Stable Adaptive Co-simulation:
A Switched Systems Approach

Claudio Gomes'3, Benoit Legat? Raphaél M. Jungers?, and Hans
Vangheluwe!34

! University of Antwerp, Department of Mathematics and Computer Science,
Belgium,
[claudio.gomes, hans.vangheluwe]Quantwerp.be
2 Université catholique de Louvain, ICTEAM, Belgium,
[benoit.legat, raphael.jungers]@uclouvain.be
3 Flanders Make
4 McGill University, School of Computer Science

Abstract. Co-simulation promotes the idea that domain specific simu-
lation tools should cooperate in order to simulate the inter-domain inte-
ractions that are often observed in complex systems. To get trustworthy
results, it is important that this technique preserves the stability proper-
ties of the original system.

In this paper, we show how to preserve stability for adaptive co-simulation
schemes, which offer fine grained control over the performance/accuracy
of the co-simulation. To this end, we apply the joint spectral radius the-
ory to certify that an adaptive co-simulation scheme is stable, and, if
that is not possible, we use recent results in this field to create a trace of
decisions that lead to instability. With this trace, it is possible to adjust
the adaptive co-simulation in order to make it stable.

Our approach is limited by the fact that computing the joint spectral
radius is NP-Hard and undecidable in general. In practice, we successfully
applied our results to the co-simulation of a double mass-spring-damper
system.

Keywords: adaptive co-simulation, stability analysis, joint spectral ra-
dius, switched systems

1 Introduction

Co-simulation is the simulation of a complex system via cooperating simulators,
mimicking the interactions between subsystems [30,19]. It promotes an efficient
integration of the development process by leveraging existing, often specialized,
modeling and simulation tools [46,9], and can be applied at any stage [47]. Mo-
reover, the parallelization and decoupling of the computation allows for faster
simulations [16,34,8]. Here, simulator means any process that exhibits behavior
over time, so this definition encompasses physical prototypes, software compo-
nents, and human operators [3,15].

2 C. Gomes, B. Legat, R. Jungers, and H. Vangheluwe

Throughout this paper we assume that the simulators are independent of
each other®. As a consequence, an orchestrator is required to ensure that the
simulators exchange data during a co-simulation.

Co-simulation promotes the idea that each simulator decides how to best com-
pute the behavior of the subsystem allocated to it, leaving to the orchestrator
the decision of when (with respect to the simulated time) should the simulators
exchange data, and in what order [19]. However, as prior work has shown (e.g.,
[12,42,19,17,28,6,30,5]), the decision on how to best compute the behavior of
each subsystem depends on the specific arrangement of all subsystems—such ar-
rangement being called the co-simulation scenario—, and on the decisions of the
orchestrator. In sum: no decision concerning how to compute the co-simulation
should be taken independently of the co-simulation scenario, which means that
simulators should avoid “hard-coded” decisions.

It is currently a matter of research to find out which decisions are scenario
dependent, and in this work, we assume that each simulator provides a mecha-
nism to control some of these. Two factors are known to affect these decisions:
(1) the co-simulation scenario; and (2) the requirements for the co-simulation.

Regarding the exact moment when these decisions need to be made, in the
general case of systems that undergo structural changes (and therefore change
the co-simulation scenario), the only possible time to make such decisions is
when these changes occur, as demonstrated in [37]. The requirements for the co-
simulation can change during the computation itself as well. The purpose of this
is to inspect certain transient behavior of interest (e.g., see [23,40,7,27]). We will
therefore focus on adaptive co-simulation, where the orchestrator and simulators
change the way they compute the co-simulation during the co-simulation itself,
as a factors (1) and (2) change.

In the scope of adaptive co-simulation, it is hard to predict which decisions
are to be taken without actually computing the co-simulation. It is then natural
to wonder whether it is possible to ensure trustworthy co-simulation results, in
the face of such uncertainty.

In this paper, we show how to prove that a co-simulation of a stable system is
numerically stable, provided that the set of all possible decisions (i.e., reactions to
changes in factors (1) and (2)) is known. In particular, we propose to use the joint
spectral radius theory [24] to certify the numerical stability of the co-simulation.
Furthermore, when a co-simulation cannot be certified as numerically stable, we
apply the results in [32,33] to provide a numerically stable co-simulation with a
reduced set of possible decisions.

The challenges associated with our approach lie in scaling with respect to the
size of the underlying system, number of simulators, and number of decisions;
and how to protect the Intellectual Property in each simulator.

In the next section, we introduce an example that motivates our research pro-
blem, and will serve as a running example. Section 3 presents some preliminary

® Two well known standards for co-simulation—the Functional Mockup Interface Stan-
dard for co-simulation [10], and the High Level Architecture [1]—share this assump-
tion.

Stable Adaptive Co-simulation 3

concepts related to stability in co-simulation and the techniques that we based
our contribution on. Then, section 4 details our contribution, and section 5 the
related work. Finally, section 6 concludes.

2 DMotivational Example

We motivate our work using a simple and well known system, that has been used
to study the numerical stability of multiple orchestration algorithms (see, e.g.,
[12,14,13,29,42,26,4]).

