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Abstract

We propose an algorithm to restrict the switching signals of a con-
strained switched system in order to guarantee its stability, while at
the same time attempting to keep the largest possible set of allowed
switching signals.

Our work is motivated by applications to (co-)simulation where numer-
ical stability is a hard constraint, but should be attained by restricting as
little as possible the allowed behaviours of the simulators.

We apply our results to certify the stability of an adaptive co-simulation
orchestration algorithm, which selects the optimal switching signal at
run-time, as a function of (varying) performance and accuracy require-
ments.

1 Introduction

A switched system is defined as

xk+1 = Aσk
xk : σk ∈ {1, . . . ,m} , Aσk

∈ A (1)

where {1, . . . ,m} is the set of modes, σk is the mode active at time k, and
A = {A1, . . . , Am} ⊆ Rn×n is a set of real matrices. We denote the sequence
σ0, σ1, . . . , σk as the switching signal. Aσk

∈ A represents the matrix used to
compute xk+1 from xk at time k.
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Switched systems are widely used to model many dynamical systems
in modern engineering including viral mutations in a patient’s body [25],
trackability of malicious agents in a sensor network [28], or scheduling of
thermostatically controlled loads (TCLs) [37].

In this paper, we are motivated by a new application [16] in the field
of co-simulation. It is a numerical technique to couple multiple simulators,
each simulating a part of a coupled system, in order to compute the overall
behavior more efficiently [7, 8, 17, 20, 22, 30]. One of the objectives is to
leverage different mature simulation tools, even when the details of each
simulation tool are unknown [3,4], and it has been applied in fields such as
automotive, electricity distribution, maritime, railway, etc. . . See [14,18,42,
44] and references thereof, for applications.

As illustrated in Figure 1, in order to run a co-simulation, each simulator
approximates the solution of a differential equation, exchanging values with
other simulators at agreed-upon communication times. Between communica-
tion time instants, the unknown inputs are approximated with extrapolation
functions.
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Figure 1: Co-simulation coordination example.

To improve the performance, during a co-simulation each simulator can
adapt its policy, by varying:

1. the discretization step size and/or the numerical algorithm (e.g., mid-
point method, Runge-Kutta) as a result of error estimates;

2. the input approximation function (e.g., by varying the Lagrange polyno-
mial degree) as a result of the dynamics of the inputs; and

3. the values exchanged and the order in which they are exchanged, as a
result of the varying structure of the coupled system being simulated.

We will call policy sequence to the sequence of policies taken by all simulators
over time.

The ability to adapt allows one to find the best tradeoff between accuracy
and computation power, to meet the available time. The applications are not
restricted to co-simulation. For example, in Model Predictive Control [12],
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the controller needs to be able to simulate the system in real-time.
In the context of (co-) simulation, it is fundamental to ensure that a

(co-) simulation method preserves the stability of the system being (co-) simu-
lated. The error dynamics of a (co-) simulation can be modelled as a switched
system (Section 5), hence the preservation of stability becomes a problem
of deciding the stability of a switched system (System (1)). Furthermore, as
the choice of future policies is influenced by the past policies, we consider
constrained switched systems, a recently developed framework allowing us
to model the memory of the system (see Section 2).

If there exist one or more policy sequences that can make the (co-) sim-
ulation method unstable, then the simulators have to be forbidden from
following these. In the context of constrained switched systems, there are
many ways of forbidding a policy sequence, and each way also forbids se-
quences that do not make the (co-) simulation unstable.

We tackle the problem of how to best forbid policy sequences that make
the constrained switched system unstable. We propose that the best solution
is to maximize the entropy of the stabilized constrained switched system in
order to maximize the adaptability of the resulting (co-) simulation method.

In the next section, we formulate the problem of how to forbid “bad”
policy sequences (that cause the system to be unstable), while minimizing
the number of good sequences that are forbidden as side effect. Then, in
Section 3 we propose an algorithm that approximates the solution, and we
prove that the it terminates and that the resulting system is stable. Further-
more, we provide a lifting technique that yields better solutions. Section 5
explores applications of our contributions and co-simulation, respectively .
Section 6 presents related work and Section 7 concludes.

2 Problem Formulation

We introduce the dynamical systems being considered, called Constrained
Switched Systems [40], and we formulate our research problem.

In practice, some switching signals of System (1) may not be relevant,
and a way to represent the sensible ones is required.

For instance, in the switched system described in Example 4, it may
not make sense that the Runge-Kutta method is used right after a Forward
Euler. This is because the convergence rate of each method is too different
to warrant a switch without first taking a step with the Midpoint method.

To model these constraints, we introduce the notion of constrained
switched system. When compared to System (1), constrained switched
systems incorporate a representation of the allowed switching signals using
an automaton [36].
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Definition 1. Given a bounded set of matrices A = {A1, . . . , Am}, we define
an automaton as a directed and labelled graph G = (V,E), with nodes V and
edges E such that no node has zero ingoing or outgoing degree. Each edge
(v, w, σ) ∈ E represents a transition from node v ∈ V to node w ∈ V , where
σ ∈ {1, . . . ,m} is the label, corresponding to Aσ.

An example automaton, illustrating possible constraints on the system
described in Example 4, is shown in Figure 2.

