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Abstract—We propose an algorithm to restrict the
switching signals of a constrained switched system in
order to guarantee its stability, while at the same time
attempting to keep the largest possible set of allowed
switching signals.

Our work is motivated by applications to (co-
)simulation where numerical stability is a hard con-
straint, but should be attained by restricting as little
as possible the allowed behaviours of the simulators.

We apply our results to certify the stability of an
adaptive co-simulation orchestration algorithm, which
selects the optimal switching signal at run-time, as
a function of (varying) performance and accuracy
requirements.

I. Introduction

A switched system is defined as

xk+1 = Aσk
xk : σk ∈ {1, . . . ,m} , Aσk

∈ A (1)

where {1, . . . ,m} is the set of modes, σk is the mode
active at time k, and A = {A1, . . . , Am} ⊆ Rn×n
is a set of real matrices. We denote the sequence
σ0, σ1, . . . , σk as the switching signal.

Switched systems are used to model many sys-
tems [1]. In this paper, we are motivated by a new
application [2] in the field of co-simulation. It is a
numerical technique to couple multiple simulators,
each simulating a part of a coupled system, in order
to compute the overall behavior more efficiently [3].

As illustrated in Figure 1, in order to run a co-
simulation, each simulator approximates the solu-
tion of a differential equation, exchanging values
with other simulators at agreed-upon communication
times. Between communication time instants, the un-
known inputs are approximated with extrapolation
functions.
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Fig. 1: Co-simulation.

To improve
performance,
during a co-
simulation
each simulator
can adapt its
policy: (i) the
discretization
step size and/or
the numerical
algorithm as a result of error estimates; (ii) the input
approximation function as a result of the dynamics
of the inputs; and (iii) the order and the values
exchanged, as a result of varying the structure of the
coupled system being simulated. We will call policy
sequence to the sequence of policies taken by all
simulators over time.

For other applications of adaptive methods, see
In the context of (co-) simulation, it is fundamental

to ensure that a (co-) simulation method preserves
the stability of the system being (co-) simulated. The
error dynamics of a (co-) simulation can be modelled
as a switched system (Section IV), hence this question
becomes one of deciding stability of System (1). Fur-
thermore, as the choice of future policies is influenced
by the past policies, we consider constrained switched
systems.

If there exist one or more policy sequences that can
make the (co-) simulation method unstable, then the
simulators have to be forbidden from following these.
In the context of constrained switched systems, there
are many ways of forbidding a policy sequence, and
each way also forbids sequences that do not make the
(co-) simulation unstable.

We tackle the problem of how to best forbid policy
sequences that make the constrained switched system
unstable. We propose that the best solution is to
maximize the entropy of the stabilized constrained
switched system in order to maximize the adaptability
of the resulting (co-) simulation method.

In the next section, we formulate the problem.
Then, in Section III we propose an algorithm that
approximates the solution, and we prove that the
it terminates and that the resulting system is sta-
ble. Furthermore, we provide a lifting technique that



yields better solutions. Section IV describes applica-
tions. Section V presents related work and Section VI
concludes. An extended version of this work is pre-
sented in [4].

II. Problem Formulation

In this section, we formulate the research problem,
and introduce the necessary concepts.

In practice, some switching signals of System (1)
may not be relevant, and a way to represent the
sensible ones is required.

Definition 1: Given a bounded set of matrices A =

{A1, . . . , Am}, we define an automaton as a directed
and labelled graph G = (V,E), with nodes V and
edges E such that no node has zero ingoing or out-
going degree. Each edge (v, w, σ) ∈ E represents a
transition from node v ∈ V to node w ∈ V , where
σ ∈ {1, . . . ,m} is the label, corresponding to Aσ.

