
Co-simulation: State of the art

Cláudio Gomes (claudio.gomes@uantwerp.be)
Casper Thule (casper.thule@eng.au.dk) David Broman (dbro@kth.se)

Peter Gorm Larsen (pgl@eng.au.dk)
Hans Vangheluwe (hans.vangheluwe@uantwerp.be)

February 1, 2017

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Co-simulation . 4
1.3 Need for the Survey . 6
1.4 Outline . 6

2 Modeling, Simulation, and Co-simulation 7
2.1 Dynamical Systems – Models of Real Systems . 7
2.2 Simulators – Computing the Behavior Trace . 8
2.3 Simulation Units - Mock-ups of Reality . 10
2.4 Compositional Co-simulation . 10

3 Discrete Event Based Co-simulation 11
3.1 DE Simulation units . 11
3.2 DE Co-simulation Orchestration . 13
3.3 Challenges . 19

3.3.1 Causality . 19
3.3.2 Determinism and Confluence . 19
3.3.3 Dynamic Structure . 20
3.3.4 Distribution . 20

4 Continuous Time Based Co-simulation 20
4.1 CT Simulation Units . 20
4.2 CT Co-simulation Orchestration . 22
4.3 Challenges . 27

4.3.1 Modular Composition – Algebraic Constraints 27
4.3.2 Algebraic loops . 31
4.3.3 Consistent Initialization of Simulators . 33
4.3.4 Compositional Convergence – Error Control 33
4.3.5 Compositional Stability . 36

1

ar
X

iv
:s

ub
m

it/
17

92
30

8
 [

cs
.S

Y
]

 1
 F

eb
 2

01
7

4.3.6 Compositional Continuity . 39
4.3.7 Real-time Constraints . 40

5 Hybrid Co-simulation Approach 41
5.1 Hybrid Co-simulation Scenarios . 41
5.2 Challenges . 43

5.2.1 Semantic Adaptation . 43
5.2.2 Predictive Step Sizes . 43
5.2.3 Event Location . 43
5.2.4 Discontinuity Identification . 44
5.2.5 Discontinuity Handling . 44
5.2.6 Algebraic Loops, Legitimacy, and Zeno Behavior 44
5.2.7 Stability . 45
5.2.8 Theory of DE Approximated States . 45
5.2.9 Standards for Hybrid Co-simulation . 45

6 Classification 45
6.1 Methodology . 46
6.2 Taxonomy . 46
6.3 State of the Art . 47
6.4 Discussion . 47

7 Concluding Remarks 48

A Historical Perspective of Co-simulation 77
A.1 One Formalism and Dynamic Iteration . 77
A.2 Two Formalisms: Digital and Analog Co-simulation 78
A.3 Multi-abstraction/Multi-Formalism Co-simulation 78
A.4 Black-box Co-simulation . 79
A.5 Real-time Co-simulation . 79
A.6 Many simulation units: Large Scale Co-simulation 79

B State of the Art in Co-simulation Frameworks 79

C Co-Simulation Scenario Categorization 123
C.1 Non-Functional Requirements . 123

C.1.1 Fault Tolerance . 123
C.1.2 Configuration Reusability . 123
C.1.3 Performance . 123
C.1.4 IP Protection . 124
C.1.5 Parallelism . 125
C.1.6 Distribution . 126
C.1.7 Hierarchy . 126
C.1.8 Scalability . 127
C.1.9 Platform Independence . 127
C.1.10 Extensibility . 127
C.1.11 Accuracy . 127

2

C.1.12 Open source . 128
C.2 Simulator Requirements . 128

C.2.1 Information Exposed . 129
C.2.2 Causality . 132
C.2.3 Time Constraints . 134
C.2.4 Rollback Support . 136
C.2.5 Availability . 138

C.3 Framework Requirements . 140
C.3.1 Standard . 140
C.3.2 Coupling . 140
C.3.3 Number of Simulation Units . 142
C.3.4 Domain . 144
C.3.5 Dynamic structure . 146
C.3.6 Co-simulation Rate . 146
C.3.7 Communication Step Size . 148
C.3.8 Strong Coupling Support . 150
C.3.9 Results Visualization . 152
C.3.10 Communication Approach . 154

D List of Acronyms 157

Abstract

It is essential to find new ways of enabling experts in different disciplines to collaborate
more efficient in the development of ever more complex systems, under increasing market
pressures. One possible solution for this challenge is to use a heterogeneous model-based
approach where different teams can produce their conventional models and carry out their
usual mono-disciplinary analysis, but in addition, the different models can be coupled for
simulation (co-simulation), allowing the study of the global behavior of the system. Due to its
potential, co-simulation is being studied in many different disciplines but with limited sharing
of findings. Our aim with this work is to summarize, bridge, and enhance future research in
this multidisciplinary area.

We provide an overview of co-simulation approaches, research challenges, and research op-
portunities, together with a detailed taxonomy with different aspects of the state of the art of
co-simulation and classification for the past five years.

The main research needs identified are: finding generic approaches for modular, stable and
accurate coupling of simulation units; and expressing the adaptations required to ensure that
the coupling is correct.

1 Introduction

1.1 Motivation

Truly complex engineered systems that integrate physical, software and network aspects, are emerg-
ing [153, 185]. Due to external pressure, the development of these systems has to be concurrent and
distributed, that is, divided between different teams and/or external suppliers, each in their own
domain and each with their own tools. Each participant develops a partial solution to a constituent

3

system, that needs to be integrated with all the other partial solutions. The later in the process
the integration is done, the less optimal it is [228].

Innovative and truly optimal multi-disciplinary solutions can only be achieved through a holistic
development process [237] where the partial solutions developed independently are integrated sooner
and more frequently. Furthermore, the traditional activities carried out at the partial solution level
—such as requirements compliance check, or design space exploration— can be repeated at the
global level, and salient properties spanning multiple constituent systems can be studied.

Modeling and simulation can improve the development of the partial solutions (e.g., see Friedman
and Ghidella [92]), but falls short in fostering this holistic development process [34]. To understand
why, one has to observe that: a) models of each partial solution cannot be exchanged or integrated
easily, because these are likely developed by different specialized tools; and b) externally supplied
models have Intellectual Property (IP), hence cannot be cheaply disclosed to system integrators.

1.2 Co-simulation

Co-simulation is proposed as a solution to overcome these important challenges. It consists of
the theory and techniques to enable global simulation of a coupled system via the composition of
simulators. Each simulator is a black box mock-up of a constituent system, developed and provided
by the team that is responsible for that system. This allows each team/supplier to work on its
part of the problem with its own tools without having the coupled system in mind, and eases the
relationship between system integrators and suppliers: the latter provide virtual mock-ups of the
solutions they are selling without revealing their IP; the former can perform early conformance
checks and evaluate different designs from multiple competing suppliers.

An alternative to co-simulation is co-modelling, were models are described in a unified language,
and then simulated. There are advantages to this approach but each domain has its own particular-
ities when it comes to simulation (e.g., see [63, 167, 246]) making it impractical to find a language
and simulation algorithm that fits all.

As part of the systematic review that led to the current document (see section 6.1 for de-
tails), we took note of the approaches to co-simulation and the publications in applications of
co-simulation. The approaches to co-simulation shaped the taxonomy in section 6.2 and the appli-
cations of co-simulation shows that in the last five years, co-simulation has been applied in many
different engineering domains, as fig. 1 shows. In concrete, the publications are:
Automotive - [4, 26, 28, 29, 39, 44, 69, 74, 82, 132, 156, 168, 213, 237, 258, 264, 266]
Electricity Production and Distribution - [3, 5, 33, 78, 95, 96, 111, 120, 139, 157–159, 163,

205, 224, 243, 248, 255, 267]
HVAC - [73, 88, 114, 188, 192, 251]
IC and SoC Design - [209]
Maritime - [194, 195]
Robotics - [143, 198, 199, 265]
A closer look at the publications shows, however, that the average reported co-simulation scenario
includes only two simulators, each a mock-up of a constituent system from a different domain.
While this gives evidence that co-simulation enhances the development multi-domain systems, it
is not yet up-to-par with the scale of Cyber-Physical Systems (CPSs). The unexplored potential
is recognized in a number of completed and ongoing projects that address co-simulation (MOD-

4

ELISAR1, DESTECS2, INTO-CPS3, ACOSAR4, ACoRTA5), and is one of the reasons why the
Functional Mock-up Interface (FMI) Standard was created.

0

1

2

3

4

5

6

7

8

9

10

11

12

2011 2012 2013 2014 2015 2016
Year

P
ub

lic
at

io
ns

Application Domain
Automotive
Electricity Production and Distribution
HVAC
IC and SoC Design
Maritime
Robotics

Figure 1: Research publications of co-simulation applications over the past five years.

The FMI standard6 defines the interfaces that enable modelling and simulation tools to cooperate
in a simulation, while keeping the IP in the models protected. As of December 2016, 15 tools
implement the standard7 and many others are planning to support it.

The standard was originally created for the coupling of continuous systems, but has been used
(or abused) to simulate hybrid systems. Extensions have been proposed in the literature to facilitate
and standardize this simulation (e.g., zero step size transitions [36, 232], or step size prediction [46]),
and we complement those by adding to the understanding of the the challenges arising in hybrid
system co-simulation. Co-simulation is not a new concept and there are many approaches in the
state of the art, in particular, discrete event based approaches, that have been studied and may
shed light on how hybrid system co-simulation can be performed.

Contribution. We present a survey and a taxonomy, as an attempt to bridge, relate and
classify the many co-simulation approaches in the state of the art.

1https://itea3.org/project/modelisar.html
2http://www.destecs.org/
3http://into-cps.au.dk/
4https://itea3.org/project/acosar.html
5http://www.v2c2.at/research/ee-software/projects/acorta/
6https://www.fmi-standard.org
7This number includes only the tools that have passed the crosscheck in https://www.fmi-standard.org/tools

5

https://itea3.org/project/modelisar.html
http://www.destecs.org/
http://into-cps.au.dk/
https://itea3.org/project/acosar.html
http://www.v2c2.at/research/ee-software/projects/acorta/
https://www.fmi-standard.org
https://www.fmi-standard.org/tools

1.3 Need for the Survey

Despite the growing interest in the benefits and scientific challenges of co-simulation, to the best
of our knowledge, no existing survey attempts to cover the heterogeneous communities in which it
is being studied. The lack of such a survey means that the same techniques are being proposed
independently with limited sharing of findings. To give an example, the use of dead-reckoning
models is a well known technique in discrete event co-simulation [152], but only very recently it was
used in a continuous time co-simulation approach [221]. Our hypothesis is that bridging these
different co-simulation approaches means that solutions and techniques can be exchanged, and a
deeper understanding of hybrid system co-simulation can be attained.

Scientifically, co-simulation —multi-disciplinary by its very nature— mixes the following fields
of research:

1. Numerical analysis – Accuracy and stability of the coupled system have to be studied [10, 51,
66, 105, 107, 109, 128, 197].

2. Differential Algebraic System Simulation – The composition of co-simulation units is, in the
most general sense, made through algebraic constraints [214, 219, 229].

3. Hybrid Systems – co-simulation scenarios, in the most general sense, are hybrid systems
[47, 154, 172–174, 184, 251, 263]

4. Optimization – the heterogeneous capabilities of co-simulation units pose interesting tradeoffs
[46, 236].

5. Hierarchy – Systems of systems are hierarchical and the corresponding co-simulation scenarios
should be hierarchical as well [96]. Compositionality properties of co-simulations becomes an
interesting research challenge.

6. Formal Verification – The co-simulation orchestration algorithm, also known as the master,
can be certified to be correct under certain assumptions about the co-simulation scenarios
[46, 89, 99, 100, 179].

7. System Testing – Co-simulation can be used for exhaustively testing a set of black-box con-
stituent systems, with a non-deterministic environment [150, 164].

8. Dynamic Structure Systems – Subsystems can have different dependencies depending on
whom, and which level of abstraction, they interact with [21–23, 234].

9. Multi-paradigm Modeling – Subsystems can have have different models at different levels of
abstraction [246]. The relationships between the multiple levels have to be known so that
correct dynamic switching between levels abstraction can be made.

1.4 Outline

To help structure the characteristics of the simulators and how they interact, we distinguish two
main approaches for co-simulation: Discrete Event (DE), described in section 3, and Continuous
Time (CT), described in section 4. Both of these can be, and are, used for the co-simulation
of continuous, discrete, or hybrid coupled systems. We call Hybrid co-simulation, described in

6

section 5, a co-simulation approach that mixes the DE and CT approaches 8. section 6 categorizes
the features provided by co-simulation frameworks, and classifies the state of the art with that
taxonomy. Finally, section 7 concludes this publication. The section below provides the terminology
used in the rest of the survey.

2 Modeling, Simulation, and Co-simulation

2.1 Dynamical Systems – Models of Real Systems

In this section we present, in an informal manner, the concepts that will be used throughout the
document.

A dynamical system is a model of a real system (for instance a physical system or a computer
system) characterized by a state and a notion of evolution rules. The state is a set of point values
in a state space. The evolution rules describe how the state evolves over an independent variable,
usually time. For example, a traffic light, the real system, can be modeled by a dynamical system
that, at any time, can be in one of four possible states (red, yellow, green, or off). The evolution
rules may dictate that it changes from red to green after some time (e.g., 60 seconds). Another
example is a mass-spring-damper, modeled by a set of first order Ordinary Differential Equations
(ODEs). The equations describe how the state —position and velocity of the mass— changes
continuously over the simulated time. In contrast with the traffic light system, where the state
cannot take an infinite number of different values over a finite duration of simulated time, the state
of the mass-spring-damper can.

The behavior trace is the set of trajectories followed by the state (and outputs) of a dynamical
system. For example, a state trajectory x can be defined as a mapping between a time base T and
the set of reals R, that is, x : T → R. fig. 2 shows a possible behavior trace for each of the example
systems described before. In this example, the time base is R.

Figure 2: Examples of behavior traces.

We refer to the time variable t ∈ T by simulated time —or simply time, when no ambiguity
exists— defined over a time base T (typical the real numbers R), as opposed to the wall-clock time
τ ∈ WcT , which is the time that passes in the real world [94]. When computing the behavior
trace of a dynamical system over an interval [0, t] of simulated time, a computer takes τ units of

8Note that in this survey, we are focusing on timed formalisms (also called models of computation) and how they
interact in a hybrid co-simulation environment. Other formalisms, with no or only logical notion of time (such as
dataflow and synchronous reactive), are not discussed in this survey. For an overview of formalisms and models of
computation, please see the book on Ptolemy II [200] and the following survey [45].

7

wall-clock time that depend on t. τ can therefore be used to measure the run-time performance of
simulators. fig. 3a highlights different kinds of simulation, based on the relationship between τ and
t. In real-time simulation, the relationship between t and τ is t = ατ , for a given α > 0. In most
cases α = 1 is required, but making sure this is obeyed by the simulation algorithm is one of the
main challenges in real-time simulation, and by extension, of co-simulation. In as-fast-as-possible
—or analytical— simulation, the relationship between τ and t is not restricted. Simulation tools
that offer interactive visualization allow the user to pause the simulation and/or set the relationship
between τ and t.

Knowing when a dynamical system can be used to predict the behavior of a real system is
crucial. The experimental frame describes, in an abstract way, a set of assumptions in which
the behavior trace of the dynamical system can be compared with the one of the real system
[24, 230, 245, 246, 262]. By real system we mean either an existing physical system, or a fictitious
—to be engineered— one. Validity is then the difference between the behavior trace of the dynamical
system and the behavior trace of the real system, measured under the assumptions specified by the
experimental frame. This is what conveys predictive power to dynamical systems. For example,
Hooke’s law, in the mass-spring-damper system, can only be used to predict the reaction force of
the spring for small deformations. For the traffic light dynamical system, the experimental frame
includes the assumption that the transition from the red light to the green light is instantaneous. It
is a valid assumption, provided that the executing platform in which the controller software runs,
has enough computing power [76, 181, 247]. A model is invalid when, within the experimental frame
assumptions, its behavior trace is so different than the one of the real system, that it cannot be
used to predict properties of the real system.

In order to be practical, the behavior trace of a dynamical system has to highlight just the
features of interest of the real system that are relevant for the tasks at hand [145]. In the traffic
light model, the precise amount of wall-clock time a transition from red to green takes is unknown,
but deemed small enough to be neglected. In the mass-spring-damper, Hooke’s law was chosen
because the maximum displacement of the mass will not be large when the context in which the
system will be used is taken into account.

Finally, we consider only those dynamical systems for which it is possible to obtain its meaning,
i.e. the behavior trace, even if only an approximation.

2.2 Simulators – Computing the Behavior Trace

There are two generally accepted ways of obtaining the behavior trace of a dynamical system:
Translational Translate the dynamical system into another model, which can be readily used

to obtain the behavior trace. Obtaining the analytical solution of the mass-spring-damper
equations is an example of this approach. For instance, if the traffic light model is expressed
in the Statechart formalism, it can be translated into a DEVS model, as done in Borland [40],
which can be used to obtain the behavior trace.

Operational Use of a solver – an algorithm that takes the dynamical system as input, and outputs
a behavior trace. For the mass-spring-damper example, a numerical solver can be used to
obtain an approximation of the behavior trace.

We focus on the latter.
A simulator is an algorithm that takes a dynamical system and computes its behavior trace.

Running in a digital computer, it is often the case that a simulator will only be able to approximate
that trace. Two aspects contribute to the error in these approximations: inability to calculate a

8

(a) Classification of time con-
straints in simulation. Based on
[177, 239].

●

●

●

●

●

●

●

●
●
●
● ● ● ● ●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
● ●

● ●
● ● ● ●

● ●
● ● ● ● ●

● ● ●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
● ● ● ● ● ● ● ● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ● ●

● ● ● ●
● ●

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0
Time

Solution
●

●

●

●

x1 approx.
x1 analytical
v1 approx.
v1 analytical

(b) Approximate behavior trace of the mass-spring-damper system
computed by a Forward Euler solver. Parameters are: m = 1, p = 1,
s = 0, c1 = 1, d1 = 1, and Fe(t) = 0. x is the displacement and v is
the velocity. The dotted lines are the approximated behaviour traces
and the solid lines are the analytical behaviour traces.

Figure 3

trajectory over a continuum, and the finite representation of infinitely small quantities. Simulators
of discrete dynamical systems may also tolerate some inaccuracies in the behavior traces as well
(e.g., if that brings a performance benefit). fig. 3b shows an example approximation of the behavior
trace of the mass-spring-damper system, computed by the Forward Euler. The inaccuracies are
clear when compared to the analytical trace.

In order to define what an accurate simulator is, or even be able to talk about error, we need
to postulate that every dynamical system has an analytical behavior trace. The error can then
be defined as the absolute difference between the behavior trace computed by a simulator and the
analytical trace. An accurate simulator is one that produces traces that are very close9 to the
analytical behaviour. Even if it is not possible to obtain the analytical behavior of every dynamical
system, there are theoretical results that allow simulators to control the error they make. These
techniques are applied to co-simulation in section 4.3.4. For the mass-spring-damper, and linear
ODEs in general, the analytical trace follows a known structure [48]. For the traffic light, and timed
statemachine models in general, the analytical behavior trace can be obtained with a sequential
solver, that respects the causality of events. In short, validity is a property of a dynamical system
whereas accuracy is a property of a simulator [63]. It is perfectly possible to have an accurate
behaviour trace of a model that is invalid, and vice versa [62]. For continuous time systems, the
choice of an appropriate solver is important and should be made by domain experts [63, 167, 175].

9The meaning of “very close” depends on the numerical tolerance of the observer.

9

2.3 Simulation Units - Mock-ups of Reality

In strict terms, a simulator is not readily executable: it needs a dynamical system and the input
trajectories to that dynamical system, before being able to compute the behavior trace. We use the
term simulation unit for the composition of a simulator with a dynamical system. A simulation
unit is a replacement of the real system, ready to take inputs and produce a behavior trace. In the
FMI standard, the analogous term is the Functional Mock-up Unit (FMU) for co-simulation.

A simulation is the behavior trace obtained with a simulation unit. The correctness of a simu-
lation unit is dictated by the correctness of the simulation, which depends on the accuracy of the
simulator and the validity of the dynamical system.

2.4 Compositional Co-simulation

As described in section 1, it useful to obtain correct simulations of complex, not yet existing,
systems. Since the constituent systems are developed independently by specialized teams/suppliers,
simulation units can be produced for these. The simulation units can be coupled via their inputs-
/outputs to produce a behavior trace of the coupled system. A co-simulation, a special kind of
simulation, is the set of simulations computed by the coupled simulation units.

The simulation units can be independent black boxes, possibly running in different computers.
Hence, an orchestrator is necessary to couple them. The orchestrator controls how the simulated
time progresses in each simulation unit and moves data from outputs to inputs according to a co-
simulation scenario. A co-simulation scenario is the information necessary to ensure that a correct
co-simulation can be obtained. It includes how the inputs of each simulation unit are computed
from other outputs, their experimental frames, etc. In the FMI Standard, the orchestrator is called
a master algorithm.

Analogously to the simulator and simulation unit concepts, the composition of a specific orches-
trator with a co-simulation scenario, yields a co-simulation unit, which is a special kind of simulation
unit, and a substitute of the real coupled system. It follows that a co-simulation is the simulation
trace computed by a co-simulation unit. This characterization enables hierarchical co-simulation
scenarios, where co-simulation units are coupled.

The main purpose of the orchestrator is to obtain a correct behavior trace of the coupled system,
assuming that each simulation unit in itself is correctly defined. We make this assumption because:
(1) the simulation units are often well known parts of the system, and (2) they are developed by
experienced and specialized teams/suppliers.

Co-simulation enables design decisions to be tried out in the model (what-if analysis), cheaply
10, early in the process, and possibly automatically [87, 104].

In this survey, we focus on the coupling of black box simulation units, where limited knowledge
of the models and simulators is available. However, as will become clear in the sections below,
the black box restriction has to be relaxed so that certain properties related to correctness can
be ensured. Understanding what kind of information should be revealed and how IP can still be
protected is an active area of research in co-simulation.

Most challenges in co-simulation are related to compositionality: if every simulation unit Si in a
co-simulation scenario satisfies property P , then the co-simulation unit, with a suitable orchestrator,
must also satisfy P . The correctness is a property that should be compositional in co-simulation.
Other properties include validity, or accuracy. It is an open research question to ensure that a

10Another aspect to consider is the balance between insights gained and resources spent [85].

10

co-simulator is compositional for a given set of properties. The following three sections provide
an overview of the information and techniques being used throughout the state of the art, divided
into three main approaches: discrete event (section 3), continuous time (section 4), and hybrid
(section 5) co-simulation.

3 Discrete Event Based Co-simulation

The Discrete Event (DE) based co-simulation approach describes a family of orchestrators and
characteristics of simulation units that are borrowed from the discrete event system simulation
domain. We start with a description of DE systems, and then we extract the main concepts that
characterize DE based co-simulation.

The traffic light is a good example of a DE system. It can be one of the possible modes:
red, yellow, green or off. The off mode is often used by the police, which in some countries is
characterized by a blinking yellow. Initially, the traffic light can be red. Then, after 60 seconds, it
changes to green. Alternatively, before those 60 seconds pass, some external entity (e.g., a police
officer) may trigger a change from red to off. The output of this system can be an event signaling
its change to a new color. This example captures some of the essential characteristics of a DE
dynamical system: reactivity – instant reaction to external stimuli (turning off by an external
entity); and transiency – a DE system can change its state multiple times in the same simulated
time point, and receive simultaneous stimuli. In the traffic light, transiency would happen if the
light changes always after 0s (instead of 60s), or if the police officer would turn off and on the traffic
light in the same instant.

These characteristics are embraced in DE based co-simulation, where the orchestrator acknowl-
edges that simulation units can evolve the internal state and exchange values despite the fact that
the simulated time is stopped.

3.1 DE Simulation units

A DE simulation unit is a black box that exhibits the characteristics of a DE dynamical system,
but the dynamical system it stands for does not need to be a DE one. Furthermore, it is typical to
assume that DE simulation units communicate with the environment via time-stamped events, as
opposed to signals. This means that the outputs of simulation units can be absent at times where
no event is produced.

We adapt the definition of DEVS11 in [242] (originally proposed in [259]) to formally define a

11In the original DEVS definition, the initial state and the absent value in the output function are left implicit.
Here we make them explicit, to be consistent with section 4. Note also that there are many other variants of discrete-
event formalisms. For instance, DE in hardware description languages (VHDL and Verilog) and actor based systems
(for instance the DE director in Ptolemy II [200]).

11

DE simulation unit Si, where i denotes the reference of the unit:

Si =
〈
Xi, Ui, Yi, δ

ext
i , δinti , λi, tai, qi(0)

〉
δexti : Qi × Ui → Xi

δinti : Xi → Xi

λi : Xi → Yi ∪ {φ}
tai : Xi → R+

0 ∪∞
qi(0) ∈ Qi
Qi = {(x, e)|x ∈ Xi and 0 ≤ e ≤ tai(x)}

(1)

where:
• Xi, Ui, and Yi are the set of possible discrete states, input events, and output events, respec-

tively;
• δexti (qi, ui) = x′i is the external transition function that computes a new total state (x′i, 0) ∈ Qi

based on the current total state qi and an input event ui;
• δinti (xi) = x′i is the internal transition function that computes a new total state (x′i, 0) ∈ Qi

when the current total state is (xi, tai(xi)) ∈ Qi;
• e denotes the elapsed units of time since the last transition (internal or external);
• λi(xi) = yi ∈ Yi∪{φ} is the output event function, invoked right before an internal transition

takes place and φ encodes an absent value;
• tai(xi) ∈ R is the time advance function that indicates how much time passes until the next

state change occurs, assuming that no external events arrive;
• qi(0) is the initial state;
The execution of a DEVS simulation unit is described informally as follows. Suppose that the

simulation unit is at time ti ∈ R+
0 and marks the current discrete state as xi for e ≥ 0 elapsed

units of time. Since e ≤ tai(xi), the total state is (xi, e) ∈ Qi. Let tn = ti + tai(xi) − e. If
no input event happens until tn, then at time tn an output event is computed as yi := λi(xi)
and the new discrete state xi is computed as xi := (δinti (xi), 0). If, on the other hand, there is
an event at time ts < tn, that is, ui is not absent at that time, then the solver changes to state
xi := (δexti ((xi, e+ ts − ti), ui), 0) instead.

In the above description, if two events happen at the same time, both are processed before the
simulated time progresses. Due to the transiency and reactivity properties, the state and output
trajectories of a DE simulation unit can only be well identified if the time base, traditionally the
positive real numbers, includes a way to order simultaneous events, and simultaneous state changes.
An example of such a time base is the notion of superdense time [154, 162, 165], where each time
point is a pair (t, n) ∈ T × N , with T typically being the positive real numbers and N , called the
index, is the natural numbers. In this time base, a state trajectory is a function xi : T ×N → Vxi

,
where Vxi

is the set of values for the state, and an output/input trajectory is ui : T ×N → Vui
∪{φ}.

Simultaneous states and events can be formally represented with incrementing indexes. See [47] for
an introduction.