We say that the switching signal, or word, s = σ0σ1 . . . σk−1 is accepted
by an automaton G if it corresponds to a path in G, that is, if there exists
v0, v1, . . . , vk ∈ V , such that (vj , vj+1, σj) ∈ E for all j = 0, . . . , k − 1. An
accepted word induces an accepted matrix product As = Aσk−1

· · ·Aσ1
Aσ0
∈

Ak.
For example, the word (fe, 0.001), (fe, 0.002), (md , 0.002) is accepted by

the automaton shown in Figure 2. This word induces the matrix product
Ãmd,0.002Ãfe,0.002Ãfe,0.001.

We denote the set of accepted words of length k as Gk, and the set of all
words accepted by the automaton as G∗ =

⋃∞
k=1 Gk. Moreover, G◦k denotes

the set of accepted cycles of length k.
For example,

(fe, 0.001), (fe, 0.002), (md , 0.002) ∈ G3, and

(fe, 0.002), (fe, 0.001) ∈ G◦2.

One can see that given a word σ(0) . . . σ(k − 1) ∈ Gk, any sub-word
σ(i) . . . σ(j) for any 0 ≤ i ≤ j < k, satisfies σ(i) . . . σ(j) ∈ Gj−i+1. Moreover,
since every node has at least one outgoing edge in Definition 1, for any
k′ > k, there exists σ(k) . . . σ(k′ − 1) such that σ(0) . . . σ(k′ − 1) ∈ Gk′ .

Definition 2 (CSS). Given a set of matrices A = {A1, . . . , Am}, and an
automaton G = (V,E), we define a constrained switched system (CSS)
S = 〈A,G〉 as a system where the variable xk satisfies:

xk+1 = Aσk
xk : σ0 . . . σk−1 ∈ Gk. (2)

We say that System (2) is stable iff

lim
k→∞

‖xk‖ = lim
k→∞

∥∥Aσk−1
· · ·Aσ0x0

∥∥ = 0,

for any word σ0 . . . σk−1 ∈ Gk and any x0 ∈ Rn.
To determine the stability of a CSS, we introduce the constrained joint

spectral radius.

Definition 3 ( [11, Definition 1.2]). The constrained joint spectral radius is
defined as

ρ̂(S) = lim
k→∞

ρ̂k(S) where ρ̂k(S) = sup
w∈Gk

‖Aw‖
1
k ,

and ‖·‖ is any matrix norm that satisfies the sub-multiplicative property.
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Figure 2: Example automaton for Example 4.

Proposition 1 ( [11, Lemma 3.1]). If ρ̂(S) < 1, then the CSS is stable.

It can be shown [29, Lemma 1.2] that limk→∞ ρ̂k(S) = infk≥1 ρ̂k(S). There-
fore, for any k > 0, ρ̂k(S) is an upper bound to ρ̂(S). This fact, together with
Proposition 1, gives us a way to check whether a given CSS S is stable:

1. Pick a finite k > 0, and compute ρ̂k(S);
2. If ρ̂k(S) < 1, then ρ̂(S) < 1 and S is stable;
3. Otherwise, pick a larger k and try again.
If the CSS is unstable, then the above procedure will never terminate.
A way to prove that a CSS is unstable is to find a switching signal that

causes the system to be unstable. For example, by finding a cycle c ∈ G◦k
with ρ(Ac) ≥ 1, where ρ(Ac) denotes the spectral radius of the matrix Ac
induced by the cycle. In other words, finding a matrix product that, when
repeated forever, causes the system to be unstable.

Unstable cycles can be found by brute force or branch-and-bound vari-
ants [19,23,27]. Naturally, these methods look first for unstable cycles with
a small length. However, finding longer cycles becomes prohibitively high
(see Section 5).

For example, a simple (and naive) procedure to find a cycle is to pick a
finite k, enumerate all cycles c ∈ G◦k, check whether ρ(Ac) ≥ 1, and stop
when one such cycle is found.

The method introduced in [32] works well for finding long cycles. To cer-
tify the stability of a given CSS, it solves a semidefinite program to compute
polynomial Lyapunov functions of degree 2d. If the program is infeasible,
it uses the dual certificate of infeasibity to generate an infinite switching
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signal of guaranteed growth rate. Subwords of this signal can be used to
find unstable cycles. As cycles are found along an infinite switching signal,
finding long unstable cycles is not particularly more difficult. Moreover, if
no unstable cycle can be found, one can retry with polynomial Lyapunov
functions of degree 2(d+ 1). There is an increased guarantee on the growth
rate of the infinite switching signal as the degree increases.

The following definition formalizes the spectral radius of cycle induced
matrix products.

Definition 4 ( [11, Definition 1.2]). The generalized spectral radius of a
CSS S is defined as:

ρ(S) = lim sup
k→∞

ρk(S) where ρk(S) = sup
c∈G◦k

ρ(Ac)
1
k (3)

It follows [29, Proposition 1.6] that, for finite k > 0,

ρk(S) ≤ ρ(S) ≤ ρ̂(S) ≤ ρ̂k(S).

Moreover, since A is bounded, it is shown in [11, Theorem A] that ρ(S) =

ρ̂(S).

Remark 1. The above discussion about proving that a CSS is unstable
focused on finding finite cycles, as opposed to infinite paths. In fact, there
is no guarantee that if a CSS satisfies ρ̂(S) ≥ 1 (i.e., is unstable), then
a cycle c with finite length exists, with ρ(Ac) ≥ 1 (see [29, Section 2.4]
and [5, Theorem 2]). However, the systems we experimented with, either
satisfy ρ̂(S) > 1, or ρ̂(S) < 1. For these, the following result was used.

