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Simulation-based analyses of Cyber-Physical Systems are fundamental in industrial design and testing ap-
proaches. The utility of analyses relies on the correct configuration of the simulation tools, which can be
highly complicated. System engineers can normally judge the results, and either evaluate multiple simulation
algorithms, or change the models. However, this is not possible in a co-simulation approach. Co-simulation is a
technique to perform full-system simulation, by combining multiple black-box simulators, each responsible
for a part of the system. In this paper, we demonstrate the difficulty of correctly configuring a co-simulation
scenario using an industrial case study. We propose an approach to tackle this challenge by allowing multiple
engineers, specialized in different domains, to encode some of their experience in the form of hints. These
hints, together with state-of-the-art best practices, are then used to semi-automatically guide the configuration
process of the co-simulation. We report the application of this approach to a use case proposed by our industrial
partners, and discuss some of the lessons learned.

1 INTRODUCTION

Many industries, including the aeronautical do-
main, increasingly design and test Cyber-Physical Sys-
tems (CPS), which marry the complexities of software
with the realities of the physical world (Lee, 2008). A
major issue in CPS is that components can span multi-
ple domains, which may require their own simulation
tools, knowledge of how to configure those simulators,
and the ability to interpret the results.

Co-simulation is a technique to combine multiple
simulators, each responsible for a model, in order to
compute the behavior of the combined models over
time (Kiibler and Schiehlen, 2000). The simulators
are coupled using a master algorithm that commu-
nicates with each simulator via its interface, which
comprises functions for setting/getting inputs/outputs,
and computing the associated model behavior over a
given interval of time. An example of such an interface
is the Functional Mockup Interface (FMI) Standard
(FMLI, 2014, Blockwitz et al., 2012).

By allowing sub-systems to be modelled and sim-
ulated with the best formalisms and solvers, and tak-
ing a black-box approach to interact with these sub-
models, co-simulation is a promising solution to serve

the needs of more complex engineering processes, as
described in Section 2.

However, the black-box nature of co-simulation
amplifies the difficulties in ensuring that the results can
be trusted. Similarly to other simulation-based anal-
yses, there is often no reference solution to judge the
co-simulation results against. Moreover, co-simulation
is typically used as part of an optimization loop (e.g.,
design space exploration), physical system integration
analysis (e.g., hardware-in-the-loop), and/or impact
analysis of sub-model refinements. In any of these
use cases, the coupled model(s) being simulated is
frequently changed. Therefore, the person interested
in the results of the analysis, henceforth denoted as
the user, may be unable to properly configure each
individual co-simulation.

When a co-simulation result is incorrect (see Sec-
tion 3 for a more rigorous definition), there can be
multiple causes (Gomes et al., 2018c, Schweizer et al.,
2015, Arnold et al., 2014): (i) Sub-models are incor-
rect; (i) FMUs use the incorrect simulation algorithm;
and (iii) The master algorithm is incorrect. This means
that the user has to be familiar with a wide range of do-
mains in order to correctly configure the co-simulation.
For example, a software controller model should be



interacted with in a way that reflects how the actual
software will be interacted with, such that the sam-
ple rate and its causality should be respected. Further
examples are given in Section 2.

A recent survey (Schweiger et al., 2018, Schweiger
et al., 2019) corroborates prior research work (see
Section 6) in defining the main challenge: users do
not always know how to configure the co-simulation.
This challenge is formalized in Section 3.

In this work, we propose a way to tackle this chal-
lenge which is motivated by discussions with our in-
dustrial partners. We hypothesize that while users may
not know how to configure the co-simulation, the engi-
neers have intuition about the behavior of the system
and when the simulation’s result is not correct. Hence,
even when there is no reference solutions, engineers
can usually tell when a result is not correct.

Our concrete contributions are: a language to de-
scribe hints, i.e., properties about the co-simulation
scenario; and a framework, called HintCO, that uses
those hints to propose co-simulation master algorithms
that are good candidates to produce correct results.

The implementation of the framework is available
online'.

1.1 Overview of HintCO Framework

There are three main components:

a) HintCO Hint Language which allows the user to
specify their intuition about the system (Section 4).
Common hints are provided in a built-in library
so the user may easily choose and adapt them to a
specific co-simulation.

b) Generation of Candidate Master Algorithms
which is the method for mapping a given set of
hints to sets of master algorithms (Sections 5.1
and 5.2). In short, the hints provided induce a
search space of possible master algorithms, and a
ranking of the most important features for a good
master algorithm.

c) Execution of the Master Algorithms where each
master algorithm produced by the search is exe-
cuted (Section 5.3). The results are then presented
to the user for inspection.

In Section 6, we discuss other approaches that com-
plement our own, and Section 7 summarizes of our
research and the steps to extend our framework further.