We say that the switching signal, or word, s =

σ0σ1 . . . σk−1 is accepted by an automaton G if it
corresponds to a path in G, that is, if there exists
v0, v1, . . . , vk ∈ V , such that (vj , vj+1, σj) ∈ E for all
j = 0, . . . , k−1. An accepted word induces an accepted
matrix product As = Aσk−1

· · ·Aσ1Aσ0 ∈ Ak.
We denote the set of accepted words of length

k as Gk, and the set of all words accepted by the
automaton as G∗ =

⋃∞
k=1 Gk. Moreover, G◦k denotes

the set of accepted cycles of length k.
Definition 2 (CSS): Given a set of matrices A =

{A1, . . . , Am}, and an automaton G = (V,E), we de-
fine a constrained switched system (CSS) S = 〈A,G〉
as a system where the variable xk satisfies:

xk+1 = Aσk
xk : σ0 . . . σk−1 ∈ Gk. (2)

We say that System (2) is stable iff

lim
k→∞

‖xk‖ = lim
k→∞

∥∥Aσk−1
· · ·Aσ0

x0
∥∥ = 0,

for any word σ0 . . . σk−1 ∈ Gk and any x0 ∈ Rn.
To determine the stability of a CSS, we introduce

the constrained joint spectral radius.
Definition 3 ([5, Definition 1.2]): The constrained

joint spectral radius is defined as

ρ̂(S) = lim
k→∞

ρ̂k(S) where ρ̂k(S) = sup
w∈Gk

‖Aw‖
1
k ,

and ‖·‖ is any matrix norm that satisfies the sub-
multiplicative property.

Proposition 1 ([5, Lemma 3.1]): If ρ̂(S) < 1, then
the CSS is stable.

A way to prove that a CSS admits an unstable
switching signal is to find a c ∈ G◦k with ρ(Ac) ≥ 1.

Proposition 2 ([6, Theorem 2.3]): If ρ̂(S) > 1, then
there exists a cycle c ∈ G◦k of length k that satisfies
ρ(Ac) ≥ 1.

The problem of finding such cycles is outside the
scope of our work (see [7] for the algorithm we used).
As such, we introduce the following definition, which
represents any algorithm available for this purpose.

Definition 4 (Oracle): Given ε > 0, we define a
stability oracle Oε : S → {Stable} ∪

⋃∞
k=1 G

◦
k, where

S is a CSS. The oracle Oε returns either Stable
certifying that ρ̂(S) < 1 or a cycle c ∈ G◦k such that
ρ(Ac)

1/k > 1− ε.
We emphasize that the oracle has a (slightly) im-

perfect behaviour: in case 1 − ε < ρ̂(S) < 1, one
cannot guarantee what the outcome of the oracle
will be. This imperfection is intentional, as it models
the state of the art [8]. Proposition 2 ensures that if
ρ̂(S) > 1− ε, there exists a k and a cycle c ∈ G◦k such
that ρ(Ac)

1/k > 1− ε.
We now proceed to define the set of possible differ-

ent switching signals that are admissible.
Definition 5 (Admissible Regular Language): We

say that L = G∗ is the language recognized by the
automaton G. A language is regular if it is recognized
by a finite automaton. A language L recognized by an
automaton G is admissible for A if the constrained
switched system S = 〈A,G〉 satisfies ρ̂(S) < 1.

Let L0 denote the language recognized by the au-
tomaton G0 of a given S = 〈A,G0〉. Informally, our
goal is to find the “largest” regular language L? ⊆ L0

that is admissible. A widely used notion to describe
the size of a regular language is that of Entropy.

Definition 6 (Entropy [9, Definition 4.1.1]): Given
a regular language L recognized by an automaton G,
we define the entropy as h(L) = limk→∞

1
k log2 |Gk|.

We denote the entropy of the language G∗ recognized
by an automaton G as h∗(G). This quantity can be
computed as shown in [4].

If L ⊆ L′, then Gk ⊆ G′k for any k, and so h(L) ≤
h(L′). Our problem can now be formulated.

Problem 1: Given a CSS 〈A,G0〉, find the language
L? solution of the following optimization problem:

L? = sup
L regular

h(L) s.t.