A coupled mass-spring-damper system is shown in fig. 1. We consider two
simulators—=S7, So—and the allocation depicted in the figure: simulator S; com-
putes the behavior of the left-hand-side (LHS) mass, accepting the input coupling
force F,, and producing the position and velocity of the mass as outputs; and
So accepts the position and velocity computed by S7, and produces the coupling
force F,. They are coupled as shown in fig. 2.

Sl SQ

T1,T1

Fig. 2. Example arrange-
Fig. 1. Example double mass-spring-damper system. ment of simulators.

The dynamics of the LHS mass are given by the following first order ODE:

.’i)l(t) = ’U1<t); mq -1'}1(t) = —C1 l‘1<t) — d1 "Ul(t) + Fc(t);

z1(0) = p1; v1(0) = s1. (1)

where & denotes the time derivative of x; ¢y is the spring stiffness constant and
dy the damping coefficient; m; is the mass; p; and s; the initial position and
velocity; and F,(t) denotes the input force acting on the mass over time.

The right-hand-side mass is governed by the following first order ODE:

j?g(t) = Ug(t); mso - ’f)g(t) = —C2 -3?2(75) — Fc(t);

22(0) = po; v2(0) = s2; (2)
Fe(t) = cc - (z2(t) —21(t)) +de - (v2(t) —v1(2))

4 C. Gomes, B. Legat, R. Jungers, and H. Vangheluwe

where: ¢, and d. denote the stiffness and damping coefficients of the central
spring and damper, respectively; co denotes the stiffness constant for the right
spring; p2 and so the initial position and velocity.

We assume that the co-simulation of this example is computed as shown in
algorithm 1 (other orchestration algorithms exist—see [19, Section 4.2] for an
overview). The function DOSTEP(H,S) instructs simulator S to simulate the
behavior of its allocated subsystem in the time interval ¢ — ¢t + H. This compu-
tation is done using a numerical method and, since the input is not available in
the open interval (¢,t 4+ H), an extrapolation scheme is used.

Algorithm 1: Jacobi orchestration algorithm for the simulators shown in
fig. 2.

Data: The stop time ¢; and a communication step size H > 0.
t:=0;

while ¢t <ty do

[z1 vl]T := GETOUTPUT(S1);

SETINPUT(S2, [21 vl]T);

F. := GETOUTPUT(S2);

SETINPUT(S1,FL);

DoSTEP(H,S1);

DoSTEP(H,S2);

t:=t+ H;

10 end

N o=

[

© 0 N O ook

Figure 3 shows multiple co-simulations of the system in fig. 1, using different
configurations for the simulators:
x1 denotes the correct trajectory of x1(t), for reference, obtained by coupling
egs. (1) and (2) and finding the analytical solution;
x1_cs_1 denotes the trajectory obtained with a co-simulation where both simu-
lators employ the forward Euler method, using a constant extrapolation of
the inputs, and performing 10 internal integration steps per co-simulation
step;

x1_cs_2 is similar to x1_cs_1, except each simulator performs only one inte-
gration step per co-simulation step;

x1_cs_3 is obtained with a co-simulation that adaptively combines the configu-
ration used in x1_cs_1 and x1_cs_2, i.e., it varies the number of internal
integration steps per simulator.

Comparing the plotted trajectories, we see that there is something wrong with
trajectory x1_cs_2. Due to the positive damping constants, the original system
must always come to a rest, irrespective of the initial values. The co-simulation
that produces x1_cs_2 does not seem to obey this law.

To compare the performance of each co-simulation, we compute the number
of model evaluations. For the co-simulations producing the trajectories x1_cs_1

Stable Adaptive Co-simulation 5

L.H.S. Mass Position

*

= owmosnnoun
=== x1_cs_1 : "
- = = xles 2| .
= T "= xlcs3 H

0 2‘0 4‘0 60 8‘0 1(‘)0
Time
Fig. 3. LHS mass position co-simulations of the system in fig. 1. Parameters: m; =

c1 =ma2 =ca =c. = 1.0; and di = d2 = d. = 0.1. The co-simulation step used is
H=0.1.

and x1_cs_2, this is given as:

tﬁf x (Stepsg, + Stepsg,) ,
where t; is the maximum simulation time, and Stepsg denotes the number of in-
ternal integration steps performed by simulator S, per invocation of DOSTEP(H,S).
The algorithm that computes trajectory x1_cs_3 is designed to spend 70% of
the time using the parameters used to compute x1_cs_1 and the remaining time
using the parameters used to compute x1_cs_2. It gives the following evaluati-
ons:
0.7 x Evalsgs, + 0.3 x Evalscs,.

As can be seen in table 1, the adaptive co-simulation mimics the qualitative
behavior of the system (i.e., eventually coming to a rest), with fewer model
evaluations than x1_cs_1.

Table 1. Total number of model evaluations per co-simulation in fig. 3.

Trajectory Evaluations
x1_cs_1 20000
x1_cs_2 2000
x1_cs_3 14600

This minimal example highlights one of the advantages of adaptive co-simulations:
the ability to obtain better tradeoffs between mimicking the qualitative behavior
of the original system and performance.

