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1 Introduction
Truly complex engineered systems that integrate physical, software and network as-
pects are emerging [23], posing challenges in their design, operation, and maintenance.

The design of such systems, due to market pressure, has to be concurrent and dis-
tributed, that is, divided between different teams and/or external suppliers, each in its
own domain and each with its own tools [34]. Each participant develops a partial so-
lution, that needs to be integrated with all the other partial solutions. The later in the
process the integration is done, the higher its cost [26]. Ideally, the solutions devel-
oped independently should be integrated sooner and more frequently, in so-called full
system analysis [33].

Modeling and simulation has improved the development of the partial solutions,
but falls short in fostering this holistic development process [4]. To understand why,
one has to observe that: (i) models of each partial solution cannot be exchanged or in-
tegrated easily, because these are likely developed by a specialized tool; (ii) externally
supplied models may have Intellectual Property (IP) that cannot be cheaply disclosed
to system integrators; (iii) as solutions are refined, the system should be evaluated
by integrating physical prototypes, software components, and even human operators,
in what are denoted as Model/Software/Hardware/Human-in-the-loop simulations [1];
and (iv) the models of each partial solution have different characteristics that can be
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exploited to more efficiently simulate them, making it difficult to find a technique that
fits all kinds of models.

Co-simulation is a generalized form of simulation, where a coupled system is sim-
ulated through the composition of simulation units [17, 19, 25]. Each unit is broadly
defined as a black box capable of exhibiting behaviour, consuming inputs and produc-
ing outputs, over simulated time.

Many of the problems occurring in co-simulations are due to the ill composition of
simulation units that represent continuous systems [16]. As such, we argue that having
a basic knowledge of numerical (co-)simulation can help practitioners debug, and even
improve the performance of, existing co-simulations.

In this tutorial, we aim to provide the reader with a basic understanding of nu-
merical algorithms, and we show how attempting to simulate an heterogeneous sys-
tem naturally leads to co-simulation. Upon completion, the reader should know the
many different possible co-simulation approaches, the main concepts involved, and
what their tradeoffs are. Furthermore, the reader will be equipped to understand the
more advanced concepts in the co-simulation literature.

The next section provides a top-down overview of all the concepts that will be
discussed here. This concept map will be revisited in all other sections. In the sections
after, each concept will be discussed, in a bottom up manner, so as to increase the
complexity gradually.

2 Main Concepts
In this section, we will provide an informal top-down overview on the concepts related
to co-simulation. To that end, we will use a feature model [20]: an intuitive diagram
that breaks down the main concepts in a domain. Some of these concepts will only
become clear in later sections, as we delve into the details, so we recommend the
reader to come back to this section to place these in the grand scheme of things. More
rigorous definitions are given in [17].

First, we summarize the objective of running a co-simulation: to reproduce, as
accurately as possible, the behavior of a system under study.

Figure 1 breaks down the main concepts in the co-simulation domain. To run a
co-simulation, one needs a co-simulation scenario and an orchestrator algorithm.

The co-simulation scenario points to one or more simulation units, describes how
the inputs and outputs of their models are related, and includes the configuration of
relevant parameters.

Each simulation unit represents a black box capable of producing behavior. To
produce behavior, the simulation unit needs to have a notion of:
• a model, created by the modeller based on his knowledge of the system under

study;
• a solver, which is part of the modeling tool used by the modeller, that approxi-

mates the behavior of the model; and
• an input approximation, which approximates the inputs of the model over time,

to be used by the solver;
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Figure 1: Co-simulation concept breakdown.

• input reactivity and output reactivity, that determine which inputs the simulation
unit receives from the orchestrator.

The orchestrator is responsible for running the co-simulation. It initializes all the sim-
ulation units with the appropriate values, sets/gets their inputs/outputs, and coordinates
their progression over the simulated time. To progress the co-simulation, the orches-
trator, after setting the appropriate inputs to the simulation units (computed from their
outputs according to the co-simulation scenario), asks them to simulate for a given in-
terval of simulated time, by providing them with a communication step. The simulation
units in turn will approximate the behavior of their model within the interval between
the current simulated time and the next communication time, relying only on the inputs
they have received at the previous communication times. In order to simplify the expla-
nations and analyses presented later in this document, we assume that the simulation
units will only receive more inputs at the next communication with the orchestrator,
hence they must rely on their input approximations.

Figure 2 gives an illustration of these concepts. The figure in the left-hand side
illustrates how the orchestrator coordinates the co-simulation by getting outputs, setting
inputs, and requesting the simulation units S1 and S2 to progress in time. The figure
in the top-right-hand side presents the co-simulation scenario, where S1 receives input
Fc and outputs [x1,v1], and S2 receives inputs [x1,v1] and outputs Fc. The two figures
in the bottom-right-hand side presents the internal behaviour of the simulation units.
The large unfilled dots represent input values, and the smaller unfilled dots represent
their extrapolations, as computed by the simulation units. One can see that there is
a difference between the values calculated by the extrapolation functions opposed to
the actual input, due to the gap between the larger and smaller unfilled dots at t +H.
The black dots represents outputs. As illustrated, S1 and S2 perform small steps of
respectively h1 and h2 internally, until the time t +H is reached.

The communication step size can either be fixed (defined before the co-simulation
starts and constant throughout its execution), or adaptive (the orchestrator determines
the best value to be used whenever it asks the simulation units to compute).

The communication approach encodes the order in which the simulation units are
given inputs and instructed to compute the next interval. Figure 3 summarizes the
multiple types of orchestration algorithms using time diagrams.
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Internal Behavior
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Figure 2: Example co-simulation coordination (left), co-simulation scenario (top right),
and internal behavior of simulation units (bottom right).

In the Gauss-seidel approach, the orchestrator asks one simulation unit at a time to
compute to the next interval and produce outputs. Then, the orchestrator uses the most
recent outputs when asking the next unit to compute.

In the Jacobi approach, the orchestrator asks all units to compute the interval in
parallel, setting their inputs at the end of the co-simulation step.

Finally, the orchestrator may retry the co-simulation step, using improved input
estimates, computed from the most recent outputs. This process can be repeated until
there is no improvement on the inputs (fully implicit iteration), or a fixed number of
iterations has been done (semi-implicit iteration). In the later sections it will become
clear why it is a good idea to retry the co-simulation step.

In the following sections, we will follow a bottom up approach, starting with the
simplest concepts in Figure 1, and building our way up to co-simulation.

3 Models, Solvers, and Input Approximations
Since co-simulation is a form of generalized simulation, it is paramount that simula-
tion is well understood. In this section, we cover the basic algorithms to approximate
the solution, x(t), of first order Ordinary Differential Equations (ODEs), ẋ = f (x,u),
having an initial condition, x(0) = x0. We start with scalar differential equations and
then move to vector equations. A running example will be incrementally constructed,
so that the numerical methods introduced can be tried out.

The relationship between the concepts learned in Sections 3.1 and 3.2, and the
concept of simulation unit (recall Figure 1), is discussed in Section 3.3.
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Figure 3: Overview of orchestration algorithms.

3.1 Scalar Initial Value Problems
A scalar Initial Value Problem (IVP) is defined as a scalar ODE, with an initial condi-
tion. Formally, it has the form:

ẋ = f (x,u), with x(0) = x0, (1)

where x : R→ R denotes the (scalar) state function, ẋ denotes the time derivative of x,
f : R2→ R is a scalar function, u : R→ R is the input function, and x0 ∈ R is a given
initial value of x(t).