L ⊆ L0,

L is admissible for A. (3)

where L0 is the language recognized by G0.
Remark 1: In Problem 1, we restrict our attention

to regular languages. While there are examples that
highlight the benefit of using non-regular languages
(see Example 1), in practice, one needs an efficient
way of generating accepted switching signals. Au-
tomata allow the decision procedure to be fast, with
little memory. In addition, as hinted in Example 2,
regular languages may be constructed to approximate
an admissible language with entropy arbitrarily close
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Fig. 2: Evolution of h(Lk) of Example 2 in terms of k.

to the entropy of the optimal solution, even if that
optimal solution is a non-regular language.

Example 1: Consider A = {A1, A2}, with A1 = 2

and A2 = 1
2 , and G = (V,E), where V = {v1} and

E = {(v1, v1, 1), (v1, v1, 2)}. The optimal solution L? of
(relaxed) Problem 1 should include every word that
has more 1s than 2s. As shown in [10, Example 1.73],
no automaton can be built that accepts this language.

Example 2: Consider A = {A1, A2}, with A1 = 1

and A2 = 1
2 . A language is admissible if it does not

contain the infinite repetition of the symbol 1. Let
Lk be language of all words that do not contain k

consecutive 1’s. Figure 2 suggests that that h(Lk)

tends to log2(2) when k tends to infinity.

III. Lift-and-Constrain Stabilization

A. Constraining for more stability

Algorithm 1 details an iterative procedure that sta-
bilizes a given CSS S = 〈A,G〉, using the oracle in
Definition 4. At each iteration, if the oracle returns a
cycle c = σk . . . σk, then c is eliminated from G. The
removal of a cycle can be accomplished by removing
an edge of G, thus potentially decreasing ρ̂(S). After
removing the cycle c, any infinite sequence in G∗ for
which c is a subsequence will be eliminated too. The
algorithm can produce an empty CSS, which does not
imply that the original CSS is impossible to stabilize.

Example 3: Consider the automaton in Figure 3,
and suppose the oracle has returned the cycle 234.
Any of the edges in red can be removed to forbid the

unstable sequence. If edge v1
2−→ v2 is removed, the

infinite sequences accepted by the resulting automa-
ton end with either an infinite sequence of 2’s, or an
infinite sequence of 3’s. If edge v2

3−→ v3 is removed
instead, the resulting automaton accepts infinite se-
quences comprised of repeating subsequences which
include 2, or 3, or 12.

v1 v2

v3
34

2
1

2

3

Fig. 3: Automaton of Example 3.

As Example 3 shows, the choice of different edges
to be removed has a different impact in the entropy
of the resulting automaton.

Data: A CSS S = 〈A,G〉.
Result: A stable CSS S = 〈A,G〉.
while Oε(S) 6= Stable do

1) Find e ∈ arg max{h∗(G− e) | e ∈ E, e is
an edge of the cycle Oε(S) };

2) Set G := G− e;
end
Algorithm 1: Stabilization algorithm for a con-
strained switched system. h∗(G) denotes the en-
tropy of the language recognized by G. The dif-
ference G− e denotes the automaton obtained by
removing the edge e from G.

Theorem 1: Given a CSS S = 〈A,G〉 and an ora-
cle satisfying Definition 4, Algorithm 1 terminates in
finite time and the resulting CSS is stable.

B. Lifting for less conservativeness

The CSS returned by Algorithm 1 is not necessarily
the optimal solution to Problem 1. To maximize the
entropy of the stabilized CSS’s, we propose to take an
M -Path-Dependent lift of the automaton representing
the input language L0.

Definition 7 ([11, Definition 3]): Given an automa-
ton G, we define the lifted automaton G[k] of degree
k as follows. For each path v0, σ0, v1, σ1, . . . , σk, vk+1 of
G, G[k] has a node u− = v0σ0v1σ1 . . . σk−1vk, a node
u+ = v1σ1v2σ2 . . . σkvk+1 and an edge (u−, u+, σk).

The lifted automaton represents the same lan-
guage, as shown by Proposition 3, but, as suggested
by Theorem 2 and illustrated by Example 2, lifting
the automaton before applying Algorithm 1 allows to
obtain an admissible language with higher entropy.