Proposition 2 ( [29, Theorem 2.3]). If ρ̂(S) > 1, then there exists a cycle
c ∈ G◦k of length k that satisfies ρ(Ac) ≥ 1.

Our goal is to optimally modify a given CSS, by forbidding unstable
switching signal cycles from the language it generates. The problem of
finding such cycles is outside the scope of our work (see [33] for the algorithm
we used, and references thereof for algorithms with the same goal). As
such, we introduce the following definition, which represents any algorithm
available for this purpose.

Definition 5 (Oracle). Given ε > 0, we define a stability oracle Oε : S →
{Stable} ∪

⋃∞
k=1 G

◦
k, where S is a CSS. The oracle Oε returns either Stable

certifying that ρ̂(S) < 1 or a cycle c ∈ G◦k such that ρ(Ac)
1/k > 1− ε.

We emphasize that the oracle has a (slightly) imperfect behaviour: in case
1− ε < ρ̂(S) < 1, one cannot guarantee what the outcome of the oracle will
be. This imperfection is intentional (see Remark 1), as it models the state of
the art [38]. Proposition 2 ensures that if ρ̂(S) > 1− ε, there exists a k and a
cycle c ∈ G◦k such that ρ(Ac)

1/k > 1− ε.
We now proceed to define the set of possible different switching signals

that are admissible.
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Definition 6 (Admissible Regular Language). We say that L = G∗ is the
language recognized by the automaton G. A language is regular if it is
recognized by a finite automaton. A language L recognized by an automaton
G is admissible for A if the constrained switched system S = 〈A,G〉 satisfies
ρ̂(S) < 1.

Let L0 denote the language recognized by the automaton G0 of a given
S = 〈A,G0〉. Informally, our goal is to find the “largest” regular language
L? ⊆ L0 that is admissible. For this optimization problem to be well defined
we need to find a metric for the objective. This metric should be in accor-
dance to the fact that given L ⊆ L′, the objective should favor L′. A widely
used notion to describe the size of a regular language is that of Entropy.

Definition 7 (Entropy [35, Definition 4.1.1]). Given a regular language L
recognized by an automaton G, we define the entropy as

h(L) = lim
k→∞

1

k
log2 |Gk|.

In the above, |Gk| represents the number of words of length k accepted by
the automaton G.

We denote the entropy of the language G∗ recognized by an automaton
G as h∗(G).

If L ⊆ L′, then Gk ⊆ G′k for any k, and so h(L) ≤ h(L′). Our problem can
now be formulated.

Problem 1. Given a CSS 〈A,G0〉, find the language L? solution of the
following optimization problem:

L? = sup
L regular

h(L) s.t.

L ⊆ L0,

L is admissible for A. (4)

where L0 is the language recognized by G0.

Remark 2. In Problem 1, we restrict our attention to regular languages.
While there are examples that highlight the benefit of using non-regular
languages (see Example 1), in practice, one needs an efficient way of gener-
ating accepted switching signals. For instance, during a co-simulation, at
any step, the simulators need to compute as quickly as possible the set of
policies that can be taken (see [16, Section 4.4] for how this can be done).
Automata allow the decision procedure to be fast, with little memory. In
addition, as hinted in Example 2, regular languages may be constructed to
approximate an admissible language with entropy arbitrarily close to the
entropy of the optimal solution, even if that optimal solution is a non-regular
language.
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Figure 3: Evolution of h(Lk) of Example 2 in terms of k.

Example 1. ConsiderA = {A1, A2}, withA1 = 2 andA2 = 1
2 , andG = (V,E),

where V = {v1} and E = {(v1, v1, 1), (v1, v1, 2)}. That is, G has the form

v11 2

The optimal solution L? of (relaxed) Problem 1 should include every word
that has more 1s than 2s. As shown in [47, Example 1.73], no automaton can
be built that accepts this language.

Example 2. Consider A = {A1, A2}, with A1 = 1 and A2 = 1
2 . A language

is admissible if it does not contain the infinite repetition of the symbol
1. Let Lk be language of all words that do not contain k consecutive 1’s.
Figure 3 suggests that that h(Lk) tends to log2(2) when k tends to infinity.
The quantity log2(2) denotes the entropy of the optimal solution.

3 Lift-and-Constrain Stabilization

3.1 Constraining for more stability

Algorithm 1 details an iterative procedure that stabilizes a given CSS S =

〈A,G〉, using the oracle in Definition 5. At each iteration, if the oracle returns
a cycle c = σk . . . σk, then c is eliminated from G. The removal of a cycle
can be accomplished by removing an edge of G, thus potentially decreasing
ρ̂(S). After removing the cycle c, any infinite sequence in G∗ for which c is
a subsequence will be eliminated too. This is illustrated in Example 3. The
algorithm can produce an empty CSS, which does not imply that the original
CSS is impossible to stabilize. An empty CSS is trivially stable.

Example 3. Consider the automaton in Figure 4, and suppose the oracle
has returned the cycle 234. This cycle is highlighted in red, in the figure.
Any of the edges in red can be removed to forbid the unstable sequence. If

edge v1
2−→ v2 is removed, the infinite sequences accepted by the resulting

automaton end with either an infinite sequence of 2’s, or an infinite sequence
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of 3’s. If edge v2
3−→ v3 is removed instead, the resulting automaton accepts

infinite sequences comprised of repeating subsequences which include 2, or
3, or 12.

v1 v2

v3
34

2
1

2

3

Figure 4: Automaton of Example 3.