Example 1. Consider a car whose acceleration is set by a cruise controller, and moves
in a straight line. Let v(t) denote the speed of the car over time, m its mass, and vd the
desired speed (input); and assume that the car is initially moving at speed v0. Then the
scalar IVP is given by

v̇ =
1
m

[
k(vd− v)− c f v

]
, with v(0) = v0, (2)

where k(vd− v) is the acceleration set by the cruise controller, vd is the input, k > 0 is
the acceleration multiplier constant, and c f > 0 is the friction coefficient.

The solution of the scalar IVP (1) is a function x(t) : R → R whose derivative
satisfies Equation (1). For example, the solution of the IVP posed in the car example
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(Example 1), and plotted in Figure 4, is:
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Figure 4: Analytical solution and approximations to the IVP in Example 1. Parameters
are: h = 0.2,m = 1576(kg),vd = 40(m/s),v0 = 0(m/s),k = 103,c f = 0.5.

In general, it is not possible, nor feasible, to find an explicit solution to the IVP.
Instead, an approximate solution can be computed using a numerical method. In the
following, we provide an intuitive derivation of two variations of Euler’s method.

To derive an approximation x̃(t) of the solution to the scalar IVP in Equation (1),
we start by noting that the initial point is given by the initial value, that is, x̃(0) = x0,
so at least one point is known. For a small h > 0, the limit definition of the derivative
in the left hand side of Equation (1) can be replaced by its approximation ẋ ≈ (x(t +
h)− x(t))/h. By Equation (1), we have (x(t + h)− x(t))/h ≈ f (x(t),u(t)), which can
be solved for x(t +h) to give the Explicit Euler Method:

x(t +h)≈ x(t)+ f (x(t),u(t))h, with x(0) = x0. (3)

Applying Equation (3) to the initial value, gives the point x̃(h), which approximates
x(h). The procedure can then be repeated using x̃(h) to compute x̃(2h), and so on. This
method can be applied to the car example by combining Equation (2) and Equation (3):

v(t +h) = v(t)+
1
m

[
k(vd− v(t))− c f v(t)

]
h (4)

The approximation calculated by Equation (4) with the parameters: h = 0.2,m =
1576(kg),vd = 40(m/s),v0 = 0(m/s),k = 103,c f = 0.5 is shown in Figure 4, i.e., the
speed at time h = 0.2 is calculated by:

v(0.2) = 0+
1

1576
[
103(40−0)−0.5∗0

]
∗0.2≈ 5, as v(0) = 0 (5)
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The implicit variation of Euler’s method is derived in the same way as the explicit
variation. The difference is that instead of deriving the method from the approximation
(x(t +h)− x(t))/h≈ f (x(t),u(t)), we evaluate f at the point x(t +h). That is, we take
the approximation (x(t+h)−x(t))/h≈ f (x(t+h),u(t+h)), and rearrange it to get the
Implicit Euler Method:

x(t +h)≈ x(t)+ f (x(t +h),u(t +h))h, with x(0) = x0. (6)

The value of x(t+h) is the unknown in Equation (6), and x(t+h) depends on itself,
that is, it appears on both sides of the equation, creating an algebraic loop. We now
present a simple method to estimate x(t +h) in Equation (6).

The direct iteration method1, computes the solution to an equation x = g(x) by
starting from an initial guess denoted as x[0] and evaluating the right hand side with
it. Then the result is used for the next evaluation of the right hand side, until two
successive evaluations are close enough. In other words, it computes the iteration

x[1] = g(x[0]); x[2] = g(x[1]); x[3] = g(x[2]); . . .

until
∣∣∣x[i+1]− x[i]

∣∣∣< ε, for small ε > 0.
(7)

When applying the direct iteration method as part of a simulation step of the implicit
Euler method, a good initial guess x[0] can be given by the most recently computed
value or by an application of the explicit Euler step. Formally, at simulation time t,
x[0] = x(t), or x[0] = x(t)+ f (x(t),u(t))h.

Example 2. To demonstrate direct iteration, the implicit Euler method presented in
Equation (6) can be applied to Equation (2) to get:

v(t +h) = v(t)+
1
m

[
k(vd− v(t +h))− c f v(t +h)

]
h (8)

Table 1 presents the results of two steps with Equation (8) (v(0.2) and v(0.4)), using
the implicit euler method with the parameters as in Equation (5). Each step comprises
five iterations of the direct iteration method. The value from the last iteration in the
first step is used as the initial guess in the second step. The initial guess in the first step
is the result of one explicit Euler step as in Equation (5): v(0.2) ≈ 5. The values in
bold represent the result of the implicit euler step.

The direct iteration method will converge to a solution if successive results get
closer and closer, as illustrated in Figure 5. Formally, that means that∣∣∣g(x[i+1])−g(x[i])

∣∣∣< ∣∣∣x[i+1]− x[i]
∣∣∣⇔ ∣∣∣∣∣g(x[i+1])−g(x[i])

x[i+1]− x[i]

∣∣∣∣∣< 1 if x[i+1]− x[i] 6= 0 (9)

is satisfied for every i. In the case that x[i+1]−x[i] = 0, then the solution has converged.

Example 3. Applying Equation (9) to the values in Table 1 results in the values in
Table 2, which shows convergence as every value is smaller than 1.
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Table 1: Direct iteration applied to the implicit euler applied to the car example.

Step
Iteration

Initial Guess 1 2 3 4 5

v(0.2) 5 4.4413 4.5122 4.5032 4.5044 4.5042
v(0.4) 4.5042 9.0085 8.4366 8.5092 8.5000 8.5012

x[i]

g(x[i])

x[i+1]

g(x[i+1])

x[i+2]

g(x[i+2])

x[i+3]

Figure 5: Direct iteration illustration that shows convergence.

Now we derive a condition which is stronger than the above condition, but can be
used to predict whether convergence will occur, without actually having to compute
the iteration. By the Mean Value Theorem, there exists a ζ [i] such that

x[i] < ζ
[i] < x[i+1] and

dg(ζ [i])

dx
=

g(x[i+1])−g(x[i])
x[i+1]− x[i]

.

The condition
dg(ζ [i])

dx
< 1

can be satisfied for all i if we require that∣∣∣∣dg(x)
dx

∣∣∣∣< 1, for all x. (10)

Equation (10) shows us that the direct iteration method, when used in combination
with the implicit Euler method (Equation (6)), is always guaranteed to converge, pro-
vided that the step size h used is small enough. To see why, let g(x) = c+ f (x,u)h
denote the direct iteration function, where c and u are known, and x is the unknown.

1The direct iteration method is also known as successive substitution, functional iteration, or fixed point
iteration.

Table 2: Convergence applied to Table 1.

Step
Iteration

1 2 3 4

v(0.2) 0.1270 0.1270 0.1270 0.1270
v(0.4) 0.1270 0.1270 0.1270 0.1270
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Differentiating g with respect to x, taking the absolute, and adding the restriction in
Equation (10), yields ∣∣∣∣dg(x)

dx

∣∣∣∣= h
∣∣∣∣∂ f (x,u)

∂x

∣∣∣∣< 1. (11)

Applying the above equation to Equation (2), with the parameters in Figure 4,
yields h

∣∣∣ ∂ f (x,u)
∂x

∣∣∣ = h
∣∣ 1

m (−c f − k)
∣∣ = h ∗ 0.63484 < 1, which means h must satisfy

h < 1.5752.
Figure 4 shows the approximation computed with the Implicit Euler method.