'Mttps://msdl.uantwerpen.be/git/claudio/
HintCO

2 INDUSTRIAL EXAMPLE

This section describes the added value of co-
simulation for our industrial partners. Then, we in-
troduce the case study made available by Boeing and
illustrate the challenge of finding the correct configu-
ration for the co-simulation. Finally, we argue that to
know which configuration is likely to be the best, we
need domain knowledge.

2.1 Value of Co-simulation for Boeing

Boeing’s vision on the Digital Twin era of aviation
involves the integration of models coming from dif-
ferent physical domains, software environments and
numerical characteristics into a single virtualized air-
craft (Boeing, 2017). This vision requires the creation
of unified modeling environments, where engineers
can seamlessly evaluate the impact of a local modifi-
cations in the global system. However, these systems
are comprised of many heterogeneous models, which
cannot be integrated seamlessly in a single monolithic
simulation. As such, Boeing regards co-simulation as
one of the key technologies to enable the Digital Twin
vision.

2.2 Boeing’s Case Study

The case study presented was developed by Boeing.
It constitutes a representative generic Flight Controls
System, in the form of a co-simulation scenario. The
FMUs are black boxes, having only the description of
the input/output variables, and parameters. Moreover,
no source code was made available, thereby protecting
Boeing’s Intellectual Property (IP), and the parameters
given do not represent accurate values.

The IP-protected case study was shared with the
University of Antwerp for co-simulation optimization,
and the circumstances represent a faithful reproduction
of Supplier—OEM relationships, where IP management
tends to be an issue.

Case Study Consider a control system, represented
as a co-simulation scenario in Figure 1. The
Controller FMU represents a software controller,
the Plant and Load FMUs represent the physical sub-
systems. The Environment FMU produces a con-
stant signal for psu, and a step signal for ref.

We do not have access to the correct behavior of the
co-simulation scenario described in Figure 1. However,
the Load FMU has been designed and tested against ab-
stractions of the Plant and Load FMUs, hence we can
assume that its behavior should not be fundamentally
different in the co-simulation. Moreover, the Plant



Figure 1: Case study co-simulation scenario.

and Load FMUs are produced by specialized teams,
which know how the behavior of the corresponding
subsystems should look like. Therefore, we make the
following assumptions.

Assumption 1. The Controller FMU is a soft-
ware controller designed for a sample rate of
1 x10°Hz. The Plant and Load FMUs model
physical subsystems connected by a power connection,
where v represents the effort, and f the flow.

Assumption 1 represents the domain specific
knowledge that users of co-simulation use to judge
the correctness of the results. For example, the move-
ment of the Plant and Load subsystems should be
smooth.

Assumption 2. The FMUs do not support rollback,
never reject a step size, and do not have I/O feed-
through information.

Assumption 2 reflects the fact that the FMU
providers have implemented only the mandatory part
of the FMI Standard.

Assumption 3. The Controller, Plant, and
Load FMUs are correct in the sense that, if they are
provided with valid inputs, they will produce valid out-
puts with respect to their intended function. That is,
the FMUs are correctly built.

Assumption 3 means that, if the co-simulation
results are not accurate, it is only because the co-
simulation is not correctly configured.

The precise definition of co-simulation configura-
tion is found in Section 3. In brief, the configuration
includes the order in which the outputs are propagated
to the inputs, the order of execution of each FMU,
and the size of communication step. Even for small
systems, the number of possible configurations can be
infinite.

2.3 Analysis

The paragraphs that follow discuss why most co-
simulation algorithms will fail to accurately reproduce
the behavior of the co-simulation scenario in Figure 1.
This is illustrated by showing two representative co-
simulation algorithms that produce incorrect results

with respect to assumption 1, which details informa-
tion about FMUs and signals.

Experiment 1. Taking the hint that the Controller
needs to sample the system every 1 x 107 s, the first
co-simulation algorithm we apply is the fixed-step-
Jacobi. This algorithm keeps the FMUs in sync by
propagating outputs to inputs before asking each FMU
to compute the next interval (Bastian et al., 2011).

Figure 2 shows the output computed by this algo-
rithm for the Load FMU, which is examined because
it is the most sensitive to the master algorithm. As
clearly evident in the figure, the trace produced is not
smooth.
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Figure 2: Output of Load FMU in experiment 1. Step size is
1x107Cs

Experiment 2. A user’s intuition may be that the
Load and Plant FMUs need to communicate at a
higher rate than the sample of the Controller FMU
due to assumption 1. Hence, we apply a multi-rate
co-simulation algorithm such as the one described in
(Van Acker et al., 2015), to produce the results shown
in Figure 3. In this trial, we chose the communica-
tion rate of the Load and P1lant FMUs to be ten times
higher. However, the result is still not smooth.
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Figure 3: Output of Load FMU in experiment 2. Communi-
cation rate between Plant and Load is 1 x 107 Hz.