As Example 3 shows, the choice of different edges to be removed has
a different impact in the entropy of the resulting automaton. Informally,

removing the edge v2
3−→ v3 seems to be the best choice because the resulting

automata allows for more sequences. This is corroborated by computing the
entropy of the resulting automaton alternatives. See Appendix A for how to
compute the entropy in this example.

Data: A CSS S = 〈A,G〉.
Result: A stable CSS S = 〈A,G〉.
while Oε(S) 6= Stable do

1. Find e ∈ arg max{h∗(G− e) | e ∈ E, e is
an edge of the cycle Oε(S) };

2. Set G := G− e;
end

Algorithm 1: Stabilization algorithm for a constrained switched system.
h∗(G) denotes the entropy of the language recognized by G. The differ-
ence G− e denotes the automaton obtained by removing the edge e from
G.

The following result demonstrates that Algorithm 1 always terminates.

Theorem 1. Given a CSS S = 〈A,G〉 and an oracle satisfying Definition 5,
Algorithm 1 terminates in finite time and the resulting CSS is stable.

Proof. At each iteration of the algorithm, the number of edges of the automa-
ton G = (V,E) decreases by one. Since at the beginning of the algorithm |E|
is finite, the algorithm must terminate after a finite number of iterations. The
condition for termination of Algorithm 1 implies that the resulting system is
stable.

Remark 3. In Theorem 1, the assumption that the oracle in Definition 5 al-
ways terminates is crucial, as the problem solved by the oracle is undecidable
in general (recall Remark 1).
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3.2 Lifting for less conservativeness

Algorithm 1 takes a constrained switched system S = 〈A,G〉, and outputs a
constrained switched system S′ = 〈A′,G′〉 that is stable, while attempting
to maximize the entropy of the language recognized by G′. If we let L′
denote this language, then, relating this to Problem 1, L is admissible and
regular, and thereby a potential solution. However, it may not be the optimal
solution. Similarly, if the algorithm returns an empty CSS, this does not mean
that the original CSS is impossible to stabilize . To maximize the entropy
of the stabilized CSS’s, we propose to take anM -Path-Dependent lift of the
automaton representing the input language L0.

Definition 8 ( [40, Definition 3]). Given an automatonG, we define the lifted
automatonG[k] of degree k as follows. For each path v0, σ0, v1, σ1, . . . , σk, vk+1

with length k + 1 of G, G[k] has a node u− = v0σ0v1σ1 . . . σk−1vk, a node
u+ = v1σ1v2σ2 . . . σkvk+1 and an edge (u−, u+, σk).

Figure 5 shows the second degree (k = 2) lift of the automaton in Figure 4.

Figure 5: Second degree lifted automaton of Example 3.

The lifted automaton represents the same language, as shown by Propo-
sition 3, but, as suggested by Theorem 2 and illustrated by Example 2 (,
lifting the automaton before applying Algorithm 1 allows one to obtain an
admissible language with higher entropy.
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Proposition 3. Let L be the language recognized byG and L[k] the language
recognized by G[k], where G[k] is the lift of degree k of G. Then L = L[k].

Proof. Consider a sequence σ0 . . . σi−1.
If σ0 . . . σi−1 ∈ Gi, there exists nodes v0, v1, . . . , vi of G such that

v0, σ0, v1, σ1, . . . , σi−1, vi

is a path of G. As no node has zero ingoing degree, there exists a path
of length k that ends in node v0, denoted as v−k, σ−k, . . . , σ−1, v0 in G. By
Definition 8, for any j = 0, . . . , i, uj = vj−kσj−k . . . σj−1vj is a node of G[k]

and for any j = 0, . . . , i− 1, there is an edge (uj , uj+1, σj) in G[k]. Therefore

σ0 . . . σi−1 ∈ G
[k]
i .

If σ0 . . . σi−1 ∈ G
[k]
i , there exists nodes u0, u1, . . . , ui of G[k] such that

u0, σ0, u1, σ1, . . . , σi−1, ui is a path of G[k]. Let v−k, . . . , vi be the nodes of
G and σ−k, . . . , σ−1 be the symbols such that for any j = 0, . . . , i, uj =

vj−kσj−k . . . σj−1vj . By Definition 8, v0, σ0, v1, σ1, . . . , σi−1, vi is a path of G
hence σ0 . . . σi−1 ∈ Gi.

Theorem 2. Consider Algorithm 1 with input A,G[k]
0 (resp. A,G[k+1]

0 ) where

G
[k]
0 (resp. G[k+1]

0 ) is the lift of degree k (resp. k+ 1) of a given automaton G.

If Oε(A,G[k]
0 ) and Oε(A,G[k+1]

0 ) are cycles corresponding to the same word,

then h∗(G[k]
1 ) ≤ h∗(G[k+1]

1 ).