6 C. Gomes, B. Legat, R. Jungers, and H. Vangheluwe

Consider now the adaptive co-simulation x1_cs_4 shown in fig. 4, which
is similar to the policy used to compute x1_cs_3, except that more time is
spent in the mode where the simulators only take one integration step. Despite
being adaptive, it does not seem to come to a rest, which brings to our research
problem: how can we tell a stable adaptive co-simulation, from an unstable
one? And how can we ensure that the decisions taken during the co-simulation
preserve the qualitative properties of the original system?

L.H.S. Mass Position

1.0

T

0.5

0.0

-0.5 F

Time

Fig. 4. Example wrong adaptive co-simulation.

The next section provides the necessary background to explore this problem
in depth.

3 Background

3.1 Co-simulation

In this paper, we consider a simulator to be an executable unit that expects input
signals at agreed-upon points in simulated time, and produces output signals at
these times (see [19, Section 4] for a formal definition). The inputs (resp. outputs)
correspond to the inputs (resp. outputs) of the subsystem that is allocated to
that simulator.

A simulator often employs a numerical method to approximate the state of
its subsystem over simulated time. Suppose that an input is provided at time ¢,
and the simulator is instructed to compute until time ¢+ H, with a given H > 0.
Then, the simulator will perform a number of internal integration steps, while
guessing what the input is throughout these steps. At time ¢ + H, a new input
point is provided, and the process is repeated.

Stable Adaptive Co-simulation 7

A co-simulation scenario is a specific coupling of simulators, reflecting the
coupling of the underlying subsystems. Here we assume that this coupling is a
set of output-to-input assignments, giving rise to arrangements as exemplified in
fig. 2.

An orchestrator is an algorithm that uses the co-simulation scenario to com-
pute a co-simulation. It is responsible for asking simulators to produce outputs,
setting their inputs, and controlling their computation over the simulated time,
by deciding the co-simulation policy. A simple orchestrator is shown in algo-
rithm 1.

A co-simulation policy is a sequence (over simulated time) of decisions that
affect how the co-simulation is computed. In this paper, a policy encompasses:
Solver the numerical solver used by each simulator;

Internal Step Size the internal step size used by each simulator;

Input Approximation the input extrapolation scheme used by each simula-
tor; and

Orchestration the order in which inputs are provided to each simulator (two

well known examples are Jacobi and Gauss-Seidel orchestration [19]).

We consider these items because they are known to affect the stability of the
co-simulation. For example, [12] studies the stability of the co-simulation using
multiple input extrapolation schemes, and [42] studies the stability under diffe-
rent orchestration algorithms.

3.2 (Numerical) Stability
Consider the following first order ODE:

& = Ax; x(0) is given; (3)

where x(t) is a real-valued vector, and A is a square real matrix.

The solution z(t) to the system in eq. (3) is stable if x(¢) tends to the origin,
regardless of z(0). In other words, lim; , ||z(t)|| = 0.

Suppose that the solution to eq. (3) is approximated by the following discrete
time system: ~

Tip1 = Ay To = x(0); (4)

where #; is a real-valued vector, and A is a square real matrix.

We say that the system in eq. (4) is stable if, for all Zg,

lim [|Z;]| = 0 & lim || A°]| =0, (5)
1— 00 71— 00

for any vector norm ||#||, and any matrix norm ||A| satisfying the submultipli-
cativity property.

Assuming that the system in eq. (3) is stable, it is important that the ap-
proximating system in eq. (4) preserves this property, in which case, we denote
it as being numerically stable. The importance of preserving this property lies in
the fact that the computation of the approximation naturally introduces errors.
If the system in eq. (4) is numerically stable, the error remains bounded.

8 C. Gomes, B. Legat, R. Jungers, and H. Vangheluwe
The condition in eq. (5) can be studied by means of the spectral radius p(A)
[44, Theorem 1.3.2]: B _
p(A) <1< lim ||AY] =0,
11— 00

where p(A) is given by Gelfand’s formula or the maximum absolute eigenvalue:

p(A) = lim [|A°[|* = max)], (6)
i—00 J

and), is the j-th eigenvalue of A.

As detailed in [12,42,19] and references therein, the numerical stability of a
co-simulation is analyzed by assuming that the underlying coupled system can
be written as in eq. (3) and is stable, and computing the discrete time system in
the form of eq. (4) that represents the co-simulation. Here, we illustrate how this
is done for the example in fig. 1 (a more general description is given in the above
references). This procedure can be generalized to any number of simulators, as
long as the underlying coupled system can be written as in eq. (3) (for conditions
that ensure this, see [5, Section 2]).

Consider now the example of fig. 1, and suppose that the orchestrator (fol-
lowing algorithm 1) and simulators are at time ¢,. In the interval ¢t € [t;,t;11],
each simulator S;, with j = 1,2, is trying to approximate the solution to a linear
ODE,

j?j:Aj~l’j+Bj‘Uj (7)
yj = Cj-xj+ Dj-u,
where A;, B;,C;, D; are matrices with appropriate dimensions, and the initial
state x;(t;) is the state computed in the most recent co-simulation step. We
assume that either Dy or D5 is the null matrix, so that the coupled system can
be written as eq. (3). In this example, D; = 0.