Proposition 3: Let L be the language recognized by
G and L[k] the language recognized by G[k], where
G[k] is the lift of degree k of G. Then L = L[k].

Theorem 2: Consider Algorithm 1 with input
A,G[k]

0 (resp. A,G[k+1]
0 ) where G

[k]
0 (resp. G

[k+1]
0 )

is the lift of degree k (resp. k + 1) of a given
automaton G. If Oε(A,G[k]

0 ) and Oε(A,G[k+1]
0 )

are cycles corresponding to the same word, then
h∗(G

[k]
1 ) ≤ h∗(G[k+1]

1 ).
In Section IV we show results corroborating Theo-

rem 2.

IV. Application

We first sketch the application of our algorithm
to simulation, and then detail the treatment to co-
simulation in Section IV-B.

A. Simulation

Consider the problem of approximating the solution
x(t) of the system,

ẋ(t) = Āx(t), with x(0) = x0, (4)



using an adaptive simulation algorithm.

Example 4: The approximation x̃(t) of the solution
to System (4), computed by a simulation algorithm
that uses different step sizes, and different numer-
ical methods, can be modelled as an unconstrained
switched system (System (1)), with

A =
{
Ãfe,h, Ãmd,h, Ãrg,h

∣∣∣h ∈ {0.001, 0.002}
}

Ãfe,h , I + Āh

Ãmd,h , I + Āh+ (Āh)2/2

Ãrg,h , I + Āh+ (Āh)2/12 + (Āh)3/6 + (Āh)4/24.

In the above set A, the matrices correspond respec-
tively to the Forward Euler method, the Midpoint
method and the Runge-Kutta method.

In Example 4, if one assumes that System (4) is
stable, that is, limt→∞ ‖x(t)‖ = 0 for any x(0), then
we need to ensure that the error made by discrete
approximation x̃(t) is dissipated. For this purpose,
we introduce the error switched system, whose state
variable is et = x̃(t)− x(t), and which can be written
as

et+h = Aσ(t)et + Lσ(t), with

Lσ(t) ,
(
Aσ(t) − exp(Āh

)
)x(t),

(5)

where Lσ(t) is the local error corresponding to Aσ(t) ∈
A, and A is defined in Example 4. Neglecting Lσ(t)
yields a switched system, the stability of which deter-
mines the dissipation of error.

As an example, the error of the adaptive simulation
algorithm introduced in Example 4 may not be stable
for a switching signal 111 . . ., but may be stable for
2121 . . . As a result, the adaptive simulation method
may opt for a policy sequence that requires fewer
model evaluations (compared to a non-adaptative al-
gorithm), whilst preserving the stability.

B. Co-simulation

We apply our algorithm to certify an adaptive
orchestration algorithm for the co-simulation of a
controlled inverted pendulum. We will consider two
simulators.

In the context of co-simulation, time is discretized
into a countable set T = {t0, t1, t2, . . .} ⊂ R, where
ti+1 = ti + Hi is the time at step i and Hi is the
communication step size at step i, with i = 0, 1, . . ..
From time ti → ti+1, the simulator Sj , with j = 1, 2,
is a mapping,

x̃j(ti+1) = Fj(ti, x̃j(ti), uj(ti))

yj(ti) = Gj(ti, x̃j(ti), uj(ti))
(6)

with state vector x̃j , input vector uj and output vector
yj .

Simulators exchange outputs only at times t ∈ T .
We assume without loss of generality that the two
simulators are coupled in a feedback loop, that is,

u1 = y2 and u2 = y1. (7)

In the interval t ∈ [ti, ti+1], each simulator Sj
approximates the solution to a linear ODE,

ẋj = Ajxj +Bjuj

yj = Cjxj +Djuj
(8)

where Aj , Bj , Cj , Dj are matrices, and the initial state
xj(ti) is computed in the most recent co-simulation
step. To avoid algebraic loops and keep the exposition
short, we assume that either D1 or D2 is the zero
matrix. Let D2 = 0.