Proof. Let e be the edge such that G[k]
1 = G

[k]
0 − e, that is, the edge removed

by the algorithm for G
[k]
0 . Let σ1σ2 . . . σkσk+1σk+2 be a sub-word of the

repetition of the cycle c and v1, v2, . . . , vk+3 be such that

e = (v1σ1v2σ2 . . . σkvk+1, v2σ2 . . . σkvk+1σk+1vk+2, σk+1)

and (vk+2, vk+3, σk+2) is an edge of G. Let G[k+1]
0

′
be the graph obtained by

removing the node v1σ1v2σ2 . . . σk+1vk+2 in G
[k+1]
0 . The two automata G

[k]
1

and G
[k+1]
0

′
recognize the same language. Let G[k+1]

0

′′
be the graph obtained

by removing the edge e′ = (v1σ1v2σ2 . . . σk+1vk+2, v2σ2v3σ3 . . . σk+2vk+3, σk+2)

in G
[k+1]
0 . The language recognized by G

[k+1]
0

′
is a subset of the language

recognized by G
[k+1]
0

′′
.

Moreover, as e′ is an edge of the cycle Oε(A,G[k+1]
0 ), h∗(G[k+1]

0

′′
) ≤

h∗(G
[k+1]
1 ). Therefore

h∗(G[k]
0) = h∗(G

[k+1]
0

′
) ≤ h∗(G[k+1]

0

′′
) ≤ h∗(G[k+1]

1 ).

In Section 5 we show results corroborating Theorem 2.
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4 Implementation Details & Optimality

4.1 Implementation

The implementation of the stabilization of a CSS is summarized as follows:
1. find all unstable cycles of length from 1 to 3 by iterating over all cycles

of these lengths using brute force enumeration;
2. collect the ones that have a spectral radius greater than or equal to

one.
3. since several cycles can be disallowed by removing a single edge, select

the edge that disallows the largest number of unstable cycles, and use
the entropy of the resulting graph to break ties;

4. repeat steps 1–3 until all allowed cycles have a spectral radious below
1;

5. then use the method of [32] to determine whether the resulting CSS is
stable or whether there is an unstable cycle.

6. if there is an unstable cycle, select the edge that maximizes the entropy
of the resulting system (steps 1–2 of Algorithm 1);

7. repeat steps 5–6 until the resulting system is stable.
It is easy to see that this implementation is a realization of Algorithm 1.

Steps 1–4 are an optimization since they execute relatively quickly, and make
the execution of [32] take less time.

In Step 6, instead of computing the entropy, we compute the spectral
radius of the adjacency matrix of the resulting system. This is equivalent to
maximizing the entropy (see Appendix A).

4.2 Optimality

The solution attained by Algorithm 1 is not necessarily the optimal solution.
For once, applying different lift degrees will yield different optimal solutions.
Second, Algorithm 1 removes an edge before finding the next unstable
cycle, which means that it misses the chance of optimizing which edge
to remove, when more cycles are available (recall Steps 1–4 of the above
implementation).

Unfortunately, we found no way of guessing which lift degree yields the
optimal solution. However, with small enough constrained switched systems,
it is possible to find the optimal solution, for a given lift degree k.

To find the optimal solution, suppose that, for a CSS with a lift degree k,
we know what the unstable cycles are. Now we can iterate over all possible
procedures to disallow these cycles in the CSS (each procedure is a sequence
of edges to be removed), and compute the entropy of the resulting CSS. The
optimal solution is the one that has the maximal entropy.

In order to collect all the unstable cycles, we can perform the following
procedure:
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1. given a CSS with a lift of degree k, apply Algorithm 1 to find an
admissible language, and record all the cycles that were removed
throughout the procedure;

2. iterate over all possible ways of disallowing the cycles on the original
CSS with a lift of degree k, and apply the one that results in a language
with maximal entropy;

3. the resulting language is not necessarily admissible, because the best
procedure is not necessarily that same as the one picked by Algorithm 1
in Step 1, so apply Algorithm 1 to identify and disallow the remaining
cycles, adding these to the set of unstable cycles.

4. now repeat Steps 2–3, collecting more and more unstable cycles, until
the resulting language is admissible.

The resulting set of unstable cycles represent all possible unstable cycles,
and the admissible language found is the optimal solution.

This procedure is applied in Section 5.2.

5 Application

We first sketch the application of our algorithm to simulation, and then
detail the treatment to co-simulation in Section 5.2. See [29,46] for other
applications of switched systems, where our technique could be applied as
well.

5.1 Simulation

Consider the problem of approximating the solution x(t) of the system,

ẋ(t) = Āx(t), with x(0) = x0, (5)

using an adaptive simulation algorithm. These methods are useful in situ-
ations where, e.g., the error tolerance, or runtime performance, can vary
as a function of x̄(t) and t [10,13,45]. In practice, multi-step variable order
methods [10, Section 4] are the most commonly used, but for illustrative
purposes, we show a single step method. The same analysis can be done for
an variable order multi-step method by converting it to a representation in
the form of System (1).

Example 4. The approximation x̃(t) of the solution to System (5), computed
by a simulation algorithm that uses different step sizes, and different nu-
merical methods, can be modelled as an unconstrained switched system

13



(System (1)), with

A =
{
Ãfe,h, Ãmd,h, Ãrg,h

∣∣∣h ∈ {0.001, 0.002}
}

Ãfe,h , I + Āh

Ãmd,h , I + Āh+ (Āh)2/2

Ãrg,h , I + Āh+ (Āh)2/12 + (Āh)3/6 + (Āh)4/24.

In the above set A, the matrices correspond respectively to the Forward
Euler method, the Midpoint method and the Runge-Kutta method.