Equations 2 and 3 show examples of simulation units.
A DE simulation unit is passive: it expects some external coordinator to set the inputs and call

the transition functions. This passivity enables an easier composition of simulation units in a co-
simulation, by means of a coordination algorithm, as will be shown later in section 3.2. Algorithm 1
shows a trivial orchestrator which computes the behavior trace of a single DE simulation unit, as

12

specified in eq. (1), that has no inputs. Remarks:
• tl holds the time of the last transition;
• the initial elapsed time satisfies 0 ≤ e ≤ tai(xi(0));
If Algorithm 1 is used to coordinate the execution of the traffic light simulation unit in eq. (2),

then the resulting behavior trace is the piecewise constant traffic light state x1(t), together with the
output events. The latter is represented as a trajectory yi(t) that is mostly undefined (or absent),
except for the single points where an output is produced, according to ta1.

Algorithm 1: Single autonomous DE simulation unit orchestration. Based on [242] and
originally proposed in [259].

Data: A simulation unit Si =
〈
Xi, ∅, Yi, δexti , δinti , λi, tai, (xi(0), ei)

〉
.

ti := 0 ;
xi := xi(0) ; // Initial discrete state

tl := −ei ; // Account for initial elapsed time

while true do
ti := tl + tai(xi) ; // Compute time of the next transition

yi := λi(xi) ; // Output

xi := δinti (xi) ; // Take internal transition

tl := ti ;

end

3.2 DE Co-simulation Orchestration

DEVS simulation units communicate with their environment exclusively through inputs and out-
puts. DE co-simulation scenarios are comprised of multiple DE units Si (eq. (1)) coupled through
output to input connections, which map output events of one unit to external events in other unit.

Consider the following DE simulation units of a traffic light and a police office, respectively:

13

S1 =
〈
X1, U1, Y1, δ

ext
1 , δint1 , λ1, ta1, q1(0)

〉
X1 = {red , yellow , green, off }
U1 = {toAuto, toOff }
Y1 = X1

δext1 ((x1, e), u1) =

{
off if u1 = toOff

red if u1 = toAuto and x1 = off

δint1 (x1) =


green if x1 = red

yellow if x1 = green

red if x1 = yellow

λ1(x1) =


green if x1 = red

yellow if x1 = green

red if x1 = yellow

ta1(x1) =


60 if x1 = red

50 if x1 = green

10 if x1 = yellow

∞ if x1 = off

q1(0) = (red , 0)
(2)

S2 =
〈
X2, U2, Y2, δ

ext
2 , δint2 , λ2, ta2, q2(0)

〉
X2 = {working , idle}
U2 = ∅
Y2 = {toWork , toIdle}

δint2 (x2) =

{
idle if x2 = working

working if x2 = idle

λ2(x2) =

{
toIdle if x2 = working

toWork if x2 = idle

ta2(x2) =

{
200 if x2 = working

100 if x2 = idle

q2(0) = (idle, 0)

(3)

With the following remarks:
• The current state of the model in the definition of δext1 is q1 = (x1, e) with e being the elapsed

time since the last transition.
• The output event function λ1 is executed immediately before the internal transition takes

place. It must then publish the next state instead of the current.
To model a scenario where the police officer interacts with a traffic light, the output events Y2

have to be mapped into the external events U1 of the traffic light simulation unit (eq. (2)). In
this example, if U1 = {toAuto, toOff } are the external input events handled by the traffic light
simulation unit, the mapping Z2,1 : Y2 → U1 is defined by:

Z2,1(y2) =

{
toAuto if y2 = toIdle

toOff if y2 = toWork
(4)

This way, if the police officer changes to working state at time tn, then the output signal y2 :=
toWork will be translated by Z2,1 into an input event u1 := toOff of the traffic light simulation
unit.

Based on the idea of abstract simulation units [262], we formalize and illustrate the idea of a
DE co-simulation scenario with reference cs as follows:

〈Ucs , Ycs , D, {Sd : d ∈ D} , {Id : d ∈ D ∪ {cs}} , {Zi,d : d ∈ D ∧ i ∈ Id} ,Select〉 (5)

where:

14

• Ucs is the set of possible input events, external to the scenario;
• Ycs is the set of possible output events from the scenario to the environment;
• D is an ordered set of simulation unit references;
• For each d ∈ D, Sd denotes a DE unit, as defined in eq. (1);
• For each d ∈ D ∪ {cs}, Id ⊆ (D \ {d}) ∪ {cs} is the set of simulation units that can influence

simulation unit Sd, possibly including the environment external to the scenario (cs), but
excluding itself (d);

• For each i ∈ Id, Zi,d specifies the mapping of events:

Zi,d :Ui → Ud, if i = cs

Zi,d :Yi → Yd, if d = cs

Zi,d :Yi → Ud, if i 6= cs and d 6= cs

• Select : 2D → D is used to deterministically select one simulation unit, among multiple
simulation units ready to produce output events simultaneously, i.e., when at time t, the set
of simulation units

IMM (t) = {d|d ∈ D ∧ qd(t) = (xd, tad(xd))} (6)

has more than one simulation unit reference. This function is restricted to select one from
among the set IMM (t), i.e., Select(IMM (t)) ∈ IMM (t).

The following co-simulation scenario cs couples the traffic light simulation unit to the police
officer simulation unit:

〈∅, Ycs , {1, 2} , {S1, S2} , {I1, I2, Ics} , {Z2,1, Z1,cs} ,Select〉
Ycs = Y1

I1 = {2}
I2 = ∅
Ics = {1}
Z1,cs(y1) = y1

(7)

where:
• S1 is the traffic light simulation unit (eq. (2)) and S2 the police officer simulation unit (eq. (3));
• Y1 is the output of S1;
• Z2,1 is defined in eq. (4); and
• The omitted Zi,d functions map anything to absent (φ).
The Select function is particularly important to ensure that the co-simulation trace is unique.

For example, consider the co-simulation scenario of eq. (7), and suppose that at time tn both
simulation units are ready to output an event and perform an internal transition. Should the traffic
light output the event and perform the internal transition first, or should it be the police office to
do it first? In general, the order in which these output/transition actions are performed matters.
The reason is that the way one simulation unit reacts to the other simulation unit’s output may be
different, depending on the internal state of the former. In the example co-simulation scenario, the
end result is always the same but this is not the general case.

Algorithm 2 illustrates the orchestrator of an autonomous (without inputs) DE co-simulation
scenario. It assumes that the co-simulation scenario does not expect external events, that is, all
events that can affect the simulation units are produced by other simulation units in the same
scenario. External output events are possible though. Remarks:
• tcs holds the most recent time of the last transition in the scenario;
• ed is the elapsed time of the current state qd = (xd, ed) of simulation unit Sd;

15

• tn is the time of the next transition in the scenario;
• i∗ denotes the chosen imminent simulation unit;
• Ics is the set of simulation units that can produce output events to the environment;
• ycs is the output event signal of the scenario to the environment; and
• {d|d ∈ D ∧ i∗ ∈ Id} holds the simulation units that Si∗ can influence.

Algorithm 2: Autonomous DE co-simulation scenario orchestration. Based on [242].

Data: A co-simulation scenario cs = 〈∅, Ycs , D, {Sd} , {Id} , {Zi,d} ,Select〉.
tcs := 0 ;
xi := xi(0) for all i ∈ D ; // Store initial discrete state for each unit

while true do
tacs := mind∈D {tad(xd)− ed} ; // Time until the next internal transition

tn := tcs + tacs ; // Time of the next internal transition

i∗ := Select(IMM (tn)) ; // Get next unit to execute

yi∗ := λi∗(xi∗) ;
xi∗ := δinti∗ (xi∗) ; // Store new discrete state

ei∗ := 0 ; // Reset elapsed time for the executed unit

if i∗ ∈ Ics then
ycs := Zi∗,cs(yi∗) ; // Compute output of the scenario

end
for d ∈ {d|d ∈ D ∧ i∗ ∈ Id} do

ud := Zi∗,d(yi∗) ; // Trigger internal units that are influenced by unit i∗

xd := δextd ((xd, ed + tacs), ud) ;
ed := 0 ;

end
for d ∈ {d|d ∈ D ∧ i∗ 6∈ Id} do

ed := ed + tacs ; // Update the elapsed time of the remaining units

end
tcs := tn ; // Advance time

end

fig. 4 shows the behavior trace of the co-simulation scenario in eq. (7).
Algorithm 2 is similar to Algorithm 1:
• The time advance of the scenario tacs corresponds to the time advance of a single simulation

unit.
• The output produced by the state transition is analogous to the λ function of a single simu-

lation unit.
• The output and state transition of child Si∗ , together with the external transitions of the sim-

ulation units influenced by Si∗ , are analogous to the internal transition of a single simulation
unit.

It is natural then that a co-simulation scenario cs as specified in eq. (5), can be made to behave as
a single DE simulation unit Scs . Intuitively, the state of Scs is the set product of the total states
of each child DE unit; tacs is the minimum time until one of the DE units executes an internal
transition; the internal transition of Scs gets the output event of the imminent unit, executes the
external transitions of all the affected units, updates the elapsed time of all unaffected units, and

16

computes the next state of the imminent unit; the external transition of Scs gets an event from
the environment, executes the external transition of all the affected units, and updates the elapsed
time of all the unaffected units [262]. Formally:

Scs =
〈
Xcs , Ucs , Ycs , δ

ext
cs , δ

int
cs , λcs , tacs , qcs(0)

〉
Xcs = ×d∈DQd
qcs(0) = (×d∈Dqi(0),min

d∈D
ed)

tacs((. . . , (xd, ed), . . .)) = min
d∈D
{tad(xd)− ed}

i∗ = Select(IMM (t))

λcs(xcs) =

{
Zi∗,cs(yi∗(tn)) if i∗ ∈ Ics
φ otherwise

δintcs (xcs) = (. . . , (x′d, e
′
d), . . .), for all d ∈ D, where:

xcs = (. . . , (xd, ed), . . .)

(x′d, e
′
d) =


(δintd (xd), 0) if i∗ = d

(δextd ((xd, ed + tacs(xcs)), Zi∗,d(λi∗(xi∗)), 0) if i∗ ∈ Id
(xd, ed + tacs(xcs)) otherwise

δextcs ((xcs , ecs) , ucs) = (. . . , (x′d, e
′
d), . . .), for all d ∈ D, where:

xcs = (. . . , (xd, ed), . . .)

(x′d, e
′
d) =

{
(δextd ((xd, ed + ecs) , Zcs,d(ucs)), 0) if cs ∈ Id
(xd, ed + ecs) otherwise

(8)

Remarks:
It is the Cartesian product of the total state of each child simulation unit that makes the discrete
state of the co-simulation unit;
The elapsed times of each child simulation unit are managed solely by the co-simulation unit,
whenever there is a transition (internal or external);
The external transition functions of each child are executed with the mapping of the events produced
by the current state of the imminent child, and not the next one computed by (δintd (xd), 0);
An internal transition of a child simulation unit may cause an output event to the environment of
the co-simulation unit, if the child is connected to the output of the co-simulation unit.

The same internal transition causes not only a change in the child discrete state, but also, due
to its output event, may cause external transitions in other child simulation units. This is not a
recursive nor iterative process: at most one external transition will occur in all the affected child
simulation units; if any of the affected simulation units becomes ready for an internal transition, it
waits for the next internal transition invoked from the coordinator of the co-simulation unit;

The resulting co-simulation unit Scs behaves exactly as a DE unit specified in eq. (1). It
can thus be executed with Algorithm 1 (in case of no inputs), or composed with other units in
hierarchical co-simulation scenarios. Hierarchical co-simulation scenarios can elegantly correspond
to real hierarchical systems, a natural way to deal with their complexity [138].

In summary, DE based co-simulation exhibits the following characteristics:

17

Figure 4: Example co-simulation trace of the traffic light and police officer scenario.

reactivity: A DE simulation unit (analogously, a DE co-simulation unit) has to process an event
at the moment it occurs.

transiency: In both Algorithm 2 and in a DE co-simulation unit, the time advance tacs to the
next imminent child internal transition can be zero for successive iterations, so an orchestrator
has to be able to tolerate the fact that simulated time may not advance for several iterations.

predictable step sizes: In a DE co-simulation scenario without inputs, the orchestrator, as shown
in Algorithm 2, can always predict the next simulated time step. In a scenario with inputs,
if the environment provides the time of the next event, then the next simulated time step
can be predicted too. For this to be possible, black box DE simulation units have to be able
to inform the orchestrator what their time advance is, not a trivial task for DE units that
simulate continuous systems whose future behavior trace, especially reacting to future inputs,
is not easily predicted without actually computing it.

In the next sub-section, the main challenges in DE based co-simulation, and the requirements
(or capabilities) their solutions impose in DE simulation units, are made explicit.

18

3.3 Challenges

3.3.1 Causality

For the sake of simplicity, Algorithm 2 is sequential. In a hierarchical co-simulation unit, the
imminent simulation unit (closest to performing an internal transition) will be the one to execute,
thus inducing that there is a global order in the events that are exchanged. This global order avoids
causality violations but is too pessimistic. If an event y1(t1) causes another event —by changing the
internal state of some other simulation unit, which in turn changes its next output event— y2(t2),
then t1 ≤ t2, which is ok. However, the converse is not true: t1 ≤ t2 does not necessarily imply that
y1(t1) has caused y2(t2), which means that simulation unit S2 could execute before —in the wall-
clock time sense— y1(t1) without violating causality, at least within a small window of simulated
time. To see why, suppose that S1 and S2 do not influence each other in the scenario. Then y2(t2)
would happen anyway, regardless of y1(t1) occurring or not. Moreover, the co-simulation scenario
holds information —the dependencies {Id}— that can be used to determine who influences what
[64, 147].

A parallel optimistic orchestrator that takes {Id} into account is, in general, faster in the wall
clock time sense, than a pessimistic, sequential one. However, most of these, the Time-warp algo-
rithm [123, 124] being a well known example, require rollback capabilities of simulation units. This
is because simulation units proceed to advance their own time optimistically, assuming that any
other simulation units will not affect them, until they are proven wrong by receiving an event which
occurs before their own internal time. When that happens, the simulation unit has to rollback to a
state prior to the time of timestamp of the event that just arrived. This may in turn cause a cascade
of rollbacks in other affected simulation units. Moreover, in parallel optimistic DE co-simulation,
any of the units in the scenario needs (theoretically) to support multiple rollbacks and have enough
memory to do so for an arbitrary distant point in the past [94]. This point in the past is limited in
Time-warp by the Global Virtual Time (GVT). The GVT represents the minimum internal time
of all simulation units. By definition, no event that is yet to be produced (in wall-clock time) can
have a timestamp smaller than the GVT.

We make the distinction between multiple rollback, from single rollback capabilities. To support
single rollback, a simulation unit needs to store only the last committed state, thereby saving
memory.

Causality is a compositionality property: if each child simulation unit does not violate causality,
then any orchestrator has to ensure that the causality is not violated when these units are coupled.
Optimistic orchestration algorithms do so by requiring rollback capabilities from child simulation
units, whereas pessimistic algorithms do so at the cost of performance.

3.3.2 Determinism and Confluence

Determinism is also a compositional property. The Select function, in the co-simulation scenario
definition of eq. (5), is paramount to ensure the compositionality of deterministic behavior. This
function is used to ensure that a unique behavior trace can be obtained when the co-simulation
scenario is executed by Algorithm 2 or when it is turned into a co-simulation unit, as in eq. (8). The
alternative to the Select function is to ensure that all possible interleavings of executions always
lead to the same behavior trace – this is known as “confluence”. Intuitively, if a co-simulation unit is
compositional with respect to confluence, then it is also compositional with respect to determinism.

Proving confluence is hard in general black box DE co-simulation because it depends on how

19

the child simulation units react to external events: potentially valuable IP. Parallel-DEVS [67] is
an approach, which leaves the confluence property to be satisfied by the modeler.

3.3.3 Dynamic Structure

Until now, the dependencies {Id}, in eq. (5), have been assumed to be fixed over time. From a
performance perspective, a static sequence of dependencies may be too conservative, especially if
used to ensure causality in optimistic parallel co-simulation. To see why, consider that in a large
scale simulation, there is a simulation unit S1 which may influence simulation unit S2 but only under
a very specific set of conditions, which may not be verified until a large amount of simulated time
has passed. A pessimistic co-simulation unit assumes that S1 may always affect S2 and hence, tries
to ensure that the simulated time of S2 is always smaller than S1, to minimize possible rollbacks.
This incurs an unnecessary performance toll in the overall co-simulation because S1 does not affect
S2 most of the time. This is where making I2 dynamic can improve the performance of the co-
simulation since the co-simulation unit will know that most of the time, S1 does not affect S2.
Dynamic structure co-simulation allows for {Id} to change over time, depending on the behavior
trace of the simulation units. It can be used to study self-organizing systems [21, 235].

3.3.4 Distribution

Co-simulation units whose child simulation units are geographically distributed are common [94].
Interesting solutions like computation allocation [180, 240], bridging the hierarchical encapsulation
[241], and the use of dead-reckoning models [152], have been proposed to mitigate the additional
communication cost. Moreover, security becomes important, and solutions such as [187] address it.

4 Continuous Time Based Co-simulation

In the continuous time (CT) based co-simulation approach, the orchestrators’ and simulation units’
behavior and assumptions are borrowed from the continuous time system simulation domain. We
describe these below.

4.1 CT Simulation Units

A continuous time simulation unit is assumed to have a state that evolves continuously over time.
It is easier to get the intuitive idea of this by considering a simulation unit of a continuous time
dynamical system, such as a mass-spring-damper, depicted in the left hand side of fig. 5. The state
is given by the displacement x1 and velocity v1 of the mass, and the evolution by:

ẋ1 = v1

m1 · v̇1 = −c1 · x1 − d1 · v1 + Fe

x1(0) = p1

v1(0) = s1

(9)

where ẋ denotes the time derivative of x; c1 is the spring stiffness constant and d1 the damping
coefficient; m1 is the mass; p1 and s1 the initial position and velocity; and Fe denotes an external

20

input force acting on the mass over time. The solutions x1(t) and v1(t) that satisfy eq. (9) constitute
the behavior trace of the dynamical system. fig. 3b shows an example of such trace.

eq. (9) can be generalized to the state space form:

ẋ = f(x, u) ; y = g(x, u) ; x(0) = x0 (10)

where x is the state vector, u the input and y the output vectors, and x0 is the initial state.
A solution [x(t), y(t)]

T
that obeys eq. (10) is the behavior trace of the system. If f is linear and

time-invariant, an analytical form for x(t) can be obtained [17]. An analytical solution obtained
by the application of mathematical identities is an example of a behavior trace obtained via the
translational approach, described in section 2.2. Alternatively, the behavior trace can be computed.

If f(x, u) is sufficiently differentiable, x can be approximated with a truncated Taylor series
[63, 227]:

x(t+ h) = x(t) + f(x(t), u(t)) · h+O
(
h2
)

(11)

where

O
(
hn+1

)
= max

i

(
lim
h→0

xn+1 (ζ(t∗))

(n+ 1)!
hn+1

)
= const · hn+1

denotes the order of the truncated residual term; t∗ ∈ [t, t+ h]; and h ≥ 0 is the micro-step size.
eq. (11) is the basis of a family of numerical solvers that iteratively compute an approximated
behavior trace x̃. For example, the Forward Euler method is given by:

x̃(t+ h) := x̃(t) + f(x̃(t), u(t)) · h
x̃(0) := x(0)

(12)

A CT simulation unit is assumed to have a behavior that is similar to one of a numerical solver
computing a set of differential equations. We reinforce that this does not restrict CT simulation
units to being mockups of CT systems, even though it is easier to introduced them as such. In
the FMI Standard, a simulation unit is analogous to a Functional Mock-up Unit (FMU) for co-
simulation. For example, a simulation unit S1 of the mass-spring-damper, using the Forward Euler
solver, can be written by embedding the solver (eq. (12)) into eq. (9):

x̃1(t+ h1) := x̃1(t) + v1(t) · h1

ṽ1(t+ h1) := ṽ1(t) +
1

m1
· (−c1 · x̃1(t)− d1 · ṽ1(t) + Fe(t)) · h1

x̃1(0) := p1

ṽ1(0) := s1

(13)

where h1 is the micro-step size, Fe(t) is the input, and [x(t+ h), v(t+ h)]
T

is the output.

21

4.2 CT Co-simulation Orchestration

Consider now a second system, depicted in the right hand side of fig. 5. It is governed by the
differential equations:

ẋ2 = v2

m2 · v̇2 = −c2 · x2 − Fc
Fc = cc · (x2 − xc) + dc · (v2 − ẋc)

x2(0) = p2

v2(0) = s2

(14)

where cc and dc denote the stiffness and damping coefficients of the spring and damper, respectively;
xc denotes the displacement of the left end of the spring-damper. Combining with the Forward
Euler solver, yields the following simulation unit:

x̃2(t+ h2) := x̃2(t) + ṽ2(t) · h2

ṽ2(t+ h2) := ṽ2(t) +
1

m2
· (−c2 · x̃2(t)− Fc(t)) · h2

Fc(t) = cc · (x̃2(t)− xc(t)) + dc ·
(
ṽ2(t)− ˙xc(t)

)
x̃2(0) := p2

ṽ2(0) := s2

(15)

where h2 is the micro-step size, xc and ẋc are inputs, and Fc the output. Suppose S1 (eq. (13)) and
S2 are coupled, setting xc = x1, ẋc = v1 and Fe = Fc, so that the resulting co-simulation scenario
represents the multi-body system depicted in fig. 5.

Figure 5: A multi-body system comprised of two mass-spring-damper subsystems.

In the co-modeling approach, the models in Equations 9 and 14 would be combined to get the

22

following coupled model:
ẋ1 = v1

m1 · v̇1 = −c1 · x1 − d1 · v1 + Fc

ẋ2 = v2

m2 · v̇2 = −c2 · x2 − Fc
Fc = cc · (x2 − x1) + dc · (v2 − v1)

x1(0) = p1

v1(0) = s1

x2(0) = p2

v2(0) = s2

(16)

which can be written in the state space form (eq. (10)) as:
ẋ1

v̇1

ẋ2

v̇2

 =


0 1 0 0

− c1+cc
m1

−d1+dc
m1

cc
m1

dc
m1

0 0 0 1
cc
m2

dc
m2

− c2+cc
m2

− dc
m2



x1

v1

x2

v2



x1(0)
v1(0)
x2(0)
v2(0)

 =


p1

s1

p2

s2


(17)

The behavior trace of eq. (17) can be obtained either analytically, or with Forward Euler solver
(eq. (12)).

In CT based co-simulation, to overcome the fact the each simulation unit’s micro-step sizes
are independent, a communication step size H (also known as macro-step size or communication
grid size) has to be defined. H marks the times at which the simulation units exchange values of
inputs/outputs.

Suppose a simulation unit Si is at time n · H, for some natural n, and it being asked by an
orchestrator to execute until time (n + 1) · H. If Si only gets its inputs valued at n · H, then
extrapolation must be used to associate a value with those inputs in any of the internal micro-steps
of the simulation unit. In other words, when time n ·H +m ·hi, for m ≤ H

hi
and micro-step size hi,

an extrapolation function φui
(m · hi, ui(n ·H), ui((n− 1) ·H), . . .), built from input values known

at previous communication time points, is used to approximate the value of ui(n · H + m · hi).
Notice that m = H

hi
is allowed, even though, theoretically, the value of ui((n + 1) · H) can be

obtained from the environment. The reason for this becomes clear in section 4.3.2. Analogously,
interpolation techniques have to be used when the orchestrator makes the input value available at
time (n+ 1) ·H but the simulation unit is still at time n ·H.

For example, the input Fe of the simulation unit described in eq. (13) can be defined as:

Fe(n ·H +m · h1) := φFe
(m · h1, Fe(n ·H), Fe((n− 1) ·H), . . .), for m ≤ H

h1
(18)

23

Similarly, the inputs xc and ẋc of the simulation unit described in eq. (15) can be defined as

xc(n ·H +m · h2) := φxc(m · h2, xc(n ·H), xc((n− 1) ·H), . . .)

ẋc(n ·H +m · h2) := φẋc(m · h2, ẋc(n ·H), ẋc((n− 1) ·H), . . .)

for m ≤ H

h2

(19)

In the simplest case, the extrapolations can be constant. In the coupled mass-spring-dampers
example:

φFe
(t, Fe(n ·H))) = Fe(n ·H))

φxc
(t, xc(n ·H)) = xc(n ·H)

φẋc
(t, ẋc(n ·H)) = ẋc(n ·H)

(20)

In the state of the art, input extrapolation approaches can be classified by increasing degree
of complexity: Constant; Linear; Polynomial; Extrapolated-Interpolation [49, 50, 75]; Context-
aware [134]; and Estimated Dead-Reckoning Model [43, 221]; These can, and often are, combined
in practical use cases. See Andersson [8], Arnold [10], Busch [50], Schweizer et al. [219] for an
overview of linear and higher order extrapolation techniques and how these affect the accuracy of
the co-simulation trace.

The orchestrator for this co-simulation scenario, at a time t = n ·H, gets the outputs of both
simulation units and computes their inputs. Then, each simulation unit is instructed to compute
its behavior trace until the next communication step size, at t = (n + 1) · H, making use of the
extrapolating functions to get the inputs at each of the micro steps (Equations 18 and 19).

We are ready to formally define the behavior of a CT simulation unit Si:

Si = 〈Xi, Ui, Yi, δi, λi, xi(0), φUi〉
δi : R×Xi × Ui → Xi

λi : R×Xi × Ui → Yi or R×Xi → Yi

xi(0) ∈ Xi

φUi : R× Ui × . . .× Ui → Ui

(21)

where:
• Xi is the state set, typically Rn;
• Ui is the input set, typically Rm;
• Yi is the output set, typically Rp;
• δi(t, xi(t), ui(t)) = xi(t+H) or δi(t, xi(t), ui(t+H)) = xi(t+H) is the function that instructs

the simulation unit to compute a behavior trace from t to t + H, making use of the input
extrapolation (or interpolation) function φUi

;
• λi(t, xi(t), ui(t)) = yi(t) or λi(t, xi(t)) = yi(t) is the output function; and
• xi(0) is the initial state.

24

For instance, the simulation unit in eq. (13) can be described as follows:

S1 =

〈
R2,R,R2, δ1, λ1,

[
p1

s1

]
, φFe

〉
δ1(t,

[
x̃1(t)
ṽ1(t)

]
, Fe(t)) =

[
x̃1(t+H)
ṽ1(t+H)

]
λ1(t,

[
x̃1(t)
ṽ1(t)

]
) =

[
x̃1(t)
ṽ1(t)

] (22)

where [x̃1(t+H), ṽ1(t+H)]
T

is obtained by the iterative application of the simulation unit in
eq. (13) over a finite number of micro-steps, making use of the extrapolation of Fe (defined in
eq. (18)):[
x̃1(t+H)
ṽ1(t+H)

]
=

[
x̃1(t)
ṽ1(t)

]
+

[
ẋ1(t)

v̇1(t, φFe
(t, Fe(t), . . .))

]
· h+

[
ẋ1(t+ h)

v̇1(t+ h, φFe
(t+ h, Fe(t), . . .))

]
· h+ . . .

A continuous time co-simulation scenario with reference cs includes at least the following infor-
mation12:

〈Ucs , Ycs , D, {Si : i ∈ D} , L, φUcs 〉
L : (Πi∈DYi)× Ycs × (Πi∈DUi)× Ucs → Rm

(23)

where D is an ordered set of simulation unit references, each Si is defined as in eq. (21), m ∈ N,
Ucs is the space of inputs external to the scenario, Ycs is the space of outputs of the scenario, φUcs

a
set of input approximation functions, and L induces the simulation unit coupling constraints (e.g.,
if D = {1, . . . , n}, then the coupling is L(y1, . . . , yn, ycs , u1, . . . , un, ucs) = 0̄).