Without loss of generality (for more sophisticated input extrapolation techni-
ques, see [12, Equation (9)]), we assume that each simulator uses a constant
extrapolation to approximate the input in the interval [¢;,¢;11). That is, u;(t) =
u;(t;), for t € [t;,t;41). Then, eq. (7) can be re-written to represent the unforced
system being integrated by each simulator:

Til _ | A5 Byl |7

HRCORE @
We can represent the multiple internal integration steps of eq. (8), performed

by the simulator S; in the interval ¢ € [t;,t;41], as

[ffj(tm)] = Ak [“””ﬂ;(m] 9)

t;(tit1) ? U,
where flj represents a single integration step of the numerical method (e.g.,
Aj =1+h; [Aj Bj] for the forward Euler method), k; = (t;41 — t;)/h; is the

00
number of internal steps, and 0 < h; < H is the internal fixed step size that

Stable Adaptive Co-simulation 9

divides H. Note that eq. (9) represents a discrete time system modeling the
behavior of the simulator at a single co-simulation step, with no inputs. Now we
just have to represent how the simulators exchange data at the end/beginning
of a co-simulation step.

At the beginning of the co-simulation step 4, we wish to enforce u (¢;) = ya(t;)
and us(t;) = y1(¢;). This, together with eq. (7), gives,

ul(ti) =Cy- $2(t7;) + DyC4 -ml(ti).

us(t;) = Cy - 21 () (10)

Finally, egs. (8) to (10) are combined to write the co-simulation step in the
form of eq. (4) as

I 0
iEl(tiJrl) o I000 Allﬁ ~0 0 CQ xl(tl) (11)
xz(ti+1) 0010 0 A12€2 0 I :L'Q(ti)
Ci D;-C2
A

whose stability is easily checked with eq. (6).

We remark that eq. (11) represents an abstraction of how the co-simulation is
computed, for analysis purposes. In practice, the co-simulation itself may include
optimizations, parallelism, etc...which are neglected when building eq. (11).

3.3 Joint Spectral Radius

The definitions we present here are adapted from [24].
Consider the following switched discrete time system:

Tiy1 = Ao(i)l‘i : U(Z) S {O, e, m — 1}, Aa(i) ey (12)

where g is given, {0,...,m — 1} is the set of modes, (i) is the mode active at
. m—1 . .
step i, and X = {A;},_, is a sequence of m real square matrices.
We denote the sequence o(0),0(1),... as the switching signal, where A, ;) €
X represents the matrix used to compute ;41 from z; in eq. (12). A switching
signal ¢(0),0(1),...,0(i) induces the matrix product A,;_1)...Asq) - As(0)-
Let

Y ={Ap Ap . Apy Ay, €X.0<p; <m,j=0,...,i—1}

be the set of all products induced by switching signals with length i. Note that,
for any given switching signal o(0), o(1),...0(i—1), 7,11 = Az for some A € X
The system in eq. (12) is stable if, for any z(, and any switching signal,

10 C. Gomes, B. Legat, R. Jungers, and H. Vangheluwe

The Joint Spectral Radius p(X) (JSR) is essentially a generalization of Gel-
fand’s formula, in eq. (6), to arbitrary products of matrices in X' [41]:

pil2) =suwp {[14] /s A € 27}
p(X) = limsup p;(X)

i—00

(13)

Using the JSR, we can characterize the stability of the system in eq. (12) by
noting that [24, Theorem 1], for any bounded set X,

ﬁ(Z) <1<« for all o, lim HAa(i)Aa(i—l) s Aa(O) || =0. (14)
71— 00

To determine whether the system in eq. (12) is stable, note that the limit in
eq. (13) exists, and any finite ¢ satisfies:

p(X) < p;(X) [24, Lemma 1.2].

Therefore, if there exists ¢, such that p;(X) < 1, then the switched system is
stable. Note however, that checking whether p(X) < 1 is NP-Hard [11] and
undecidable [24, Proposition 2.9] in general.

Other algorithms exist to estimate p(X'), and we refer the reader to [20,22,25,39,36].

4 Stability Certification of Adaptive Co-simulations

In this section, we first describe how to use the concepts introduced in the pre-
vious section to determine the numerical stability of an adaptive co-simulation.
Then, we propose a way to address the case when the adaptive co-simulation is
not numerically stable.

4.1 Stability

Equation (11) represents a single co-simulation step, which, as can be seen from
egs. (7) to (10), represents a specific: system arrangement; coupling approach;
simulator input approximation; internal solver method; internal simulator step
size hj; and communication step size H. If any of these items changes from
one co-simulation step to the next, the co-simulation is adaptive, and is best
described as a discrete time switched system, of the form of eq. (12), where
X includes every possible variation of the matrix Ain eq. (11), constructed as
explained in section 3.2.
To exemplify, in the co-simulation of the system in fig. 1, suppose that the
decision space is as follows:
Arrangement is the one in fig. 2;
Coupling is the one in algorithm 1 but a Gauss-Seidel, Strong coupling, or
others, could have been used [21];
Input Approximation is the constant extrapolation but higher order input
approximations can be applied [12];

Stable Adaptive Co-simulation 11

Solver can be forward Euler, or the midpoint method [48, Section II.1];
Solver Step Size can be H/10 or H;

Communication Step Size H is 0.1;

Then X' contains 16 matrices, representing every possible combination of policies,
per simulator, from one co-simulation step to the next.