In Example 4, if one assumes that System (5) is stable, that is,

lim
t→∞

‖x(t)‖ = 0 for any x(0),

then we need to ensure that the error made by discrete approximation x̃(t) is
dissipated. For this purpose, we introduce the error switched system, whose
state variable is et = x̃(t)− x(t), and which can be written as

et+h = Aσ(t)et + Lσ(t), with

Lσ(t) ,
(
Aσ(t) − exp(Āh

)
)x(t),

(6)

where Lσ(t) is the local error corresponding to Aσ(t) ∈ A, and A is defined in
Example 4. Neglecting Lσ(t) yields a switched system, the stability of which
determines the dissipation of error.

Remark 4. To derive Equation (6),

et+1 = x̃t+1 − x(t+ h)

= Aσ(t)x̃t − exp(Āh)x(t)

= Aσ(t)(et + x(t))− exp(Āh)x(t)

= Aσ(t)et + (Aσ(t) − exp(Āh))x(t)

(7)

where exp(hĀ) =
∑∞
k=0

hk

k! Ā
k is the matrix exponential.

As an example, the error of the adaptive simulation algorithm introduced
in Example 4 may not be stable for a switching signal 111 . . ., but may be
stable for 2121 . . . As a result, the adaptive simulation method may opt for
a policy sequence that requires fewer model evaluations (compared to a
non-adaptative algorithm), whilst preserving the stability. Another way of
stating this is to observe that the spectral radius of Ã1 is larger than 1, that
is, ρ(Ã1) > 1. This does not imply that the product of any switching signal of
the form 2121 . . . causes the system to be unstable.

To illustrate this fact, Figure 6 shows the domain of numerical stability for
multiple “hybrid” solvers applied to the linear system in Equation (5). Each
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Figure 6: Domain of numerical stability for some hybrid methods in A2,
defined in Example 4.

solver is constructed by combining two matrices in A, where A is defined
in Example 4. As the figure shows, it is possible that, for a given h and
Eigenvalue λ of Ā, λh is located outside the stability domain of Ã1 (shaded
area in black), but inside the stability region of the hybrid method Ã2Ã1

(shaded in red). In that case, forbidding any switching signal of the form
11 . . ., may ensure that the system introduced in Example 4 is stable.

See [10, Section 2.4] for an example of how to construct the stability
domain.

5.2 Co-simulation

We apply our algorithm to certify an adaptive orchestration algorithm for
the co-simulation of a controlled inverted pendulum. We will consider two
simulators.

In the context of co-simulation, time is discretized into a countable set
T = {t0, t1, t2, . . .} ⊂ R, where ti+1 = ti + Hi is the time at step i and Hi is
the communication step size at step i, with i = 0, 1, . . .. From time ti → ti+1,
the simulator Sj , with j = 1, 2, is a mapping,

x̃j(ti+1) = Fj(ti, x̃j(ti), uj(ti))

yj(ti) = Gj(ti, x̃j(ti), uj(ti))
(8)

with state vector x̃j , input vector uj and output vector yj .
Simulators exchange outputs only at times t ∈ T . We assume without loss

15



of generality that the two simulators are coupled in a feedback loop, that is,

u1 = y2 and u2 = y1. (9)

In the interval t ∈ [ti, ti+1], each simulator Sj approximates the solution
to a linear ODE,

ẋj = Ajxj +Bjuj

yj = Cjxj +Djuj
(10)

where Aj , Bj , Cj , Dj are matrices, and the initial state xj(ti) is computed
in the most recent co-simulation step. To avoid algebraic loops and keep
the exposition short, we assume that either D1 or D2 is the zero matrix. Let
D2 = 0.

Since the simulators only exchange outputs at times ti, ti+1 ∈ T , the
input uj has to be extrapolated in the interval [ti, ti+1). In the simplest co-
simulation strategy1, this extrapolation is often implemented as a zero-order
hold: ũj(t) = uj(ti), for t ∈ [ti, ti+1). Then, Equation (10) can be re-written to
represent the unforced system being integrated by each simulator:[

ẋj
˙̃uj

]
=

[
Aj Bj
0 0

] [
xj
ũj

]
(11)

We can represent the multiple internal integration steps of System (11),
performed by the simulator Sj in the interval t ∈ [ti, ti+1], as[

x̃j(ti+1)

ũj(ti+1)

]
= Ã

kj
j

[
x̃j(ti)

ũj

]
(12)

where, e.g., Ãj = I + hj

[
Aj Bj
0 0

]
for the Forward Euler method, kj =

(ti+1 − ti)/hj is the number of internal steps, and 0 < hj ≤ Hi is the internal
fixed step size that divides Hi. Note that this equation implements the
mapping in Equation (8).

At the beginning of the co-simulation step i, u1(ti) = y2(ti) and u2(ti) =

y1(ti), as in Equation (9). This, together with Equation (10), gives,

u1(ti) = C2x̃2(ti)

u2(ti) = C1x̃1(ti) +D1C2x̃2(ti).
(13)

Equations (11), (12), and (13) can be used to represent each co-simulation
step by a linear mapping

[
x̃1(ti+1)
x̃2(ti+1)

]
=

[
I 0 0 0
0 0 I 0

][
Ãk1

1 0

0 Ãk2
2

]
I 0
0 C2

0 I
C1 D1C2


︸ ︷︷ ︸

Ã

[
x̃1(ti)
x̃2(ti)

]

1The derivation presented can be applied to more sophisticated input extrapolation tech-
niques, see [6, Equation (9)].