As an example, the co-simulation scenario representing the system of fig. 5 is:

cs = 〈∅, ∅, {1, 2} , {S1, S2} , L, ∅〉

L =

xc − v1

ẋc − x1

Fe − Fc

 (24)

where:
• S1 is the simulation unit for the constituent system on the left (eq. (22)), and S2 is the

simulation unit for the remaining constituent system;
• xc, ẋc are the inputs of S2, and Fe is the input of S1; and
• x1, v1 are outputs of S1 and Fc is the output of S2.
Algorithm 3 summarizes in a generic way the tasks of the orchestrator for computing the co-

simulation of a scenario cs with no external inputs. It represents the Jacobi communication ap-
proach: simulation units exchange values at time t and independently compute the trace until the
next communication time t + H. The way the system in eq. (25) is solved depends on how the
simulation units are coupled, that is, the definition of L. In the most trivial case, the system reduces
to an assignment of an output yj(t) to each input ui(t), and so the orchestrator just gets the output
of each simulation unit and copies it onto the input of some other simulation unit, in an appropriate
order. Concrete examples of Algorithm 3 are described in [25, 52, 79, 93, 96, 105, 140, 253].

12Please note that this formalization is related to the formalization proposed by Broman et al. [46], with the main
differences: i) it is not designed to formalize a subset of the FMI Standard, ii) it accommodates algebraic coupling
conditions, and iii) it does not explicitly define port variables.

25

An alternative to the Jacobi communication approach is the Gauss-Seidel (a.k.a. sequential or
zig-zag) approach, where an order of the simulation units’ δ function is forced to ensure that, at
time t, they get inputs from a simulation unit that is already at time t+H. Gauss-Seidel approach
allows for interpolations of inputs, which is more accurate, but hinders the parallelization potential.
Examples are described in [10, 11, 25, 59, 236].

Algorithm 3: Generic Jacobi based orchestrator for autonomous CT co-simulation scenarios.

Data: An autonomous scenario cs = 〈∅, Ycs , D = {1, . . . , n} , {Si} , L, ∅〉 and a
communication step size H.

Result: A co-simulation trace.
t := 0 ;
xi := xi(0) for i = 1, . . . , n ;
while true do

Solve the following system for the unknowns:
y1 = λ1(t, x1, u1)

. . .
yn = λn(t, xn, un)

L(y1, . . . , yn, ycs , u1, . . . , un) = 0̄

(25)

xi := δi(t, xi, ui), for i = 1, . . . , n ; // Instruct each simulation unit to advance

to the next communication step

t := t+H ; // Advance time

end

Similarly to DE based co-simulation, a CT co-simulation scenario, together with an orchestrator,
should behave as a (co-)simulation unit of the form of eq. (21), and thus be coupled with other
simulation units, forming hierarchical co-simulation scenarios: the state of the co-simulation unit is
the set product of the states of the internal units; the inputs are given by Ucs and the outputs by
Ycs ; the transition and output functions are implemented by the orchestrator; the communication
step size H used by the orchestrator is analogous to a simulation unit’s micro-step sizes, and the
input extrapolation function is φUi

.
Algorithm 3 makes it clear that the simulation units can be coupled with very limited information

about their internal details. In concrete:
• The output λi and state transition δi functions need to be executable but their internal details

can remain hidden;
• the inputs ui need to be accessible;
• the state variables can be hidden. These are represented merely to illustrate that the internal

state of the simulation unit changes when executing δi.
However, the blind coupling can lead to compositionality problems, as will be discussed in the sec-
tions below. The common trait in addressing these is to require more from the individual simulation
units: either more capabilities, or more information about the internal (hidden) dynamical system.

26

Figure 6: A multi-body system coupled by a mass-less link, based on the example provided in
Schweizer and Lu [214].

4.3 Challenges

4.3.1 Modular Composition – Algebraic Constraints

In the co-simulation scenario described in eq. (24), the coupling condition L translates into a set of
assignments from outputs to inputs. This is because the inputs of the simulation unit of the system
in the left hand side of fig. 5 and the outputs of the simulation unit of the system represented in
the right hand side of the same picture can be connected directly, and vice versa. In practice, the
simulation units’ models are not created with a specific coupling pattern in mind and L can be more
complex. As an example, consider the system coupled by a massless rigid link, depicted in fig. 6.
The first subsystem is the same as the one in the left hand side of fig. 5 and its simulation unit is
in eq. (13). The second constituent system is governed by the following differential equations:

ẋ3 = v3

m3 · v̇2 = −c3 · x3 + Fc

x3(0) = p3

v3(0) = s3

(26)

And the following simulation unit:

x̃3(t+ h3) = x̃3(t) + v3(t) · h3

ṽ3(t+ h3) = ṽ3(t) +
1

m3
· (−c3 · x3(t) + Fc(t)) · h3

x̃3(0) = p3

ṽ3(0) = s3

(27)

The input to the simulation unit S3 is the coupling force Fc, and the output is the state of the mass
[x̃3, ṽ3]

T
. The input to the simulation unit S1 is the external force Fe and the outputs are the state

of the mass [x̃1, ṽ1]
T

. Recall eq. (13). There is clearly a mismatch. The outputs [x̃1, ṽ1]
T

of the first
simulation unit cannot be coupled directly to the input Fc of the second simulation unit, and vice
versa. However, the massless link restricts the states and inputs of the two units to be the same.
Whatever the input forces may be, they are equal and opposite in sign. Hence, any orchestration

27

algorithm has to find inputs that ensure the coupling constraints are satisfied:

L =

x̃1(n ·H)− x̃3(n ·H)
ṽ1(n ·H)− ṽ3(n ·H)
Fe(n ·H) + Fc(n ·H)

 = 0̄ (28)

This problem has been addressed in Arnold [10], Arnold and Günther [11], Gu and Asada
[105, 106, 107], Schweizer and Lu [214, 215, 216], Schweizer et al. [218, 219], Sicklinger et al. [220].
The approach taken in Gu and Asada [105] is worth mentioning because it defines a Boundary
Condition Coordinator (BCC) which behaves as an extra simulation unit, whose inputs are the
outputs of the original two simulation units, and whose outputs are Fe and Fc. They show that the
initial co-simulation scenario with the non-trivial constraint can be translated into a co-simulation,
with a trivial constraint, by adding an extra simulation unit. This is illustrated in fig. 7.

Figure 7: Transforming a co-simulation scenario with a non-trivial constraint into a simpler scenario
by adding an extra simulation unit that induces a trivial constraint. This promotes separation of
concerns.

Transforming the co-simulation scenario to make it simpler marks an important step in sepa-
rating the concerns of the orchestrator [102]. In fact, the newly created simulation unit can be run
with a smaller internal micro-step size, required to meet stability and accuracy criteria, as shown
in Gu and Asada [105].

In many of the solutions proposed (e.g., [10, 11, 214, 219, 220]), information about the rate of
change (or sensitivity) of outputs and states of each simulation unit, with respect to changes in
its inputs is required to solve the non-trivial coupling condition. This information can be either
provided directly as a Jacobian matrix of the system and output functions, or estimated by finite
differences, provided that the simulation units can be rolled back to previous states. A frequent

28

characteristic of co-simulation: the availability of certain capabilities from simulation units can
mitigate the lack of other capabilities.

To show why the sensitivity information is useful, one of the tasks of the BCC is to ensure that
x̃1 − x̃3 is as close to zero as possible, by finding appropriate inputs Fe and Fc. This is possible
since x̃1 and x̃3 are functions of the inputs Fe and Fc, and −Fe = Fc. So the constraint can be
written as

g(Fe) = x̃1(Fe)− x̃3(−Fe) = 0 (29)

From one communication step to the next, g can be expanded with the Taylor series:

g(Fe((n+ 1) ·H)) = g(Fe(n ·H) + ∆Fe) ≈ g(Fe(n ·H)) +
∂g(Fe(n ·H))

∂Fe
·∆Fe (30)

From a known input Fe(n · H), Equations 29 and 30 can be combined to obtain the input
Fe((n+ 1) ·H) at the next communication step:

g(Fe(n ·H) + ∆Fe) ≈ g(Fe(n ·H)) +
∂g(Fe(n ·H))

∂Fe
·∆Fe = 0↔

g(Fe(n ·H)) = −∂g(Fe(n ·H))

∂Fe
·∆Fe ↔

∆Fe = −
[
∂g(Fe(n ·H))

∂Fe

]−1

· g(Fe(n ·H))↔

Fe((n+ 1) ·H) = Fe(n ·H)−
[
∂g(Fe(n ·H))

∂Fe

]−1

· g(Fe(n ·H))

(31)

with

∂g(Fe(n ·H))

∂Fe
=
∂x̃1(Fe(n ·H))

∂Fe
+
∂x̃3(−Fe(n ·H))

∂Fc
(32)

A simple orchestration algorithm will then perform the following steps, at each co-simulation
step:

1. Let x̃1(nH), x̃3(nH) be the current position outputs of the two simulation units S1 and S3;
2. Perform a co-simulation step with a known Fe, obtaining x̃p1(nH), x̃p3(nH) as new outputs.
3. Rollback simulation units to state x̃1(nH), x̃3(nH);
4. Perform a co-simulation step with Fe + ∆Fe, obtaining x̃d1(nH), x̃d3(nH);

5. Approximate ∂g(Fe(n·H))
∂Fe

by finite differences and eq. (32);
6. Obtain a corrected F ce by eq. (31);
7. Rollback simulation units to state x̃1(nH), x̃3(nH);
8. Perform the final co-simulation step with F ce ;
9. Commit states and advance time;
As can be seen in fig. 8, this coupling cannot be carried out without errors: the constraint

g(Fe((n + 1) · H)) cannot be accurately forced to zero at first try. Furthermore, finding initial
conditions and initial inputs that satisfy Equations 9, 26, and 28 is very important and usually
requires a fixed point iteration. The above algorithm could be changed to perform an arbitrary

29

−20

−10

0

10

20

−0.5

0.0

0.5

1.0

C
oupling

Trajectory

0.0 2.5 5.0 7.5 10.0
Time

Solution
x1
x3
x_analytical
Fe

Figure 8: Co-simulation of algebraically coupled masses. Parameters are: m2 = 2,m1 = c1 = c3 =
d1 = cc = 1, H = 0.1, x1(0) = 1.0, x3(0) = 1.1, v1(0) = v3(0) = 0. Notice the small disturbance at
the initial conditions.

number of iterations, repeating steps 1–7 until g(Fe((n+1) ·H)) is close enough to zero. This would
increase the accuracy but also increase the amount of computation.

These examples show that rollback capabilities are important. If a simulation unit is a black
box, then the rollback capability has to be provided by the simulation unit itself and there is little
that the orchestrator can do to make up for the lack of the feature. See Broman et al. [46] for an
orchestrator that takes into account the existence of the rollback feature. If, on the other hand, the
simulation unit provides access to its state, and allows the state to be set, as in Blockwitz et al. [35],
then the orchestrator can implement the rollback by keeping track of the state of the simulation
unit. Rollback also plays a key role when dealing with algebraic loops in the co-simulation scenario.

Finally, to explain why this sub-section refers to modular composition of simulation units, the
example in fig. 6 makes explicit one of the problems in co-simulation: the “rigid” and protected
nature of simulation units can make their coupled simulation very difficult. To contrast, in a white
box approach where the equations of both constituent systems are available, the whole system is
simplified, with the two masses being lumped together, and their coupling forces canceling each
other out. The simplified system is a lumped mass-spring-damper, which is easily solvable. Such
an approach is common in a-causal modeling languages, such as Modelica [1]. To be concrete, the
coupled system is obtained by combining Equations 9, 26, and 28, and simplifying to:

ẋ1 = v1

(m1 +m3) · v̇1 = −(c1 + c3) · x1 − d1 · v1

x1(0) = p1

v1(0) = s1

(33)

fig. 9 compares the behavior trace produced by Algorithm 3 when applied to the co-simulation
scenario described in eq. (24), with the analytical solution, obtained from the coupled model of
eq. (17) (co-modelling). It is obvious that there is an error due to the extrapolation functions and
the large communication step size H = 0.1.

30

−1.0

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0
Time

Solution
x1 cosim.
x1 analytical
x2 cosim.
x2 analytical

Figure 9: Comparison of co-simulation with co-modelling for the sample coupled system. Parame-
ters are: m1 = m2 = c1 = c2 = d1 = cc = 1, H = 0.1.

This is more modular because (if the equations are made available) the same constituent system
can be coupled to other systems in many different contexts, without further changes. As this
sub-section shows, in co-simulation it is possible to get around the modularity aspect, but at a cost.

4.3.2 Algebraic loops

Algebraic loops occur whenever there is a variable that indirectly depends on itself. To see how
algebraic loops arise in co-simulation scenarios, recall (see eq. (21)) that the state evolution and
output of each simulation unit Si can be written as:

xi(t+H) = δi(t, xi(t), ui(t))

yi(t+H) = λi(t, xi(t+H), ui(t+H))
(34)

To simplify things, assume that the simulation units are coupled by a set of assignments from
outputs to inputs, i.e.,

ui(t) := yj(t) (35)

where ui is the input of simulation unit Si and yj the output of a simulation unit Sj , in the same
co-simulation scenario.

With these definitions, it is easy to see that, depending on the coupling assignments of the
co-simulation scenario, the output of a simulation unit may depend on itself, that is,

yi(t + H) = λi(t, xi(t+H), ui(t+H))

ui(t+H) = yj(t+H)

yj(t+H) = λj(t, xj(t+H), uj(t+H))

uj(t+H) = yk(t+H)

. . .

uz(t+H) = yi(t + H)

(36)

31

We distinguish two kinds of algebraic loops in co-simulation [141]: the ones spanning just input
variables, and the ones that include state variables as well. The first kind can be avoided by
using the input extrapolations as parameters to the output functions. The second kind arises when
implicit numerical solvers are used, or when the input approximating functions are interpolations
instead of extrapolations. In the previous example, the first kind can be removed by replacing
ui(t+H) in eq. (34) by the corresponding extrapolation φui(H,ui(n ·H), ui((n− 1) ·H), . . .) which
does not depend on ui((n + 1) ·H), thus breaking the algebraic loop. These methods just ignore
the algebraic loop though, and as is shown in Arnold et al. [14], Kübler and Schiehlen [141] (and
empirically in Bastian et al. [25]), neglecting an algebraic loop can lead to a prohibitively high error
in the co-simulation. A better way is to use a fixed point iteration technique. For algebraic loops
involving state variables, the same co-simulation step has to be repeated until convergence. If the
algebraic loop does not involve any state variable, then the iteration is just on the output functions.

To see how algebraic loops involving state variables arise, suppose that, in the example above,
φui

is constructed from ui((n+ 1) ·H):

ui(n ·H +m · hi) := φui
(m · hi, ui((n+ 1) ·H), ui(n ·H), ui((n− 1) ·H), . . .) (37)

If an order can be imposed in the evaluation of the simulation units that ensures ui((n + 1) ·H)
can be computed from some λj(t, xj((n+1) ·H), uj((n+1) ·H)) that does not indirectly depend on
ui((n+1) ·H), then this approach —Gauss-Seidel— can improve the accuracy of the co-simulation,
as shown in Arnold [10], Arnold and Günther [11], Arnold et al. [14], Busch [50], Kalmar-Nagy and
Stanciulescu [128]. Obviously, the execution of simulation unit Si has to start after simulation unit
Sj has finished and its output λj(t, xj((n+ 1) ·H), uj((n+ 1) ·H)) can be evaluated. If the input
uj((n+ 1) depends indirectly on ui((n+ 1) ·H), then an algebraic loop exists. The output function
λj(t, xj((n+ 1) ·H), uj((n+ 1) ·H)) depends on the state of the simulation unit at xj((n+ 1) ·H),
which in turn can only be obtained by executing the simulation unit from time n ·H to (n+ 1) ·H,
using the extrapolation of the input uj , φuj

(m · hi, uj((n + 1) · H, . . .)); any improvement in the
input uj((n+1) ·H, means that the whole co-simulation step has to be repeated, to get an improved
xj((n+ 1) ·H) and by consequence, an improved output λj(t, xj((n+ 1) ·H), uj((n+ 1) ·H)).

A fixed point iteration technique that makes use of rollback to repeat the co-simulation step
with corrected inputs is called dynamic iteration, waveform iteration, and strong or onion coupling
[119, 231]. If the simulation units expose their outputs at every internal micro-step, then the
waveform iteration can be improved [155]. Strong coupling approaches are typically the best in terms
of accuracy, but worst in terms of performance. Approaches that do not perform any correction
steps are the best in terms of performance, but worst in accuracy. A variant that attempts to obtain
the middle-ground is the so-called semi-implicit method, where a fixed limited number of correction
steps is performed. See Schweizer and Lu [214, 215, 216], Schweizer et al. [218, 219] for examples
of this approach.

In the current FMI Standard for co-simulation, it is not possible to perform a fixed point iteration
on the output variables only, in the step mode. A work-around this is to rollback the simulation
units and repeat the co-simulation step, effectively treating the algebraic loop as involving the state
variables too.

Until here, we have assumed full knowledge of the models being simulated in each simulation
unit to explain how to identify, and deal with, algebraic loops. In practice, with general black-box
simulation units, extra information is required to identify algebraic loops. According to Arnold
et al. [13], Benveniste et al. [32], Broman et al. [46], a binary flag denoting whether an output

32

depends directly on an input is sufficient. A structural analysis, for example, with Tarjan’s strong
component algorithm [225], can then be performed to identify the loops.

4.3.3 Consistent Initialization of Simulators

The definition of a simulation unit in eq. (21) assumes that an initial condition is part of the
simulation unit. However, as seen in the example of section 4.3.1, the initial states of the simulation
units can be coupled by algebraic constraints, through the output functions, which implies that the
initial states of the simulation units cannot be set independently of the co-simulation in which they
are used. For example, the constraint in eq. (28) has to be satisfied for the initial states:

{x̃1(0), ṽ1(0), x̃3(0), ṽ3(0)}.

In general, for a co-simulation scenario as defined in eq. (23), there is an extra coupling function
L0 that at the time t = 0, has to be satisfied. For example:

L0(x1(0), . . . , xn(0), y1(0), . . . , yn(0), ycs(0), u1(0), . . . , un(0), ucs(0)) = 0̄ (38)

where:

• xi(0) denotes the initial state of simulation unit Si; and

• L0 : X1× . . .×Xn×Y1× . . .×Yn×U1× . . .×Un → Rm represents the initial constraint, not
necessarily equal to L in eq. (23).

eq. (38) may have an infinite number of solutions – as in the case of the example provided in
section 4.3.1 – or have algebraic loops. The initialization problem (or co-initialization) is identified
in Blockwitz et al. [35] and addressed in Galtier et al. [96].

In the FMI Standard, there is a dedicated mode for the (possible fixed point iteration based)
search of a consistent initial state in all simulation units.

4.3.4 Compositional Convergence – Error Control

The accuracy of a co-simulation trace is the degree to which it conforms to the real trace as described
in section 2.2. Obtaining the real trace can be a challenge. Error —the difference between the co-
simulation trace and the real trace— is then a measure of accuracy.

In the context of continuous co-simulation, the most accurate trace is the analytical solution
to the coupled model that underlies the scenario. For example, the coupled model in eq. (17),
corresponding to the multi-body system in fig. 5, is implicitly created from the co-simulation scenario
described in eq. (24). Fortunately, the analytical solution can be obtained for this coupled model
because it forms a linear time invariant system. In practice, the analytical solution for a coupled
model cannot be found easily. Calculating the error precisely is impossible for most cases but
getting an estimate in how the error grows is a well understood procedure in numerical analysis.

In simulation, the factors that influence the error are [63]: model, solver, micro-step size, and,
naturally, the size of the time interval to be simulated. In co-simulation, the extrapolation func-
tions introduce error in the inputs of the simulation units, which is translated into error in the
state/outputs of these, causing a feedback on the error that can increase over time. Intuitively, the
larger the co-simulation step size H, the larger is the error made by the extrapolation functions.

33

For example, when the Forward Euler solver (eq. (12)) is used to compute the approximated
behavior trace of the dynamical system in eq. (10), in a single micro step, it is making an error in
the order of ∥∥∥∥∥∥∥

(
x(t) + f(x(t)) · h+O

(
h2
))︸ ︷︷ ︸

by infinite Taylor series

− (x(t) + f(x(t)) · h)︸ ︷︷ ︸
by Forward Euler

∥∥∥∥∥∥∥ = O
(
h2
)

Obviously, the order in the error made at one step O
(
h2
)
, most commonly called the local error,

depends on:
• f having no unbounded derivatives – to see why, observe that if the derivative of f is infinite,

then the residual term cannot be bounded by a constant multiplied by h2. Fortunately, since
most continuous time dynamic systems model some real system, this assumption is satisfied.

• The solver used – other solvers, such as the midpoint method, are derived by truncating
higher order terms of the Taylor series. For the midpoint method, the local truncation error
is O

(
h3
)
;

• Naturally, the larger the micro step size h is, the larger the local error O
(
h2
)

is.
The local error assumes that the solver only made one step, starting from an accurate point

x(t). To compute the approximate behavior trace, the only accurate point the solver starts from is
the initial value x(0). The rest of the trace is approximate and the error gets compounded over the
multiple steps. For the Forward Euler method, if there is a limit to how f reacts to deviations on
its parameter x̃(t) = x(t) + e(t) from the true parameter x(t), that is, if

‖f(x(t))− f(x(t) + e(t))‖ ≤ const · e(t)

and const < ∞, then the order of the total accumulation of error can be defined in terms of the
micro-step size. This condition is called global Lipschitz continuity [80]. For the Forward Euler
solver, the total (or global) error is O (h).

For a solver to be useful, it must be convergent, that is, the computed trace must coincide with
the accurate trace when h → 0 [252]. It means the error can be controlled by adjusting the micro
step size h. The same concept of convergence applies to co-simulation but does, as the intuition
suggests, decreasing the communication step size H lead to a more accurate co-simulation trace?
This cannot be answered yet in general co-simulation because the behavior of the coupled model
induced by the coupling of simulation units may not satisfy Lipschitz continuity.

In the context of CT co-simulation, according to Arnold and Günther [11], Arnold et al. [14],
Busch and Schweizer [52], Hafner et al. [114], Kübler and Schiehlen [141], if the simulation units are
convergent and the coupled model induced by the scenario coupling conditions can be written in
the state space form of eq. (10), then the co-simulation unit induced by any of the Jacobi, Gauss-
Seidel, or Strong coupling methods, is convergent, with any polynomial extrapolation technique for
the inputs. Presence of algebraic loops, complex coupling constraints (such as the one shown in
section 4.3.1), are factors that may make it impossible to write the coupled model in state space
form. See Arnold [10] for more examples.

The local error vector, in a co-simulation, is defined as the deviation from the true trace after

34

one co-simulation step H, starting from an accurate point.

x1(t+H)− x̃1(t+H)
· · ·

xn(t+H)− x̃n(t+H)
y1(t+H)− ỹ1(t+H)

· · ·
yn(t+H)− ỹn(t+H)

(39)

where x̃i(t +H) = δi(t, xi(t), φui
(t)), ỹi(t +H) = λi(t, x̃i(t +H), φui

(t+H)), and xi(t +H) and
yi(t+H) are the true state vectors and outputs, respectively, for simulation unit Si.

For a convergent co-simulation unit, some of the techniques used traditionally in simulation to
estimate the error, have been applied in co-simulation:
Richardson extrapolation: This well-known technique is compatible with black-box simulation

units as long as these provide rollback and state saving/restore capabilities [13, 15, 96]. The

essential idea is to get an estimate of the local error by comparing [x̃i(t+H), ỹi(t+H)]
T

with a less accurate point [x̄i(t+H), ȳi(t+H)]
T

. The less accurate point can be computed
by the same orchestrator but using a larger communication step size. We have seen that
larger communication step sizes affect the accuracy so if the two points are not too far apart,
it means the communication step H does not need to be changed. It is importance to notice
that the less accurate point [x̄i(t+H), ȳi(t+H)]

T
has to be computed from the accurate

starting point [x̃i(t), ỹi(t)]
T

.
Multi-Order Input Extrapolation: The outputs of two different order input approximation

methods are compared [52, 54].
Milne’s Device: Similar to the previous ones, but the extrapolation of the inputs is compared with

its actual value, at the end of the co-simulation step. Iterative approaches such as the ones
studied in Arnold [10], Arnold and Günther [11], Schweizer and Lu [214, 215, 216], Schweizer
et al. [217, 218, 219] can readily benefit from this technique.

Parallel Embedded Method: This technique runs a traditional adaptive step size numerical
method in parallel with the co-simulation [119]. The purpose is to piggy back in the auxiliary
method, the decisions on the step size. The derivatives being integrated in each simulation
unit have to be either provided, or estimated.

Conservation Laws: The local error is estimated based on the deviation from a known conser-
vation law [207]. Extra domain knowledge about the coupling between simulation units is
required. For example, if the couplings form power bonds [193], then energy should be con-
served across a co-simulation step. In practice there is always an error due to the usual factors.
The magnitude of the energy residual at a start and at end of a co-simulation step serves as
an estimate of the local error. This technique has been implemented and studied in Sadjina
et al. [207]. It has the advantage that it may not require rollback functionalities.

Embedded Solver Method: If the individual simulation units support adaptive step size, then
the decisions made internally can be made public to help the orchestrator decide on the
communication step size. To the best of our knowledge, there is no orchestrator proposed that
performs this, but the FMI Standard allows simulation units to reject too large communication
step sizes [35, 46].

After the error is deemed too large by one of the above methods, the correction can be applied
pessimistically (rollback and repeating the same step) or optimistically (adapt the next step). To

35

mitigate the overhead of a pessimistic approach, the corrections may be applied only to sensitive
simulation units, as done in Verhoeven et al. [249].

Finally, the traditional simulation techniques can be applied to chose the right communication
step size H: See Busch and Schweizer [52] for the PI-controller approach, and Gustafsson [112],
Gustafsson et al. [113] for other techniques that can potentially be applied to co-simulation.

4.3.5 Compositional Stability

In the previous section we have presented conditions in which an orchestration engine can reduce
the communication step size to an arbitrarily small value in order to meet arbitrary accuracy.
Theoretically, this is useful as it tells the orchestrator that by reducing the local error, it also reduces
the global error. In practice, the communication step size cannot be reduced to an arbitrarily small
value without facing performance and roundoff error problems. Performance because, for smaller
communication step sizes, it takes more steps to compute a behavior trace over a given interval
of time. Round-off accuracy because in a digital computer, real numbers can only be represented
approximately. Computations involving very small real numbers incur a non-negligible round-off
error. So that means that in practice convergence does not imply that arbitrary accuracy can be
achieved. A better question is to analyze what happens to the global error, as the co-simulation
trace is computed with a non-null communication step size H.

Suppose that the analytical solution to the coupled model induced by the co-simulation scenario
eventually goes to zero. This is the case for the coupled multi-body system of fig. 5, described in
eq. (17), provided that at least one of the constants d1 or d2 is positive non-zero. Intuitively, this
means that the system will lose energy over time, until it eventually comes to rest.