The results of experiments 1 and 2 suggest that
an adaptive step size co-simulation algorithm (e.g.,
(Busch and Schweizer, 2012, Blockwitz et al., 2012,
Arnold et al., 2014, Sadjina et al., 2017)) will fail: the
step size of 1 x 1077 s is already the minimum that can
be used before the run-time execution time becomes
intolerable by our industrial partners. For reference,
the result in Figure 3 takes on average 32 minutes to
compute on a Core i7 3.5GHz laptop.



To address the run-time execution issue, we turn to
corrective co-simulation approaches: either a global
error correction technique is used, or the input ap-
proximation of each FMU can be improved, so that
less error is introduced. However, the global error
correction technique cannot be applied, because the
co-simulation scenario includes FMUs whose output
is discontinuous (Scenario, and Controller). This
thus violates the continuity assumptions that both these
techniques make.

Experiment 3. To improve the input approximations
on each FMI, a Gauss-Seidel co-simulation algorithm
(Bastian et al., 2011) can be employed to determine
whether interpolations can be used instead of extrapo-
lations on some of the FMUs. This algorithm executes
each FMU in order, using the most recently computed
outputs to feed the FMUs that still need to be executed.

For example, at the beginning of each co-
simulation step, the Load FMU is given the output
produced by the Plant and asked to compute the next
interval. Then, the output xaft is propagated to the
Controller, which is then asked to computed the
next interval, and so on.

Figure 4 shows the results of this experiment. As
can be seen, the trajectory is preferable to the other
experiments, but is still not smooth enough for the
system to be considered properly configured.
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Figure 4: Output of Load FMU in experiment 3. Step size
is 1 x 10~ s, the signals x and v are extrapolated, and £ is
interpolated.

The Gauss-Seidel algorithm is more difficult to
configure because it assumes that some FMUs can be
executed with inputs “from a future simulated time”.
This is not the case for the Controller, because a
software controller cannot predict the state of the Load
orPlant FMU 1 x 107 s ahead. Similarly, the P1ant
can only react to a change in the output of the software
controller after this change has occurred (this is formal-
ized in Section 3). For the remaining FMUs used in
the case study, causality is not an issue, because we are
anyhow relaxing the higher frequencies at which they
affect each other in reality (Krus, 1999). Moreover,
higher-order input approximation techniques can only
be applied to signals that are continuous (i.e., signals
%,v, and f).

These restrictions imply that most state-of-the-
art algorithms relying on correction of signals (e.g.,
(Ben Khaled-El Feki et al., 2017, Benedikt et al.,
2013,Gonzélez et al., 2019)) cannot be applied without
some form of configuration.

3 PROBLEM FORMULATION

In this section, we detail our research problem. In
brief, we search through the configuration parame-
ters of the co-simulation master algorithm in order to
generate good co-simulation candidates. Preferable
candidates more closely match the user’s intuition of
the properties of the system, as expressed through the
hints.

3.1 Co-simulation Formalization

In this section, we define some core concepts that
allows us to formalize the notion of model behavior
approximations, when there is no reference solution.

A dynamical model has the purpose of approxi-
mating the relevant behavior of the original system
with respect to some properties of interest, denoted by
P. We assume every dynamical model has a behavior
trace, which is the set of trajectories followed by the
state (and outputs) of a dynamical model. We refer to
the time variable ¢ € R as simulated time—or simply
time, when no ambiguity exists.

When the behavior trace of dynamical model M
satisfies property p € P, we write M F p.

Definition 1. A dynamic model is valid when its be-
havior satisfies the same properties as the original
system.

Remark 1. The satisfaction relation F used in Defini-
tion 1 provides a binary result. In practice, a model M
can partially satisfy a property p. For simplicity, we as-
sume that the set P is such that the partial satisfaction
can be encoded with the F relation.

A simulator (or solver) A4 is an algorithm that com-
putes the behavior trace of a dynamical model.

For a given model M and simulator 4, we denote
the induced model by [M] 4. With this notation, the
behavior trace computed is exact iff [M] 7 = M, and
approximate otherwise.

Because we do not always have access to the behav-
ior trace of the model, it is more realistic to redefine
the notion of accuracy in terms of properties.

Definition 2. Given a set of properties P, a simula-
tor A4 is accurate when it satisfies the same subset of
properties as the model:

VpePMEp & [M]aFp (1)



The measure of accuracy can then be the number of
properties that satisfy Equation (1).

Remark 2. Definition 1 excludes performance related
properties (e.g., execution time of the simulation algo-
rithm). We argue that these are secondary properties
whose satisfaction only makes sense when the primary
properties P are satisfied (which means the simulation
results can be trusted).