16



whose state transition matrix Ã depends on the following items [18]:
• coupling approach — we used the Jacobi coupling, but Gauss-Seidel,
Strong coupling, and others, can be used [21];

• simulator input approximation — we used constant extrapolation, but
other techniques can be applied [6];

• internal solver method — we showed the Forward Euler as example,
but other methods are available;

• internal simulator step size hj — this value affects matrix Ãj and the
value kj;

• communication step size Hi — affects kj .
As evidenced in [6,9,15,42], each configuration of these items has different
stability properties. Moreover, as hinted in [16], an adaptive algorithm
that changes the configuration at runtime, based on varying tolerance and
performance requirements, is beneficial as long as it does not make the
co-simulation unstable (recall Example 4). Therefore, with the present work
we generate a stabilized CSS, that encodes the set of all possible sequences
of configurations that make the co-simulation stable, which can then be
consulted during the co-simulation, with little computational cost [16].

In order to represent an adaptive co-simulation, let A be a set of co-
simulation state transition matrices, each representing a particular configu-
ration of the above items. An adaptive orchestration algorithm will, at the
beginning of each co-simulation step i, inspect the state variables, and/or
local error estimators [2], and decide which configuration should be used to
proceed to step i+ 1. If we assume that any configuration can be chosen at
each co-simulation step, then we can represent the adaptive orchestration
algorithm as a switched system. On the other hand, if the choice of a config-
uration for step i depends (in addition to the run-time information) on the
configuration chosen for steps i− 1, i− 2, . . ., then the adaptive orchestration
algorithm can be modelled as a constrained switched system.

Consider the co-simulation of an inverted pendulum that is kept at the
equilibrium point using a state feedback controller. Simulator S1 represents
the controller, and simulator S2 represents the pendulum.

Around the equilibrium point, the pendulum can be approximated as a
system of the form of Equation (10), with

A2 =


0 1 0 0

0 −(I +ml2)(b/p) (m2gl2)/p 0

0 0 0 1

0 −(mlb)/p mgl(M +m)/p 0


B2 =

[
0 (I +ml2)/p 0 ml/p

]>
C2 = I D2 = 0

and parametersM = 0.5,m = 0.2, b = 0.1, I = 0.006, g = 9.8, l = 0.3.
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The controller is a linear quadratic regulator, which, put in the form of
Equation (10), is

A1 = 0 B1 = 0

C1 = 0 D1 =
[
1.0000 1.6567 −18.6854 −3.4594

]
.

Assume we can use the Forward Euler and Midpoint methods, with
internal fixed step sizes in the set {0.01, 0.02, 0.1, 0.2}. Furthermore, the
co-simulation step size can be H = 0.1 or H = 0.2. Note that the internal
step sizes must always divide the communication step size H, and that the
numerical method and step size used in the controller simulator have no
impact in the co-simulation stability, because it has no internal dynamics.
Then, applying Equations (11), (12), and (13), we get a switched system over
8 matrices.

The matrices A2 (corresponding to H = 0.2, h1 = 0.2, Forward Euler),
A3 (corresponding to H = 0.2, h1 = 0.02, Midpoint) and A4 (corresponding
to H = 0.2, h1 = 0.02, Forward Euler) have a spectral radius larger than
one. This means that the switching signals 222..., 333... and 444... should be
forbidden.

Applying Algorithm 1 directly to the unconstrained switched system
(which corresponds to a lift of degree 0), leads to removal of the edges with
labels 2, 3 and 4. This completely disallows the use of the matrices A2, A3

and A4. The resulting language turns out to be admissible, its entropy is
log2(5).

Applying Algorithm 1 to a lift of degree 1, we get a constrained switched
system with the automaton shown in Figure 7, where the edges in red were
removed by the algorithm. We can see that the matrices A2, A3 and A4 are
now allowed by the algorithm (only the cyclic application of each one of these
matrices is still disallowed). This solution is less conservative than the one
with degree 0. Its entropy is log2(7.26). One allowed cycle is 32645, where
the symbols 5 and 6 seem to play the role of stabilizing the cycle.

1

83

5

4

6 7

2

Figure 7: Solution with entropy log2(7.2568898).

We applied Algorithm 1 to the lifts of degree 0, 1 and 2. At each applica-
tion of the algorithm, a stable constrained switched system was produced,
with an entropy that increased with the degree of the lift. These results,
summarized in Table 1, corroborate Theorem 2.
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Table 1: Entropy achieved per lift degree.

k Entropy [bit] CPU time [s]
0 log2(5) 0.13
1 log2(7.2568898) 1.8
2 log2(7.7083039) 280

This application to co-simulation illustrates an important advantage of
the method presented in [32]: it is capable of finding large unstable cy-
cles. This method does not find the unstable cycles by iterating through
the cycles of some length K but instead extracts them from an infinite
switching signal, hence it is not harder for the method to find large un-
stable cycles. For the lift of degree 2 for example, it found the unstable
cycle 542245332 of length 9, and in a subsequent iteration found the cy-
cle 224533542245335422453354224523254 of length 33. A brute force method
would have to enumerate all 833 cycles to achieve the stabilization of the
adaptive solver.

Regarding the optimality of the solution found for the lift with degree
1, we have applied the procedure detailed in Section 4.2 to confirm that
log2(7.2568898) is indeed the maximal entropy for that degree.