Let x1(t) denote the analytical solution of the position the mass m1 in the system, and let x̃1(t)
be the solution computed by a co-simulation unit. Then exi(t) = ‖x1(t)− x̃1(t)‖ denotes the global
error at time t made by the co-simulation unit. If limt→∞ x1(t) = 0, then limt→∞ exi

(t) = x̃1(t).
If the co-simulation unit is convergent, then for an arbitrarily small H → 0, limt→∞ exi

(t)→ 0
will be arbitrarily small too. Since in practice we cannot take arbitrarily small H, we want to
know whether there is some non-zero H such that limt→∞ x̃1(t) = 0, thus driving exi(t) to zero as
well. If that is the case, then it means that, assuming the system will eventually come to rest, the
co-simulation unit will too. This property is called numerical stability.

Contrarily to convergence, numerical stability is a property that depends on the characteristics
of the system being co-simulated. Numerical stability is always studied assuming that the system
being co-simulated is stable. It makes no sense to show that the co-simulation trace will grow
unbounded provided that the system does too. It is a comparison of two infinities. One of the ways
numerical stability in co-simulation can be studied is by calculating the spectral radius of the error
in the co-simulation unit, written as an autonomous linear discrete system [49, 51].

To give an example, recall that the coupled model induced by the co-simulation scenario de-

36

scribed in eq. (24) can be written as:[
ẋ1

v̇1

]
=

[
0 1

− c1
m1

− d1
m1

]
︸ ︷︷ ︸

A1

[
x1

v1

]
+

[
0
1
m1

]
︸ ︷︷ ︸
B1

u1

y1 =

[
1 0
0 1

]
︸ ︷︷ ︸
C1

[
x1

v1

]
[
ẋ2

v̇2

]
=

[
0 1

− c2+cc
m2

− dc
m2

]
︸ ︷︷ ︸

A2

[
x2

v2

]
+

[
0 0
cc
m2

dc
m2

]
︸ ︷︷ ︸

B2

u2

y2 =
[
cc dc

]︸ ︷︷ ︸
C2

[
x2

v2

]
+
[
−cc −dc

]︸ ︷︷ ︸
D2

u2

(40)

with the coupling conditions u1 = y2 and u2 = y1.
In order to write the co-simulation model as an autonomous linear discrete system, we have

to write what happens at a single co-simulation step t ∈ [nH, (n+ 1)H] when executed by the
orchestrator presented in Algorithm 3. Since the purpose is to analyze the stability of a co-simulation
unit, and not the stability of each of the simulation units in the co-simulation, it is common to
assume that the simulation units compute the analytical trace of the system. This enables the
study of the stability properties of the co-simulation unit, starting from stable simulation units.

From time t ∈ [nH, (n+ 1)H], simulation unit S1 is computing the behavior trace of the following
Initial Value Problem Ordinary Differential Equation (IVP-ODE):[

ẋ1(t)
v̇1(t)

]
= A1

[
x1(t)
v1(t)

]
+B1u1(nH) (41)

with initial conditions
[
x1(nH) v1(nH)

]T
given from the previous co-simulation step. The term

u1(nH) denotes the fact that we are assuming a constant extrapolation of the input in the interval
t ∈ [nH, (n+ 1)H].

eq. (41) is linear and time invariant, so the value of

[
x1((n+ 1)H)
v1((n+ 1)H)

]
can be given analytically

[49] as: [
x1((n+ 1)H)
v1((n+ 1)H)

]
= eA1H

[
x1(nH)
v1(nH)

]
+

(∫ (n+1)H

nH

eA1((n+1)H−τ)dτ

)
B1u1(nH) (42)

or, replacing the integration variable with s = τ − nH,[
x1((n+ 1)H)
v1((n+ 1)H)

]
= eA1H

[
x1(nH)
v1(nH)

]
+

(∫ H

0

eA1(H−s)ds

)
︸ ︷︷ ︸

K1

B1u1(nH)
(43)

37

where eX =
∑∞
k=0

1
k!X

k is the matrix exponential.
Rewriting eq. (43) as a discrete time system gives us the computation performed by simulation

unit S1 in a single co-simulation step, that is, the state transition function δ1:[
x

(n+1)
1

v
(n+1)
1

]
= eA1H

[
x

(n)
1

v
(n)
1

]
+K1B1u

(n)
1 (44)

where z(n) = z(nH).
At the end of the co-simulation step (t = (n+ 1)H) the output of the first simulation unit, that

is, its output function λ1, is given by plugging in eq. (44) to the output y1 in eq. (40):

y
(n+1)
1 = C1e

A1H

[
x

(n)
1

v
(n)
1

]
+ C1K1B1u

(n)
1 (45)

Repeating the same procedure for the second simulation unit, yields the state transition δ2 and
output functions λ2: [

x
(n+1)
2

v
(n+1)
2

]
= eA2H

[
x

(n)
2

v
(n)
2

]
+K2B2u

(n)
2

y
(n+1)
2 = C2e

A2H

[
x

(n)
2

v
(n)
2

]
+ (C2K2B2 +D2)u

(n)
2

(46)

with K2 =
∫H

0
eA2(H−u)du.

Since the coupling conditions are u1 = y2 and u2 = y1, we can combine Equations 46, 45, and
41 into a single discrete time system:

[
x

(n+1)
1

v
(n+1)
1

]
y

(n+1)
1[
x

(n+1)
2

v
(n+1)
2

]
y

(n+1)
2


=


eA1H 0̄ 0̄ K1B1

C1e
A1H 0̄ 0̄ C1K1B1

0̄ K2B2 eA2H 0̄
0̄ C2K2B2 +D2 C2e

A2H 0̄


︸ ︷︷ ︸

A



[
x

(n)
1

v
(n)
1

]
y

(n)
1[
x

(n)
2

v
(n)
2

]
y

(n)
2


(47)

The above system is stable if the behavior traces remain bounded (e.g., by going to zero) as
n → ∞. This can be checked by observing whether the spectral radius ρ(A) < 1. For parameters
m1 = m2 = c1 = c2 = d1 = cc = dc = 1, d2 = 2, a communication step size of H = 0.001,
ρ(A) = 0.9992, which means that the co-simulation unit is stable. If the damping constant were
dk = 6.0E6, then the co-simulation unit would be unstable (ρ(A) ≈ 76.43). A stable co-simulation
is shown in fig. 10.

Different coupling methods, and different approximation functions yield different stability prop-
erties. See Busch [49, 50], Busch and Schweizer [51, 53] for the stability analysis of multiple coupling
approaches and approximating functions. Stability of various co-simulation units has been also stud-
ied in Arnold [10], Gu and Asada [105], Kalmar-Nagy and Stanciulescu [128], Kübler and Schiehlen
[142], Schweizer et al. [217]. The rules of thumb drawn from these papers can be summarized as:

38

−1.0

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0
Time

Solution
x1
v1
x2
v2

Figure 10: Behavior trace of co-simulator described in eq. (47). Parameters are: m1 = m2 = c1 =
c2 = d1 = cc = dc = 1, d2 = 2, H = 0.001.

• Co-simulators that employ fixed point iteration techniques typically have better stability
properties;

• Gauss-Seidel coupling approach has slightly better stability properties when the order in
which the simulation units compute is appropriate. For example, the simulation unit with the
highest mass should be computed first [10];

The main problem is that in co-simulation applied to industrial problems, the solvers and models
may be coupled in a black box to protect IP, so there is little knowledge about the kind of solver and
model being used and its stability properties. The best is then to always use iterative techniques
that have been shown to have better stability properties. However, these techniques require rollback
functionalities which can be difficult to support for certain simulation units. Even if those func-
tionalities are available, the cost of computing a co-simulation trace can be prohibitively high when
compared with non-iterative approaches. This creates a paradox where industrial co-simulation
units should make use of iterative techniques but the performance toll may be too high.

4.3.6 Compositional Continuity

Let us for now assume that each CT simulation unit is a mock-up of a continuous system. A
prerequisite is that the physical laws of continuity are obeyed. When using extrapolation in the
inputs (e.g., constant extrapolation), these laws may not be obeyed, as discussed in Busch [50],
Sadjina et al. [207]. Consider the point of view of a simulation unit Si in co-simulation. Throughout
a co-simulation step t ∈ [nH, (n+ 1)H] the input φui

(t, ui(nH)) = ui(nH) is kept constant. At
the next co-simulation step t ∈ [(n+ 1)H, (n+ 2)H], the input φui(t, ui((n+ 1)H)) = ui((n+ 1)H)
may change radically if ui((n+ 1)H) is too far away from ui(nH).

The discontinuities in the inputs may wreak havoc in the performance of the simulation unit
Si, causing it to reduce inappropriately the micro step size, to reinitialize the solver [63], to discard
useful information about the past (in multi-step solvers [8, 9]), and/or produce inaccurate values in
its input extrapolation [191]. Furthermore, a discontinuity may be propagated to other simulation
units, aggravating the problem.

Most numerical methods assume that the input is a discretized version of a continuous trace.

39

That means that, when a discontinuity occurs, simulation unit Si cannot distinguish it from a very
steep change in the continuous trace. The way traditional solvers deal with this behavior is to reduce
the micro step size hi until the change is not so steep. This works with a continuous signal with
a steep change, but does not work with a discontinuity: even if the micro-step size hi is reduced,
the difference between limt→((n+1)H)− φui

(t, ui(nH)) = ui(nH) and limt→((n+1)H)+ φui
(t, ui((n +

1)H)) = ui((n + 1)H) is still the same, as it depends on the communication step size H and not
on the micro step size hi. The solver will reduce the micro step size until a minimum is reached, at
which point it gives up and finally advantages the micro step [63].

Most of the times this gives acceptable results but has a huge performance toll: when the solver
is repeatedly retrying a small micro-step size, it does not advance the simulated time. This means
that a huge computational effort goes to waste until the solver finally gives up [61].

We defer the discussion of the correct ways to deal with discontinuities to co-simulation scenario
where discontinuities are welcome, section 5. In continuous co-simulation scenarios, discontinuities
should not occur.

A solution to avoid discontinuities in the input approximations is to use the extrapolated in-
terpolation methods instead of constant extrapolation [49, 50, 75]. These methods ensure at least
that limt→((n+1)H)− φui

(t, ui(nH)) = limt→((n+1)H)+ φui
(t, ui((n+ 1)H)).

To give an example, we derive one possible linear extrapolated interpolation method for φui

over the interval t ∈ [nH, (n+ 1)H]. Since φui is linear, then φui(t, ui(nH), ui((n − 1)H)) =
b + a(t − nH), for some constants a, b. Let ūi(nH) = φui

(nH, ui((n − 1)H), ui((n − 2)H)). To
avoid discontinuities, we require that φui

(nH, ui(nH), ui((n− 1)H)) = ūi(nH). And we want that
φui

((n+ 1)H,ui(nH), ui((n− 1)H)) = ui(nH).
So putting these constraints together gives

φui(t, ui(nH), ui((n− 1)H)) = b+ a(t− nH)

ūi(nH) = φui(nH, ui((n− 1)H), ui((n− 2)H))

φui(nH, ui(nH), ui((n− 1)H)) = ūi(nH)

φui((n+ 1)H,ui(nH), ui((n− 1)H)) = ui(nH)

(48)

Solving this system for φui
(t, ui(nH), ui((n− 1)H)) gives:

φui(t, ui(nH), ui((n− 1)H)) = ui((n− 1)H) +
ui(nH)− ui((n− 1)H)

H
(t− nH) (49)

4.3.7 Real-time Constraints

As introduced in section 2, the major challenge in real-time simulation is to ensure that a simulation
unit is fast-enough to satisfy the timing constraint t = ατ . In real-time co-simulation, this challenge
gets aggravated due to the presence of multiple simulation units, with different capabilities [222]. In
order to enable real-time co-simulation, every simulation unit has to be fast enough. Furthermore,
real-time co-simulation is often needed because one of the simulation unit is actually the original
system, wrapped as a simulation unit. This means that measurements are performed to the state of
the system, and this means noise in the signals. Therefore, the extrapolation functions used in the
other simulation units have to be properly protected from the noise in the signal, using statistical
techniques such as Kalman filtering [127]. Finally, the quality of the network is important, as the

40

real-time simulation units needs to receive their inputs in a timely manner. To mitigate this, the
orchestration algorithm has to compensate for any delays in the receiving of data, and provide
inputs to the real-time simulation unit [221].

5 Hybrid Co-simulation Approach

Sections 3 and 4 described the essential characteristics and assumptions of simulation units for each
kind of co-simulation approach. When compared to a CT unit, whose state evolves continuously in
time and whose output may have to obey to physical laws of continuity, a DE unit state can assume
multiple values at the same time (transiency) and its output can dramatically change over a short
period of time. For an orchestrator, a CT unit has some flexibility (safe for algebraic loops and
ugly coupling conditions) in computing the co-simulation. In contrast, a DE simulation unit has to
get inputs and produce outputs at the precise time some event occurs. And due to the potentially
drastic change in the outputs, there is no Lipschitz continuous condition that allows predicting how
a delay in the output of the DE unit can affect the overall co-simulation trace.

For example, in the simulation unit of the mass-spring-damper system, eq. (22), with a constant
extrapolation function, and running under the orchestrator in Algorithm 3, the change in the input
can only affect the output after at least H units of time. For continuous time solvers in general, as
can be seen for the explicit solver in eq. (12), a delayed response to the inputs is normal.

These differences between CT and DE units are at the heart of many challenges in hybrid
co-simulation scenarios, mixing the two.

5.1 Hybrid Co-simulation Scenarios

We do not give a formal definition of a hybrid co-simulation scenarios because that is related
to finding an appropriate standard for hybrid co-simulation, which is a non trivial challenge (see
section 5.2.9) [47].

Instead, we define it broadly as mixing the characteristics and assumptions of both kinds of
simulation units. These scenarios, together with an adequate orchestrator, can be used as mock-
ups of hybrid systems [6, 57, 60, 162]. A thermostat regulating the temperature in a room is a
classical example [161]. The continuous constituent system represents the temperature dynamics
of the room, accounting for a source of heat (radiator). The discrete event part is a controller that
turns on/off the radiator depending on the temperature.

The continuous time simulation unit S1 simulates the following dynamics:

ẋ = −α (x− 30q)

x(0) = x0

(50)

where x is the output temperature in the room, α > 0 denotes how fast the room can be heated
(or cooled) down, and q ∈ {0, 1} is the control input that turns on/off the radiator. The discrete
event simulation unit S2 simulates the statemachine shown in fig. 11, where one can think of the
input event tooHot as happening when x(t) ≥ 21 and tooCold when x(t) ≤ 19. The output events
off and on will assign the appropriate value to the input q of S1. Therefore, the temperature x(t)
is kept within a comfort region.

Clearly, the two units cannot just be coupled together via input to output assignments. Any
orchestrator for this co-simulation scenario has to reconcile the different assumptions about the
inputs and output of each simulation unit.

41

Figure 11: Statemachine model of the controller constituent system.

• The CT simulation unit expects a continuous input, whereas the output of the DE simulation
unit is an event signal.

• The output of the CT simulation unit is a continuous signal, whereas the DE simulation units
expects an event signal as input.

The coupling of continuous time and discrete event black box simulation units has been studied
in the state of the art. In essence, two approaches are known, both based on creating a wrapper
component around a simulation unit to adapt its behavior:
Hybrid DE – wrap every CT unit as a DE simulation unit, and use a DE based orchestration;
Hybrid CT – wrap every DE unit to become a CT unit and use a CT based orchestrator.

According to the formalization that we have proposed for CT and DE simulation units, the
Hybrid DE approach, applied to the thermostat example may involve: wrapping S1 as a DE sim-
ulation unit, S′1, with a time advance that matches the size of the co-simulation step; and keeping
track of the output of S1 in order to produce an output event whenever it crosses the thresholds.
Conversely, any output event from S2 has to be converted into a continuous signal for the input
q(t) of S1.

Other examples of Hybrid DE are described in Awais et al. [19], Bolduc and Vangheluwe [37,
38], Camus et al. [55, 56], Fey et al. [84], Kofman and Junco [137], Kounev et al. [139], Kuhr
et al. [146], Neema et al. [182], Nutaro [189], Quesnel et al. [202], Vangheluwe [244], Widl et al.
[254], Yılmaz et al. [257], Zeigler [260].

The Hybrid CT, in our example, can be followed by wrapping the DE unit S2 as a CT unit that
takes as input the temperature continuous signal, and internally reacts to an event caused by the
crossing of the threshold. Conversely, the output event of S2 can be converted into a continuous
signal q(t).

Examples of the Hybrid CT include Denil et al. [70], Feldman et al. [83], Garro and Falcone
[97], Lawrence et al. [150], Quaglia et al. [201], Tavella et al. [226], Tripakis [232].

Regardless of the approach taken, the properties of the constituent systems have to be retained:
the fact that an otherwise discontinuous signal becomes continuous as a result of a linear or higher
order extrapolation may not respect the properties of the coupled system. Knowledge of the domain
and the simulation units is paramount.

A third alternative, compared to only using Hybrid CT or Hybrid DE, is to have different
mechanisms of orchestrating the simulation units depending on the semantic domain. For instance,
in the actor modeling language Ptolemy II [200], an actor has many similarities to a simulation
unit. Instead of using either Hybrid CT or Hybrid DE, a so called Director block is used for a
particular set of connected actors. In this context, the notion of superdense time is fundamental,
as also discussed in [47].

In the subsection below, different issues that arise in hybrid co-simulation will be described.
These should be read in the light of hierarchical hybrid co-simulation scenarios, where composition-

42

ality is important.

5.2 Challenges

5.2.1 Semantic Adaptation

While a generic wrapper based on the underlying model of computation of the simulation unit can
be used, as done in [68, 200], the realization of any of the approaches Hybrid DE or Hybrid CT
depends on the concrete co-simulation scenario and the features of the simulation units [42, 178], as
shown with the thermostat example. There is simply no best choice of wrappers for all scenarios.
Even at the technical level, the manner in which the events or signals are sent to (or obtained from)
the unit may need to be adapted [232]. To be concrete, the simulation unit S2 can assume that
all events are communicated by encoding them in a single string signal, as opposed to having a
different signal signal to denote different events. To account for this variability, the most common
adaptations can be captured in a configuration language, as was done in Denil et al. [70], Meyers
et al. [169], or in a specialization of a model of computation, as done in Kuhr et al. [146], Muller
and Widl [176], Pedersen et al. [195]. These approaches require that a person with the domain
knowledge describes how the simulation units can be adapted.

Our choice of wrapper for the Hybrid DE approach is meant to highlight another problem with
the adaptations of simulation units: the wrapper incorporates information that will ultimately have
to be encoded in the software controller. As such, we argue that the need for sophisticated semantic
adaptations should be smaller in later stages of the development of the components so that, for
more refined models of the thermostat, the decision about when to turn off the radiator is not made
by a wrapper of S1.

5.2.2 Predictive Step Sizes

In the Hybrid DE approach, the time advance has to be defined (recall eq. (1)). Setting it to
whatever co-simulation step size H the orchestrator decides will work, but the adapted simulation
unit may produce many absent output events. Better adaptations have been proposed. In the
thermostat example, S′1 can propose a time advance that coincides with the moment that x(t) will
leave the comfort region, thereby always being simulated at the relevant times.

Naturally, these approaches rely in information that may expose the IP of simulation units.
Others try to adaptively guess the right time advance by monitoring other conditions of interest,
set over the own dynamics of the adapted simulation unit, the most common approach being the
quantization of the output space [38, 136, 137, 190, 261].

The capability to predict the time advance is also useful to enhance the performance/accuracy
of CT based co-simulation, as shown in Broman et al. [46].

5.2.3 Event Location

Locating the exact time at which a continuous signal crosses a threshold is a well known problem
[39, 41, 263] and intimately related to guessing the right time advance for predicting the step size
[56, 96]. To address this, solutions typically require derivative information of the signal that causes
the event, and/or the capability to perform rollbacks. In the thermostat example, a co-simulation
that shows the output q of the controller changing from 0 to 1 at time te while the temperature of

43

the room x actually crossed the confort zone at te − k, for k > 0, may not be accurate if k is too
large. Note that k is a consequence of the decisions made in the orchestrator.

5.2.4 Discontinuity Identification

Until here, we have based our discussion in the knowledge of what kind of simulation units comprise
a co-simulation. In a general hierarchical co-simulation, a simulation unit’s output may be an event
signal coming from a wrapper of a CT unit, or vice-versa. In any case, at runtime, a signal is often
represented as a set of time-stamped points. Observing this sequence of points alone does not make
it possible to discern a steep change in a continuous signal, from a true discontinuity, that occurs
in an event signal [47, 154, 172, 263]. Extra information is currently used: a) a formalization of
time which include the notion of absent signal, as proposed in Broman et al. [47], Lee and Zheng
[154], Tavella et al. [226]; or b) an extra signal can be used to discern when a discontinuity occurs,
as done in the FMI for Model Exchange [35], even facilitating the location of the exact time of the
discontinuity; or c) symbolic information (e.g., Dirac impulses [72]) that characterize a discontinuity
can be included, as done in Nilsson [186]

5.2.5 Discontinuity Handling

Once a discontinuity is located, how it is handled depends on the nature of the simulation units and
their capabilities. If the simulation unit is a mock-up of a continuous system then, traditionally,
discontinuities in the inputs should be handled by reinitializing the simulation unit [63]. This step
can incur a too high performance cost, especially with multi-step numerical methods, and Andersson
[8], Andersson et al. [9] proposes an improvement for these solvers. Furthermore, a discontinuity
can cause other discontinuities, producing a cascade of re-initializations. During this process, which
may not finish, care must be taken to ensure that physically meaningful properties such as energy
distribution, are respected [174].

5.2.6 Algebraic Loops, Legitimacy, and Zeno Behavior

Algebraic loops are non-causal dependencies between simulation units that can be detected using
feedthrough information, as explained in section 4.3.2. In CT based co-simulation, the solution to
algebraic loops can be attained by a fixed point iteration technique, as covered in section 4.3.2.
There is the possibility that the solution to an algebraic loop will fail to converge. The result is
that, if left unchecked, the orchestrator would move an infinite number of input and output values
between simulation units, at the same point in time.

In DE based co-simulation a related property is legitimacy [262], which is the undesirable version
of the transiency property, explained in section 3. A illegitimate co-simulation scenario will cause the
co-simulation orchestrator to move an infinite number of events with the same timestamp between
units, never advancing time. Distance matrices, used to optimize parallel optimistic approaches, as
explained in Fujimoto [94] and used in Ghosh et al. [101], can be leveraged to detect statically the
presence of some classes of illegitimacy.

A similar behavior, but more difficult to detect is Zeno behavior. It occurs when there is an
increasingly small interval of time between two consecutive events, up to the point that the the sum
of all these intervals is finite [238]. However, while illegitimate behaviors are not desired in pure
DE co-simulation, at least in the theoretical sense, Zenoness is a desired feature in some hybrid
co-simulation scenarios. We say in the theoretical sense because, for the purposes of co-simulation,

44

scenarios with Zenoness still have to be recognized and appropriate measures, such as regularization
[125], have to be taken.

5.2.7 Stability

If a hybrid co-simulation represents a hybrid or switched system [126, 238], then it is possible that
a particular sequence of events cases the the system to become unstable, even if all the individual
continuous modes of operation are stable. New analyses are required to identify whether the CT
units can yield unstable trajectories as a result of the events of wrapped DE simulation units, while
keeping the IP hidden.

5.2.8 Theory of DE Approximated States

In a pure DE based co-simulation, if round-off errors are neglected, the computed trajectories are
essentially exact. To the best of our knowledge, only Zeigler et al. [262] addresses theoretically how
the error in a discrete event system can be propagated. In CT based co-simulation however, error
is an accepted and well studied and techniques exist to control it.

In Hybrid co-simulation, there is a need for analysis techniques that provide bounds on the error
propagation in the DE simulation units, when these are coupled to sources of error.

In addition, based on these analyzes, it should be possible for a DE simulation unit to recognize
that its error has exceeded a given tolerance, and measures should be taken to reduce that error.
Having these techniques in place allows a hybrid co-simulation orchestrator to take appropriate
measures (e.g., adapt the communication step size, etc. . .) the keep the error bounded in every
simulation unit.

5.2.9 Standards for Hybrid Co-simulation

While for CT co-simulation there is the Functional Mock-up Interface (FMI) standard [35], and for
DE co-simulation there is the High Level Architecture (HLA) [2] standard, as of the time of writing,
both standards have limitations for hybrid co-simulation. Bogomolov et al. [36], Garro and Falcone
[97], Tavella et al. [226] use/propose extensions to the FMI standard and Awais et al. [18] proposes
techniques to perform CT simulation conforming to HLA. Recognizing that hybrid co-simulation
is far from well studied, Broman et al. [47] proposes a set of idealized test cases that any hybrid
co-simulation unit, and underlying standard, should pass. In particular, it is important to have
correct handling and representation of time, to achieve a sound approach for simultaneity.

Finally, even with a standardized interface, simulation units are not all equal: a fact that makes
coding an orchestration algorithm a real challenge. A possible approach to deal with this hetero-
geneity, proposed in Gomes [102], is to assume that all units implement the same set of features,
code the orchestration algorithm for those features, and delegate to wrappers the responsibility
of leveraging extra features (or mitigating the lack of). In the section below, these features are
classified.

6 Classification

Having described the multiple facets of co-simulation, this section summarizes our classification and
methodology.

45

Co-Simulation

Non-Functional
Requirements

Simulator
Requirements

Framework
Requirements

Mandatory OptionalFeature

Legend

Figure 12: Top-level.

Non-Functional
Requirements Configuration

Reusability

Performance

IP Protection

Distribution

Hierarchy

Scalability

Extensibility

Accuracy

Platform
Independence

Optional

Feature

Fault
Tolerance

Parallelism

Open-source

Figure 13: Non-Functional Requirements.

6.1 Methodology

To find an initial set of papers related to co-simulation, we used Google Scholar with the keywords
“co-simulation”, “cosimulation”, “coupled simulation”, and collected the first 10 pages of papers.
Every paper was then filtered by the abstract, read in detail, and its references collected. To guide
our reading to the most influential papers, we gave higher priority to most cited (from the papers
that we have collected).

We read approximately 30 papers to create the initial version of the taxonomy. Then, as we
read new papers, we constantly revised the taxonomy and classified them.

After a while, new references did not cause revisions to the taxonomy, which prompted us to
classify the collected papers in a more systematic fashion: all the papers that we collected from
2011 (inclusive) up to, and including, 2016 were classified. Two main reasons justify the last 5
years interval: limited time; and most of the papers refer to, and are based on, prior work. As
a consequence, the classification would be very similar for many of the related references prior to
2011.

From the papers classified, those that report case studies where noted to create fig. 1.

6.2 Taxonomy

The taxonomy is represented as a feature model [129] structured in three main categories, shown
in fig. 12:
Non-Functional Requirements (NFRs): Groups concerns (e.g., performance, accuracy, and IP

Protection) that the reference addresses.
Simulation unit Requirements (SRs): Features required/assumed from the simulation units

by the orchestrator described in the paper. Examples: Information exposed, causality, lo-
cal/remote availability, or rollback support.

Framework Requirements (FRs): Features provided by the orchestrator. Examples: dynamic
structure, adaptive communication step size, or strong coupling support.

Each main group is detailed in Figures 13, 14, and 15. Abstract features denote concepts that
can be easily detailed down but we chose not to, for the sake of brevity. Mandatory features are
required for the activity of co-simulation while optional are not.