We use the term FMU to denote an executable
artifact that produces a behavior trace, when inputs are
provided. The FMU combines a simulation A4 with a
model M, and produces the behavior trace of [M] 4.

A simulation is the behavior trace obtained with
an FMU. The correctness of the simulation depends
on the accuracy of the simulator (Definition 2) and the
validity of the dynamical model (Definition 1).

A coupled model is a dynamical model that is com-
prised of sub-models. When the sub-models are repre-
sented by different FMUs, we need co-simulation to
approximate the behavior trace of the coupled model.

A co-simulation is the behavior trace of a coupled
model approximated by a master algorithm applied to
a co-simulation scenario. A co-simulation scenario
is a set of FMUs and their I/O mappings (e.g., see
Figure 1). A master algorithm represents the approach
to compute the co-simulation. It typically determines
the communication rate, and which data is exchanged
between FMUs. When an FMU represents a continu-
ous sub-model, its inputs need to be approximated. As
such, we consider the input approximation schemes as
being part of the master algorithm.

In the following, we formalize the concepts of
FMU, co-simulation scenario, and master algorithm,
with the intent of exposing the nuances in configuring
a co-simulation.

We adapt the notations introduced in (Broman
et al., 2013). To simplify and follow assumption 2,
we leave out the notation for the initialization and feed-
through. However, our implementation accounts for
these omissions.

Definition 3. An FMU with identifier c is a struc-
ture (S, Uc, Y., R, set,,get,,doStep,), where: o S,
represents the state space; e U, and Y, the set of in-
put and output variables, respectively; e R, : U, —
{true,false} the reactivity of each input (see Def-
inition 5); e set. : S, x U, x ¥V — S, and get, :
S. x Y. — V are functions to set the inputs and get
the outputs, respectively (we abstract the set of values
that each input/output variable can take as 7’); and
e doStep, : S¢ X R>p — S is a function that instructs
the FMU to compute its state after a given time dura-
tion.

The following definition reflects the fact that the
FMI Standard leaves implicit the current time of each

FMU. However, this information is crucial to correctly
configure the co-simulation.

Definition 4 (State timestamp). Given a communica-
tion step size H € R>¢ and H > 0, we say that the
state s € S, of an FMU c has timestamp ¢, denoted as
@(sc) =1 when doStep, has been called § times with
H as parameter.

According to Definition 4, if an FMU is in state
Sc at time ¢, doStep, (s., H) approximates the state of
the corresponding model at time 7 + H. If this model
is a continuous one, the FMU will approximate the
evolution of the state in the interval [t,7 + H], using an
approximation function to estimate the values of the
inputs in that interval. In our notation, we choose to
leave this function implicit in the doStep,, as reflected
in the current version of the FMI Standard. However,
we make explicit the requirements of each kind of
input approximation in the form of the reactivity R..

Intuitively, an FMU with a reactive input must
wait until the FMU that feeds that input executes a step
before getting that input value. The reactivity therefore
imposes an order in the execution of the FMUs. This
concept was first introduced in (Gomes et al., 2018b).

Definition 5 (Reactivity). For a given FMU ¢ with
input u € U, R.(u) = true if the function doStep,
makes use of an interpolation of input . Formally,
let ¢ be the timestamp of the state s. prior to a call
to doStep,(sc, H), and let d denote the FMU whose
output y € ¥; is connected to u. Then, R.(u) = true
means that s, must have been produced from a call to
setc(...,u,get (sq,y)) where the state s; of FMU
d satisfies @(sy) =t + H. Conversely, R.(u) = false
means that s, must have been produced from a call to
setc(. .. ,mgetd(sd,y)) where @(s;) =t.

Since knowing the reactivity of each FMU is re-
lated to having access to the input approximation im-
plementation, and since the FMI Standard version 2.0
does not include information about reactivity, we make
the following assumption.

Assumption 4. Ifan FMU c does not disclose its input
approximation scheme for an input u, then we assume
that u is approximated with a constant extrapolation.
Therefore, R.(u) = false.

Fortunately, the input approximation scheme of an
FMU input, and therefore its reactivity, can be con-
trolled by semantic adaptation.

Definition 6. Semantic adaptation is a technique that
allows a new FMU c to be constructed from an old
set of FMUs, using a custom implementation of the
set,,get,, and get, functions (Gomes et al., 2018a).

Definition 7. A co-simulation scenario is a structure
(C,L) where each FMU identifier ¢ € C is associated



with an FMU, as defined in Definition 3, and L(u) =y
means that the output y is connected to input u. Let
U=UcecUsandY =.ccYe, thenL: U =Y.

A master algorithm is considered here as every-
thing that influences the co-simulation result. The
following concepts are a way to isolate and formalize
these different components.