6 Related Work

There has been a huge effort to understand how to ensure that a (discrete
time) switched system is stable. We refer the interested reader to [1, 29,
34,38,49] for introductions and surveys on this subject. To the best of our
knowledge, the problem we introduce here, i.e. finding the largest set of
switching signals that guarantees the stability of the system, has never been
studied. In the broader field of stabilization of switched systems, we can
highlight the works in [24,26,31,39,41,51–54]. The key difference with our
work is the goal: we are not satisfied with a single stable switching signal;
we want to provide the maximum flexibility to the stabilized CSS, which can
make use of this flexibility to choose the most appropriate switching signal.
The works in [26,31,39,41,51,52] are focused on continuous time systems,
and [51,52,54] aim at deriving state feedback laws (in addition to switching
signals) that make the system stable.

The approach followed in [54] assumes that each mode of the system is
stable. In our case, the goal is the same but we tolerate unstable modes.

The approach in [24] is interesting because it allows the combination
of stable and unstable modes, in order to ensure stability. However, no
algorithm is provided to find these combinations.

The aim of [31] is different as it describes the search for one particular
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stable trajectory while we maximize the size of a language of stable switching
signals.

[48] describes the stability analysis for continuous switched systems with
parametric uncertainties.

[53] focuses on proving that a system is stabilizable, rather than making
the system stable. It deals with forced discrete time switched systems,
and the stabilization procedure finds a control policy (switching signal, and
input) that stabilizes the system. This is in contrast to our goal, which is to
find all policies that make the system stable, and maximize this set. In the
context of co-simulation, the reader can find stability analysis of traditional
orchestration algorithms in [6,15,42,43].

7 Conclusion

We introduce a new problem in the context of constrained switched systems:
1) to restrict the switching possibilities of the system, so as to ensure its
stability, and 2) to leave as many switching policies as possible (provided
that the system becomes stable).

The motivation for leaving as many switching policies as possible lies
in the fact that, in adaptive co-simulation, the orchestration algorithm will
make the best possible choice as a function of information obtained during
the simulation. We restrict the switching possibilities to be representable by
an automaton because of their great efficiency.

The problem is interesting in that it transforms a control problem into the
problem of building an optimal language, that is, optimizing the construction
of an automaton. By combining classical control concepts for switched
systems (like the CJSR) , with classical automata-theoretic concepts (like
the entropy of shifts), one can design algorithms to solve this problem.
Our algorithm takes the form of a hierarchy of sufficient conditions, where
increasingly better solutions are found by lifting the automaton (see Figure 3
and Table 1). Essentially, this allows one to control the optimality of the
solution, at the cost of processing power and memory.

This work is aimed to be a proof of concept, and we leave many research
questions open. We plan to investigate the conservativeness of restrict-
ing ourselves to regular languages (see Example 1). Second, we want to
understand how our method can be optimized for the particularizes of co-
simulation, and apply it to nonlinear systems. Finally, we plan to modify
Algorithm 1 so that stronger theoretical results can be proven.
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A Computation of the Entropy

A.1 Spectral Radius of Adjacency Matrix

Consider a given CSS S = 〈A,G〉, and let B be the adjacency matrix of G.
The matrix element bij of Bk gives the number of different paths of length

k from node i to node j [50]. Hence,
∥∥Bk∥∥ gives a measure of the size of the

matrix comprised by the number of different paths from each node to each

other node (see, e.g., [33, Remark 2]), and
∥∥Bk∥∥ 1

k gives the growth rate of
this quantity. Taking the limit k → ∞, we have the spectral radius of the
adjacency matrix:

ρ(B) = lim
k→∞

∥∥Bk∥∥1/k.
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Example 5. Recall Example 3, let B1 denote the adjacency matrix of the

automata in Figure 4 without the edge v1
2−→ v2, and let B2 denote the

adjacency matrix of the same automata, without the edge v2
3−→ v3. Then

ρ(B1) = 1 < ρ(B2) ≈ 1.6180.

A.2 Edge Shift

The logarithm of the spectral radius of the adjacency matrix of an irreducible
automaton gives the entropy of its edge shift [35, Theorem 4.3.1]. An
automaton is irreducible if for every pair of nodes u, v, there exists a path
from u to v accepted by the automaton. In other words, the graph consists of
a single strong component.

Definition 9 ( [35, Definition 2.2.5]). The edge shift of an automaton G =

(V,E) is the language recognized by the automaton G′ = (E,E′) with the
transitions ((u, v, σ), (v, w, σ′), (v, w, σ′)) ∈ E′ for each (u, v, σ), (v, w, σ′) ∈ E.

An edge shift of automaton Figure 8a is illustrated in Figure 8b.

v1 v2
0
0

1

(a)

v11v1

v20v1v10v2

v10v2 v11v1
v10v2

v20v1

v11v1

(b)

Figure 8: An automaton (a) and its edge shift (b).

It turns out that the entropy of the edge shift is equal to the entropy
of the language recognized by the automaton if the automaton is right-
resolving [35, Proposition 4.1.13].

Definition 10 ( [35, Definition 3.3.1]). An automaton G is right-resolving if
for every vertex v, the outgoing edges have different symbols.

Every regular language is recognized by a right-resolving automaton.
Moreover, there are automated ways to obtain such an automaton from a
starting representation of a language with an automaton that is not right-
resolving [35, Section 3.3].

Since the automata considered here are right resolving and irreducible,
the entropy is computed by computing the spectral radius of the adjacency
matrix of the CSS.
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