Applying the result in eq. (14) ensures that any possible decision sequence
taken by the co-simulation always produces a numerically stable co-simulation.
This is a strong result in the sense that we do not need to know anything about
how the decisions are made.

In the example proposed, p(X) > 1. To see why this is the case, let Ags o
denote that co-simulation step matrix that uses H = 0.1 and solver step size
equal to H. Then, computing the spectral radius p(A), one observes that p(A) >
1. This means that there is a switching signal (always use A.s 2 to compute the
next co-simulation step) that causes the co-simulation to not be stable. In fact,
the result is the trajectory x1_cs_2, plotted in fig. 3.

4.2 Stabilization

As the paragraph above shows, if there is a matrix A € X such that p(A) > 1,
then we have that p(X) > 1. This immediately suggests an optimization to be
done before computing the JSR: exclude all unstable matrices. That is, we set

So=S\{A} VA€ X:p(A) > L

After computing X, it can still be the case that 5(Xg) > 1, as the product of
stable matrices is not necessarily stable (see, e.g., [24, Figure 1.2]). Furthermore,
p(Xo) > 1 does not imply that there exists a finite i and a A € X} such that
p(A) > 1 (see, e.g., [24, Section 2.4], with the case that p(A) = 1). This means
that no algorithm can always ensure that a stable co-simulation is attained.
Fortunately, in practice, the algorithm proposed in [32] works well.

The work in [32] approximates p(Xy), allowing us to check whether (X)) < 1,
and, more importantly, returns a sequence po, . . ., p;—1 such that p(A4,, , ... A,) =
p(Mo) to any desired level of accuracy. Computing ¥y = Xy \ A,, for one
j €{0,...,7— 1} and iterating allows one to obtain a Y, such that p(X,) < 1.

In the adaptive co-simulation of the system introduced in fig. 3, we have that
Y, = X excludes the matrix Ag 2, and p(Xy) < 0.992905.

4.3 Conservativeness

As the previous result shows, applying this procedure to the adaptive co-simulation
introduced in the previous sub-section results in a stable adaptive co-simulation
that will never use the matrix A o. This is too restrictive. To see why, note that,
as illustrated in plots of fig. 3, a careful use of the decisions embedded in matrix
Ags o actually yields a co-simulation that outperforms the other non-adaptive
co-simulations (see the stable trajectory x1_cs_3 in table 1).

12 C. Gomes, B. Legat, R. Jungers, and H. Vangheluwe

We propose a straightforward solution to this problem: apply the stabilization
procedure to Q = X9, which includes all products of length ¢ of matrices in X' for
a given ¢ > 0 (there is little use to including all products of length up to ¢ because
these are subsequences of the products of length m). The matrix products in the
stabilized @), may include combinations of matrices that would otherwise have
been removed.

In the adaptive co-simulation example, we set ¢ = 2 and we obtain (), that
only excludes the matrix Acg 2 Acs 2, which means that the policies embedded in
Acs o can still be used, provided that they are alternated with any other policies.
Applying the algorithm in [32] yields p(X3) < 0.982986.

4.4 Implementation

If the stabilization procedure terminates, we are left with Q,: a set of sequences
of matrix products of length ¢. Since we abstracted how each decision is taken at
each co-simulation step, we still need to ensure that, at run-time, the decisions
taken by the adaptive co-simulation remain within the allowed decisions (in the
set Q).

To shed light on this problem, note that each sequence py,...,p,—1 that
induces the matric product A, _, ... Ay, € X9, can be associated with one, and
only one, natural number dy,.. ,,_, € No computed as a conversion from base-m
digit to a decimal number:

q—1
dpy..pys = Y Dj -0, (15)
j=0

where m is the number of matrices in X.

We therefore propose to allocate a m?-bit array, where the position alpo___p%1
of the array indicates whether the matrix product 4, ... A, € Q.. Then, at
time ¢; with 4 > ¢ — 1, the previous ¢ policies are used to reconstruct do,_,_, ..o
and check whether the corresponding subsequence is safe to take. If the policy
o(i) is not safe to take, then the immediate neighbors of dy,_, .., in the bit
array can be inspected to find whether there are safe policies that can be selected.
fig. 5 illustrates a scenario where ¢ = 3, m = 16 and the orchestrator is about to
decide to use the policies embedded in matrix Ai4. A quick look-up to position
2158, obtained with eq. (15), shows that this is not allowed. The neighbouring
positions show alternative matrices that can be used.

5 Related Work

There is a huge body of work in techniques to determine the stability of a discrete
time switched system. For introductions and overviews on the topic, please see
[35,45,24,38,2].