Definition 8 (Co-simulation Step). Given a co-
simulation scenario (C,L), a co-simulation step is an
ordered sequence of FMU function calls (f);cy With

fEF= U {set.,get,,doStep,},
ceC

and i denoting the order of the function call. A function
call f; comes before a function call f;, written as f; —
fj»if i < j, and comes immediately before, written as
fi— fi.ifi=j—1L

It is important that the co-simulation step respects
the reactivity of each FMU (recall Definition 5), and
the couplings of the FMUs.

Definition 9 (Valid Co-simulation Step). Given a co-

simulation step size H > 0, a co-simulation is valid

with respect to reactivity and couplings if it satisfies
the following conditions:

1. Each function call uses the most recent FMU State
as parameter. For example, if f; = get . (s¢,y) then
s. must be the result of the most recent call to set,.
or doStep,, that is, the maximal i such that i < j,
and f; = set.(...) or f = doStep,(...).

2. For every c¢ € C, there exists one, and only one,
call to doStep,, and it is done with argument H.

3. Each call to doStep, for ¢ € C must come after
every call to set. on the input variables of c.

4. Each call to get is immediately followed by a
sequence of calls to set to set the affected input
variables.

5. Foreach ¢ € C and u € U, satisfying R.(u) = true,
doStep, — get,(L(u),...), where L(u) € Y; and
deC.

6. Foreach ¢ € C and u € U, satisfying R.(u) = false,
the call to set.(...,u) set.(...,u) — doStep,,
where L(u) € Y;and d € C.

Remark 3. Regarding Definition 9:

e The most common master algorithms will satisfy
conditions 1-3;

e Condition 4 is not mandatory but it facilitates the
description of Conditions 5 and 6. Furthermore, it
makes the implementation simpler.

e Conditions 5 and 6 ensure that the reactivity of
each input is respected, according to Definition 5.

e This definition is consistent with assumption 2.
Relaxing this assumption requires modifications
that are outside the scope of this work.

In addition to Definition 9, we make the following
assumption, which is not strictly required to ensure a
valid co-simulation step, but makes the description of
the techniques employed in later sections simpler.

Assumption 5. In a valid co-simulation step there is
only one call to get,(y, . ..)

Assumption 5 restricts the reactivity of every two
input variables u,v that are fed by the same output
variable, that is P(u) = P(v), to be the same. We do
not lose generality by making this assumption since
one can perform multiple calls to get,(y,...), before
and after doStep, to get the right values.

Executing a co-simulation step in a co-simulation
scenario (C, L) where all FMUs ¢ € C have a state s,
satisfying @(s.) = ¢, will update each FMU state s,
to satisfy @(s.) =t + H, where H is the argument of
every call to doStep.

Definitions 8 and 9 and assumption 5 purposefully
exclude the case where a group of FMUs needs to com-
municate more frequently per co-simulation step, as in
experiment 2. This is because this group can be trans-
formed to a single FMU using semantic adaptation
(Definition 6). Therefore, we do not lose generality.
We revisit this in Section 5.4.

Definition 10. Given a co-simulation scenario (C,L),
a co-simulation step size H, and a co-simulation step
(f)icn- @ master algorithm is a structure defined as
A= <C’L>H> (f)ieN>’
With this formalization, we can summarize the

configuration parameters of a master algorithm:

e co-simulation step size H;

e FMUs and their semantic adaptations C, L; and

e co-simulation step (f),cx-
Each different parameter induces a model that is likely
to be different that the original coupled model.

Definition 11. The induced coupled model, denoted
by [M] 4, is the model whose behavior trace is com-
puted by a given master algorithm A4, with the intent of
approximating the behavior trace of a coupled model
M.

3.2 Research Problem

With these assumptions and definitions, we can for-
malize our main goal.

Problem 1. For a given set of properties P, a coupled
model M, find a master algorithm

A=(C.L.H,(f)ien),
that maximizes the size of the set
{p:pePMFEp«s[M]aFp},

such that (f),cy satisfies Definition 9 and assump-
tion 5.



Hint ExecRate{
description "Controller FMU is software."
statements {
Property ExecRate :=
FMUProperty FMUl.exec_rate == val 1.0e+6 hz

}
scope Globally
pattern Universality:always-the-case-that ExecRate holds

Hint PowerBond{
description "Plant/Load FMUs share a power connection."
statements {

Property PowerBond :=
Plant.f == PowerBondSuggestions with Load.v

}
scope Globally
pattern Universality:always-the-case-that PowerBond holds

Figure 5: The ExecRate and PowerBond hints.

Multiple solutions to Problem 1 are possible. In
this work, we provide a way to generate multiple po-
tential solutions for the user to evaluate.