3.2 Vector Initial Value Problems
In this sub-section, we generalize the numerical techniques introduced in Section 3.1
to vector IVPs. We will denote vectors with bold face, and we will use capital let-
ters for matrices and vector valued functions. Given a vector xxx, we denote its trans-
pose as xxxT . Furthermore, we denote the i-th element of vector xxx by xi, so that xxx =[
x1 x2 · · · xn

]T . Similarly, Fi(xxx) denotes the i-th element of the vector returned by
F(xxx).

An Initial Value Problem is the generalization of Equation (1), to vectors:

ẋxx = F(xxx,uuu(t)), with xxx(0) = xxx000, (12)

where xxx and uuu are vector functions, and F is a vector valued function.

Example 4. The mass-spring-damper system, illustrated in Figure 6, is modelled by
the following second order ordinary differential equation:

ẍ =
1
m
(−cx− c f ẋ+ fe(t)),

where x denotes the position of the mass, c > 0 is the stiffness coefficient of the spring,
c f > 0 is the damping constant of the damper, and fe(t) denotes an external force
exerted on the mass.

The above equation can be put into the form of Equation (12) by introducing a
new variable for velocity, v = ẋ, and letting the vector xxx =

[
x v

]T . Given an initial
position x0 and velocity v0, we obtain the following IVP:

ẋxx =
[

ẋ
v̇

]
= F(

[
x
v

]
, fe(t)) =

[
v

(1/m)(−cx− c f v+ fe(t))

]
, with xxx(0) =

[
x0
v0

]
.

The time derivative of a vector is the time derivative of each of its components,
so the solution to Equation (12) is a vector valued function xxx(t) where each compo-
nent xxxi(t) obeys the equation ẋxxi(t) = Fi(xxx(t),uuu(t)), with xxxi(0) = xxx0i . As an example,
Figure 7 shows the solution of the position component of the mass-spring-damper IVP
introduced in Example 4. The solution to the velocity component is omitted.

The Explicit Euler Method can be derived as follows. Taking the limit definition of
the derivative of xi, and rearranging as done to obtain Equation (3), we get xi(t +h)≈

9



Figure 6: Mass-spring-damper system.
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Figure 7: Position (and its approximations) over time of the mass-spring-damper sys-
tem. Parameters are: h = 0.1,m = c = 1,c f = 10−4, fe(t) = 0,xxx0 =

[
1 0

]T .

xi(t)+Fi(xxx(t),uuu(t))h, for a small h > 0. This equation, applied to all components of xxx,
can be put in matrix form:

xxx(t +h)≈ xxx(t)+F(xxx(t),uuu(t))h, with xxx(0) = xxx000. (13)

The Implicit Euler Method can be derived analogously:

xxx(t +h)≈ xxx(t)+F(xxx(t +h),uuu(t +h))h, with xxx(0) = xxx000. (14)

The condition in Equation (11) for convergence of the direct iteration (Equation (7))
used in combination with the implicit Euler method (Equation (14)), also generalizes
to the vector IVP (Equation (12)) by replacing the absolute |·| by a vector norm ‖·‖. It
is a special case of the Contraction Mapping Theorem [24, Theorem 8.2.2].

3.3 Constructing Simulation Units
This subsection describes how the concepts introduced in the previous subsection can
be used to construct simulation units.
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Models are vector IVPs with output:

ẋxx = F(xxx,uuu), with xxx(0) = xxx000, and
yyy = G(xxx,uuu),

(15)

where yyy denotes the output vector, and G the output function.
Solvers are numerical methods, such as the Euler methods introduced in Equa-

tions (13) and (14).
To understand the role of input extrapolation functions, we need to recall the inter-

actions between the orchestrator and each simulation unit (recall Figure 2).
In order to facilitate the explanation, let us make the following assumptions: H >

0 denotes the communication step size, kept the same throughout the co-simulation;
ti = iH denotes the simulated time at the i-th co-simulation step; and the orchestrator
follows a Jacobi approach (see Figure 3). The other cases should be easy to understand
once this one is clear.

Under the above assumptions, the orchestrator, at time ti, constructs the input to the
unit, denoted as u(ti), and then asks the unit to compute until the time ti+1 = ti +H.

Between times ti and ti+1, the unit will iteratively approximate the state of the
model, only taking into account the inputs u(ti),u(ti−1),u(ti−2), . . . that it has received
in the past. As such, the numerical solver employed in the simulation unit is actually
solving a modified version of Equation (15):

ẋxx = F(xxx, ũuu(t)), with xxx(ti) = xxxiii, and t ∈ [ti, ti+1] , (16)

where ũuu(t) is an approximation of uuu(t) in the interval t ∈ [ti, ti+1], built from input sam-
ples computed by the orchestrator in the previous co-simulation steps: uuu(ti), uuu(ti−1),
uuu(ti−2), . . . .

In this interval, the goal of the simulation unit is to estimate xxx(ti+1), so that the
output yyy(ti+1) of the model (recall Equation (15)) can be computed and given to the
orchestrator. Since the output yyy(ti+1) at time ti+1 may depend on the input uuu(ti+1) at
time ti+1, it can be estimated in two ways, depending on the output reactivity of the
simulation unit:
Output reactive: using the input uuu(ti+1) given by the orchestrator, that is,

yyy(ti+1) = G(xxx(ti+1),uuu(ti+1)),

Output delayed: using the approximation of the input, that is,

yyy(ti+1) = G(xxx(ti+1), ũuu(ti+1)).

Regardless of how the output is computed, it can be the case that the numerical
method being used internally in the simulation unit from time ti to ti+1, is implemented
in a way that requires the availability of the input at time ti+1. Formally, this means the
state xxx(ti+1) at the next communication time is estimated as

xxx(ti+1) = δ (xxx(ti),uuu(ti+1),uuu(ti),uuu(ti−1), . . .), with xxx(0) = xxx000, (17)

where δ encodes the construction of the input extrapolation function, and the iterative
application of the numerical method, starting from state xxx(ti) until state xxx(ti+1). The
units employing these methods are denoted as input reactive.

11



In contrast, simulation units are input delayed when they do not require the input
at time ti+1 in order to estimate xxx(ti+1):

xxx(ti+1) = δ (xxx(ti),uuu(ti),uuu(ti−1), . . .), with xxx(0) = xxx000. (18)

Table 3 summarizes the types of simulation units.

Table 3: Types of Simulation Units.

Output Reactive Output Delayed

Input Reactive
xxx(ti+1) = δ (xxx(ti),uuu(ti+1), . . .)
yyy(ti+1) = G(xxx(ti+1),uuu(ti+1))

xxx(ti+1) = δ (xxx(ti),uuu(ti+1), . . .)
yyy(ti+1) = G(xxx(ti+1),uuu(ti))

Input Delayed
xxx(ti+1) = δ (xxx(ti),uuu(ti), . . .)

yyy(ti+1) = G(xxx(ti+1),uuu(ti+1))
xxx(ti+1) = δ (xxx(ti),uuu(ti), . . .)
yyy(ti+1) = G(xxx(ti+1),uuu(ti))

Note that the kind of simulation unit may impose a specific interaction pattern
with the orchestrator. For example, simulation units that are input reactive cannot be
interacted with with a Jacobi approach. The formal definition of simulation units will
be given in Section 4.4, when a more rigorous definition of co-simulation scenario is
given.