We highlight the work in [31], where an algorithm is proposed to search for
a stable periodic switching signal. This work differs from our because we are

Stable Adaptive Co-simulation 13

Decision Sequence: —+
t

2157,= 8 6 13,,
2158 = 8 6 14,
2159,= 8 6 15,,
2160,= 8 7 0,,

Allowed Decisions:

el k=l

Fig. 5. Runtime structures of decision sequence monitor.

interested is removing all non-stable periodic switching signals, and retaining all
the stable ones.

To the best of our knowledge, there is no work that applies the above results
to the topic of adaptive co-simulation. For applications to the stability analysis
of non-adaptive orchestration algorithms, we refer the reader to [43,42,12,18].

6 Conclusion

In this paper, we introduce the problem of ensuring numerical stability in the
context of adaptive co-simulation. To address this problem, we describe how
to model the adaptive co-simulation as a discrete timed switched system, in-
corporating all possible policies. Then we use recent results [32] to determine
whether the adaptive co-simulation is numerically stable. If it is not, we propose
an attempt to make it stable by reducing the set of allowed policies. Finally,
we describe how to implement a simple monitor that ensures that the adaptive
co-simulation only takes the accepted policies during execution.

The experiments made throughout the paper to exemplify our approach is
available for download®.

There are two major limitations in this work: (i) the stability of the adaptive
co-simulation is not decidable in general, so the algorithm we propose here may
not terminate; and (ii) for large numbers of policies, the computation of the joint
spectral radius becomes impractical.

To address these, we will explore whether the construction of adaptive co-
simulation yields any structure that can be leveraged (e.g., common reducibility)
to accelerate the computation of the joint spectral radius.

5 http://msdl.cs.mcgill.ca/people/claudio/hybrid_cosim_analysis

14

C. Gomes, B. Legat, R. Jungers, and H. Vangheluwe

References

10.

11.

12.

IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) - Federate Interface Specification (2010). URL https://standards.ieee.org/
findstds/standard/1516-2010.html

. Ahmadi, A.A., Jungers, R., Parrilo, P.A., Roozbehani, M.: Analysis of the joint

spectral radius via lyapunov functions on path-complete graphs. In: Proceedings
of the 14th international conference on Hybrid systems: computation and control
- HSCC ’11, p. 13. ACM Press, Chicago, IL, USA (2011). DOI 10.1145/1967701.
1967706. URL http://portal.acm.org/citation.cfm?doid=1967701.1967706
Alvarez Cabrera, A.A., Woestenenk, K., Tomiyama, T.: An architecture model
to support cooperative design for mechatronic products: A control design case.
Mechatronics 21(3), 534-547 (2011). DOI 10.1016/j.mechatronics.2011.01.009
Arnold, M.: Stability of Sequential Modular Time Integration Methods for Coupled
Multibody System Models. Journal of Computational and Nonlinear Dynamics
5(3), 9 (2010). DOI 10.1115/1.4001389

Arnold, M., ClauB, C., Schierz, T.: Error Analysis and Error Estimates for Co-
simulation in FMI for Model Exchange and Co-Simulation v2.0. In: S. Schops,
A. Bartel, M. Giinther, W.E.J. ter Maten, C.P. Miiller (eds.) Progress in
Differential-Algebraic Equations, pp. 107-125. Springer Berlin Heidelberg, Berlin,
Heidelberg (2014). DOT 10.1007/978-3-662-44926-4_6

Bastian, J., Clauf3; C., Wolf, S., Schneider, P.: Master for Co-Simulation Using
FMI. In: 8th International Modelica Conference, pp. 115-120. Dresden, Germany
(2011). DOI 10.3384/ecp11063115

Beltrame, G., Sciuto, D., Silvano, C.: Multi-Accuracy Power and Performance
Transaction-Level Modeling. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 26(10), 1830-1842 (2007). DOI 10.1109/TCAD.
2007.895790

Ben Khaled, A., Ben Gaid, M., Pernet, N., Simon, D.: Fast multi-core co-simulation
of Cyber-Physical Systems: Application to internal combustion engines. Simulation
Modelling Practice and Theory 47, 79-91 (2014). DOI 10.1016/j.simpat.2014.05.
002

Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauss, C., Elmqvist, H., Jung-
hanns, A., Mauss, J., Monteiro, M., Neidhold, T., Neumerkel, D., Olsson, H., Peetz,
J.V., Wolf, S.: The Functional Mockup Interface for Tool independent Exchange
of Simulation Models. In: 8th International Modelica Conference, pp. 105-114.
Linkoping University Electronic Press; Linkopings universitet, Dresden, Germany
(2011). DOI 10.3384/ecp11063105

Blockwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Frie-
drich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., Viel, A.: Functional
Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation
Models. In: 9th International Modelica Conference, pp. 173-184. Link&ping Uni-
versity Electronic Press, Munich, Germany (2012). DOI 10.3384/ecp12076173
Blondel, V.D., Tsitsiklis, J.N.: The boundedness of all products of a pair of ma-
trices is undecidable. Systems & Control Letters 41(2), 135-140 (2000). DOI
10.1016/S0167-6911(00)00049-9. URL http://linkinghub.elsevier.com/retrieve/
pii/S0167691100000499