Note that if the coupled model M is invalid (recall
Definition 1), the optimal solution 4 would have to
not satisfy the same properties that the model does not
satisfy. Therefore, we make the following assumption:

Assumption 6. When solving Problem 1, we assume
that M is valid, according to Definition 1.

As well, in practice the set of properties P is not
completely specified. This motivates our proposal of
using hints as an approximation of P, to be derived
from requirements, or declared by engineers. Assump-
tion 7 reflects that we must rely on these hints to obtain
information about M.

Assumption 7. We assume that M’s behavior satisfies
the hints provided.

In the next section, we describe how these hints
are represented such that the user does not need to un-
derstand the co-simulation domain. Then, in Section 5
we discuss our approach to solve Problem 1.

4 HINT LANGUAGE

In this section, we describe how to represent the hints
used to configure co-simulation as defined in Prob-
lem 1. This is done through the creation of a small
domain-specific language (DSL). DSLs allow experts
in the problem space (the system engineers) to describe
hints, without having to become experts in the solution
space (the co-simulation domain) (Vangheluwe et al.,
2002).

As an example, Figure 5 show the hints described
in assumption 1. Each hint has a number of fields. The
description field is an unstructured text, as commonly
seen in industrial requirements. Following this are
statements, which can be events or properties. Finally,
the scope and the pattern specify when the hint is
valid.

Statements As seen in Figure 5, Statements define
the Events and Properties which refer to FMUs and
their signals in the system.

For brevity, we omit the description of several other
operators that can be used as statements. For example,
hints can be specified over the average or derivative
of a signal. The language is defined to be easily ex-
tensible, and we are collaborating with our industrial
partners to define further useful operators.

Scopes and Patterns The example hints in Figure 5
are applicable throughout the entire simulated time.
This is denoted by the Globally scope of the hint, and
the Universality pattern. These scopes and patterns
are sourced from (Autili et al., 2015).

Scopes define when the hint is valid: Globally,
Before an event, After an event, Between two events,
and After an event until another event.

Patterns define the precise manner in which a state-
ment holds. We refer the reader to (Autili et al., 2015)
for a full description and syntax of the patterns. As
an example, the MinDuration pattern means once [an
event] holds, it will hold for [an amount of time]. This
allows the engineer to precisely define how the state-
ments defined in the hint should hold.

Implementation The hint language was created
with the XText DSL framework?, which produces a
XML Metadata Interchange (XMI) file representing
each hint. These files are then used for the generation
of the master algorithms that are candidate solutions
to Problem 1.

S MASTER GENERATION

This section describes the search algorithm that
enumerates potential solutions to Problem 1 using a
given set of hints.

5.1 Search Space Representation

Given a co-simulation scenario, the search space is the
set of all master algorithms that can be used to compute
the co-simulation. According to Definition 10, we
identify the following dimensions of the search space:

e the set of all communication step sizes;

o the set of all co-simulation steps;

e the set of all semantic adaptations applied to the

FMUs.

2https://www.eclipse.org/xtext/



The search space is therefore infinite, though as shown
below we consider only a finite subset of this space.
The problem of representing a search space is not new,
and there is a rich literature in design space exploration
from where we draw inspiration (Kang et al., 1990,
Van Tendeloo and Vangheluwe, 2017, Vanherpen et al.,
2014).

Figure 6 shows an excerpt metamodel of the search
space representation. The search space, represented
by class Candidates, comprises multiple RootCandi-
dateScenarios. The latter represent alternative master
algorithms. The co-simulation step operations are left
implicit, restricted by the semantic adaptations used
(see Section 5.3).

Semantic adaptations can be applied to FMUs and
input ports, and since FMUs can be hierarchical, this
enables the representation of multi-rate master algo-
rithms. Of the currently supported semantic adapta-
tions, we highlight:

Extrapolation/Interpolation Adaptation Applies
the approximation to the affected FMU input port.

MultiRateAdaptation Makes an FMU perform mul-
tiple steps per co-simulation step. Can be com-
bined with Extrapolation/Interpolation adapta-
tions, and can also be applied to hierarchical
FMUs.

PowerBond Adaptation Whenever two FMUs share
a power connection, the PowerBond adaptation
changes one of the FMU’s input ports to correct
for the energy dissipated, using the technique in-
troduced in (Benedikt et al., 2013).

XOR Adaptation Can be combined with other adap-
tations to represent alternatives.

The variability of the co-simulation candidates is
therefore encoded in alternative root candidate scenar-
ios and XorAdaptations.

Example 1. Figure 7 shows an example search space.
The Load and Plant FMUs have a PowerBond adap-
tation, and the Environment FMU has an XorAdapta-
tion with two alternative multi-rate adaptations. This
search space represents four alternative master algo-
rithms, because of the two Environment FMU rates,
represented as R = {100, 10} in the figure, and two
possible communication step sizes, represented as
H={1x10",1x107°}.