46

6.3 State of the Art

To give an example on how the taxonomy is used, consider the work in Van Acker et al. [236], where
an FMI based multi-rate orchestration algorithm is generated from a description of the co-simulation
scenario. In the paper, the description language introduced can be reused in a tool-agnostic manner.
The orchestration code generator analyzes the co-simulation scenario, and: a) identifies algebraic
loops using I/O feedthrough information; b) separates the fast moving simulation units from the
slow moving ones, using the preferred step size information, and provides interpolation to the
fast ones (multi-rate); and c) finds the largest communication step size that divides all step sizes
suggested by simulation units and uses it throughout the whole co-simulation. We argue that the
generated orchestrator is fast because all the decisions are made at code generation stage. The
algebraic loops are solved via successive substitution of inputs, storing and restoring the state of
the simulation units.

Based on these facts, Van Acker et al. [236] can be classified as follows:
Non-Functional requirements: Performance, IP protection, and Configuration reusability;
Simulation unit requirements: Causal simulation units, Locally available simulation units, Pre-

ferred step size information about the solver, Feedthrough I/O causality information, State
values, No time constraints, and No rollback support;

Framework requirements: Continuous time domain, Multi-rate simulation, Fixed communica-
tion step size, Input/Output coupling, Fully implicit strong coupling support, Postmortem
visualization of results, Postmortem visualization of results, FMI as the underlying standard,
Gauss-seidel communication approach, and Support for three or more simulation units.

With similar reasoning, the FMI standard for co-simulation, version 2.0, can be classified ac-
cording to the assumptions it makes about the participating simulation units. These are highlighted
in fig. 14.

The remaining state of the art is classified in Figures 16 – 19. The raw data is available online13.

6.4 Discussion

Observing fig. 16, Accuracy is the most observed NFR, with 31 reports, followed by IP protection
and Performance. The least observed NFRs are Fault tolerance, Hierarchy and Extensibility.

Fault tolerance is especially important for long running co-simulations. One of the industrial
partners of the INTO-CPS project has running co-simulations that takes a minimum of two weeks
to complete.

We argue that Extensibility (the ability to easily accomodate new features) should be given
more importance: if an heterogeneous set of simulation units participate in the same co-simulation
scenario, the combination of capabilities provided (see fig. 14) can be huge. Thus, the orches-
trator can either assume a common homogeneous set of capabilities, which is the most common
approach, or can leverage the capabilities provided by each one. The later approach can lead to
an extremely complex orchestration algorithm. In any case, extensibility is key to address new
semantic adaptations (recall section 5.2.1).

As fig. 18 suggests, we could not find approaches that make use of the nominal values of state
and output variables, even though these are capabilities supported in the FMI Standard (see fig. 14),
and are useful to detect co-simulations that are not valid. A-causal approaches are important for
modularity, as explained in section 4.3.1, but these are scarce too.

13http://msdl.cs.mcgill.ca/people/claudio/pub/Gomes2016bClassificationRawData/raw_data.zip

47

http://msdl.cs.mcgill.ca/people/claudio/pub/Gomes2016bClassificationRawData/raw_data.zip

As for the framework requirements, in fig. 19, the least observed features are dynamic structure
co-simulation, interactive visualization, multi-rate, algebraic coupling, and partial/full strong cou-
pling support. This can be explained by the fact that these features depend upon the capabilities
of the simulation units, which may not be mature.

Figures 16 – 19 do not tell the full story because they isolate each feature. Feature interaction is
a common phenomenon, and among many possible interactions, we highlight the accuracy concern,
domain of the co-simulation, number of simulation units supported, and IP protection. As can be
seen from fig. 21, there is only one approach [146] that is both CT and DE based, up to any number
of simulation units. Note that this does not mean that the work addresses all challenges that were
identified in section 5. Accommodating the different CT and DE domains means that the approach
assumes that the simulation units can behave both as a CT and as a DE unit.

The concern with IP protection is evident in fig. 16 but the number of DE and CT based
approaches that provide some support for it is small, as shown in fig. 20. Similarly, as fig. 22 suggests,
accuracy does not show up a lot in the DE and CT approaches, for more than two simulation units.
Accuracy is particularly important in interactions between DE and CT simulation units.

In general, from the observed classification, there is a lack of research into approaches that are
both DE and CT based, and that leverage the extra the features from the simulation units.

7 Concluding Remarks

As this work shows, there are many interesting challenges to be explored in co-simulation, which
will play a key role in enabling the virtual development of complex heterogeneous systems in the
decades to come. The early success can be attributed to a large number of reported applications.
However, from the application references covered (see fig. 1), the large majority represent ad-hoc
couplings between two simulators of two different domains (e.g., a network simulator with a power
grid one, or a HVAC simulator with a building envelop one). This, however, excludes the (potentially
many) unreported applications of co-simulation. As systems become complex, the demand for co-
simulation scenarios that are large, hierarchical, heterogeneous, accurate, IP protected, and so on,
will increase.

This survey presents an attempt at covering the main challenges in co-simulation. To tackle
such a broad topic, we have covered the two main domains —continuous time and discrete event
based co-simulation— separately and then surveyed the challenges that arise when the two domains
are combined. A taxonomy is proposed and a classification of the works related to co-simulation in
the last five years is carried out using that taxonomy.

From the challenges, we highlight semantic adaptation, modular coupling, stability and accuracy,
and finding a standard for hybrid co-simulation as being particular important.

For early system analysis, the adaptations required to combine simulators from different for-
malisms, even conforming to the same standard, are very difficult to generalize to any co-simulation
scenario. A possible work around this is to allow the system integrator to describe these, as proposed
in [70].

One of the main conclusions of the classification is that there is lack of research into modular,
stable and accurate coupling of simulators in dynamic structure scenarios. This is where a-causal
approaches for co-simulation can play a key role. The use of bi-directional effort/flow ports can be
a solution inspired by Bond-graphs [193], and there is some work in [207] already in this direction.

Finally, this document is an attempt to summarize, bridge, and enhance the future research in
co-simulation, wherever it may lead us to.

48

Acknowledgment

The authors wish to thank Yentl Van Tendeloo, for the in depth review of DE based co-simulation,
Kenneth Guldbrandt Lausdahl for providing valuable input and discussions throughout the making
of this survey, and TWT GmbH for the valuable input on everyday challenges faced by a co-
simulation master. This research was partially supported by Flanders Make vzw, the strategic
research centre for the manufacturing industry, and a PhD fellowship grant from the Agency for
Innovation by Science and Technology in Flanders (IWT). In addition, the work presented here is
partially supported by the INTO-CPS project funded by the European Commission’s Horizon 2020
programme under grant agreement number 664047. This project is financially supported by the
Swedish Foundation for Strategic Research.

49

Causal

Simulator
RequirementsCausality

Availability

Feature

Mandatory

A-causal

Remote

Exclusive Or

OrOptional

FMI CS 2.0

Rollback
Support

None Single Multiple

Time
Constraints

None Scaled RT

Static Dynamic

Deadreckoning
Model

Discontinuity
Indicator

Values Serialization

State

Micro-step
Outputs

Input
Extrapolation

Detailed
Model

I/O Signal Kind

Outputs State

Derivative

Outputs State

JacobianTime

Step-size
Order of
Accuracy

I/O
Causality

Propagation
Delay

Feedthrough

Model Solver

Information
Exposed

Local

Dependency
Kind

Non-Linear Linear

Abstract Feature

NextPreferred

Outputs State

Nominal Values

WCET

Outputs State

Frequency

Figure 14: Simulation Unit Requirements and features provided in the FMI Standard for co-
simulation, version 2.0.

50

Feature

Mandatory Exclusive Or

OrOptional

Framework
Requirements

Dynamic
Structure

CT DE

Domain

No.
Simulators

2 3+

HLA FMI

Standard

FDMU

I/O
Assignment

Algebraic
Constraints

Coupling

Single Multiple

Co-simulation
Rate

Fixed Adaptive

Comm.
Step Size

Strong Coupling
Support

None Semi-Implicit Fully Implicit

Results
Visualization

Live Postmortem Interactive

Jacobi Gauss-seidel

Comm.
Approach

Figure 15: Framework Requirements.

2
4
6
8

Reports

Total

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Config. Reusability
Extensibility

Accuracy
Distribution
Parallelism

Open−source
Fault Tolerance

Hierarchy
IP Protection
Performance

Platform Independence

2000 2005 2010 2015
Year

C
at
eg
o
ry

11
25
25

3
1
6

21
24
31
4
7

Figure 16: Classification with respect to non-functional requirements.

51

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Multi Rollback

Single Rollback

No Rollback

Dynamic Real−Time Constraints

Fixed Real−Time Constraints

No Time Constraints

Remotely Available

Locally Available

Causal

A−Causal

2000 2005 2010 2015
Year

C
at

eg
or

y

3
6
9
12

Reports

Figure 17: Classification with respect to simulation unit requirements: execution capabilities.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Output Derivatives
State Derivatives
Output Jacobian

State Jacobian
Micro−step Outputs

Serialized State
State Values

Worst Case Exec. Time
I/O Feedthrough

Next Step Size
Preferred Step Size

Frequency of Outputs
Kind of Signal

Model
Input Extrapolation

Output Nominal Values
State Nominal Values

2000 2005 2010 2015
Year

C
at

eg
or

y

1
2
3
4

Reports

Figure 18: Classification with respect to simulation unit requirements: information exposed.

52

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

More than Three Simulators
Two Simulators

Gauss−Seidel Communication
Jacobi Communication

FDMU Based
HLA Based
FMI Based

Interactive Visualization
Live Visualization

Post Mortem Visualization
Full Strong Coupling

Partial Strong Coupling
No Strong Coupling

Alg. Constraints Coupling
I/O Coupling

Adaptive Comm. Step
Fixed Comm. Step

Multi−Rate
Single Rate
CT Domain
DE Domain

Dynamic

2000 2005 2010 2015
Year

C
at

eg
or

y

3
6
9
12

Reports

Figure 19: Classification with respect to framework requirements.

● ● ●

● ● ●

No

Yes

CT DE DE+CT
Domain

IP
 P

ro
te

ct
io

n

10
20
30
40

Reports

Figure 20: Formalisms vs IP
Protection.

● ● ●

● ● ●

2

3+

CT DE DE+CT
Domain

N
o.

 S
im

ul
at

or
s

10
20
30

Reports

Figure 21: Formalisms vs Sim-
ulation units.

● ● ●

● ● ●

● ● ●

● ● ●

2

3+

2

3+

A
ccuracy

N
o A

ccuracy

CT DE DE+CT
Domain

N
o.

 S
im

ul
at

or
s

5
10
15
20

Reports

Figure 22: Accuracy vs For-
malisms vs Simulation units.

53

References

[1] Modelica - A Unified Object-Oriented Language for Physical Systems Modeling, 2007. URL
https://www.modelica.org/documents/ModelicaSpec30.pdf.

[2] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) - Feder-
ate Interface Specification, 2010. URL https://standards.ieee.org/findstds/standard/

1516-2010.html.

[3] An-jelo Gian C. Abad, Lady Mari Faeda G. Guerrero, Jasper Kendall M. Ignacio, Di-
anne C Magtibay, Mark Angelo C Purio, and Evelyn Q Raguindin. A simulation of a
power surge monitoring and suppression system using LabVIEW and multisim co-simulation
tool. In 2015 International Conference on Humanoid, Nanotechnology, Information Tech-
nology,Communication and Control, Environment and Management (HNICEM), pages 1–3.
IEEE, dec 2015. ISBN 978-1-5090-0360-0. doi: 10.1109/HNICEM.2015.7393204.

[4] Andreas Abel, Torsten Blochwitz, Alexander Eichberger, Peter Hamann, and Udo Rein. Func-
tional mock-up interface in mechatronic gearshift simulation for commercial vehicles. In 9th
International Modelica Conference. Munich, 2012.

[5] Ahmad T. Al-Hammouri. A comprehensive co-simulation platform for cyber-physical systems.
Computer Communications, 36(1):8–19, dec 2012. doi: 10.1016/j.comcom.2012.01.003.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138(1):3–34, feb 1995. ISSN 03043975. doi: 10.1016/0304-3975(94)00202-T.

[7] Andrés A. Alvarez Cabrera, Krijn Woestenenk, and Tetsuo Tomiyama. An architecture model
to support cooperative design for mechatronic products: A control design case. Mechatronics,
21(3):534–547, apr 2011. ISSN 09574158. doi: 10.1016/j.mechatronics.2011.01.009.

[8] Christian Andersson. Methods and Tools for Co-Simulation of Dynamic Systems with the
Functional Mock-up Interface. PhD thesis, Lund University, 2016.

[9] Christian Andersson, Claus Führer, and Johan Åkesson. Efficient Predictor for
Co-Simulation with Multistep Sub-System Solvers. Technical Report in Mathemati-
cal Sciences, 2016(1), 2016. ISSN 1403-9338. URL http://lup.lub.lu.se/record/

dbaf9c49-b118-4ff9-af2e-e1e3102e5c22.

[10] Martin Arnold. Stability of Sequential Modular Time Integration Methods for Coupled Multi-
body System Models. Journal of Computational and Nonlinear Dynamics, 5(3):031003, may
2010. ISSN 15551423. doi: 10.1115/1.4001389.

[11] Martin Arnold and Michael Günther. Preconditioned Dynamic Iteration for Coupled
Differential-Algebraic Systems. BIT Numerical Mathematics, 41(1):1–25, 2001. doi: 10.1023/
A:1021909032551.

[12] Martin Arnold, Antonio Carrarini, Andreas Heckmann, and Gerhard Hippmann. Simulation
techniques for multidisciplinary problems in vehicle system dynamics. In Vehicle System
Dynamics Supplement 40, volume 40, pages 17–36, Vienna, Austria, 2003.

54

https://www.modelica.org/documents/ModelicaSpec30.pdf
https://standards.ieee.org/findstds/standard/1516-2010.html
https://standards.ieee.org/findstds/standard/1516-2010.html
http://lup.lub.lu.se/record/dbaf9c49-b118-4ff9-af2e-e1e3102e5c22
http://lup.lub.lu.se/record/dbaf9c49-b118-4ff9-af2e-e1e3102e5c22

[13] Martin Arnold, Christoph Clauss, and Tom Schierz. Error Analysis and Error Estimates for
Co-Simulation in FMI for Model Exchange and Co-Simulation V2.0. Archive of Mechanical
Engineering, LX(1):75, jan 2013. ISSN 0004-0738. doi: 10.2478/meceng-2013-0005.

[14] Martin Arnold, Christoph Clauß, and Tom Schierz. Error Analysis and Error Estimates for
Co-simulation in FMI for Model Exchange and Co-Simulation v2.0. In Sebastian Schöps,
Andreas Bartel, Michael Günther, W E Jan ter Maten, and C Peter Müller, editors, Progress
in Differential-Algebraic Equations, pages 107–125. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2014. ISBN 978-3-662-44926-4. doi: 10.1007/978-3-662-44926-4 6.

[15] Martin Arnold, Stefan Hante, and Markus A Köbis. Error analysis for co-simulation with
force-displacement coupling. PAMM, 14(1):43–44, dec 2014. ISSN 16177061. doi: 10.1002/
pamm.201410014.

[16] Memduha Aslan, Umut Durak, and Koray Taylan. MOKA: An Object-Oriented Framework
for FMI Co-Simulation. 2015.

[17] Karl Johan Aström and Richard M Murray. Feedback systems: an introduction for scientists
and engineers. Princeton university press, 2010. ISBN 1400828732.

[18] Muhammad Usman Awais, Wolfgang Mueller, Atiyah Elsheikh, Peter Palensky, and Ed-
mund Widl. Using the HLA for Distributed Continuous Simulations. In 2013 8th EUROSIM
Congress on Modelling and Simulation, pages 544–549, Washington, DC, USA, sep 2013.
IEEE. ISBN 978-0-7695-5073-2. doi: 10.1109/EUROSIM.2013.96.

[19] Muhammad Usman Awais, Peter Palensky, Atiyah Elsheikh, Edmund Widl, and Stifter
Matthias. The high level architecture RTI as a master to the functional mock-up interface
components. In 2013 International Conference on Computing, Networking and Communica-
tions (ICNC), pages 315–320, San Diego, USA, jan 2013. IEEE. ISBN 978-1-4673-5288-8.
doi: 10.1109/ICCNC.2013.6504102.

[20] Muhammad Usman Awais, Peter Palensky, Wolfgang Mueller, Edmund Widl, and Atiyah
Elsheikh. Distributed hybrid simulation using the HLA and the Functional Mock-up Interface.
In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pages
7564–7569, Vienna, Austria, nov 2013. IEEE. ISBN 978-1-4799-0224-8. doi: 10.1109/IECON.
2013.6700393.

[21] Fernando J. Barros. Modeling formalisms for dynamic structure systems. ACM Transactions
on Modeling and Computer Simulation, 7(4):501–515, oct 1997. ISSN 10493301. doi: 10.
1145/268403.268423.

[22] Fernando J Barros. Dynamic structure multiparadigm modeling and simulation. ACM Trans-
actions on Modeling and Computer Simulation, 13(3):259–275, jul 2003. ISSN 10493301. doi:
10.1145/937332.937335.

[23] Fernando J. Barros. Semantics of dynamic structure event-based systems. In Proceedings of
the second international conference on Distributed event-based systems - DEBS ’08, DEBS ’08,
page 245, New York, USA, 2008. ACM Press. ISBN 9781605580906. doi: 10.1145/1385989.
1386020.

55

[24] Paul I. Barton and C. C. Pantelides. Modeling of combined discrete/continuous processes.
AIChE Journal, 40(6):966–979, jun 1994. ISSN 0001-1541. doi: 10.1002/aic.690400608.

[25] Jens Bastian, Christoph Clauß, Susann Wolf, and Peter Schneider. Master for Co-Simulation
Using FMI. In 8th International Modelica Conference, pages 115–120, Dresden, Germany, jun
2011. Fraunhofer Institute for Integrated Circuits IIS. doi: 10.3384/ecp11063115.

[26] Lionel Belmon, Yujung Geng, and Huaqiang He. Virtual Integration for hybrid powertrain
development, using FMI and Modelica models. 10th International Modelica Conference, 2014.

[27] Giovanni Beltrame, Donatella Sciuto, and Cristina Silvano. Multi-Accuracy Power and
Performance Transaction-Level Modeling. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 26(10):1830–1842, oct 2007. ISSN 0278-0070. doi:
10.1109/TCAD.2007.895790.

[28] Abir Ben Khaled, Mongi Ben Gaid, Nicolas Pernet, and Daniel Simon. Fast multi-core co-
simulation of Cyber-Physical Systems: Application to internal combustion engines. Simulation
Modelling Practice and Theory, 47:79–91, sep 2014. ISSN 1569190X. doi: 10.1016/j.simpat.
2014.05.002.

[29] M. Benedikt, D. Watzenig, J. Zehetner, and A. Hofer. Macro-step-size selection and mon-
itoring of the coupoling error for weak coupled subsystems in the frequency-domain. V
International Conference on Computational Methods for Coupled Problems in Science and
Engineering, pages 1–12, 2013.

[30] Martin Benedikt and Anton Hofer. Guidelines for the Application of a Coupling Method for
Non-iterative Co-simulation. In 2013 8th EUROSIM Congress on Modelling and Simulation,
pages 244–249. IEEE, sep 2013. ISBN 978-0-7695-5073-2. doi: 10.1109/EUROSIM.2013.52.

[31] Martin Benedikt and Franz Rudolf Holzinger. Automated configuration for non-iterative
co-simulation. In 17th International Conference on Thermal, Mechanical and Multi-Physics
Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), pages 1–7,
Montpellier, apr 2016. IEEE. ISBN 978-1-5090-2106-2. doi: 10.1109/EuroSimE.2016.7463355.

[32] Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic. Compositionality in Dataflow
Synchronous Languages: Specification and Distributed Code Generation. Information and
Computation, 163(1):125–171, nov 2000. ISSN 08905401. doi: 10.1006/inco.2000.9999.

[33] D. Bian, M. Kuzlu, M. Pipattanasomporn, S. Rahman, and Y. Wu. Real-time co-simulation
platform using OPAL-RT and OPNET for analyzing smart grid performance. In 2015 IEEE
Power & Energy Society General Meeting, pages 1–5. IEEE, jul 2015. ISBN 978-1-4673-8040-9.
doi: 10.1109/PESGM.2015.7286238.

[34] Torsten Blochwitz, Martin Otter, Martin Arnold, C. Bausch, Christoph Clauss, Hilding
Elmqvist, Andreas Junghanns, Jakob Mauss, M. Monteiro, T. Neidhold, Dietmar Neumerkel,
Hans Olsson, J.-V. Peetz, and S. Wolf. The Functional Mockup Interface for Tool independent
Exchange of Simulation Models. In 8th International Modelica Conference, pages 105–114,
Dresden, Germany, jun 2011. Linköping University Electronic Press; Linköpings universitet.
doi: 10.3384/ecp11063105.

56

[35] Torsten Blockwitz, Martin Otter, Johan Akesson, Martin Arnold, Christoph Clauss, Hilding
Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar Neumerkel, Hans
Olsson, and Antoine Viel. Functional Mockup Interface 2.0: The Standard for Tool indepen-
dent Exchange of Simulation Models. In 9th International MODELICA Conference, pages
173–184, Munich, Germany, nov 2012. Linköping University Electronic Press; Linköpings
universitet. doi: 10.3384/ecp12076173.

[36] Sergiy Bogomolov, Marius Greitschus, Peter G. Jensen, Kim G. Larsen, Marius Mikucionis,
Thomas Strump, and Stavros Tripakis. Co-Simulation of Hybrid Systems with SpaceEx and
Uppaal. In 11th International Modelica Conference (MODELICA), pages 159–169, Paris,
France, sep 2015. Linköping University Electronic Press. doi: 10.3384/ecp15118159.

[37] Jean-Sébastien Bolduc and Hans Vangheluwe. Expressing ODE models as DEVS: Quantiza-
tion approaches. In Proceedings of the AIS’2002 Conference (AI, Simulation and Planning in
High Autonomy Systems), April 2002, Lisboa, Portugal/F. Barros and N. Giambiasi (eds.),
pages 163–169, 2002.

[38] Jean-Sébastien Bolduc and Hans Vangheluwe. Mapping odes to devs: Adaptive quantiza-
tion. In Summer Computer Simulation Conference, pages 401–407. Society for Computer
Simulation International; 1998, 2003. ISBN 0094-7474.

[39] Massimo Bombino and Patrizia Scandurra. A model-driven co-simulation environment for
heterogeneous systems. International Journal on Software Tools for Technology Transfer, 15
(4):363–374, aug 2013. ISSN 1433-2779. doi: 10.1007/s10009-012-0230-5.

[40] Spencer Borland. Transforming statechart models to DEVS. PhD thesis, 2003.

[41] F. Bouchhima, M. Briere, G Nicolescu, M Abid, and E. Aboulhamid. A SystemC/Simulink
Co-Simulation Framework for Continuous/Discrete-Events Simulation. In 2006 IEEE Inter-
national Behavioral Modeling and Simulation Workshop, pages 1–6. IEEE, sep 2006. ISBN
0-7803-9742-8. doi: 10.1109/BMAS.2006.283461.

[42] Frédéric Boulanger, Cécile Hardebolle, Christophe Jacquet, and Dominique Marcadet. Seman-
tic Adaptation for Models of Computation. In Application of Concurrency to System Design
(ACSD), 2011 11th International Conference on, pages 153–162, 2011. ISBN 1550-4808 VO
-. doi: 10.1109/ACSD.2011.17.

[43] Jonathan Brembeck, Andreas Pfeiffer, Michael Fleps-Dezasse, Martin Otter, Karl Wernersson,
and Hilding Elmqvist. Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation
Interface. In Proceedings of the 10th International Modelica Conference. Lund, Sweden, pages
53–62, 2014.

[44] T. Brezina, Z. Hadas, and J. Vetiska. Using of Co-simulation ADAMS-SIMULINK for devel-
opment of mechatronic systems. In 14th International Conference Mechatronika, pages 59–64.
IEEE, jun 2011. ISBN 978-80-8075-477-8. doi: 10.1109/MECHATRON.2011.5961080.

[45] David Broman, Edward A. Lee, Stavros Tripakis, and Martin Törngren. Viewpoints, For-
malisms, Languages, and Tools for Cyber-Physical Systems. In Proceedings of the 6th Inter-
national Workshop on Multi-Paradigm Modeling, pages 49–54. ACM, 2012.

57

[46] David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros
Tripakis, and Michael Wetter. Determinate composition of FMUs for co-simulation. In
Eleventh ACM International Conference on Embedded Software, Montreal, Quebec, Canada,
2013. IEEE Press Piscataway, NJ, USA. ISBN 978-1-4799-1443-2.

[47] David Broman, Lev Greenberg, Edward A Lee, Michael Masin, Stavros Tripakis, and Michael
Wetter. Requirements for Hybrid Cosimulation Standards. In Proceedings of the 18th Interna-
tional Conference on Hybrid Systems: Computation and Control, HSCC ’15, pages 179–188,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3433-4. doi: 10.1145/2728606.2728629.

[48] Richard L. Burden and John Douglas Faires. Numerical Analysis. Cengage Learning, 9
edition, 2010. ISBN 0538733519.

[49] Martin Busch. On the efficient coupling of simulation codes. kassel university press GmbH,
2012. ISBN 3862192962.

[50] Martin Busch. Continuous approximation techniques for co-simulation methods: Analysis of
numerical stability and local error. ZAMM - Journal of Applied Mathematics and Mechanics
/ Zeitschrift für Angewandte Mathematik und Mechanik, 96(9):1061–1081, sep 2016. ISSN
00442267. doi: 10.1002/zamm.201500196.

[51] Martin Busch and Bernhard Schweizer. Numerical stability and accuracy of different co-
simulation techniques: analytical investigations based on a 2-DOF test model. In 1st Joint
International Conference on Multibody System Dynamics, pages 25–27, 2010.

[52] Martin Busch and Bernhard Schweizer. An explicit approach for controlling the macro-step
size of co-simulation methods. Proceedings of The 7th European Nonlinear Dynamics, ENOC,
pages 24–29, 2011.

[53] Martin Busch and Bernhard Schweizer. Stability of Co-Simulation Methods Using Hermite
and Lagrange Approximation Techniques. In ECCOMAS Thematic Conference on Multibody
Dynamics, pages 1–10, Brussels, Belgium, jul 2011.

[54] Martin Busch and Bernhard Schweizer. Coupled simulation of multibody and finite element
systems: an efficient and robust semi-implicit coupling approach. Archive of Applied Mechan-
ics, 82(6):723–741, jun 2012. ISSN 0939-1533. doi: 10.1007/s00419-011-0586-0.

[55] Benjamin Camus, Christine Bourjot, and Vincent Chevrier. Combining DEVS with multi-
agent concepts to design and simulate multi-models of complex systems (WIP). In Proceedings
of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium,
pages 85–90. Society for Computer Simulation International, 2015. ISBN 978-1-5108-0105-9.

[56] Benjamin Camus, Virginie Galtier, Mathieu Caujolle, Vincent Chevrier, Julien Vaubourg,
Laurent Ciarletta, and Christine Bourjot. Hybrid Co-simulation of FMUs using DEV&DESS
in MECSYCO. In Proceedings of the Symposium on Theory of Modeling & Simulation -
DEVS Integrative M&S Symposium (TMS/DEVS 16), Pasadena, CA, United States, jan
2016. Université de Lorraine, CNRS, Inria, LORIA, UMR 7503 ; CentraleSupélec UMI GT-
CNRS 2958 Université Paris-Saclay ; EDF - R&D MIRE/R44.