Since the simulators only exchange outputs at times
ti, ti+1 ∈ T , the input uj has to be extrapolated in
the interval [ti, ti+1). In the simplest co-simulation
strategy1, this extrapolation is often implemented as
a zero-order hold: ũj(t) = uj(ti), for t ∈ [ti, ti+1).
Then, Equation (8) can be re-written to represent the
unforced system being integrated by each simulator:[

ẋj
˙̃uj

]
=

[
Aj Bj
0 0

] [
xj
ũj

]
(9)

We can represent the multiple internal integration
steps of System (9), performed by the simulator Sj in
the interval t ∈ [ti, ti+1], as[

x̃j(ti+1)

ũj(ti+1)

]
= Ã

kj
j

[
x̃j(ti)

ũj

]
(10)

where, e.g., Ãj = I + hj

[
Aj Bj
0 0

]
for the Forward

Euler method, kj = (ti+1 − ti)/hj is the number of
internal steps, and 0 < hj ≤ Hi is the internal fixed
step size that divides Hi.

At the beginning of the co-simulation step i, u1(ti) =

y2(ti) and u2(ti) = y1(ti), as in Equation (7). This,
together with Equation (8), gives,

u1(ti) = C2x̃2(ti)

u2(ti) = C1x̃1(ti) +D1C2x̃2(ti).
(11)

Equations (9), (10), and (11) can be used to repre-
sent each co-simulation step by a linear mapping

[
x̃1(ti+1)
x̃2(ti+1)

]
=

[
I 0 0 0
0 0 I 0

][
Ãk1

1 0

0 Ãk2
2

]
I 0
0 C2

0 I
C1 D1C2


︸ ︷︷ ︸

Ã

[
x̃1(ti)
x̃2(ti)

]

whose state transition matrix Ã depends on the
following items [13]: coupling approach, input ap-
proximations, numerical methods, step size hj , and

1The derivation presented can be applied to more sophisticated
input extrapolation techniques, see [12, Equation (9)].



communication step size Hi. Each configuration of
these items affects the stability differently. Moreover,
as hinted in [2], an adaptive algorithm that changes
the configuration at runtime, based on varying toler-
ance and performance requirements, is beneficial as
long as it does not make the co-simulation unstable
(recall Example 4). Therefore, with the present work
we generate a stabilized CSS, that encodes the set
of all possible sequences of configurations that make
the co-simulation stable, which can then be consulted
during the co-simulation, with little computational
cost [2].

In order to represent an adaptive co-simulation, let
A be a set of co-simulation state transition matrices,
each representing a particular configuration of the
above items. An adaptive orchestration algorithm will,
at the beginning of each co-simulation step i, inspect
the state variables, and/or local error estimators [14],
and decide which configuration should be used to
proceed to step i+ 1.

Consider the co-simulation of an inverted pendulum
that is kept at the equilibrium point using a state
feedback controller. Simulator S1 represents the con-
troller, and simulator S2 represents the pendulum.

Around the equilibrium point, the pendulum can be
approximated as a system of the form of Equation (8),
with

A2 =


0 1 0 0

0 −(I +ml2)(b/p) (m2gl2)/p 0

0 0 0 1

0 −(mlb)/p mgl(M +m)/p 0


B2 =

[
0 (I +ml2)/p 0 ml/p

]>
C2 = I D2 = 0

and parameters M = 0.5,m = 0.2, b = 0.1, I =

0.006, g = 9.8, l = 0.3.
The controller is a linear quadratic regulator,

which, put in the form of Equation (8), is

A1 = 0 B1 = 0

C1 = 0 D1 =
[
1.0000 1.6567 −18.6854 −3.4594

]
.

Assume we can use the Forward Euler and Midpoint
methods, with internal fixed step sizes in the set
{0.01, 0.02, 0.1, 0.2}. Furthermore, H = 0.1 or H = 0.2.
Then, applying Equations (9), (10), and (11), we get
a switched system over 8 matrices.