Given a set of hints, our tool generates a search
space representation, according to the algorithm de-
scribed in Section 5.5. In order to explain the algo-
rithm, we first have to describe how different master
algorithm variants are generated and executed.

5.2 Variant Generation

Definition 12. Given a search space representation, a
master algorithm variant represents a set of decisions
made about each variation point represented in the
search space.

Definition 13. A variant diagram represents all pos-
sible variants in the search space. It is a rooted, con-
nected, directed, and acyclic graph, where each node
has the same children as every other sibling node. Each
node is associated with a weight and represents a de-
cision relevant to the master algorithm. The children
of the same node represent a set of mutually exclusive
choices, where the weight of each child represents the
preference for each choice. The higher the weight of a
node, the closer to the root that node and its siblings
will be.

Example 2. Figure 8 shows a variant diagram rep-
resenting the variants encoded in Example 1. The
co-simulation step nodes are just below the root be-
cause the co-simulation step 1 x 1077 s has the maxi-
mal weight of the whole tree.

For now, we assume for brevity that these co-
simulation scenarios do not have hierarchical FMUs.
This assumption is relaxed in Section 5.4.

Definition 14. Given a variant diagram, a master algo-
rithm variant is defined as being a path from the root
node to a leaf node.

The number of possible variants in a diagram is
the number of different paths from the root to a leaf
node. Since it is not feasible to try all variants for a
large co-simulation scenario, we rank them.

The variants are ranked according to the weight on
each node, using the search procedure defined below.
These weights are set by the procedure that generates
the search space from the hints (Section 5.5).

Procedure 1. Starting at the root, each child node
with the highest weight is visited first. A variant is
created when the search reaches a leaf of the tree. The
search then continues in the tree using backtracking,
heading up to the closest sibling node with the highest
weight (among siblings) not yet chosen.

Example 3. Procedure 1 generates the follow-
ing variants, in order: <H =1x 10’7,R = 100>;
(H=1x10"",R=10); (H=1x10"%R=100);
and (H=1x10"%R = 10).

5.3 Variant Execution
A variant encodes the co-simulation scenario, semantic

adaptations to be applied, and parameter values. A
master algorithm comprises the co-simulation step, as
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Figure 8: An example variant diagram.

defined in Definitions 8 and 10, which needs to satisfy
the conditions in Definition 9 and assumption 5, which
in turn depend on the semantic adaptations selected
for the variant. In order to represent all the constraints
in the execution order of operations, we introduce the
following structure.

Definition 15. Given a variant, we define the corre-
sponding operation schedule as a directed graph where
each node represents an operation in F (Definition 8),
and each edge between nodes i and j means that the
operation represented by i must be executed before
the operation represented by node j. The edges are
created according to the semantic adaptations selected
for each unit and port, as described in Definition 9.

Example 4. Figure 9 shows the operation schedule of
all variants described in Example 2.

Definition 16. A variant is executable if the corre-
sponding operation schedule has a topological sort.

Furthermore, according to the assumptions we
have made, if there are multiple topological orderings,
they are all behaviorally equivalent.

5.4 Hierarchical FMUs

To keep the explanation simple, we omitted how hi-
erarchical FMUs are handled. Since a Hierarchical
FMU represents essentially a co-simulation scenario,
they are treated the same way when it comes to variant
representation and generation. The main difference
lies in the creation of the operation schedule.

Procedure 2. Given a variant that contains hierarchi-
cal FMUs, we build the operation schedule according
to Definition 15, but excluding the operations that
correspond to child FMUs of the hierarchical FMUs.
Then, we recursively create the operation schedule
of the FMUs s inside each hierarchical FMU. The op-
eration schedule of each Hierarchical FMU c is run
whenever the doStep,. operation is invoked.

5.5 Search Space Generation

In this section, we focus on how the search space is
created. To be succinct, we will only focus on the hints
that were applied to the case study.

Procedure 3. Given a set of hints and a co-simulation
scenario, the search space is created as follows:
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Figure 9: Example operation schedule for variants in Figure 8. The edges represent ordering constraints, as in Definition 15. A

possible topological order is displayed on the left.

1. For each FMU with a software controller hint, add
an extrapolation adaptation to each of its input
ports and to each of the input ports that are con-
nected to its outputs.

2. If there are multiple software hints with different
configured frequency rates, define the scenario
step size to be the inverse of the minimum of the
frequency rates, and define the appropriate multi-
rate adaptations on the software FMUs .

3. For each PowerBond hint, add a power bond adap-
tation to each of the FMUs sharing the bond.

4. Select the FMUs that are not affected by any hint,
and add a multi-rate adaptation (if not already de-
fined) with alternative step sizes at different orders
of magnitude, and two alternative first order input
approximations (interpolation and extrapolation).
Higher weights are given to smaller step sizes and
interpolations.