58

[57] Luca P. Carloni, Roberto Passerone, Alessandro Pinto, and Alberto L. Angiovanni-Vincentelli.
Languages and Tools for Hybrid Systems Design. Foundations and Trends R© in Electronic
Design Automation, 1(1/2):1–193, 2006. ISSN 1551-3939. doi: 10.1561/1000000001.

[58] Christopher D. Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto. Efficient optimistic
parallel simulations using reverse computation. ACM Transactions on Modeling and Computer
Simulation, 9(3):224–253, jul 1999. ISSN 10493301. doi: 10.1145/347823.347828.

[59] Volker Carstens, Ralf Kemme, and Stefan Schmitt. Coupled simulation of flow-structure
interaction in turbomachinery. Aerospace Science and Technology, 7(4):298–306, jun 2003.
ISSN 12709638. doi: 10.1016/S1270-9638(03)00016-6.

[60] François Edouard Cellier. Combined Continuous/Discrete System Simulation Languages:
Usefulness, Experiences and Future Development. SIGSIM Simul. Dig., 9(1):18–21, 1977.
ISSN 0163-6103. doi: 10.1145/1102505.1102514.

[61] François Edouard Cellier. Combined Continuous Discrete Simulation by use of Digital Com-
puters: Techniques and Tools. PhD thesis, 1979.

[62] François Edouard Cellier. Continuous system modeling. Springer Science & Business Media,
1991.

[63] François Edouard Cellier and Ernesto Kofman. Continuous System Simulation. Springer
Science & Business Media, 2006. ISBN 9780387261027.

[64] K.M. Chandy and J Misra. Distributed Simulation: A Case Study in Design and Verification
of Distributed Programs. IEEE Transactions on Software Engineering, SE-5(5):440–452, sep
1979. ISSN 0098-5589. doi: 10.1109/TSE.1979.230182.

[65] W-T. Chang, A. Kalavade, and E. A. Lee. Effective Heterogenous Design and Co-Simulation.
In Giovanni De Micheli and Mariagiovanna Sami, editors, Hardware/Software Co-Design,
pages 187–212. Springer Netherlands, Dordrecht, 1996. ISBN 978-94-009-0187-2. doi: 10.
1007/978-94-009-0187-2 8.

[66] Yung-Wei Chen, Chein-Shan Liu, and Jiang-Ren Chang. A chaos detectable and time step-size
adaptive numerical scheme for nonlinear dynamical systems. Journal of Sound and Vibration,
299(4-5):977–989, feb 2007. ISSN 0022460X. doi: 10.1016/j.jsv.2006.08.028.

[67] Alex Chung Hen Chow and Bernard P. Zeigler. Parallel DEVS: A Parallel, Hierarchical,
Modular, Modeling Formalism. In Proceedings of the 26th Conference on Winter Simula-
tion, WSC ’94, pages 716–722, San Diego, CA, USA, 1994. Society for Computer Simulation
International. ISBN 0-7803-2109-X.

[68] Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher Brooks, and Edward A Lee.
FIDE: an FMI integrated development environment. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing - SAC ’16, SAC ’16, pages 1759–1766, New York, New
York, USA, 2016. ACM Press. ISBN 9781450337397. doi: 10.1145/2851613.2851677.

[69] Makarand Datar, Ilinca Stanciulescu, and Dan Negrut. A co-simulation environment for
high-fidelity virtual prototyping of vehicle systems. International Journal of Vehicle Systems
Modelling and Testing, 7(1):54, jan 2012. ISSN 1745-6436. doi: 10.1504/IJVSMT.2012.045308.

59

[70] Joachim Denil, Bart Meyers, Paul De Meulenaere, and Hans Vangheluwe. Explicit Semantic
Adaptation of Hybrid Formalisms for FMI Co-Simulation. In Society for Computer Simulation
International, editor, Proceedings of the Symposium on Theory of Modeling & Simulation:
DEVS Integrative M&S Symposium, pages 99–106, Alexandria, Virginia, 2015.

[71] Stefan Dietz, Gerhard HIPPMANN, and Gunter SCHUPP. Interaction of vehicles and flexible
tracks by co-simulation of multibody vehicle systems and finite element track models. Vehicle
system dynamics, 37:372–384, 2002. ISSN 0042-3114.

[72] Paul Adrien Maurice Dirac. The principles of quantum mechanics. Number 27. Oxford
university press, 1981. ISBN 0198520115.

[73] W. Stuart Dols, Steven J. Emmerich, and Brian J. Polidoro. Coupling the multizone airflow
and contaminant transport software CONTAM with EnergyPlus using co-simulation. Building
Simulation, 9(4):469–479, aug 2016. ISSN 1996-3599. doi: 10.1007/s12273-016-0279-2.

[74] Edo Drenth, Mikael Törmänen, Krister Johansson, Bengt-Arne Andersson, Daniel Andersson,

Ivar Torstensson, and Johan Åkesson. Consistent Simulation Environment with FMI based
Tool Chain. In Proceedings of 10th International Modelica Conference, Lund, Sweden, 2014.

[75] Sven Dronka and Jochen Rauh. Co-simulation-interface for user-force-elements. In Proceedings
of SIMPACK user meeting, 2006.

[76] John C. Eidson, Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, and Jia Zou. Distributed
Real-Time Software for Cyber-Physical Systems. Proceedings of the IEEE, 100(1):45–59, jan
2012. ISSN 0018-9219. doi: 10.1109/JPROC.2011.2161237.

[77] H. El Tahawy, D. Rodriguez, S. Garcia-Sabiro, and J.-J. Mayol. VHD/sub e/LDO: A new
mixed mode simulation. In Proceedings of EURO-DAC 93 and EURO-VHDL 93- European
Design Automation Conference, pages 546–551. IEEE Comput. Soc. Press, 1993. ISBN 0-
8186-4350-1. doi: 10.1109/EURDAC.1993.410690.

[78] Atiyah Elsheikh, Muhammed Usman Awais, Edmund Widl, and Peter Palensky. Modelica-
enabled rapid prototyping of cyber-physical energy systems via the functional mockup in-
terface. In 2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), pages 1–6. IEEE, may 2013. ISBN 978-1-4799-1307-7. doi: 10.1109/MSCPES.
2013.6623315.

[79] Olaf Enge-Rosenblatt, Christoph Clauß, André Schneider, Peter Schneider, and Olaf Enge.
Functional Digital Mock-up and the Functional Mock-up Interface–Two Complementary Ap-
proaches for a Comprehensive Investigation of Heterogeneous Systems. In Proc. of the 8th
Int. Modelica Conference, 2011.

[80] Kenneth Eriksson, Donald Estep, and Claes Johnson. Applied Mathematics: Body and Soul.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-642-05659-8. doi: 10.1007/
978-3-662-05796-4.

[81] Emeka Eyisi, Jia Bai, Derek Riley, Jiannian Weng, Wei Yan, Yuan Xue, Xenofon Koutsoukos,
and Janos Sztipanovits. NCSWT: An integrated modeling and simulation tool for networked
control systems. Simulation Modelling Practice and Theory, 27:90–111, sep 2012. ISSN
1569190X. doi: 10.1016/j.simpat.2012.05.004.

60

[82] Cyril Faure, Mongi Ben Gaid, Nicolas Pernet, Morgan Fremovici, Gregory Font, and
Gilles Corde. Methods for real-time simulation of Cyber-Physical Systems: application
to automotive domain. In 2011 7th International Wireless Communications and Mobile
Computing Conference, pages 1105–1110. IEEE, jul 2011. ISBN 978-1-4244-9539-9. doi:
10.1109/IWCMC.2011.5982695.

[83] Yishai A. Feldman, Lev Greenberg, and Eldad Palachi. Simulating Rhapsody SysML Blocks
in Hybrid Models with FMI. In Proceedings of the 10th International Modelica Conference,
pages 43–52. Linköping University Electronic Press, mar 2014. doi: 10.3384/ecp1409643.

[84] P. Fey, H.W. Carter, and P.A. Wilsey. Parallel synchronization of continuous time discrete
event simulators. In Proceedings of the 1997 International Conference on Parallel Processing
(Cat. No.97TB100162), pages 227–231. IEEE Comput. Soc, 1997. ISBN 0-8186-8108-X. doi:
10.1109/ICPP.1997.622649.

[85] J. S. Fitzgerald and P. G. Larsen. Balancing Insight and Effort: the Industrial Uptake
of Formal Methods. In Cliff B. Jones, Zhiming Liu, and Jim Woodcock, editors, Formal
Methods and Hybrid Real-Time Systems, Essays in Honour of Dines Bjørner and Chaochen
Zhou on the Occasion of Their 70th Birthdays, pages 237–254, Volume 4700, September 2007.
Springer, Lecture Notes in Computer Science. ISBN 978-3-540-75220-2.

[86] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, Marcel Verhoef, and Sune Wolff. Collabo-
rative Modelling and Co-simulation in the Development of Dependable Embedded Systems.
pages 12–26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-16265-7.
doi: 10.1007/978-3-642-16265-7 2.

[87] John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef. Collaborative Design for Embedded
Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN 978-3-642-54117-9. doi:
10.1007/978-3-642-54118-6.

[88] John Fitzgerald, Carl Gamble, Richard Payne, Peter Gorm Larsen, Stylianos Basagiannis,
and Alie El-Din Mady. Collaborative Model-based Systems Engineering for Cyber-Physical
Systems – a Case Study in Building Automation. In INCOSE 2016, Edinburgh, Scotland, jul
2016.

[89] John S. Fitzgerald, Peter Gorm Larsen, Ken G. Pierce, and Marcel Henri Gerard Verhoef. A
formal approach to collaborative modelling and co-simulation for embedded systems. Math-
ematical Structures in Computer Science, 23(04):726–750, aug 2013. ISSN 0960-1295. doi:
10.1017/S0960129512000242.

[90] Alain Fourmigue, Bruno Girodias, Gabriela Nicolescu, and E.-M. Aboulhamid. Co-simulation
based platform for wireless protocols design explorations. In 2009 Design, Automation & Test
in Europe Conference & Exhibition, pages 874–877. IEEE, apr 2009. ISBN 978-1-4244-3781-8.
doi: 10.1109/DATE.2009.5090785.

[91] P. Frey, R. Radhakrishnan, H. W. Carter, and P. A. Wilsey. Optimistic synchronization of
mixed-mode simulators. In 1998 First Merged International on Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing, pages 694–699, 1998. ISBN 1063-7133
VO -. doi: 10.1109/IPPS.1998.670002.

61

[92] Jonathan Friedman and Jason Ghidella. Using model-based design for automotive systems
engineering-requirements analysis of the power window example. Technical report, 2006.

[93] Markus Friedrich. Parallel Co-Simulation for Mechatronic Systems. PhD thesis, 2011.

[94] Richard M. Fujimoto. Parallel and distributed simulation systems, volume 300. Wiley New
York, New York, USA, 1 edition, 2000. ISBN 0-7803-7307-3. doi: 10.1109/WSC.2001.977259.

[95] Jason C. Fuller, Selim Ciraci, Jeffrey A. Daily, Andrew R. Fisher, and M. Hauer. Com-
munication simulations for power system applications. In 2013 Workshop on Modeling and
Simulation of Cyber-Physical Energy Systems (MSCPES), pages 1–6. IEEE, may 2013. ISBN
978-1-4799-1307-7. doi: 10.1109/MSCPES.2013.6623314.

[96] Virginie Galtier, Gilles Plessis, and Les Renardi. FMI-Based Distributed Multi-Simulation
with DACCOSIM. In Spring Simulation Multi-Conference, pages 804–811. Society for Com-
puter Simulation International, 2015.

[97] Alfredo Garro and Alberto Falcone. On the integration of HLA and FMI for supporting inter-
operability and reusability in distributed simulation. In Spring Simulation Multi-Conference,
pages 774–781. Society for Computer Simulation International, 2015.

[98] C. W. Gear and D. R. Wells. Multirate linear multistep methods. BIT, 24(4):484–502, dec
1984. ISSN 0006-3835. doi: 10.1007/BF01934907.

[99] L. Gheorghe, F. Bouchhima, G. Nicolescu, and H. Boucheneb. Formal Definitions of Simula-
tion Interfaces in a Continuous/Discrete Co-Simulation Tool. In Rapid System Prototyping,
2006. Seventeenth IEEE International Workshop on, pages 186–192, 2006. ISBN 1074-6005
VO -. doi: 10.1109/RSP.2006.18.

[100] L. Gheorghe, F. Bouchhima, G. Nicolescu, and H. Boucheneb. A Formalization of Global
Simulation Models for Continuous/Discrete Systems. In Proceedings of the 2007 Summer
Computer Simulation Conference, SCSC ’07, pages 559–566, San Diego, CA, USA, 2007.
Society for Computer Simulation International. ISBN 1-56555-316-0.

[101] A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D. Tarrodaychik, and
O. Yamamoto. A hardware-software co-simulator for embedded system design and debugging.
In Design Automation Conference, pages 155–164, 1995. doi: 10.1109/ASPDAC.1995.486217.

[102] Cláudio Gomes. Foundations for Continuous Time Hierarchical Co-simulation. In ACM
Student Research Competition (ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems), page to appear, Saint Malo, Brittany, France, 2016.

[103] Francisco González, Miguel Ángel Naya, Alberto Luaces, and Manuel González. On the effect
of multirate co-simulation techniques in the efficiency and accuracy of multibody system
dynamics. Multibody System Dynamics, 25(4):461–483, apr 2011. ISSN 1384-5640. doi:
10.1007/s11044-010-9234-7.

[104] Matthias Gries. Methods for evaluating and covering the design space during early design
development. Integration, the VLSI Journal, 38(2):131–183, dec 2004. ISSN 01679260. doi:
10.1016/j.vlsi.2004.06.001.

62

[105] Bei Gu and H H Asada. Co-simulation of algebraically coupled dynamic subsystems. In
American Control Conference, 2001. Proceedings of the 2001, volume 3, pages 2273–2278
vol.3, 2001. ISBN 0743-1619 VO - 3. doi: 10.1109/ACC.2001.946089.

[106] Bei Gu and H. Harry Asada. Co-simulation of algebraically coupled dynamic subsystems. PhD
thesis, 2001.

[107] Bei Gu and H. Harry Asada. Co-Simulation of Algebraically Coupled Dynamic Subsystems
Without Disclosure of Proprietary Subsystem Models. Journal of Dynamic Systems, Mea-
surement, and Control, 126(1):1, apr 2004. ISSN 00220434. doi: 10.1115/1.1648307.

[108] Felix Günther, Georg Mallebrein, and Heinz Ulbrich. A Modular Technique for Automotive
System Simulation. In Proc. 9th International Modelica Conference, Munich, Germany, 2012.

[109] M. Günther, A. Kværnø, and P. Rentrop. Multirate Partitioned Runge-Kutta Methods. Bit,
41(3):504–514, 2001. ISSN 00063835. doi: 10.1023/A:1021967112503.

[110] R. K. Gupta, C. N. Coelho Jr., and G. De Micheli. Synthesis and Simulation of Digital
Systems Containing Interacting Hardware and Software Components. In Proceedings of the
29th ACM/IEEE Design Automation Conference, DAC ’92, pages 225–230, Los Alamitos,
CA, USA, 1992. IEEE Computer Society Press. ISBN 0-89791-516-X.

[111] Dinesh Rangana Gurusinghe, Saranga Menike, A I Konara, Athula D Rajapakse, Pradeepa
Yahampath, U D Annakkage, Brian A Archer, and Tony Weekes. Co-simulation of Power Sys-
tem and Synchrophasor Communication Network on a Single Simulation Platform. Technology
and Economics of Smart Grids and Sustainable Energy, 1(1):6, dec 2016. ISSN 2199-4706. doi:
10.1007/s40866-015-0003-9. URL http://dx.doi.org/10.1007/s40866-015-0003-9http:

//link.springer.com/10.1007/s40866-015-0003-9.

[112] Kjell Gustafsson. Control of error and convergence in ODE solvers. PhD thesis, 1992.

[113] Kjell Gustafsson, Michael Lundh, and Gustaf Söderlind. API stepsize control for the numerical
solution of ordinary differential equations. BIT, 28(2):270–287, jun 1988. ISSN 0006-3835.
doi: 10.1007/BF01934091.

[114] Irene Hafner, Bernhard Heinzl, and Matthias Roessler. An Investigation on Loose Coupling
Co-Simulation with the BCVTB. SNE Simulation Notes Europe, 23(1), 2013. ISSN 2305-9974.
doi: 10.11128/sne.23.tn.10173.

[115] Walid Hassairi, Moncef Bousselmi, Mohamed Abid, and Carlos Valderrama. Matlab/SystemC
for the New Co-Simulation Environment by JPEG Algorithm. MATLAB–A Fundamental Tool
for Scientific Computing and Engineering Applications, 2:120–138, 2012.

[116] D. R. Hickey, P. A. Wilsey, R. J. Hoekstra, E. R. Keiter, S. A. Hutchinson, and T. V. Russo.
Mixed-signal simulation with the Simbus backplane. In 39th Annual Simulation Symposium,
2006, Huntsville, AL, 2006. doi: 10.1109/ANSS.2006.25.

[117] Ken Hines and Gaetano Borriello. Selective focus as a means of improving geographically
distributed embedded system co-simulation. In 8th IEEE International Workshop on Rapid
System Prototyping, 1997, pages 58–62, 1997. doi: 10.1109/IWRSP.1997.618825.

63

http://dx.doi.org/10.1007/s40866-015-0003-9 http://link.springer.com/10.1007/s40866-015-0003-9
http://dx.doi.org/10.1007/s40866-015-0003-9 http://link.springer.com/10.1007/s40866-015-0003-9

[118] Ken Hines and Gaetano Borriello. Dynamic Communication Models in Embedded System Co-
simulation. In Proceedings of the 34th Annual Design Automation Conference, DAC ’97, pages
395–400, New York, NY, USA, 1997. ACM. ISBN 0-89791-920-3. doi: 10.1145/266021.266178.

[119] Matthias Hoepfer. Towards a Comprehensive Framework for Co- Simulation of Dynamic
Models With an Emphasis on Time Stepping. PhD thesis, 2011.

[120] Hua Lin, Santhoshkumar Sambamoorthy, Sandeep Shukla, James Thorp, and Lamine Mili.
Power system and communication network co-simulation for smart grid applications. In ISGT
2011, pages 1–6. IEEE, jan 2011. ISBN 978-1-61284-218-9. doi: 10.1109/ISGT.2011.5759166.

[121] Z. Jackiewicz and M. Kwapisz. Convergence of Waveform Relaxation Methods for Differential-
Algebraic Systems. SIAM Journal on Numerical Analysis, 33(6):2303–2317, dec 1996. ISSN
0036-1429. doi: 10.1137/S0036142992233098.

[122] Kenneth R Jackson. A survey of parallel numerical methods for initial value problems for
ordinary differential equations. IEEE Transactions on Magnetics, 27(5):3792–3797, 1991.
ISSN 0018-9464.

[123] David Jefferson and Henry A. Sowizral. Fast concurrent simulation using the time warp
mechanism. Technical report, Rand Corporation, 1982.

[124] David R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems,
7(3):404–425, jul 1985. ISSN 01640925. doi: 10.1145/3916.3988.

[125] Karl Henrik Johansson, Magnus Egerstedt, John Lygeros, and Shankar Sastry. On the reg-
ularization of Zeno hybrid automata. Systems & Control Letters, 38(3):141–150, oct 1999.
ISSN 01676911. doi: 10.1016/S0167-6911(99)00059-6.

[126] Raphaël Jungers. The joint spectral radius: theory and applications, volume 385. Springer
Science & Business Media, 2009. ISBN 3540959793.

[127] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal
of basic Engineering, 82(1):35–45, 1960. ISSN 0021-9223.

[128] Tamas Kalmar-Nagy and Ilinca Stanciulescu. Can complex systems really be simulated?
Applied Mathematics and Computation, 227:199–211, jan 2014. ISSN 00963003. doi: 10.
1016/j.amc.2013.11.037.

[129] K. C. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Domain
Analysis. Feasibility study,. Technical report, Carnegie Mellon University, 1990.

[130] M. Karner, M. Krammer, S. Krug, E. Armengaud, C. Steger, and R. Weiss. Heterogeneous
co-simulation platform for the efficient analysis of FlexRay-based automotive distributed em-
bedded systems. In 8th IEEE International Workshop on Factory Communication Systems
(WFCS), pages 231–240, 2010. doi: 10.1109/WFCS.2010.5548627.

[131] Michael Karner, Eric Armengaud, Christian Steger, and Reinhold Weiss. Holistic Simulation
of FlexRay Networks by Using Run-time Model Switching. In Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’10, pages 544–549, 3001 Leuven, Belgium,
Belgium, 2010. European Design and Automation Association. ISBN 978-3-9810801-6-2.

64

[132] Michael Karner, Martin Krammer, Markus Schratter, Peter Wimmer, Daniel Watzenig, and
ChristianMichael Gruber. A Comprehensive Approach for Modeling, Simulation and Virtual
Validation of Integrated Safety Systems. In Jan Fischer-Wolfarth and Gereon Meyer, editors,
Advanced Microsystems for Automotive Applications 2013 SE - 10, Lecture Notes in Mobility,
pages 101–110. Springer International Publishing, 2013. ISBN 978-3-319-00475-4. doi: 10.
1007/978-3-319-00476-1 10.

[133] Abir Ben Khaled, Mongi Ben Gaid, Daniel Simon, and Gregory Font. Multicore simula-
tion of powertrains using weakly synchronized model partitioning. In IFAC Proceedings
Volumes, volume 45, pages 448–455, Rueil-Malmaison, France, oct 2012. doi: 10.3182/
20121023-3-FR-4025.00018.

[134] Abir Ben Khaled, Laurent Duval, Mohamed El Mongi Ben Gäıd, and Daniel Simon. Context-
based polynomial extrapolation and slackened synchronization for fast multi-core simulation
using FMI. In 10th International Modelica Conference 2014, pages 225–234. Link{ö}ping
University Electronic Press, 2014.

[135] James Ellis Kleckner. Advanced mixed-mode simulation techniques. PhD thesis, 1984.

[136] Ernesto Kofman. A Second-Order Approximation for DEVS Simulation of Continu-
ous Systems. SIMULATION, 78(2):76–89, feb 2002. ISSN 0037-5497. doi: 10.1177/
0037549702078002206.

[137] Ernesto Kofman and Sergio Junco. Quantized-state systems: a DEVS Approach for contin-
uous system simulation. Transactions of The Society for Modeling and Simulation Interna-
tional, 18(3):123–132, 2001. ISSN 0740-6797.

[138] Alexander Kossiakoff, William N. Sweet, Samuel J. Seymour, and Steven M. Biemer. Structure
of Complex Systems, pages 41–67. John Wiley & Sons, Inc., 2011. ISBN 9781118001028. doi:
10.1002/9781118001028.ch3. URL http://dx.doi.org/10.1002/9781118001028.ch3.

[139] Velin Kounev, David Tipper, Martin Levesque, Brandon M. Grainger, Thomas Mcdermott,
and Gregory F. Reed. A microgrid co-simulation framework. In 2015 Workshop on Modeling
and Simulation of Cyber-Physical Energy Systems (MSCPES), pages 1–6. IEEE, apr 2015.
ISBN 978-1-4799-7357-6. doi: 10.1109/MSCPES.2015.7115398.

[140] Martin Krammer, Johannes Fritz, and Michael Karner. Model-Based Configuration of Au-
tomotive Co-Simulation Scenarios. In Spring Simulation Multi-Conference, pages 246–253.
Society for Computer Simulation International, 2015.

[141] R. Kübler and W. Schiehlen. Two Methods of Simulator Coupling. Mathematical and
Computer Modelling of Dynamical Systems, 6(2):93–113, jun 2000. ISSN 1387-3954. doi:
10.1076/1387-3954(200006)6:2;1-M;FT093.

[142] R. Kübler and W. Schiehlen. Modular Simulation in Multibody System Dynamics. Multibody
System Dynamics, 4(2-3):107–127, 2000. ISSN 1384-5640. doi: 10.1023/A:1009810318420.

[143] Michal Kudelski, Luca M. Gambardella, and Gianni A. Di Caro. RoboNetSim: An integrated
framework for multi-robot and network simulation. Robotics and Autonomous Systems, 61
(5):483–496, may 2013. ISSN 09218890. doi: 10.1016/j.robot.2013.01.003.

65

http://dx.doi.org/10.1002/9781118001028.ch3

[144] Frederick Kuhl, Richard Weatherly, and Judith Dahmann. Creating computer simulation
systems: an introduction to the high level architecture. Prentice Hall PTR, 1999. ISBN
0130225118.

[145] Thomas Kühne. What is a Model? In Jean Bezivin and Reiko Heckel, editors, Language Engi-
neering for Model-Driven Software Development, volume 04101. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), 2005.

[146] T. Kuhr, T. Forster, T. Braun, and R. Gotzhein. FERAL - Framework for simulator coupling
on requirements and architecture level. In Eleventh IEEE/ACM International Conference on
Formal Methods and Models for Codesign (MEMOCODE), pages 11–22, 2013.

[147] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558–565, jul 1978. ISSN 00010782. doi: 10.1145/359545.359563.

[148] Peter Gorm Larsen, Casper Thule, Kenneth Lausdahl, Victor Bardur, Carl Gamble, Etienne
Brosse, Andrey Sadovykh, Alessandra Bagnato, and Luis Diogo Couto. Integrated Tool Chain
for Model-Based Design of Cyber-Physical Systems. In Peter Gorm Larsen, Nico Plat, and
Nick Battle, editors, The 14th Overture Workshop: Towards Analytical Tool Chains, pages
63–78, Cyprus, November 2016. Aarhus University, Department of Engineering. ECE-TR-28.

[149] Kenneth Lausdahl, Peter Gorm Larsen, Sune Wolf, Victor Bandur, Anders Terkelsen, Miran
Hasanagić, Casper Thule Hansen, Ken Pierce, Oliver Kotte, Adrian Pop, Etienne Brosse, Jörg
Brauer, and Oliver Möller. Design of the INTO-CPS Platform. Technical report, INTO-CPS
Deliverable, D4.1d, December 2015.

[150] David P. Y. Lawrence, Cláudio Gomes, Joachim Denil, Hans Vangheluwe, and Didier Buchs.
Coupling Petri nets with Deterministic Formalisms Using Co-simulation. In Proceedings of
the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium,
pages 6:1—-6:8, Pasadena, CA, USA, 2016.

[151] P. Le Marrec, C. A. Valderrama, F. Hessel, A. A. Jerraya, M. Attia, and O. Cayrol. Hardware,
software and mechanical cosimulation for automotive applications. In 9th International Work-
shop on Rapid System Prototyping, pages 202–206, 1998. doi: 10.1109/IWRSP.1998.676692.

[152] Bu-Sung Lee, Wentong Cai, Stephen J. Turner, and L. Chen. Adaptive dead reckoning
algorithms for distributed interactive simulation. International Journal of Simulation, 1(1-2):
21–34, 2000.

[153] Edward A. Lee. Cyber Physical Systems: Design Challenges. In 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pages 363–369,
2008. doi: 10.1109/ISORC.2008.25.