3.4 Summary and Further Reading
This section presented the most basic numerical methods for the simulation of IVPs.
For an introduction to more advanced methods, we recommend [9], and for an in-depth
mathematical treatment of these, we recommend [35]. For an overview of modeling
with differential equations, see [8]. For an introduction to dynamical systems modeling
and simulation, see [32].

Methods for solving equations of the form x = F(x), such as the successive sub-
stitution method, are given in, e.g., [5, Chapter 2]. The alternative derivations of the
Euler method, see [11, Section 5.2]. More details about the derivation of Equation (10)
can be found in [5, Theorem 2.4], and its generalization can be found in [24, Theorem
8.2.2]. The formal definitions of simulation units, and their types, are based in [15].

4 Basics of Co-simulation
In this section, we show how co-simulation arises naturally out of the need to use
specialized numerical methods for different parts of a given IVP. To exemplify this,
we start by introducing a running example. Then, after showing that it is difficult to
simulate the running example using the previously introduced numerical methods, we
introduce a new numerical method that can be used to simulate only a part of the ex-
ample. Then we introduce co-simulation as a technique that allows the new numerical
method to be combined with the previous ones. Finally, we provide an overview of
more advanced techniques that can improve the co-simulation.
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4.1 Motivating Example
Inspired by the work in [2], we intend to simulate the forces on the body of a passenger
in a moving car. To keep it simple2, and to combine the models already introduced
in Examples 1 and 4, we model the passenger as two coupled mass-spring-damper
systems, representing the head and torso, and the vibrations of the motor as a mass-
spring system.

Figure 8: Running example of passenger in an accelerating car with motor vibrations.

Example 5. The IVP of a passenger in an accelerating car, illustrated in Figure 8, is
given by:

motor : ẍmotor =−cmxmotor

car : (mc +mh +mb)ẍcar = kc(vd− ẋcar)+acxmotor−dcẋcar

torso : mt ẍtorso = Fh− ctxtorso−dt ẋtorso−mt ẍcar

head : mhẍhead =−Fh−mhẍcar

coupling head & torso : Fh = ch(xhead− xtorso)+dh(ẋhead− ẋtorso),
(19)

where the initial and parameter values are:

motor : cm = 104(m/s),xmotor(0) = 1, ẋmotor(0) = 0

car : mc = 1576(kg),dc = 0.5,kc = 103,vd = 40(m/s),ac = 5×104, ẋcar(0) = 0

torso : mt = 75(kg),ct = 105,dt = 105,xtorso(0) = 0, ẋtorso(0) = 0

head : mh = 5(kg),ch = 106,dh = 104,xhead(0) = 0, ẋhead(0) = 0
(20)

The model introduced in the above example can be put in matrix form as in Equa-
tion (29). Therefore, its analytical solution can be computed as detailed in Appendix B.1.
The analytical solution, along its approximation computed with the explicit Euler, is
shown in Figure 9.

2For more details about modeling the human body, see [9, Chapter 5] for an introduction, and [2].
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Figure 9: Analytical solution and approximation of the IVP in Example 5. The step
size h = 10−4s. The other variables are omitted.

Clearly, the approximation for this example is not satisfactory. This is because
the explicit Euler method is not appropriate to simulate the motor sub-system. To
see why, note that the equations governing xm in Example 5 are the same as the ones
introduced in Example 8, with c f = 0 and c = cm, which means that the Euler method
is numerically unstable for this subsystem.

4.2 Specialized Numerical Methods
The mass-spring is part of a more general class of problems called second derivative
IVPs.

Second derivative IVPs have the form:

ẍxx = F(xxx,uuu), with xxx(0) = xxx000, and ẋxx(0) = vvv000, (21)

and these typically show up in IVPs over equations modeling physical systems where
energy is conserved [9, Chapter 5].

Instead of converting the above IVP to a first order one (as illustrated in Example 4),
there are numerical methods that take advantage of the special structure of this problem.

Godunov’s method computes the approximated solution to the second derivative
IVP in Equation (21) using the following iteration:

xxx(t +h)≈ 2xxx(t)− xxx(t−h)+F(xxx(t),uuu(t))h2, with xxx(0) = xxx000 and xxx(h) = xxxhhh, (22)

where xxxhhh is given. At time t, this method requires access to two previously computed
approximations (xxx(t) and xxx(t−h)), which it can only be used from t = 2 onward. For-
tunately, at this time, the value xxx(h) can be computed using other numerical methods.
Godunov’s method is an example of a multi-step numerical method [35, Chapter III].

As an example, the bottom plot of Figure 11 shows the motor vibrations computed
with Godunov’s method.

Despite the good performance of Godunov’s method to simulate the mass-spring
subsystem of Example 5, it cannot be used as is to simulate the complete IVP3, as it

3It is possible to adapt Godunov’s method to simulate IVPs that involve the first derivative (see, e.g., [9,
Section 5.5]).
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does not have the form of Equation (21). In the following sub-sections, we show how
to decouple the example into sub-problems, and solve each with the most appropriate
numerical method.

4.3 Decoupling IVPs
In the light of the concepts introduced earlier, we can refine the definition of the con-
cepts in Figure 1.

Here, we define Co-simulation as a technique to couple numerical methods, each
responsible for a part of the given IVP, in order to approximate the solution to that IVP.

The configuration of the co-simulation scenario is an assignment of values to the
parameters that affect the co-simulation execution. For example, one such parameter
is the co-simulation step size H > 0, which controls the points in time at which the
numerical methods will exchange values (i.e., at multiples of H). The concrete set of
parameters depend on the co-simulation orchestrator so we do not detail them here.
Each model represents an IVP, and all models represent a decomposition of the system
under study, which we consider to be an IVP as well4.

Example 6. An example co-simulation scenario for the IVP introduced in Example 5
is summarized in Figure 10. The vibrations of the car are approximated using the
Godunov’s method (Equation (22)), and the other two parts are simulated with the
Explicit euler method.

Method: 

Input Appr.:

Explicit Euler

Constant

Figure 10: Co-simulation scenario described in Example 6.

4.4 Orchestration
The algorithm that processes the co-simulation scenario and coordinates the execution
of the simulation units is called the orchestrator5. In this sub-section, we introduce
the Gauss Seidel and Jacobi orchestration algorithms, named after the analogous tech-
niques to solve linear systems. To explain these methods, we need to first detail the
elements that comprise a co-simulation scenario.

4There are examples of co-simulations where the original model is not an IVP, but instead is a differential
algebraic system. See [18, 7, 21, 3].

5The orchestrator is also known as the master, or coordinator.

15



Let H > 0 denote the given communication time step. We denote the i-th commu-
nication time as ti = iH. We say that the i-th step of the co-simulation is finished when
all the numerical methods have computed their solutions up to, and including, time ti.