Busch, M.: Continuous approximation techniques for co-simulation methods: Ana-
lysis of numerical stability and local error. ZAMM - Journal of Applied Mathema-
tics and Mechanics 96(9), 1061-1081 (2016). DOI 10.1002/zamm.201500196

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Stable Adaptive Co-simulation 15

Busch, M., Schweizer, B.: Numerical stability and accuracy of different co-
simulation techniques: analytical investigations based on a 2-DOF test model.
In: 1st Joint International Conference on Multibody System Dynamics, pp. 25—
27 (2010)

Busch, M., Schweizer, B.: Stability of Co-Simulation Methods Using Hermite and
Lagrange Approximation Techniques. In: ECCOMAS Thematic Conference on
Multibody Dynamics, pp. 1-10. Brussels, Belgium (2011)

Faure, C., Ben Gaid, M., Pernet, N., Fremovici, M., Font, G., Corde, G.: Methods
for real-time simulation of Cyber-Physical Systems: application to automotive dom-
ain. In: 2011 7th International Wireless Communications and Mobile Computing
Conference, pp. 1105-1110. IEEE (2011). DOI 10.1109/IWCMC.2011.5982695
Friedrich, M.: Parallel Co-Simulation for Mechatronic Systems. Ph.D. thesis (2011)
Gomes, C.: Foundations for Continuous Time Hierarchical Co-simulation. In: ACM
Student Research Competition (ACM/IEEE 19th International Conference on Mo-
del Driven Engineering Languages and Systems), p. to appear. Saint Malo, Brit-
tany, France (2016)

Gomes, C., Karalis, P., Navarro-Lépez, E.M., Vangheluwe, H.: Approximated Sta-
bility Analysis of Bi-Modal Hybrid Co-simulation Scenarios. In: 1st Workshop
on Formal Co-Simulation of Cyber-Physical Systems, p. to appear. Trento, Italy
(2017)

Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
State of the art. Tech. rep. (2017). URL http://arxiv.org/abs/1702.00686
Gripenberg, G.: Computing the joint spectral radius. Linear Algebra and its Ap-
plications 234, 43-60 (1996). DOI 10.1016/0024-3795(94)00082-4. URL http:
//linkinghub.elsevier.com /retrieve/pii/0024379594000824

Gu, B., Asada, H.H.: Co-simulation of algebraically coupled dynamic subsystems.
In: American Control Conference, vol. 3, pp. 2273-2278. Arlington, VA, USA
(2001). DOI 10.1109/ACC.2001.946089

Guglielmi, N., Zennaro, M.: An algorithm for finding extremal polytope norms of
matrix families. Linear Algebra and its Applications 428(10), 2265-2282 (2008).
DOI 10.1016/j.1aa.2007.07.009. URL http://linkinghub.elsevier.com/retrieve/pii/
S0024379507003126

Hines, K., Borriello, G.: Selective focus as a means of improving geographically
distributed embedded system co-simulation. In: 8th IEEE International Workshop
on Rapid System Prototyping, 1997, pp. 58-62 (1997). DOI 10.1109/TWRSP.1997.
618825

Jungers, R.: The joint spectral radius: theory and applications, vol. 385. Springer
Science & Business Media (2009)

Jungers, R.M., Cicone, A., Guglielmi, N.: Lifted Polytope Methods for Computing
the Joint Spectral Radius. SIAM Journal on Matrix Analysis and Applications
35(2), 391410 (2014). DOI 10.1137/130907811. URL http://epubs.siam.org/doi/
10.1137/130907811

Kalmar-Nagy, T., Stanciulescu, I.: Can complex systems really be simulated? Ap-
plied Mathematics and Computation 227, 199-211 (2014). DOI 10.1016/j.amc.
2013.11.037

Karner, M., Armengaud, E., Steger, C., Weiss, R.: Holistic Simulation of FlexRay
Networks by Using Run-time Model Switching. In: Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’10, pp. 544-549. European
Design and Automation Association, 3001 Leuven, Belgium, Belgium (2010)

16

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

C. Gomes, B. Legat, R. Jungers, and H. Vangheluwe

Karner, M., Steger, C., Weiss, R., Armengaud, E.: Optimizing HW/SW Co-
simulation based on run-time model switching. In: Specification & Design Lan-
guages, 2009. FDL 2009. Forum on, pp. 1-6 (2009)

Kiibler, R., Schiehlen, W.: Modular Simulation in Multibody System Dyna-
mics. Multibody System Dynamics 4(2-3), 107-127 (2000). DOI 10.1023/A:
1009810318420

Kiibler, R., Schiehlen, W.: Two Methods of Simulator Coupling. Mathematical
and Computer Modelling of Dynamical Systems 6(2), 93-113 (2000). DOI 10.
1076,/1387-3954(200006)6:2;1-M;FT093

Kundu, A., Chatterjee, D.: Stabilizing discrete-time switched linear systems. In:
Hybrid systems: computation and control, pp. 11-20. ACM Press, Berlin, Ger-
many (2014). DOI 10.1145/2562059.2562114. URL http://dl.acm.org/citation.
cfm?doid=2562059.2562114