[154] Edward A. Lee and Haiyang Zheng. Operational semantics of hybrid systems. In Manfred
Morari and Lothar Thiele, editors, Hybrid Systems: Computation and Control, volume 3414
of Lecture Notes in Computer Science, pages 25–53. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-25108-8. doi: 10.1007/978-3-540-31954-2 2.

[155] E. Lelarasmee, Albert E. Ruehli, and A. L. Sangiovanni-Vincentelli. The Waveform Relaxation
Method for Time-Domain Analysis of Large Scale Integrated Circuits. In IEEE Transactions

66

on Computer-Aided Design of Integrated Circuits and Systems, volume 1, pages 131–145,
1982. ISBN 0278-00701. doi: 10.1109/TCAD.1982.1270004.

[156] Shengqin Li and Le He. Co-simulation Study of Vehicle ESP System Based on ADAMS and
MATLAB. Journal of Software, 6(5), 2011.

[157] W. Li, A. Monti, M. Luo, and R. A. Dougal. VPNET: A co-simulation framework for analyzing
communication channel effects on power systems. In 2011 IEEE Electric Ship Technologies
Symposium, pages 143–149. IEEE, apr 2011. ISBN 978-1-4244-9272-5. doi: 10.1109/ESTS.
2011.5770857.

[158] Weilin Li, Min Luo, Lin Zhu, Antonello Monti, and Ferdinanda Ponci. A co-simulation method
as an enabler for jointly analysis and design of MAS-based electrical power protection and
communication. SIMULATION, mar 2013.

[159] Weilin Li, Xiaobin Zhang, and Huimin Li. Co-simulation platforms for co-design of net-
worked control systems: An overview. Control Engineering Practice, 23:44–56, feb 2014.
ISSN 09670661. doi: 10.1016/j.conengprac.2013.10.010.

[160] F. Liu, J. Cai, Y. Zhu, H. M. Tsai, and A. S. F. Wong. Calculation of Wing Flutter by
a Coupled Fluid-Structure Method. Journal of Aircraft, 38(2):334–342, mar 2001. ISSN
0021-8669. doi: 10.2514/2.2766.

[161] John Lygeros. Lecture notes on hybrid systems, 2004.

[162] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems. Real-Time:
Theory in Practice, 600:447–484, 1992. doi: ˜10.1007/BFb0032003.

[163] M. Manbachi, A. Sadu, H. Farhangi, A. Monti, A. Palizban, F. Ponci, and S. Arzanpour.
Impact of EV penetration on Volt–VAR Optimization of distribution networks using real-time
co-simulation monitoring platform. Applied Energy, 169:28–39, may 2016. ISSN 03062619.
doi: 10.1016/j.apenergy.2016.01.084.

[164] Toni Mancini, Federico Mari, Annalisa Massini, Igor Melatti, Fabio Merli, and Enrico Tronci.
System Level Formal Verification via Model Checking Driven Simulation. In Natasha Shary-
gina and Helmut Veith, editors, Computer Aided Verification SE - 21, volume 8044 of Lecture
Notes in Computer Science, pages 296–312. Springer Berlin Heidelberg, 2013. ISBN 978-3-
642-39798-1. doi: 10.1007/978-3-642-39799-8 21.

[165] Zohar Manna and Amir Pnueli. Verifying hybrid systems. In RobertL. Grossman, Anil Nerode,
AndersP. Ravn, and Hans Rischel, editors, Hybrid Systems SE - 2, volume 736 of Lecture Notes
in Computer Science, pages 4–35. Springer Berlin Heidelberg, 1993. ISBN 978-3-540-57318-0.
doi: 10.1007/3-540-57318-6 22. URL http://dx.doi.org/10.1007/3-540-57318-6{_}22.

[166] J. A. Martinez, T. P. Kurzweg, S. P. Levitan, P. J. Marchand, and D. M. Chiarulli. Mixed-
Technology System-Level Simulation. Analog Integrated Circuits and Signal Processing, 29
(1-2):127–149, 2001. ISSN 0925-1030. doi: 10.1023/A:1011294616831.

[167] William J. McCalla. Fundamentals of computer-aided circuit simulation, volume 37. Springer
Science & Business Media, 1987. ISBN 1461320119.

67

http://dx.doi.org/10.1007/3-540-57318-6{_}22

[168] M Mews, J Svacina, and S Weissleder. From AUTOSAR Models to Co-simulation for MiL-
Testing in the Automotive Domain. In Software Testing, Verification and Validation (ICST),
2012 IEEE Fifth International Conference on, pages 519–528, 2012. ISBN VO -. doi: 10.
1109/ICST.2012.137.

[169] Bart Meyers, Joachim Denil, Frédéric Boulanger, Cécile Hardebolle, Christophe Jacquet,
and Hans Vangheluwe. A DSL for Explicit Semantic Adaptation. In Edward Jones
Tamás Mészáros Christophe Jacquet Daniel Balasubramanian, editor, MPM 2013, number
1112 in CEUR Workshop Proceedings, pages 47–56, Miami, United States, sep 2013.

[170] U. Miekkala and O. Nevanlinna. Convergence of Dynamic Iteration Methods for Initial Value
Problems. SIAM Journal on Scientific and Statistical Computing, 8(4):459–482, jul 1987.
ISSN 0196-5204. doi: 10.1137/0908046.

[171] Debasis Mitra. Asynchronous Relaxations for the Numerical Solution of Differential Equations
by Parallel Processors. SIAM Journal on Scientific and Statistical Computing, 8(1):s43–s58,
jan 1987. ISSN 0196-5204. doi: 10.1137/0908012.

[172] Pieter J. Mosterman. An Overview of Hybrid Simulation Phenomena and Their Support
by Simulation Packages. In FritsW. Vaandrager and JanH. van Schuppen, editors, Hybrid
Systems: Computation and Control SE - 17, volume 1569 of Lecture Notes in Computer
Science, pages 165–177. Springer Berlin Heidelberg, 1999. ISBN 978-3-540-65734-7. doi:
10.1007/3-540-48983-5 17.

[173] Pieter J. Mosterman. HYBRSIM—a modelling and simulation environment for hybrid bond
graphs. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems
and Control Engineering, 216(1), 2002. doi: 10.1243/0959651021541417.

[174] Pieter J. Mosterman and Gautam Biswas. A theory of discontinuities in physical system
models. Journal of the Franklin Institute, 335(3):401–439, apr 1998. ISSN 00160032. doi:
10.1016/S0016-0032(96)00126-3.

[175] Pieter J. Mosterman, Justyna Zander, Gregoire Hamon, and Ben Denckla. A computational
model of time for stiff hybrid systems applied to control synthesis. Control Engineering
Practice, 20(1):2–13, 2012. ISSN 09670661. doi: 10.1016/j.conengprac.2011.04.013.

[176] W Muller and E Widl. Using FMI components in discrete event systems. In Modeling and
Simulation of Cyber-Physical Energy Systems (MSCPES), 2015 Workshop on, pages 1–6,
2015. ISBN VO -. doi: 10.1109/MSCPES.2015.7115397.

[177] Sadaf Mustafiz and Hans Vangheluwe. Explicit Modelling of Statechart Simulation Envi-
ronments. In Proceedings of the 2013 Summer Computer Simulation Conference, SCSC ’13,
pages 21:1—-21:8, Vista, CA, 2013. Society for Modeling & Simulation International. ISBN
978-1-62748-276-9.

[178] Sadaf Mustafiz, Bruno Barroca, Cláudio Gomes, and Hans Vangheluwe. Towards Modular
Language Design Using Language Fragments: The Hybrid Systems Case Study. In 13th
International Conference on Information Technology - New Generations (ITNG), pages 785–
797. 2016. doi: 10.1007/978-3-319-32467-8 68.

68

[179] Sadaf Mustafiz, Cláudio Gomes, Bruno Barroca, and Hans Vangheluwe. Modular Design
of Hybrid Languages by Explicit Modeling of Semantic Adaptation. In Proceedings of the
Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, DEVS
’16, pages 29:1—-29:8, San Diego, CA, USA, 2016.

[180] Alexandre Muzy, Luc Touraille, Hans Vangheluwe, Olivier Michel, Mamadou Kaba Traoré,
and David R. C. Hill. Activity Regions for the Specification of Discrete Event Systems. In
Proceedings of the 2010 Spring Simulation Multiconference, SpringSim ’10, pages 136:1—-
136:7, San Diego, CA, USA, 2010. Society for Computer Simulation International. ISBN
978-1-4503-0069-8. doi: 10.1145/1878537.1878679.

[181] Andreas Naderlinger. Multiple Real-time Semantics on Top of Synchronous Block Diagrams.
In Proceedings of the Symposium on Theory of Modeling & Simulation - DEVS Integrative
M&S Symposium, DEVS 13, pages 6:1—-6:7, San Diego, CA, USA, 2013. Society for Computer
Simulation International. ISBN 978-1-62748-032-1.

[182] Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor Karsai, Sandeep
Neema, Ted Bapty, John Batteh, Hubertus Tummescheit, and Chandrasekar Sureshkumar.
Model-based integration platform for FMI co-simulation and heterogeneous simulations of
cyber-physical systems. In 10th International Modelica Conference, pages 10–12, 2014.

[183] Arthur Richard Newton and Alberto L. Sangiovanni-Vincentelli. Relaxation-Based Electrical
Simulation. SIAM Journal on Scientific and Statistical Computing, 4(3):485–524, sep 1983.
ISSN 0196-5204. doi: 10.1137/0904036.

[184] Y. Ni and J. F. Broenink. Hybrid systems modelling and simulation in DESTECS: a co-
simulation approach. In M Klumpp, editor, 26th European Simulation and Modelling Con-
ference, ESM 2012, Essen, Germany, pages 32–36, Ghent, Belgium, 2012. EUROSIS-ETI.

[185] Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, and Jan
Peleska. Systems of Systems Engineering: Basic Concepts, Model-Based Techniques, and
Research Directions. ACM Comput. Surv., 48(2):18:1—-18:41, sep 2015. ISSN 0360-0300.
doi: 10.1145/2794381.

[186] Henrik Nilsson. Functional automatic differentiation with dirac impulses. ACM SIGPLAN
Notices, 38(9):153–164, sep 2003. ISSN 03621340. doi: 10.1145/944746.944720.

[187] Kristoffer Norling, David Broman, Peter Fritzson, Alexander Siemers, and Dag Fritzson. Se-
cure distributed co-simulation over wide area networks. In Proceedings of the 48th Conference
on Simulation and Modelling (SIMS 2007), pages 14–23. Citeseer, 2007.

[188] Thierry Nouidui, Michael Wetter, and Wangda Zuo. Functional mock-up unit for co-
simulation import in EnergyPlus. Journal of Building Performance Simulation, 7(3):192–202,
may 2014. ISSN 1940-1493. doi: 10.1080/19401493.2013.808265.

[189] James Nutaro. Designing power system simulators for the smart grid: Combining controls,
communications, and electro-mechanical dynamics. In 2011 IEEE Power and Energy Society
General Meeting, pages 1–5. IEEE, jul 2011. ISBN 978-1-4577-1000-1. doi: 10.1109/PES.
2011.6039456.

69

[190] James J. Nutaro. A method for bounding error in multi-rate and federated simulations.
Proceeding of the 2016 Winter Simulation Conference, page to be accepted, 2016.

[191] Seaseung Oh and Suyong Chae. A Co-Simulation Framework for Power System Analysis.
Energies, 9(3):131, 2016.

[192] Xiufeng Pang, Michael Wetter, Prajesh Bhattacharya, and Philip Haves. A framework for
simulation-based real-time whole building performance assessment. Building and Environ-
ment, 54:100–108, aug 2012. ISSN 03601323. doi: 10.1016/j.buildenv.2012.02.003.

[193] Henry M. Paynter. Analysis and design of engineering systems. MIT press, 1961.

[194] Nicolai Pedersen, Jan Madsen, and Morten Vejlgaard-Laursen. Co-Simulation of Distributed
Engine Control System and Network Model using FMI & SCNSL. IFAC-PapersOnLine, 48
(16):261–266, 2015. ISSN 24058963. doi: 10.1016/j.ifacol.2015.10.290.

[195] Nicolai Pedersen, Tom Bojsen, Jan Madsen, and Morten Vejlgaard-Laursen. FMI for Co-
Simulation of Embedded Control Software. In The First Japanese Modelica Conferences,
May 23-24, Tokyo, Japan, number 124, pages 70–77. Linköping University Electronic Press,
may 2016. ISBN 1650-3740. doi: 10.3384/ecp1612470.

[196] Nikos C. Petrellis, Alexis N. Birbas, Michael K. Birbas, Evangelinos P. Mariatos, and
George D. Papadopoulos. Simulating Hardware, Software and Electromechanical Parts Us-
ing Communicating Simulators. Design Automation for Embedded Systems, 3(2/3):187–198,
1998. ISSN 09295585. doi: 10.1023/A:1008846508549.

[197] Ralf Uwe Pfau. A priori step size adaptation for the simulation of non-smooth systems. Com-
munications in Numerical Methods in Engineering, 23(2):85–96, jun 2006. ISSN 10698299.
doi: 10.1002/cnm.884.

[198] K. Pierce, C. Gamble, Y. Ni, and J. F. Broenink. Collaborative Modelling and Co-simulation
with DESTECS: A Pilot Study. In IEEE 21st International Workshop on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WETICE), pages 280–285, 2012. ISBN
1524-4547 VO -. doi: 10.1109/WETICE.2012.69.

[199] Uwe Pohlmann, Wilhelm Schäfer, Hendrik Reddehase, Jens Röckemann, and Robert Wagner.
Generating functional mockup units from software specifications. In Proceedings of the 9th
International MODELICA Conference, September 3-5, 2012, Munich, Germany, number 078,
pages 765–774, 2012.

[200] Claudius Ptolemaeus. System Design, Modeling, and Simulation: Using Ptolemy II. Berkeley:
Ptolemy.org, 2014. ISBN 1304421066.

[201] Davide Quaglia, Riccardo Muradore, Roberto Bragantini, and Paolo Fiorini. A SystemC/-
Matlab co-simulation tool for networked control systems. Simulation Modelling Practice and
Theory, 23:71–86, apr 2012. ISSN 1569-190X. doi: 10.1016/j.simpat.2012.01.003.

[202] Gauthier Quesnel, Raphaël Duboz, David Versmisse, and E Ramat. DEVS coupling of spatial
and ordinary differential equations: VLE framework. OICIMS, 5:281–294, 2005.

70

[203] M. Radetzki and R. S. Khaligh. Accuracy-adaptive Simulation of Transaction Level Models.
In Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’08, pages
788–791, New York, NY, USA, 2008. ACM. ISBN 978-3-9810801-3-1. doi: 10.1145/1403375.
1403566.

[204] Derek Riley, Emeka Eyisi, Jia Bai, Xenofon Koutsoukos, Yuan Xue, and Janos Sztipanovits.
Networked Control System Wind Tunnel (NCSWT): An Evaluation Tool for Networked Multi-
agent Systems. In Proceedings of the 4th International ICST Conference on Simulation Tools
and Techniques, SIMUTools ’11, pages 9–18, ICST, Brussels, Belgium, Belgium, 2011. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).
ISBN 978-1-936968-00-8.

[205] Robin Roche, Sudarshan Natarajan, Ayan Bhattacharyya, and Siddharth Suryanarayanan.
A Framework for Co-simulation of AI Tools with Power Systems Analysis Software. In 23rd
International Workshop on Database and Expert Systems Applications, pages 350–354. IEEE,
sep 2012. ISBN 978-1-4673-2621-6. doi: 10.1109/DEXA.2012.9.

[206] J. A. Rowson. Hardware/Software Co-Simulation. In 31st Conference on Design Automation,
pages 439–440, 1994. ISBN 0738-100X VO -. doi: 10.1109/DAC.1994.204143.

[207] Severin Sadjina, Lars T. Kyllingstad, Eilif Pedersen, and Stian Skjong. Energy Conservation
and Power Bonds in Co-Simulations: Non-Iterative Adaptive Step Size Control and Error
Estimation. arXiv preprint arXiv:1602.06434, 2016.

[208] Salah Eddine Saidi, Nicolas Pernet, Yves Sorel, and Abir Ben Khaled. Acceleration of FMU
Co-Simulation On Multi-core Architectures. In The First Japanese Modelica Conferences,
May 23-24, Tokyo, Japan, number 124, pages 106–112. Linköping University Electronic Press,
may 2016. ISBN 1650-3740. doi: 10.3384/ecp16124106.

[209] Resve A Saleh, Shyh-Jye Jou, and A Richard Newton. Mixed-mode simulation and analog mul-
tilevel simulation, volume 279. Springer Science & Business Media, 2013. ISBN 1475758545.

[210] Tom Schierz and Martin Arnold. Stabilized overlapping modular time integration of coupled
differential-algebraic equations. Applied Numerical Mathematics, 62(10):1491–1502, oct 2012.
ISSN 01689274. doi: 10.1016/j.apnum.2012.06.020.

[211] Tom Schierz, Martin Arnold, and Christoph Clauss. Co-simulation with communication step
size control in an FMI compatible master algorithm. In 9th Int. Modelica Conf., Munich,
Germany, pages 205–214, nov 2012. doi: 10.3384/ecp12076205.

[212] Robert Schmoll and Bernhard Schweizer. Convergence Study of Explicit Co-Simulation Ap-
proaches with Respect to Subsystem Solver Settings. PAMM, 12(1):81–82, dec 2012. ISSN
1617-7061. doi: 10.1002/pamm.201210032.

[213] Stefan-Alexander Schneider, Johannes Frimberger, and Michael Folie. Significant Reduction
of Validation Efforts for Dynamic Light Functions with FMI for Multi-Domain Integration
and Test Platforms. In 10th International Modelica Conference, 2014.

[214] B. Schweizer and D. Lu. Predictor/corrector co-simulation approaches for solver coupling with
algebraic constraints. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift

71

für Angewandte Mathematik und Mechanik, 95(9):911–938, sep 2015. ISSN 00442267. doi:
10.1002/zamm.201300191.

[215] Bernhard Schweizer and Daixing Lu. Semi-implicit co-simulation approach for solver coupling.
Archive of Applied Mechanics, 84(12):1739–1769, dec 2014. ISSN 0939-1533. doi: 10.1007/
s00419-014-0883-5.

[216] Bernhard Schweizer and Daixing Lu. Stabilized index-2 co-simulation approach for solver
coupling with algebraic constraints. Multibody System Dynamics, 34(2):129–161, jun 2015.
ISSN 1384-5640. doi: 10.1007/s11044-014-9422-y.

[217] Bernhard Schweizer, Pu Li, and Daixing Lu. Explicit and Implicit Cosimulation Methods:
Stability and Convergence Analysis for Different Solver Coupling Approaches. Journal of
Computational and Nonlinear Dynamics, 10(5):051007, sep 2015. ISSN 1555-1415. doi: 10.
1115/1.4028503.

[218] Bernhard Schweizer, Pu Li, Daixing Lu, and Tobias Meyer. Stabilized implicit co-simulation
methods: solver coupling based on constitutive laws. Archive of Applied Mechanics, 85(11):
1559–1594, nov 2015. ISSN 0939-1533. doi: 10.1007/s00419-015-0999-2.

[219] Bernhard Schweizer, Daixing Lu, and Pu Li. Co-simulation method for solver coupling with
algebraic constraints incorporating relaxation techniques. Multibody System Dynamics, 36(1):
1–36, jan 2016. ISSN 1384-5640. doi: 10.1007/s11044-015-9464-9.

[220] S. Sicklinger, V. Belsky, B. Engelmann, H. Elmqvist, H. Olsson, R. Wüchner, and K. U.
Bletzinger. Interface Jacobian-based Co-Simulation. International Journal for Numerical
Methods in Engineering, 98(6):418–444, may 2014. ISSN 1097-0207. doi: 10.1002/nme.4637.

[221] G. Stettinger, M. Horn, M. Benedikt, and J. Zehetner. Model-based coupling approach for
non-iterative real-time co-simulation. In 2014 European Control Conference (ECC), pages
2084–2089, 2014. doi: 10.1109/ECC.2014.6862242.

[222] Georg Stettinger, Josef Zehetner, Martin Benedikt, and Norbert Thek. Extending Co-
Simulation to the Real-Time Domain. apr 2013. doi: 10.4271/2013-01-0421.

[223] H T Su, H. T. Su, K W Chan, K. W. Chan, L A Snider, and L. A. Snider. Parallel interaction
protocol for electromagnetic and electromechanical hybrid simulation, 2005.

[224] Yongqi Sun, Stephanie Vogel, and Haiko Steuer. Combining Advantages of Specialized Simu-
lation Tools and Modelica Models using Functional Mock-up Interface (FMI). In Proceedings
of the 8th International Modelica Conference, 2011.

[225] Robert Tarjan. Depth-first search and linear graph algorithms. 12th Annual Symposium on
Switching and Automata Theory (swat 1971), 1(2), jun 1971. ISSN 0272-4847. doi: 10.1109/
SWAT.1971.10.

[226] Jean-Philippe Tavella, Mathieu Caujolle, Charles Tan, Gilles Plessis, Mathieu Schumann,
Stéphane Vialle, Cherifa Dad, Arnaud Cuccuru, and Sébastien Revol. Toward an Hybrid
Co-simulation with the FMI-CS Standard, apr 2016. URL https://hal-centralesupelec.

archives-ouvertes.fr/hal-01301183.

72

https://hal-centralesupelec.archives-ouvertes.fr/hal-01301183
https://hal-centralesupelec.archives-ouvertes.fr/hal-01301183

[227] Brook Taylor. Methodus Incrementorum Directa et Inversa. London, 1715.

[228] T Tomiyama, V. D’Amelio, J Urbanic, and W ElMaraghy. Complexity of Multi-Disciplinary
Design. CIRP Annals - Manufacturing Technology, 56(1):185–188, 2007. ISSN 00078506. doi:
10.1016/j.cirp.2007.05.044.

[229] Pawe l Tomulik and Janusz Fra̧czek. Simulation of multibody systems with the use of coupling
techniques: a case study. Multibody System Dynamics, 25(2):145–165, feb 2011. ISSN 1384-
5640. doi: 10.1007/s11044-010-9206-y.

[230] Mamadou K Traoré and Alexandre Muzy. Capturing the dual relationship between simulation
models and their context. Simulation Modelling Practice and Theory, 14(2):126–142, feb 2006.
ISSN 1569190X. doi: 10.1016/j.simpat.2005.03.002.

[231] Marija Trcka, Michael Wetter, and Jan Hensen. Comparison of co-simulation approaches
for building and HVAC/R system simulation. In Proceedings of the International IBPSA
Conference, Beijing, China, 2007.

[232] Stavros Tripakis. Bridging the semantic gap between heterogeneous modeling formalisms
and FMI. In 2015 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pages 60–69. IEEE, jul 2015. ISBN 978-1-4673-7311-1.
doi: 10.1109/SAMOS.2015.7363660. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=7363660.

[233] F. Tseng and G. Hulbert. Network-distributed multibody dynamics simulation—gluing algo-
rithm. Advances in Computational Multibody Dynamics, pages 521–540, 1999.

[234] A. M. Uhrmacher. Dynamic Structures in Modeling and Simulation: A Reflective Approach.
ACM Trans. Model. Comput. Simul., 11(2):206–232, apr 2001. ISSN 1049-3301. doi: 10.1145/
384169.384173.

[235] Adelinde M. Uhrmacher. Variable structure models: autonomy and control answers from two
different modeling approaches. In 4th Annual Conference on AI, Simulation and Planning in
High Autonomy Systems, pages 133–139. IEEE Comput. Soc. Press, 1993. ISBN 0-8186-4020-
0. doi: 10.1109/AIHAS.1993.410588.

[236] Bert Van Acker, Joachim Denil, Paul De Meulenaere, Hans Vangheluwe, Bert Vanacker, and
Paul Demeulenaere. Generation of an Optimised Master Algorithm for FMI Co-simulation. In
Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS Integrative, pages
946–953. Society for Computer Simulation International, 2015.

[237] Herman Van der Auweraer, Jan Anthonis, Stijn De Bruyne, and Jan Leuridan. Virtual
engineering at work: the challenges for designing mechatronic products. Engineering with
Computers, 29(3):389–408, 2013. ISSN 0177-0667. doi: 10.1007/s00366-012-0286-6.

[238] Arjan J. Van Der Schaft and Johannes Maria Schumacher. An introduction to hybrid dynam-
ical systems, volume 251. Springer London, 2000.

[239] Simon Van Mierlo. Explicitly Modelling Model Debugging Environments. In ACM Student
Research Competition at MODELS 2015, pages 24–29. CEUR, 2015.

73

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7363660
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7363660

[240] Yentl Van Tendeloo and Hans Vangheluwe. Activity in PythonPDEVS. In Proceedings of
ACTIMS 2014, 2014.

[241] Yentl Van Tendeloo and Hans Vangheluwe. PythonPDEVS: a distributed Parallel DEVS
simulator. In Proceedings of the 2015 Spring Simulation Multiconference, SpringSim ’15,
pages 844–851. Society for Computer Simulation International, 2015.

[242] Yentl Van Tendeloo and Hans Vangheluwe. An Introduction to Classic DEVS. Technical
report, 2017. URL https://arxiv.org/pdf/1701.07697v1.pdf.

[243] Luigi Vanfretti, Tetiana Bogodorova, and Maxime Baudette. Power system model identifi-
cation exploiting the Modelica language and FMI technologies. In 2014 IEEE International
Conference on Intelligent Energy and Power Systems (IEPS), pages 127–132. IEEE, jun 2014.
ISBN 978-1-4799-2266-6. doi: 10.1109/IEPS.2014.6874164.

[244] Hans Vangheluwe. DEVS as a common denominator for multi-formalism hybrid systems
modelling. In CACSD. Conference Proceedings. IEEE International Symposium on Computer-
Aided Control System Design (Cat. No.00TH8537), pages 129–134. IEEE, 2000. ISBN 0-7803-
6566-6. doi: 10.1109/CACSD.2000.900199.

[245] Hans Vangheluwe. Foundations of Modelling and Simulation of Complex Systems. EASST,
10, 2008. doi: 10.14279/tuj.eceasst.10.162.148.

[246] Hans Vangheluwe, Juan De Lara, and Pieter J. Mosterman. An introduction to multi-
paradigm modelling and simulation. In Proceedings of AIS2002 (AI, Simulation & Planning),
pages 9–20. SCS, 2002.

[247] Ken Vanherpen, Joachim Denil, Hans Vangheluwe, and Paul De Meulenaere. Model Transfor-
mations for Round-trip Engineering in Control Deployment Co-Design. In Theory of Modeling
and Simulation - DEVS, TMS/DEVS ’15, part of the Spring Simulation Multi-Conference,
pages 820–827, Alexandria, Virginia, USA, apr 2015. Society for Computer Simulation Inter-
national.

[248] Julien Vaubourg, Yannick Presse, Benjamin Camus, Christine Bourjot, Laurent Ciarletta,
Vincent Chevrier, Jean-Philippe Tavella, and Hugo Morais. Multi-agent Multi-Model Simula-
tion of Smart Grids in the MS4SG Project. pages 240–251. Springer International Publishing,
Cham, 2015. ISBN 978-3-319-18944-4. doi: 10.1007/978-3-319-18944-4 20.

[249] A Verhoeven, B Tasic, T G J Beelen, E J W ter Maten, and R M M Mattheij. BDF compound-
fast multirate transient analysis with adaptive stepsize control. J. Numer. Anal. Ind. Appl.
Math, 3(3-4):275–297, 2008.