Each model is associated with a reference w ∈ D, where D is a set of all model
names. The model w is an IVP with output:

ẋxx[w] = F[w](xxx[w],uuu[w]), with xxx[w](0) = xxx0[w] , and

yyy[w] = G[w](xxx[w],uuu[w]),
(23)

where yyy[w] denotes the output vector, and G[w] the output function.
As described in Section 3.3, the input function uuu[w](t) is an approximation (i.e.,

extrapolation or interpolation) constructed from samples of the outputs of other models.
We will denote the set of models whose output is used to construct the input uuu[w](t),
as S[w] ⊆ D, standing for Source models. With this notation, for t ∈ [ti, ti+1], the input
uuu[w](t) is constructed from the samples of the outputs of every model v ∈ S[w] at the
current and previous co-simulation steps. The number of samples needed depend on
the concrete approximation technique.

We will use w to refer both to the model and the simulation unit, when there is no
ambiguity.

Roughly, the task of the orchestrator at time ti is to provide the output samples that
each unit w needs, and ask the unit to approximate the value of yyy[w](ti+1). Therefore, the
orchestrator needs to distinguish units according to not only which samples are required
to construct their input functions (input reactive or delayed), but also whether their
output functions require actual values for inputs or not (output delayed or reactive).
We now describe formally each type of simulation units introduced in Table 3.

A unit w is input reactive if, at any t ∈ [ti, ti+1], there is at least one v ∈ S[w] such
that the input uuu[w](t) depends on the value of yyy[v] at time ti+H . Otherwise, w is input
delayed.

A unit w is output reactive if at any time ti, there is at least one v∈ S[w] such that the
computation of the output yyy[w](ti) requires the value of yyy[v] at ti. Otherwise, w is output
delayed. Note that the output function G[w] may still depend on the input for a unit w
that is output delayed: it just means that the unit will employ the input approximation
in place of the actual input.

The reactivity properties can be seen as contracts between the simulation units and
the orchestration algorithm. These are specific to how the simulation units are imple-
mented, and not to the sub-models themselves. In order words, the same sub-model
may be implemented differently in different simulation units.

4.4.1 Gauss-Seidel Orchestrator

With the above classification, the Gauss-Seidel orchestrator can determine which out-
puts are used to compute which inputs, and at which times. This allows it to sort the
execution of the units, so that the output samples on which they depend are always
available.

At the i-th co-simulation step, a unit w must be executed after unit v if v ∈ S[w] and
w is (input or output) reactive.
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To keep the orchestrator simple we assume that the units can always be sorted. In
Section 4.4.3 we relax this assumption.

We denote the order with a map σ : N→D, that returns the unit reference σ( j) that
is the j-th in the order. For example, the unit σ(1) is the first.

Under these assumptions and notation, the Gauss-Seidel orchestrator is summa-
rized in Algorithm 1. Function Cw

({
yyy[v]|v ∈ S[w]

})
computes the input sample of unit

w from the output samples of its sources. The function getOutput(w,uuuccc[w]) asks unit
w to compute the output, optionally using the value in the variable uuuccc[w] Likewise, func-
tion doStep(w,H,uuuccc[w],uuuppp[w]) asks unit w, assumed to be in state xxx[w](t), to compute
the value xxx[w](t +H), using either one of the variables provided, depending on its type
(i.e., use uuuccc[w] if the unit is input reactive, or use uuuppp[w] otherwise). Any other previous
inputs the unit may require are assumed to be stored in its internal state (collected from
previous calls to the doStep function.

Algorithm 1: Gauss-seidel orchestrator. See Figure 3.
Data: The stop time T , a communication step size H, a co-simulation scenario with unit references

D, and their order σ .
t := 0 ; // Simulation time

// Initialize variables

for w ∈ D do
uuuccc[w] := yyy[w] := 000 ; // Current I/O variables.

uuuppp[w] := 000 ; // Previous input variables.

end
// Compute initial outputs

for j = 1, . . . , |D| do
w := σ( j);

uuuccc[w] :=Cw

({
yyy[v]|v ∈ S[w]

})
; // Compute input from set of sources.

yyy[w] := getOutput(w,uuuccc[w]); // Compute output.

uuuppp[w] := uuuccc[w];
end
while t < T do

for j = 1, . . . , |D| do
w := σ( j);

uuuccc[w] :=Cw

({
yyy[v]|v ∈ S[w]

})
;

doStep(w,H,uuuccc[w],uuuppp[w]); // Compute xxx[w](t +H) from xxx[w](t) and inputs.

yyy[w] := getOutput(w,uuuccc[w]);
end
for w ∈ D do

uuuppp[w] := uuuccc[w]; // Update previous input.

end
t := t +H; // Advance time

end

Figure 11 shows the solution approximated with the co-simulation of Example 6
using Algorithm 1.

17



0 1 2 3 4 5 6 7
0

25 vc_exEuler
vc

0 1 2 3 4 5 6 7

0.005

0.000

xh_exEuler
xh

0 1 2 3 4 5 6 7
1

0

1
xm_Godunov
xm

Figure 11: Co-simulation of Example 6.

4.4.2 Jacobi Orchestrator

The main difference between the Jacobi and Gauss-Seidel orchestrator lies in the fact
that the Jacobi orchestrator assumes that every simulation unit is input delayed. This
has a couple of consequences:
• There is no need to order the units for the execution of the doStep function.

However, the units can still be output reactive/delayed, so the invocations of the
getOutput functions still need to be sorted.

• There is no need to keep track of the previous inputs to each unit.
The Jacobi orchestrator is summarized in Algorithm 2. Compared to the Gauss-

seidel orchestrator, the Jacobi is in general less accurate (due to the fact that units
cannot use interpolation techniques), but can take advantage of parallelism.

4.4.3 Implicit and Semi-Implicit Orchestrators

The Jacobi and Gauss-Seidel orchestration algorithms have iterative counterparts (re-
call Figure 1). An iterative orchestration algorithm will retry each co-simulation step
multiple times. If the number of repetitions is fixed, then we say that the orchestration
is semi-implicit. If, on the other hand, the co-simulation step is repeated until some
criteria is met, then the orchestration is implicit.

In general, iterative techniques are useful when the non-iterative techniques fail to
preserve the stability of the original IVP, or when there are algebraic loops in the co-
simulation scenario. When there are algebraic loops, then the units cannot be sorted,
as assumed in Section 4.4.1.

We distinguish two kinds of algebraic loops in co-simulation [17, 21]: • output
loops: the ones spanning just output variables; and • state loops: the ones that include
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Algorithm 2: Jacobi orchestrator. See Figure 3.
Data: The stop time T , a communication step size H, a co-simulation scenario with unit references

D, and the order σ of their inputs.
t := 0 ; // Simulation time

// Initialize variables

for w ∈ D do
uuuccc[w] := yyy[w] := 000 ; // Current I/O variables.

end
while t < T do

// Compute outputs in order

for j = 1, . . . , |D| do
w := σ( j);

uuuccc[w] :=Cw

({
yyy[v]|v ∈ S[w]

})
;

yyy[w] := getOutput(w,uuuccc[w]);
end
for w ∈ D do

doStep(w,H,uuuccc[w]); // Compute xxx[w](t +H) from xxx[w](t) and inputs.

end
t := t +H; // Advance time

end

state variables as well. Output loops arise when there is an output of a simulation unit
that depends (through the couplings of the co-simulation scenario) on itself, while state
loops happen when the state of an input reactive simulation unit depends on itself.