Legat, B., Jungers, R.M., Parrilo, P.A.: Generating Unstable Trajectories for Swit-
ched Systems via Dual Sum-Of-Squares Techniques. In: Proceedings of the 19th
International Conference on Hybrid Systems: Computation and Control - HSCC
’16, pp. 51-60. ACM Press, New York, New York, USA (2016). DOI 10.1145/
2883817.2883821. URL http://dl.acm.org/citation.cfm?doid=2883817.2883821
Legat, B., Parrilo, P.A., Jungers, R.M.: Certifying unstability of Switched Systems
using Sum of Squares Programming. Tech. rep. (2017). URL http://arxiv.org/
abs/1710.01814

Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The Waveform Relax-
ation Method for Time-Domain Analysis of Large Scale Integrated Circuits. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 1, pp. 131-145 (1982). DOI 10.1109/TCAD.1982.1270004

Lin, H., Antsaklis, P.J.: Stability and Stabilizability of Switched Linear Systems:
A Survey of Recent Results. IEEE Transactions on Automatic Control 54(2),
308-322 (2009). DOI 10.1109/TAC.2008.2012009. URL http://ieeexplore.ieee.org/
document /4782010/

Maesumi, M.: An efficient lower bound for the generalized spectral radius of a
set of matrices. Linear Algebra and its Applications 240, 1-7 (1996). DOI
10.1016,/0024-3795(94)00171-5. URL http://linkinghub.elsevier.com/retrieve/pii/
0024379594001715

Mosterman, P.J.: An Overview of Hybrid Simulation Phenomena and Their Sup-
port by Simulation Packages. In: F.W. Vaandrager, J.H. van Schuppen (eds.)
Hybrid Systems: Computation and Control SE - 17, Lecture Notes in Computer
Science, vol. 1569, pp. 165—177. Springer Berlin Heidelberg, Berg en Dal, The Net-
herlands (1999). DOI 10.1007/3-540-48983-5_17

Parrilo, P.A., Jadbabaie, A.: Approximation of the Joint Spectral Radius
of a Set of Matrices Using Sum of Squares. In: Hybrid Systems: Com-
putation and Control, pp. 444-458. Springer, Berlin, Heidelberg, Pisa, Italy
(2007). DOI 10.1007/978-3-540-71493-4_35. URL http://link.springer.com/10.
1007/978-3-540-71493-4{_}35

Parrilo, P.A., Jadbabaie, A.: Approximation of the joint spectral ra-
dius using sum of squares. Linear Algebra and its Applications
428(10), 2385-2402 (2008). DOI 10.1016/j.1aa.2007.12.027. URL
http://www.sciencedirect.com/science/article /pii/S002437950800028 1http:
//linkinghub.elsevier.com /retrieve/pii/S0024379508000281

Radetzki, M., Khaligh, R.S.: Accuracy-adaptive Simulation of Transaction Level
Models. In: Proceedings of the Conference on Design, Automation and Test in

41.

42.

43.

44.

45.

46.

47.

48.

Stable Adaptive Co-simulation 17

Europe, DATE 08, pp. 788-791. ACM, New York, NY, USA (2008). DOI 10.
1145/1403375.1403566

Rota, G.C., Strang, W.: A note on the joint spectral radius. In: Proceedings of the
Netherlands Academy 22, pp. 379-381 (1960)

Schweizer, B., Li, P., Lu, D.: Explicit and Implicit Cosimulation Methods: Stability
and Convergence Analysis for Different Solver Coupling Approaches. Journal of
Computational and Nonlinear Dynamics 10(5), 051,007 (2015). DOI 10.1115/1.
4028503

Schweizer, B., Li, P., Lu, D., Meyer, T.: Stabilized implicit co-simulation methods:
solver coupling based on constitutive laws. Archive of Applied Mechanics 85(11),
1559-1594 (2015). DOI 10.1007/s00419-015-0999-2

Stuart, A., Humphries, A.R.: Dynamical systems and numerical analysis, vol. 2.
Cambridge University Press (1998)

Sun, Z., Ge, S.: Analysis and synthesis of switched linear control systems. Au-
tomatica 41(2), 181-195 (2005). DOI 10.1016/j.automatica.2004.09.015. URL
http://linkinghub.elsevier.com /retrieve/pii/S0005109804002778

Tomiyama, T., D’Amelio, V., Urbanic, J., ElMaraghy, W.: Complexity of Multi-
Disciplinary Design. CIRP Annals - Manufacturing Technology 56(1), 185-188
(2007). DOI 10.1016/j.cirp.2007.05.044

Van der Auweraer, H., Anthonis, J., De Bruyne, S., Leuridan, J.: Virtual engineer-
ing at work: the challenges for designing mechatronic products. Engineering with
Computers 29(3), 389-408 (2013). DOI 10.1007/s00366-012-0286-6

Wanner, G., Hairer, E.: Solving ordinary differential equations I: Nonstiff Problems,
vol. 1, springer s edn. Springer-Verlag (1991)

