate(a,t,[pstate(u1,defined,tH)],

[pstate(y1,defined,t)])],
SA=[fstate(a,tH,[pstate(u1,defined,tH)],

[pstate(y1,undefined,tH)])],
executeOp(doStep(a),FMUs,_,SB,SA).

Definition 13 (Schedule). The execution of a sequence of
operation, is defined inductively by:
executeOps([],_,_,State,State).
executeOps([Op|NOps],FMUs,Conns,SB,SA):-
executeOp(Op,FMUs,Conns,SB,SAUX),
executeOps(NOps,FMUs,Conns,SAUX,SA).

With these definitions, the objective of the initialization
schedule is to define all values at time t. The objective of
the step is to take a state that has all values defined at time t,
and define them at time tH. This way, the state at the end of
the initialization procedure becomes the state at the beginning
of a step. Moreover, the state at the end of a step becomes the
state at the beginning of the next co-simulation state.

Definition 14 (Master Algorithm). A master algorithm is
defined as follows.

isMasterAlgorithm(Init,Step,FMUs,Connections):-
inStateT0(FMUs,ST0),inStateT(FMUs,ST),inStateTH(FMUs,STH),
executeOps(Init,FMUs,Connections,ST0,ST),
executeOps(Step,FMUs,Connections,ST,STH).

Predicates StateT0, StateT, and StateTH, define the
state according to the FMUs declared.

B. Master Algorithm Generation
The specification we propose in Section IV-A cannot be

used as is with Prolog’s unification algorithm to generate
master algorithms. However, with minor modifications, one
obtains an exponential procedure to generate such algorithms.

Definition 15 (Optimized Master Generation). The optimized
master generation is defined as in Definition 14, except it uses
the following schedule definition:
executeOpsM(_,[],_,_,State,State).
executeOpsM(POps,[Op|NOps],FMUs,Conns,SB,SA):-
executeOp(Op,FMUs,Conns,SB,SAUX),SAUX\==SB,\+member(Op,POps),
executeOpsM([Op|POps],NOps,FMUs,Conns,SAUX,SA).

Compared to Definition 14, the main difference is in en-
forcing that operations must change the state, and cannot be
repeated.
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Figure 4: Case study scenario.
The reactivity and feed-through
of each port is indicated in the
figure.

If there are no algebraic
loops in the scenario, then
the application of Defini-
tion 15 to unbound Init
and Step variables will
always terminate. To see
why, note that any oper-
ation that is successfully
executed in will have to
change the state, and there
is only a finite number of
operations to try. Every op-
eration that changes the state, moves it to being closer to the
target state, and there is no operation that can rollback the
state.
Example 3 (Based on [12]). Consider the scenario in Figure 4.
The generated step schedule, which took about 9 minutes to
produce in a 3.5GHz laptop, is:
1. doStep(load),
2. getOut(load, l_x),
3. getOut(load, l_v),
4. getOut(load, l_xaft),
5. setIn(plant, p_x),
6. setIn(plant, p_v),
7. doStep(env),
8. getOut(env, e_psu),
9. getOut(env, e_ref),
10. setIn(plant, p_psu),
11. doStep(plant),
12. getOut(plant, p_w),
13. getOut(plant, p_f),
14. setIn(ctrl, c_w),
15. setIn(load, l_f),
16. doStep(ctrl),
17. getOut(ctrl, c_o),
18. setIn(ctrl, c_ref),
19. setIn(ctrl, c_xaft),
20. setIn(plant, p_o).

V. CONCLUSION

Inspired by prior work in generation of synchronization
protocols between robotic parts, we formalized co-simulation
in Prolog under a restricted set of FMU contracts.



The choice of Prolog is motivated by the flexibility in ex-
pressing structural operation semantics. The theory presented
here, however, can be adapted to other languages. It is our hope
that such flexibility allows more contracts to be supported.
For example, when incorporating step size adaptation contracts
(such as the ability to reject H and suggest a smaller one),
the symbols t,tH will not be enough. Moreover, this is a first
step to incorporating more complex contracts, such as those
relating to the models that lye behind the FMUs.

Existing works focusing on the correct synchronization of
hybrid co-simulations, mentioned in Section II-B, complement
our own. Moreover, the work in [25] formalizes the semantics
of FMI co-simulation, and can potentially be extended with
simulator contracts. However, its objective is to prove prop-
erties about the system being co-simulated, whereas our goal
is to guarantee certain basic properties of the co-simulation.
Ongoing work is revising the contracts and semantics in
order to accommodate the rollback operation, which is also
formalized in [25].

The code to reproduce the experiments in this paper is
available for download2.
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