5. If the co-simulation step has not been defined
yet, define multiple alternative co-simulation steps
with different orders of magnitude. Higher weights
are given to smaller step sizes.

5.6 Results

We applied the above procedure to the co-simulation
scenario introduced in our motivating example in Sec-
tion 2, with the ExecRate and PowerBond hints de-
scribed in Section 4. This resulted in the search space
in Figure 7, and the four possible master algorithms,
described in Example 3.

All variants produced a smooth signal, shown in
Figure 10. The fastest variant took 6 minutes, on
average, to produce the result. The slowest variant
took 38 minutes.

6 RELATED WORK

The problem of adequately configuring a co-
simulation is not new. We can classify the approaches
in two categories: adaptive and static configuration.

-0.01

-0.02

-0.03 — v

0.0 25 5.0 75 10.0 125 15.0 175 20.0
time(<)

Figure 10: Co-simulation computed from the hints provided
in Figure 5, with the variant <H =1x107%s,R= 10>.

In the adaptive category, we highlight the adaptive
co-simulation schemes: Input Approximation/Correc-
tion (Ben Khaled-El Feki et al., 2017, Benedikt et al.,
2013, Gonzélez et al., 2019); and Step-size Correc-
tion (Busch and Schweizer, 2012, Blockwitz et al.,
2012, Arnold et al., 2014, Sadjina et al., 2017). Our
approach complements the state of the art in provid-
ing a way to select which methods are best applicable.
More importantly, our approach acknowledges that the
same technique cannot be applied to every FMU in the
co-simulation scenario.

In the static configuration category, the following
works have the same goal as this paper.

The authors in (Krammer et al., 2015) pro-
pose to use system models to configure the co-
simulation. However, their approach to configure the
co-simulation differs from ours by not attempting to
generate multiple candidate master algorithms. They
also focus only on ensuring the configuration is syn-
tactically correct (e.g., the FMU connections are not
consistent with the model). In principle, it is possible
to adapt their proposed language to include hints and
explore multiple good master algorithms.

The work in (Benedikt and Holzinger, 2016) rec-
ognizes the need to take into account the input/output
feed-through, and the kind of model underlying the
FMU, in order to configure the co-simulation. It shows
that the input approximation techniques and the step
size adaptation can interfere with each other. We com-
plement this work by showing that there is more infor-
mation that can be used to configure the co-simulation.
Additionally, we acknowledge that multiple master



algorithms can perform well, instead of focusing on
generating just one.

The approach in (Holzinger and Benedikt, 2019)
is similar to our own, as it formulates an optimization
problem to find the best co-simulation step (as defined
in Definition 8). However, in contrast with our work,
they make the assumption that FMUs can perform
interpolation or extrapolations equally well. As well,
we formulate an optimization problem whose solution
attempts to satisfy the hints provided by the user.

7 CONCLUSION

Due to the circumstances in which co-simulation
is applied, there are often no analytical results to
guide the search for a correct configuration of the
co-simulation.

This paper has presented a framework, available
online?, that allows users to explore various options for
configuring their co-simulation scenarios, by describ-
ing hints. These hints are used to produce a search plan
for the different co-simulation variants, taking into ac-
count the best practices in the state of the art. Each
variant is then evaluated and the results are presented
to the user.

A major assumption that we have made is that
the coupled model being co-simulated satisfies the
hints described by the engineers (assumptions 6 and 7).
However, it is often the case that the users of co-
simulation are trying to understand the model and
therefore may not describe correct hints. Our contribu-
tion can help by showing whether there is agreement
between master algorithms on the satisfiability of a
particular set of hints. A hint that is not satisfied by
any of the co-simulation algorithms generated suggests
that perhaps the problem is in the model and not in the
co-simulation.

Ongoing work is focused on supporting more hints,
including proprietary hints. In the future, we intent to
formalize some of the hints in Signal Temporal Logic,
and compute a degree of satisfaction per hint (Re-
mark 1 on page 4). This will allow us to use global opti-
mization techniques to improve the recommended mas-
ter algorithms. Another direction is to derive the hints
from prior experience with the components. For exam-
ple, descriptions of previous physical experiments, in
the form of experimental frames (Denil et al., 2017),
could be used.

For Boeing, the candidate master algorithms sug-
gested by the HintCO tool represent a first step towards

3https://msdl.uantwerpen.be/git/claudio/
HintCO

enabling seamless integrated large scale simulation of
heterogeneous models. However, there are still chal-
lenges that need to be overcome. For example, tool
vendors need to improve the maturity level of FMU
support, to focus on enhanced cross compatibility and
integration checks (recall assumption 2). Furthermore,
there is a need to develop a common methodology and
modeling guidelines for industrial applications.
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