To illustrate these, we introduce a directed graph based notation to represent de-
pendencies. Each vector of outputs/inputs/state is represented as one node. The edges
are drawn as follows:
• whenever an output vector depends on an input or state vector, an edge is drawn

between the corresponding nodes;
• when an input depends—through the couplings of a co-simulation scenario—on

an output, an edge is drawn between the corresponding nodes.
• when the state evolution function uses an input interpolation approximation (that

is, when the unit is input reactive), then an edge is drawn between the input node
and the state node.

Figure 12 shows an abstract example co-simulation scenario illustrating the different
dependencies.

With the dependency relationship introduced, the algebraic loops give rise to cycles
in the graph. If a cycle has nodes that correspond to a state vector, then it is a state loop.
Otherwise, it is an output loop. These algebraic loops are highlighted in Figure 12.

Algorithm 3 illustrates the iterative version of the Gauss-seidel orchestrator. Func-
tion hasConverged encodes the test for convergence, which can either count a fixed
number of iterations (semi-implicit method), or check whether the output values have
converged (implicit method). The rollback function reverts the state of the simula-
tion unit to the one before the most recent call to the doStep function. Contrarily to its
non-iterative counterpart, the order used in this algorithm does not necessarily reflect
the dependencies between simulation units: it is merely an order defined by the user.

The iterative version of the Jacobi algorithm is similar, so we omit it.
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Figure 12: Abstract example co-simulation scenario with the dependency graph. The
inputs, state and output variables are vectors. There are multiple algebraic loops.

4.5 Advanced Co-simulation Techniques
In order to simplify the explanation, and to keep the algorithms within one page, we
made some assumptions in the previous sub-sections. Additionally, there are more
advanced techniques that can be applied in practice to improve the performance of
co-simulations. We discuss these in the following.

4.5.1 Initialization

Until now we have assumed that, in a co-simulation scenario, each simulation unit has a
given initial state, independent of the initial state of other simulation units. In practice,
this might not be the case, so the co-simulation scenario has to include a description
of how the initial states are related (see the initial state couplings concept in Figure 1),
and the orchestrator has to compute these initial states. This computation is similar to
the computation of initial outputs, and may also include algebraic loops.

4.5.2 Fine Grained Input/Output Dependencies

We also assumed that the representation of the dependency information between in-
put, state, and output vectors was adequate. It is better to represent the dependencies
between the scalar variables. To see why, observe the example in Figure 13, which
shows the same co-simulation scenario as the one in Figure 12, but instead of using the
vector level dependency information, it uses the the scalar level. What was identified
as an output algebraic loop in Figure 12, is no longer one at the scalar level dependency

20



Algorithm 3: Iterative Gauss-seidel orchestrator. See Figure 3.
Data: The stop time T , a communication step H, a scenario with unit references D, and their order σ .
t := 0 ; // Simulation time
// Initialize variables
for w ∈ D do

uuuccc[w] := yyy[w] := 000 ; // Current I/O variables.

uuuppp[w] := aaauuuxxx[w] := 000 ; // Previous and auxiliary I/O variables.

end
// Compute initial outputs
converged := FALSE;
while t < T do

for j = 1, . . . , |D| do
w := σ( j);

uuuccc[w] :=Cw

({
yyy[v]|v ∈ S[w]

})
; // Compute input from set of sources.

yyy[w] := getOutput(w,uuuccc[w]); // Compute output.

uuuppp[w] := uuuccc[w];
end
if hasConverged

({
(uuuccc[w],aaauuuxxx[w])|w ∈ D

})
then

converged := TRUE;
else

aaauuuxxx[w] := uuuccc[w] for each w ∈ D;
end

end
while t < T do

converged := FALSE;
for j = 1, . . . , |D| do

w := σ( j);

uuuccc[w] :=Cw

({
yyy[v]|v ∈ S[w]

})
;

doStep(w,H,uuuccc[w],uuuppp[w]); // Compute xxx[w](t +H) from xxx[w](t) and inputs.

yyy[w] := getOutput(w,uuuccc[w]);
end
if hasConverged

({
(uuuccc[w],aaauuuxxx[w])|w ∈ D

})
then

converged := TRUE;
uuuppp[w] := uuuccc[w] for each w ∈ D; // Update previous input.

else
aaauuuxxx[w] := uuuccc[w] for each w ∈ D;
rollback(w) for each w ∈ D; // Cancel the effects of doStep.

end
t := t +H; // Advance time

end

graph in Figure 13. This is called a virtual algebraic loop and does not require iterative
techniques to be solved. The orchestrator then can set the appropriate scalar inputs, and
inquire for the scalar outputs, in the right order. Please refer to [3] and [11, Section 3.2]
for details on how to represent the graph, compute the topological sort, and identify the
algebraic loops.

4.5.3 Input/Output Couplings

We assumed that the outputs and inputs of the simulation units are coupled by simple
assignments. In general, this might not be the case, as is shown in [29], and orchestra-
tion algorithms exists that deal with such advanced couplings. For example, see [16,
Section 4.3.1] and references thereof.
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Figure 13: Scalar version of the dependency graph for the co-simulation scenario in
Figure 12. The nodes represent scalar quantities.

4.5.4 Adaptive Communication Step

We assumed that the communication step size has to remain fixed over the co-simulation.
In practice, it is often better that the orchestrator varies the communication step size,
and/or asks the simulation units to adjust their own numerical method and approxima-
tion schemes, in order to respond to external requirements or react to the past dynamics
of the co-simulation.

4.6 Summary and Further Reading
This section showed how the specialization of numerical methods naturally leads to the
need for co-simulation. Then it defined the intervenients in the co-simulation process
and introduced the different kinds of orchestration algorithms. Finally, it discusses
some of the advanced techniques.

We refer the reader to [19, 27] for other motivations of co-simulation. For in-
depth discussions about the different kinds of orchestration algorithms and advanced
techniques, please see [17, Section 4] and references thereof.

5 Conclusion
The co-simulation technique introduced in the previous section allows us to apply the
best numerical method to each part of a given IVP. This is not the only benefit though.
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For example, each numerical method can use a different step size. This is an advan-
tage because different models may evolve with derivatives that are orders of magnitude
apart, as is the case in Example 5 where the accelerations measured in the car model
are four orders of magnitude lower than the accelerations measured in the psg unit.
Therefore, as shown in the co-simulation computed in Figure 11, the car unit can af-
ford to take one simulation step per co-simulation step, while the psg unit takes 100
steps, without drastically affecting the overall accuracy.

Another benefit is that simulation units do not have to disclose the equations being
solved internally. Instead, it is common to only disclose the outputs and inputs, ca-
pabilities such as the ability to rollback, and the derivatives of outputs with respect to
time and inputs. The black box nature of the units makes it easier to standardize their
interface, which in turn enables the coupling of mature modeling and simulation tools.
Wide industrial adoption is one of the main drivers behind research into co-simulation
[28].

This tutorial aims at introducing the main concepts in co-simulation, and providing
researchers and practitioners with further reading in each of the topics. The concepts
introduced here represent the fundamental concepts in co-simulation, general to any
co-simulation framework.
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A Numerical Stability
In this section, we introduce the concept of stability of a system of ordinary differential
equations, and derive the conditions under which the numerical methods introduced in
Section 3 preserve this property.

We say that the system of differential equations in Equation (12) is asymptotically
stable when all its solutions tend to zero as time passes, regardless of the initial value.
Formally, limt→∞ ‖xxx(t)‖= 0 for all x(t) satisfying Equation (12).