The matrices A2 (corresponding to H = 0.2, h1 =

0.2, Forward Euler), A3 (corresponding to H = 0.2,
h1 = 0.02, Midpoint) and A4 (corresponding to H =

0.2, h1 = 0.02, Forward Euler) have a spectral radius
larger than one. This means that the switching signals
222..., 333... and 444... should be forbidden.

Applying Algorithm 1 directly to the unconstrained
switched system , leads to removal of the edges with

labels 2, 3 and 4. This completely disallows the use of
the matrices A2, A3 and A4. The resulting language
turns out to be admissible, its entropy is log2(5).

Applying Algorithm 1 to a lift of degree 1, we get
a constrained switched system with the automaton
shown in Figure 4, where the edges in red were re-
moved by the algorithm. We can see that the matrices
A2, A3 and A4 are now allowed by the algorithm (only
the cyclic application of each one of these matrices
is still disallowed). This solution is less conservative
than the one with degree 0. One allowed cycle is
32645, where the symbols 5 and 6 seem to play the
role of stabilizing the cycle.

1

83

5

4

6 7

2

Fig. 4: Solution with en-
tropy log2(7.2568898).

We applied
Algorithm 1 to the
lifts of degree 0, 1 and
2. At each application
of the algorithm, a
stable constrained
switched system was
produced, with an
entropy that increased
with the degree of
the lift. These results,
summarized in Table I, corroborate Theorem 2.

TABLE I: Entropy achieved per lift degree.

k Entropy [bit] CPU time [s]
0 log2(5) 0.13
1 log2(7.2568898) 1.8
2 log2(7.7083039) 280

In the implementation, we first find all unstable
cycles of length from 1 to 3 by iterating over all cycles
of these lengths using brute force and selecting the
ones that have a spectral radius above one. Note
that several cycles can be disallowed at the same
time using the same edge. Therefore we remove in
priority the edges breaking the most cycles and use
the entropy to break ties. We then use the method
of [15] to determine whether the system is stable or
whether it can provide an unstable cycle.

This application to co-simulation illustrates an im-
portant advantage of the method presented in [15]:
it is capable of finding large unstable cycles. For
the lift of degree 2 for example, it found the cycle
224533542245335422453354224523254 of length 33.

V. Related Work

There has been a huge effort to understand how to
ensure that a (discrete time) switched system is stable
[16], [6], [8], [17]. To the best of our knowledge, the
problem we introduce herehas never been studied. In
the broader field of stabilization of switched systems,
we can highlight the works in [18], [19], [20], [21],



[22], [23]. The key difference with our work is the
goal: we are not satisfied with a single stable switch-
ing signal; we want to provide the maximum flexibility
to the stabilized CSS, which can make use of this
flexibility to choose the most appropriate switching
signal. In the context of co-simulation, the reader
can find stability analysis of traditional orchestration
algorithms in [12], [24] and references thereof.

VI. Conclusion

We introduce a new problem in the context of con-
strained switched systems: 1) to restrict the switching
possibilities of the system, so as to ensure its stability,
and 2) to leave as many switching policies as possible
(provided that the system becomes stable).

The motivation for leaving as many switching poli-
cies as possible lies in the fact that, in adaptive
co-simulation, the orchestration algorithm will make
the best possible choice as a function of information
obtained during the simulation.

The problem is interesting in that it transforms
a control problem into the problem of building an
optimal language, that is, optimizing the construction
of an automaton. By combining classical control con-
cepts for switched systems , with classical automata-
theoretic concepts , one can design algorithms to
solve this problem. Our algorithm takes the form of a
hierarchy of sufficient conditions, where increasingly
better solutions are found by lifting the automaton
(see Figure 2 and Table I). Essentially, this allows one
to control the optimality of the solution, at the cost of
processing power and memory.

This work is aimed to be a proof of concept, and
we leave many research questions open. We want to
investigate the conservativeness of restricting our-
selves to regular languages, and to modify Algo-
rithm 1 so that stronger theoretical results can be
proven.
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