The following example illustrates why asymptotical stability is an important prop-
erty.

Example 7. Consider the solution v(t) of the cruise controlled car IVP, introduced in
Example 1.

After some time, the velocity of the car will be constant. Let vt denote this velocity.
It can be computed by noting that the acceleration of the car will be zero at that speed.
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Hence, setting the right hand side of Equation (2) to 0, and rearranging gives vt =
(kvd)/(k+ c f ).

Determining the stability of Equation (2) allows us to prove that the velocity of car
actually tends to vt , which is an important property of the cruise controller. Let a =
−(1/m)(k+c f ) and b = (1/m)(kvd), so that Equation (2) can be written as v̇ = av+b,
and vt = −b/a. Then introduce a new variable v̄ = v− vt representing the difference
between the car velocity and the terminal velocity. With the new variable, Equation (2)
can be written as ˙̄v = av̄. Since a < 0, any solution v̄(t)→ 0 as t → ∞, independently
of v̄(0), thus proving that the cruise controller is asymptotically stable6.

As the previous example shows, a scalar ODE in the form of

ẋ = ax (24)

is asymptotically stable if a < 0. The analogous condition for vector ODEs of the form
of

ẋxx = Axxx, with A being a constant matrix, (25)

is that the real part of all eigenvalues of A is strictly negative [35, Section I.12]. For-
mally,

∀λ ∈ Eig(A), Re{λ}< 0. (26)

Both these conditions can be checked automatically.
To see why a numerical method may fail to preserve the asymptotic stability of a

system of differential equations, consider a scalar ODE in the form of Equation (24),
and apply the explicit Euler method (Equation (13)) to get x(t + h) ≈ x(t)+ ahx(t) =
(1+ah)x(t) = (1+ah)nx(0), where n = t/h. For any x(0), the term (1+ah)nx(0)→ 0
as n→ ∞ if |1+ah|< 1. Note that the larger |a| is, the smaller the step size has to be,
in order for the method to be numerically stable.

The vector version of the above derivation is analogous. Consider a vector ODE in
the form of Equation (25), and apply the explicit Euler method (Equation (3)) to get
xxx(t +h)≈ (I +Ah)nxxx(0), where n = t/h. For any xxx(0), the term (I +Ah)nxxx(0)→ 0 as
n→ ∞ if ρ(I +Ah)< 1 [30], where ρ(·) denotes the maximum absolute eigenvalue of
·, also called the spectral radius of ·. The analogous condition for the implicit Euler is
ρ((I +Ah)−1)< 1, where M−1 is matrix inverse of M.

The procedure to decide the numerical stability is summarized as follows. Apply
the equation representing the numerical approximation to a differential equation of the
form of Equation (25), and obtain an equation with the form

xxx(t +h)≈ Ãxxx(t) (27)

where Ã is a constant matrix. Then check whether ρ(Ã)< 1.
When the explicit Euler is numerically unstable, a solution is to decrease the step

size h, as it decreases the quantity ρ(I+Ah). However, as the next example shows, the
step size required to obtain a stable solution can be prohibitively small. When this is
the case, we recommend the use of a different numerical method, with better stability
properties, such as the implicit Euler method.

6Notice that vt < vd for k > 0 and d > 0. This makes the cruise controller incorrect, but keeps the example
simple.
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Example 8. Consider the mass-spring-damper, introduced in Example 4, with m = 1,
fe(t) = 0 for any t, 0 < c f < 1, and c2 > 1. It can be written in the form of Equa-
tion (25), with

A =

[
0 1
−c2 −c f

]
, where 0 < c f < 1,c > 1.

The numerical stability of the explicit Euler method with the above equation is de-
termined by 0.5

∣∣∣−c f h+h
√

c2
f −4c2 +2

∣∣∣ < 1. For 0 < h < 1, this inequality can be
simplified to highlight the real and imaginary parts of the left hand side,

0.5
∣∣∣−c f h+2+h

√
c f +2c

√
2c− c f

√
−1
∣∣∣< 1.

Computing the absolute and simplifying gives
∣∣c2h2− c f h+2

∣∣ < 1. As the parameter
c f → 0, the maximum safe step size h→ 0 as well, which means that in the limit where
c f = 0, the explicit Euler method will never preserve the stability property. The same
can be observed as the parameter c→ ∞.

A.1 Further reading
Other definitions of stability are given in [31, Section 2.3]. The derivation of the con-
ditions for stability of vector ODE’s is taken from [35, Section I.12] and [22]. For the
stability of adaptive numerical methods (e.g., ones that change the step size over time),
we refer to [14, 13, 12].

B Approximation Accuracy
In the previous section, we looked at whether a qualitative property of the original IVP
could be preserved under a numerical simulation. In this sub-section, we start by intro-
ducing a technique to compute the correct solution to a restricted class of differential
equations, so that we can later show how to experimentally compute the approximation
error of a numerical method, as a function of the step size used.

B.1 Analytical Solution
When the IVP in Equation (12) has the form of Equation (25), the analytical solution
is given by

xxx(t) = eAtxxx0, with eAt = I +At +
A2t2

2!
+

A3t3

3!
+ . . . , (28)

where eAt is the matrix exponential of At [10, Section 2.2]. This can be verified by
taking the derivative of eAtxxx0, and obtaining AeAtxxx0 = Axxx (the right hand side of the
IVP in Equation (12)).

Most software libraries include algorithms to approximate the matrix exponential in
Equation (28). Furthermore, the computation of xxx(t) can be done incrementally, mim-
icking a numerical method, by noting that xxx(t +h) = eA(t+h)xxx0 = eAheAtxxx0 = eAhxxx(t).
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The formulation in Equation (28) is generic enough to allow the computation of the
solution to equations of the form

ẋxx = Axxx+bbb (29)

where bbb is a constant vector: Equation (29) can be transformed to the form in Equa-
tion (25) by introducing a new state vector x̂xx =

[
x1 . . . xn u

]T and solving the
IVP

˙̂xxx =
[

A bbb
0001×n 0001×1

]
x̂xx, with x̂xx(0) =

[
xxx000
1

]
,

where 000p×q denotes the null matrix with dimensions p×q.

B.2 Experimental Approximation Error
Given an approximation x̃xx(t) of the solution xxx(t) to the IVP introduced in Equation (12),
we define the approximation error of an approximation computed with step size h
as eeeh(t) = xxx(t)− x̃xx(t), and the maximum error up to a finite T > 0 as emaxT (h) =
maxi∈{0,...,T/h} ‖eeeh(ih)‖.

We can experimentally plot the error emaxT (h) of a numerical method applied to an
IVP as a function of the step size h as follows. Pick a finite simulation time T > 0; and
compute the maximum error emaxT (h) of the analytical and numerical solutions up to
T for different step sizes.

The resulting emaxT (h) can be used to get the order of the numerical method.
Roughly, for sufficiently small h, if emaxT (h) < c |g(h)| for a given function g(h) and
positive constant c, then we say that emaxT (h) is in the order of g(h), or in other words,
emaxT (h) = O (g(h)). The constant c that approximates the error depends on the IVP
being solved, but the order is a property of the numerical method [35, Section I.7 and
II.1].

Example 9. The Midpoint method is given by the iteration:

xxx(t +h)≈ xxx(t)+F(xxx(t)+F(xxx(t),uuu(t))0.5h,uuu(t +0.5h))h, with xxx(0) = xxx000.

Figure 14 compares the approximation error of the explicit Euler method (Equation (13))
with the approximation error of the Midpoint method, when applied to the IVP intro-
duced in Example 8. The Midpoint method is O

(
h2
)
, while the explicit Euler is O (h).

Also note that, for the same maximum error, the step size required by the Midpoint
method is larger than the required for the explicit Euler.

B.3 Further Reading
We refer the reader to [9] and [35] for theorical discussions of error in numerical meth-
ods.

C Co-simulation Convergence and Stability
The methods introduced in Appendices A and B can be applied to co-simulations as
well.
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Figure 14: Approximation order of the explicit Euler and the Midpoint methods.

C.1 Stability
To study the numerical stability of a co-simulation, one:

1. starts with a linear system in the form of Equation (25),
2. describes each simulation unit with an equation as in Table 3,
3. couples the multiple simulation units, and
4. ends with an iteration of the form x̃xx(t+H)≈ Ãx̃xx(t), representing the co-simulation

method.
The state vector x̃xx is the concatenation of the state vectors of each simulation unit, and
the matrix Ã encodes every action of every simulation unit to complete each step of the
co-simulation. The condition ρ(Ã)< 1 can then be checked.

We now exemplify this procedure for the co-simulation of two simulators, con-
nected in a feedback loop, without algebraic loops. This procedure can be generalized
to any number of simulators, as long as the underlying coupled system can be written
as in Equation (25) (for conditions that ensure this, see [3, Section 2]). We consider
two orchestration methods: a Jacobi and an Iterative Jacobi scheme.

C.1.1 Jacobi Orchestration

Time is discretized into a countable set T = {t0, t1, t2, . . .} ⊂ R, where ti+1 = ti +Hi is
the time at step i and Hi is the communication step size at step i, with i = 0,1, . . .

In the interval t ∈ [ti, ti+1], each simulator S j approximates the solution to a linear
ODE,

ẋxx j = A jxxx j +B juuu j

yyy j =C jxxx j +D juuu j
(30)

where A j,B j,C j,D j are matrices, the initial state xxx j(ti) is computed in the most recent
co-simulation step, and j = 1,2.
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Since the simulators only exchange outputs at times ti, ti+1 ∈ T , the input uuu j has
to be extrapolated in the interval [ti, ti+1). In the simplest co-simulation strategy7, this
extrapolation is often implemented as a zero-order hold: ũuu j(t) = uuu j(ti), for t ∈ [ti, ti+1).
Then, Equation (30) can be re-written to represent the unforced system being integrated
by each simulator: [

ẋxx j
˙̃uuu j

]
=

[
A j B j
0 0

][
xxx j
ũuu j

]
(31)

We can represent the multiple internal integration steps of Equation (31), performed
by the simulator S j in the interval t ∈ [ti, ti+1], as[

x̃xx j(ti+1)
ũuu j(ti+1)

]
= Ã

k j
j

[
x̃xx j(ti)

ũuu j

]
(32)

where, e.g., Ã j = I+h j

[
A j B j
0 0

]
for the Forward Euler method, k j = (ti+1− ti)/h j is

the number of internal steps, and 0 < h j ≤Hi is the internal fixed step size that divides
Hi.

We assumed that the two simulators are coupled in a feedback loop:

uuu1 = yyy2 and uuu2 = yyy1, (33)

and that there are no algebraic loops, so either D1 or D2 is the zero matrix. Let D2 = 0.
With the Jacobi orchestration algorithm (recall Algorithm 2), at the beginning of

the co-simulation step i, uuu1(ti) = yyy2(ti) and uuu2(ti) = yyy1(ti). This, together with Equa-
tion (30), gives,

uuu1(ti) =C2x̃xx2(ti)

uuu2(ti) =C1x̃xx1(ti)+D1C2x̃xx2(ti).
(34)

Equations (31), (32) and (34) can be used to represent each co-simulation step in the
form of Equation (27):

[
x̃xx1(ti+1)
x̃xx2(ti+1)

]
=

[
I 0 0 0
0 0 I 0

][
Ãk1

1 0
0 Ãk2

2

]
I 0
0 C2
0 I

C1 D1C2


︸ ︷︷ ︸

Ã

[
x̃xx1(ti)
x̃xx2(ti)

]

C.1.2 Iterative Jacobi Orchestration

Here we assume that each co-simulation unit is represented in the form:[
x̃xx j(ti +H)
ũuu j(ti +H)

]
=

[
M1,xxx j M1,uuu j

M2,xxx j M2,uuu j

][
x̃xx j(ti)
uuu j(ti)

]
(35)

The derivation of which is explained in Appendix C.1.1.
7The derivation presented can be applied to more sophisticated input extrapolation techniques, see [6,

Equation (9)].
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In the iterative Jacobi method (recall Figure 3), at the beginning of the co-simulation
step i+1, there is a successive substitution fixed point iteration. This can be modelled
by

uuu1(ti+1) =C2x̃xx2(ti+1)

uuu2(ti+1) =C1x̃xx1(ti+1)+D1uuu1(ti+1).
(36)

As done in Appendix C.1.1, the above equation can be expanded and simplified to:

x̃xx1(ti+1) = M1,x1 x̃xx1(ti)+M1,uuu1C2x̃xx2(ti+1)

uuu1(ti+1) = M2,x1 x̃xx1(ti)+M2,uuu1C2x̃xx2(ti+1)

x̃xx2(ti+1) = M1,x2 x̃xx2(ti)+M1,uuu2C1x̃xx1(ti+1)+M1,uuu2D1uuu1(ti+1)

uuu2(ti+1) = M2,x2 x̃xx2(ti)+M2,uuu2C1x̃xx1(ti+1)+M2,uuu2D1uuu1(ti+1)

(37)

which can be put in matrix form:
x̃xx1(ti+1)
uuu1(ti+1)
x̃xx2(ti+1)
uuu2(ti+1)

=


M1,x1 0 0 0
M2,x1 0 0 0

0 0 M1,x2 0
0 0 M2,x2 0




x̃xx1(ti)
uuu1(ti)
x̃xx2(ti)
uuu2(ti)

+


0 0 M1,uuu1C2 0
0 0 M2,uuu1C2 0

M1,uuu2C1 M1,uuu2D1 0 0
M2,uuu2C1 M2,uuu2D1 0 0




x̃xx1(ti+1)
uuu1(ti+1)
x̃xx2(ti+1)
uuu2(ti+1)


(38)

Renaming the above equation to x̄xxi+1 = M̄ix̄xxi + M̄i+1x̄xxi+1, we get an equation in the
form of Equation (27):

x̄xxi+1 = (I− M̄i+1)
−1M̄ix̄xxi (39)

C.2 Convergence
Regarding the accuracy of the co-simulation, the analysis is more difficult, but not
fundamentally different than the one introduced here. The added difficulty arises from
the fact that, besides the numerical methods employed by each unit and their internal
step size, the communication step size and the input approximation functions, also
have to be taken into account. The combination of parameters makes it hard to judge
the accuracy of the co-simulation.

C.3 Further Reading
The work in [17, Section 4] provides an overview of references that focus on the stabil-
ity of co-simulation methods. The theoretical foundations for the stability of adaptive
orchestration algorithms are discussed in [14, 13, 12]. Regarding the convergence of
co-simulation methods, we refer to [21, 3].
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