[250] Antoine Viel. Implementing stabilized co-simulation of strongly coupled systems using the
Functional Mock-up Interface 2.0. 10th International Modelica Conference, 2014.

[251] B. Wang and J. S. Baras. HybridSim: A Modeling and Co-simulation Toolchain for Cyber-
physical Systems. In Distributed Simulation and Real Time Applications (DS-RT), 2013
IEEE/ACM 17th International Symposium on, pages 33–40, 2013. ISBN 1550-6525. doi:
10.1109/DS-RT.2013.12.

74

https://arxiv.org/pdf/1701.07697v1.pdf

[252] G. Wanner and E. Hairer. Solving ordinary differential equations I, volume 1. Springer-Verlag,
Berlin, 1991.

[253] Michael Wetter. Co-simulation of building energy and control systems with the Building
Controls Virtual Test Bed. Journal of Building Performance Simulation, 4(3):185–203, nov
2010. ISSN 1940-1493. doi: 10.1080/19401493.2010.518631.

[254] E. Widl, W. Muller, A. Elsheikh, M. Hortenhuber, and P. Palensky. The FMI++ library:
A high-level utility package for FMI for model exchange. In Modeling and Simulation of
Cyber-Physical Energy Systems (MSCPES), 2013 Workshop on, pages 1–6, 2013. doi: 10.
1109/MSCPES.2013.6623316.

[255] Xiaorong Xie, Chuanyu Zhang, Huakun Liu, Chao Liu, Dongxiang Jiang, and Baorong Zhou.
Continuous-Mass-Model-Based Mechanical and Electrical Co-Simulation of SSR and Its Ap-
plication to a Practical Shaft Failure Event. IEEE Transactions on Power Systems, 31(6):
5172–5180, nov 2016. ISSN 0885-8950. doi: 10.1109/TPWRS.2016.2537001.

[256] Masahiro Yamaura, Nikos Arechiga, Shinichi Shiraishi, Scott Eisele, Joseph Hite2 Sandeep
Neema2 Jason Scott, and Theodore Bapty. ADAS Virtual Prototyping using Modelica and
Unity Co-simulation via OpenMETA. 2016.

[257] Faruk Yılmaz, Umut Durak, Koray Taylan, and Halit Oğuztüzün. Adapting Functional
Mockup Units for HLA-compliant Distributed Simulation. In 10th International Modelica
Conference, 2014.

[258] Josef Zehetner, Di Wenpu Lu, and Daniel Watzenig. Design of modern vehicle electrical
systems based on co-simulation and a model library. ATZelektronik worldwide, 8(4):20–24,
2013. doi: 10.1365/s38314-013-0182-x.

[259] Bernard P. Zeigler. Theory of modelling and simulation. New York, Wiley, 1976. ISBN
0471981524.

[260] Bernard P. Zeigler. Embedding dev&dess in devs. In Proc. DEVS Integrative M&S Symp,
volume 7, 2006.

[261] Bernard P. Zeigler and J. S. Lee. Theory of quantized systems: formal basis for DEVS/HLA
distributed simulation environment. volume 3369, pages 49–58, aug 1998. doi: 10.1117/12.
319354.

[262] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of modeling and simulation:
integrating discrete event and continuous complex dynamic systems. Academic press, 2 edition,
2000.

[263] Fu Zhang, Murali Yeddanapudi, and Pieter Mosterman. Zero-crossing location and detection
algorithms for hybrid system simulation. In IFAC World Congress, pages 7967–7972, 2008.

[264] Saipeng Zhang, Jun Liu, and Wei Su. A Co-simulation Platform of Integrated Starter/Gener-
ator System Based on ANSYS, pages 35–43. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016. ISBN 978-3-662-49367-0. doi: 10.1007/978-3-662-49367-0 5.

75

[265] X. Zhang and J. F. Broenink. A structuring mechanism for embedded control systems us-
ing co-modelling and co-simulation. In Proceedings of the 2nd International Conference on
Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2012,
Rome, Italy, pages 131–136, Portugal, 2012. SciTePress.

[266] Zhenkai Zhang, Emeka Eyisi, Xenofon Koutsoukos, Joseph Porter, Gabor Karsai, and Janos
Sztipanovits. A co-simulation framework for design of time-triggered automotive cyber physi-
cal systems. Simulation Modelling Practice and Theory, 43:16–33, 2014. ISSN 1569190X. doi:
10.1016/j.simpat.2014.01.001.

[267] Chenguang Zhao, Hongman Yan, Dong Liu, Hong Zhu, Yun Wang, and Yunhui Chen. Co-
simulation research and application for Active Distribution Network based on Ptolemy II and
Simulink. In 2014 China International Conference on Electricity Distribution (CICED), pages
1230–1235. IEEE, sep 2014. ISBN 978-1-4799-4126-1. doi: 10.1109/CICED.2014.6991903.

[268] Vojin Živojnovic and Heinrich Meyr. Compiled HW/SW Co-simulation. In Proceedings of the
33rd Annual Design Automation Conference, DAC ’96, pages 690–695, New York, NY, USA,
1996. ACM. ISBN 0-89791-779-0. doi: 10.1145/240518.240649.

[269] M. Zwolinski, C. Garagate, Z. Mrcarica, T. J. Kazmierski, and A. D. Brown. Anatomy of
a simulation backplane. IEE Proceedings - Computers and Digital Techniques, 142(6):377–
385(8), nov 1995. ISSN 1350-2387.

76

Table 1: Historical Perspective of Co-simulation.

Time Concept Description

<80s Single Formalism The equations describing dynamic behavior are integrated
together.

80s Dynamic Iteration Large circuits are decomposed into coupled constituent sys-
tems and dynamic iteration techniques are used [98, 155,
167, 170, 171, 183].

90s Multi-Formalism Software and Hardware are developed and simulated con-
currently [65, 110, 206, 268] at multiple levels of abstrac-
tion [77, 117, 118]. Orchestration methods are explored in
Carothers et al. [58], Fey et al. [84], Frey et al. [91], Tseng
and Hulbert [233].

Late 90s and
Early 2000s

Standard Interfaces Recognized as key for co-simulation [116, 144, 196, 223, 269]

2010s IP Protection,
X-in-the-loop, and
Scale

Important to enhance industrial applicability of co-
simulation [7, 18–20, 74, 96, 237].

A Historical Perspective of Co-simulation

This section provides an historical perspective that relates the major concepts in co-simulation to
the time at which they are recognized in the studied state of the art, summarized in table 1.

A.1 One Formalism and Dynamic Iteration

Traditionally, the equations describing the dynamical behavior of large circuits were integrated to-
gether. These systems are sparsely coupled, reflecting the connections of the corresponding circuits,
and many techniques were developed that take advantage of this structure [167].

The crucial idea that improved the simulation speed in up to two orders of magnitude is to
decompose the large system into a set of coupled constituent systems and integrate them indepen-
dently.

The decomposition of the circuit implies the definition of inputs and outputs for each of the
resulting constituent systems. The coupling is then the assignment of outputs to inputs.

For a subsystem Si, we call the subsystems, whose outputs are assigned to any of the inputs of
Si, for neighbor subsystems.

The essence of the dynamic iteration approach is to integrate each subsystem independently, for
a period of time Tn → Tn+1 , using the extrapolated outputs of the neighbor subsystems as inputs
[155, 170, 171, 183].

Naturally, the fact that outputs are extrapolated introduces inaccuracy in the solution of the

77

subsystem, so the integration can be repeated for the same period of time, with corrected outputs,
until some form of convergence criteria is met [121]. The extrapolated outputs of a subsystem Sj
can be corrected by collecting the outputs during the integration of Sj .

It is easy to see that this approach only requires communication between constituent systems
at times Tn and Tn+1 and that the integration of each subsystem can be done independently and in
parallel [122], using any numerical method with any step size control policy. The signals exchanged
are functions in the interval [Tn, Tn+1].

The advantages of independent step size control policy become evident when one observes that
many circuits have components that change at different rates. If the whole system were to be
simulated, the simulation unit would have to use the smallest time step that ensures sufficient
accuracy for the fastest changing component, which would be a huge waste of computational effort
for the slow components. This is the similarity to multi-rate numerical methods [98].

To the best of our knowledge, dynamic iteration techniques and multi-rate numerical are the
first to resemble co-simulation. The coordination software that implements these techniques expect
any number of subsystems but assumes that the subsystems are all specific in the same formalism:
differential equations.

A.2 Two Formalisms: Digital and Analog Co-simulation

Co-simulation, in its modern definition, was applied to enable the virtual development of coupled
software and hardware systems [65, 110, 206, 268]. In this application domain, co-simulation de-
creases the need to build prototype board circuits to validate the composition of the software and
the hardware part. It enables software and hardware to be developed and validated concurrently.
To the best of our knowledge, this was one of the first uses of co-simulation in the modern sense. The
co-simulation frameworks developed in this application domain typically assumed two simulation
units and two formalisms.

The hardware/software systems quickly became more complex and a new idea was introduced:
use multiple models at different levels of abstraction of each subsystem. Simulations could be made
arbitrarily faster in some intervals by solving the more abstract models, and arbitrarily accurate
in other intervals, by solving the more detailed ones [77, 135, 166, 209]. In the particular case of
analog-digital co-simulation, each level of abstraction was solved by a different tool: a continuous
time tool and a discrete event tool. The separation into continuous time and discrete event made
the abstract synchronization problem and synchronization methods between simulation units in
these two domains were developed [58, 84, 91, 233]. We could call these some of the first master
algorithms.

A.3 Multi-abstraction/Multi-Formalism Co-simulation

The heterogeneity aspect of co-simulation comes into play at this time: multiple formalisms can be
used to describe the same subsystem at multiple levels of abstraction: state machines can describe a
rough approximation of the modes, while differential equations can describe the detailed dynamics of
the electronic circuit. Depending on the purpose of the co-simulation, a subsystem and its neighbors
can be solved in detail, whereas subsystems that are “farther away” can be simulated with higher
levels of abstraction [117, 118]. For the domain of Hw/sw co-simulation, RTL and TLM classify
the multiple abstraction levels of models [27, 203] and switching between these multiple levels of
abstraction have been studied in [131].

78

As the number and heterogeneity of simulation tools to be coupled increases, the need to provide
a common interface to couple any number of tools is recognized in Hickey et al. [116], Kuhl et al.
[144], Petrellis et al. [196], Zwolinski et al. [269] and later in Blochwitz et al. [34].

In parallel with the previous advancements, co-simulation has also been in use for heterogeneous
physical systems, such as automotive [105, 142, 151, 213], railway [12, 71] and HVAC [107, 231],
to name just a few. The common motivation is the fact that co-simulation enables specialized
simulation units to cooperatively simulated the system, with huge savings in time and cost, when
compared to a monolithic modeling approach.

A.4 Black-box Co-simulation

Later, distributed and concurrent development processes, enabled by co-simulation, are studied and
IP protection is identified as a desired characteristic [7, 237] to enable suppliers and integrators to
exchange co-simulation units without having to disclose sensitive information and avoiding vendor
lock-in contracts.

A.5 Real-time Co-simulation

Furthermore, co-simulation is used at every stage of the development process, from early system val-
idation, to X-in-the-Loop co-simulation, bringing hard real-time constraints to the set of challenges
[74].

A.6 Many simulation units: Large Scale Co-simulation

More recently, with the acknowledgment that there is a need to be able to simulate even larger
systems of systems, scale and distribution become inherent challenges in co-simulation [18–20, 96].

B State of the Art in Co-simulation Frameworks

This section provides the detailed classification of each reference.

Ref 1. Pedersen2015: Co-Simulation of Distributed Engine Control System and Network Model
using FMI & SCNSL [194].

Summary. This work describes a co-simulation master in the context of the maritime industry.
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr : results visualization :post mortem
fr :alg loop: explicit
fr : sim step size : fixed
fr :sim rate: single
fr :domain:ct
fr :coupling model:io assignments
fr :standard:fmi
fr :communication model:jacobi

79

fr :num sim:three more

Ref 2. Lin2011: Power system and communication network co-simulation for smart grid applica-
tions [120].

Summary. This work describes a co-simulation between power system and network simulator.
sr : info : predict step sizes
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr : results visualization :post mortem
fr :alg loop: explicit
fr :sim rate: single
fr :coupling model:io assignments
fr :num sim:two
fr :domain:de
fr : sim step size : variable
fr :communication model:gauss seidel

Ref 3. Hoepfer2011: Towards a Comprehensive Framework for Co- Simulation of Dynamic
Models With an Emphasis on Time Stepping [119].

Summary. This work describes a co-simulation approach that finds an appropriate co-simulation
step size.

nfr :performance
nfr :accuracy
nfr : ip protection
sr : availability : local
sr : info : derivatives :out
sr : info : derivatives : state
sr : info : statevars
sr : causality :causal
sr : rollback :none
sr : rel time : analytic
fr :num sim:three more
fr :domain:ct
fr :sim rate: single
fr : sim step size : variable
fr :communication model:jacobi
fr :communication model:gauss seidel
fr :alg loop: explicit
fr : results visualization :post mortem

80

Ref 4. Faure2011: Methods for real-time simulation of Cyber-Physical Systems: application to
automotive domain [82].

Summary. This work addresses co-simulation with real-time simulators.
nfr :performance
nfr : parallelism
sr : availability : local
sr : rel time : fixed real scaled time simulation
sr : info :wcet
sr : rollback :none
fr : results visualization :post mortem
fr :num sim:three more
fr :coupling model:io assignments
fr :domain:ct
fr :communication model:jacobi
fr :alg loop: explicit
fr :sim rate: single
fr : sim step size : fixed

Ref 5. Tomulik2011: Simulation of multibody systems with the use of coupling techniques: a
case study [229].

Summary. This work discusses a co-simulation method for couplings with algebraic constraints. One
of the results is that this kind of coupling should be done with many derivatives of the coupling
variables.

nfr :accuracy
sr : rollback : single
sr : availability : local
sr : rel time : analytic
sr : causality :causal
sr : info : derivatives :out
sr : info :jacobian:out
fr : results visualization :post mortem
fr :communication model:jacobi
fr :alg loop: implicit
fr :coupling model:algebraic constraints
fr :domain:ct
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed

Ref 6. Sun2011: Combining Advantages of Specialized Simulation Tools and Modelica Models
using Functional Mock-up Interface (FMI) [224].

81

Summary. This work describes the application of co-simulation to the power production domain.
nfr : ip protection
nfr :performance
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr : results visualization :post mortem
fr :sim rate: single
fr :coupling model:io assignments
fr :standard:fmi
fr :domain:ct
fr :communication model:gauss seidel
fr :num sim:two
fr :alg loop: explicit
fr : sim step size : variable

Ref 7. Bastian2011a: Master for Co-Simulation Using FMI [25].

Summary. This work describes a co-simulation approach.
nfr : ip protection
nfr :platform independence
nfr : parallelism
sr : causality :causal
sr : rollback :none
sr : info : stateserial
sr : info :jacobian:out
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr : sim step size : fixed
fr :sim rate: single
fr :alg loop: implicit
fr :domain:ct
fr :num sim:three more
fr :standard:fmi
fr :communication model:jacobi
fr :communication model:gauss seidel

Ref 8. Friedrich2011: Parallel Co-Simulation for Mechatronic Systems [93].

Summary. This work describes a co-simulation framework based on the Jacobi iteration scheme.
nfr : parallelism
nfr :performance
nfr : distribution

82

nfr : ip protection
sr : availability :remote
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
fr : results visualization :post mortem
fr :alg loop: explicit
fr :domain:ct
fr :coupling model:io assignments
fr :coupling model:algebraic constraints
fr :num sim:three more
fr :communication model:jacobi
fr :sim rate: single
fr : sim step size : fixed

Ref 9. Gonzalez2011: On the effect of multirate co-simulation techniques in the efficiency and
accuracy of multibody system dynamics [103].

Summary. This work deals with multi-rate co-simulation. Essentially, one of the simulators (the
fast one) drives the simulation, while the slow one provides extrapolated inputs, to avoid excessive
computation.

nfr :accuracy
nfr :performance
sr : causality :causal
sr : rollback :none
sr : availability : local
sr : rel time : analytic
fr : results visualization :post mortem
fr :alg loop: explicit
fr :communication model:gauss seidel
fr :coupling model:io assignments
fr :num sim:two
fr :domain:ct
fr :sim rate:multi
fr : sim step size : fixed

Ref 10. Nutaro2011: Designing power system simulators for the smart grid: Combining controls,
communications, and electro-mechanical dynamics [189].

Summary. This work describes a tool that is formed by the coupling of a DEVS simulator with
some other modules that wrap CT as DEVS simulators.

nfr : distribution
nfr :accuracy
sr : causality :causal
sr : rollback : single

83

sr : rel time : analytic
sr : availability : local
fr :alg loop: explicit
fr :domain:de
fr :communication model:gauss seidel
fr :num sim:two
fr :sim rate: single
fr : sim step size : variable
fr :coupling model:io assignments
fr : results visualization :post mortem

Ref 11. Busch2012: Asynchronous method for the coupled simulation of mechatronic systems [54].

Summary. This work describes co-simulation approaches between two simulation tools. The main
contribution is a semi-implicit method that applies a correction based on the jacobian of the sub-
system’s coupling variables.

nfr :accuracy
nfr : distribution
sr : causality :causal
sr : rollback : single
sr : availability :remote
sr : info :jacobian:out
sr : rel time : analytic
fr :sim rate: single
fr : sim step size : fixed
fr : results visualization :post mortem
fr :communication model:gauss seidel
fr :alg loop: semi implicit
fr :alg loop: explicit
fr :alg loop: implicit
fr :coupling model:io assignments
fr :domain:ct
fr :num sim:two

Ref 12. Pohlmann2012: Generating functional mockup units from software specifications [199].

Summary. This work describes an application of co-simulation to robotics.

Ref 13. Schmoll2012: Convergence Study of Explicit Co-Simulation Approaches with Respect
to Subsystem Solver Settings [212].

Summary. This paper describes global error analysis for co-simulation, that takes into account
sub-system solvers (instead of analytical solvers, as more commonly done).

nfr :accuracy
sr : rollback :none
sr : info : full model

84

sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :alg loop: explicit
fr :domain:ct
fr :num sim:two
fr :coupling model:io assignments
fr :communication model:jacobi
fr :sim rate: single
fr : sim step size : fixed
fr : results visualization :post mortem

Ref 14. Ni2012: Hybrid systems modelling and simulation in DESTECS: a co-simulation ap-
proach [184].

Summary. This work present a coupling of the tools Crescendo and 20-sim.
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :communication model:gauss seidel
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :alg loop: explicit
fr :domain:ct
fr :sim rate: single
fr : sim step size : fixed
fr :num sim:two

Ref 15. Hassairi2012: Matlab/SystemC for the New Co-Simulation Environment by JPEG Al-
gorithm [115].

Summary. This work introduces guidelines for the implementation of co-simulation between Matlab
and SystemC. The case study is the JPEG Algorithm.

sr : info : full model
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :coupling model:io assignments
fr : sim step size : fixed
fr :sim rate: single
fr :alg loop: explicit
fr :communication model:gauss seidel
fr : results visualization : live

85

fr :num sim:two

Ref 16. Schierz2012: Stabilized overlapping modular time integration of coupled differential-
algebraic equations [210].

Summary. This work discusses co-simulation techniques for simulators coupled via algebraic con-
straints.

nfr :accuracy
sr : availability : local
sr : rel time : analytic
sr : causality :causal
sr : rollback :none
sr : info : full model
sr : info :jacobian:out
fr : results visualization :post mortem
fr :sim rate: single
fr :num sim:three more
fr :alg loop: explicit
fr : sim step size : fixed
fr :domain:ct
fr :coupling model:algebraic constraints
fr :communication model:gauss seidel
fr :communication model:jacobi

Ref 17. Gunther2012: A Modular Technique for Automotive System Simulation [108].

Summary. This work describes the MDPCosim framework.
nfr :performance
The decomposition of the system for co-simulation is done for performance reasons.
nfr : parallelism
nfr :accuracy
sr : availability : local
IPC communication is used.
sr : causality :causal
sr : info : derivatives :out
sr : rollback :none
sr : info : predict step sizes
fr : results visualization :post mortem
fr :alg loop: explicit
fr :coupling model:io assignments
fr :domain:ct
fr :communication model:jacobi
fr : sim step size : variable
The step size control approach is based on looking at the derivatives.
fr :sim rate: single

86

fr :num sim:three more

Ref 18. Quaglia2012: A SystemC/Matlab co-simulation tool for networked control systems [201].

Summary. Work describing another tool coupling.
nfr : distribution
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr : results visualization :post mortem
fr :alg loop: explicit
fr :coupling model:io assignments
fr :domain:ct
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed
fr :communication model:gauss seidel

Ref 19. Al-Hammouri2012: A comprehensive co-simulation platform for cyber-physical sys-
tems [5].

Summary. The work describes the integration of two tools: Modelica, and NS-2.
sr : causality :causal
sr : rel time : analytic
sr : availability : local
Communication is done over named pipes.
sr : rollback :none
fr : results visualization :post mortem
fr :num sim:two
fr :coupling model:io assignments
fr :alg loop: explicit
fr :domain:ct
fr :communication model:gauss seidel
fr :domain:de
fr :sim rate: single
fr : sim step size : variable

Ref 20. Eyisi2012: NCSWT: An integrated modeling and simulation tool for networked control
systems [81].

Summary. This work describes the coupling of two tools: Matlab and NS-2. The coupling is done
through HLA standard. The preliminary version of the tool is described in [204].

nfr :platform independence
nfr :performance

87

nfr : distribution
sr : info : predict step sizes
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr :alg loop: explicit
fr :num sim:two
fr :coupling model:io assignments
fr :domain:de
fr :standard:hla
fr :communication model:gauss seidel
fr :sim rate: single
fr : sim step size : variable
fr : results visualization : live

Ref 21. Riley2011: Networked Control System Wind Tunnel (NCSWT): An Evaluation Tool for
Networked Multi-agent Systems [204].

Summary. This work describes the coupling of two tools: Matlab and NS-2. The coupling is done
through HLA standard.

nfr :platform independence
nfr :performance
nfr : distribution
sr : info : predict step sizes
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr :alg loop: explicit
fr :num sim:two
fr :coupling model:io assignments
fr :domain:de
fr :standard:hla
fr :communication model:gauss seidel
fr :sim rate: single
fr : sim step size : variable
fr : results visualization : live

Ref 22. Roche2012: A Framework for Co-simulation of AI Tools with Power Systems Analysis
Software [205].

Summary. This work describes a co-simulation between two tools in the power grid domain with
matlab running the co-simulation.

nfr : distribution

88

nfr :open source
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr :coupling model:io assignments
fr :domain:ct
fr :communication model:gauss seidel
fr :alg loop: explicit
fr : results visualization :post mortem
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed

Ref 23. Fitzgerald2010: Collaborative Modelling and Co-simulation in the Development of
Dependable Embedded Systems [86].

Summary. This work describes the coupling between two tools: Overture and 20-sim.
nfr :accuracy
nfr : distribution
nfr :platform independence
sr : availability :remote
sr : causality :causal
sr : rel time : analytic
fr : sim step size : variable
fr :sim rate: single
fr :domain:de
fr :domain:ct
fr :num sim:two
fr :coupling model:io assignments
fr :alg loop: explicit
fr : results visualization : live
fr :communication model:gauss seidel

Ref 24. Fitzgerald2013: A formal approach to collaborative modelling and co-simulation for
embedded systems [89].

Summary. This work describes the coupling between two tools: Overture and 20-sim; already
described in [86].

nfr :accuracy
nfr : distribution
nfr :platform independence
sr : availability :remote
sr : causality :causal
sr : rel time : analytic

89

fr : sim step size : variable
fr :sim rate: single
fr :domain:de
fr :domain:ct
fr :num sim:two
fr :coupling model:io assignments
fr :alg loop: explicit
fr : results visualization : live
fr :communication model:gauss seidel

Ref 25. Kudelski2013: RoboNetSim: An integrated framework for multi-robot and network
simulation [143].

Summary. This work describes the integration of three simulators (ARGoS, NS-2 and NS-3) that
can be used in co-simulation scenarios with two simulators.

nfr : distribution
nfr :platform independence
sr : rollback :none
sr : causality :causal
sr : rel time : analytic
sr : availability :remote
fr : results visualization :post mortem
fr :alg loop: explicit
fr :communication model:jacobi
fr :domain:de
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed
fr :coupling model:io assignments

Ref 26. Broman2013: Determinate Composition of FMUs for Co-simulation [46].

Summary. This work describes a master algorithm that ensures a determinate execution.
nfr : ip protection
sr : availability : local
sr : rollback :none
sr : rel time : analytic
sr : causality :causal
sr : info : causality :feedthrough
sr : info : predict step sizes
sr : info : stateserial
fr :coupling model:io assignments
fr :standard:fmi
fr : sim step size : variable
fr :domain:ct

90

fr :communication model:jacobi
fr :num sim:three more
fr :sim rate: single
fr :alg loop: explicit
fr : results visualization :post mortem

Ref 27. Benedikt2013: Guidelines for the Application of a Coupling Method for Non-iterative
Co-simulation [30].

Summary. This work describes a co-simulation approach where energy information about the signals
is used, and those errors are compensated in a corrector step.

nfr :accuracy
nfr :performance
sr : rollback :none
sr : rel time : analytic
sr : causality :causal
sr : info :record outputs
sr : availability : local
fr : results visualization :post mortem
fr :alg loop: explicit
fr :num sim:two
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr :domain:ct
fr :sim rate: single
fr : sim step size : fixed

Ref 28. Benedikt2013b: Macro-step-size selection and monitoring of the coupoling error for
weak coupled subsystems in the frequency-domain [29].

Summary. The work describes a method for finding appropriate communication step sizes in co-
simulations between LTI systems. Essentially, it provides rules of thumb to chose a communication
step size based on the maximum instantaneous frequency of components.

nfr :accuracy
sr : availability : local
sr : rollback :none
sr : rel time : analytic
sr : causality :causal
sr : info :frequency outputs
fr : results visualization :post mortem
fr :sim rate: single
fr :coupling model:io assignments
fr :alg loop: explicit
fr :communication model:gauss seidel
fr :domain:ct

91

fr : sim step size : fixed
fr :num sim:two

Ref 29. Fuller2013: Communication simulations for power system applications [95].

Summary. This work describes a co-simulation between two co-simulation tools (ns-3 and GridLAB-
D) for smart grid development.

nfr : scalability
nfr : faulttolerance
nfr : ip protection
nfr : distribution
The tools keeps track of messages in transit.
sr : causality :causal
sr : rel time : analytic
sr : availability :remote
sr : rollback :none
fr :coupling model:io assignments
fr :alg loop: explicit
fr :domain:de
fr :num sim:two
fr :sim rate: single
fr : sim step size : variable
fr : results visualization :post mortem
fr :communication model:gauss seidel

Ref 30. Bombino2013: A model-driven co-simulation environment for heterogeneous systems [39].

Summary. This work describes the coupling between two simulation tools.
nfr : distribution
sr : rollback :none
sr : causality :causal
sr : rollback : single
sr : rel time : dy real scaled time simulation
sr : availability :remote
fr :alg loop: explicit
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr :domain:ct
fr :num sim:two
fr : results visualization : interactive live
fr :sim rate: single
fr : sim step size : fixed

Ref 31. Wang2013: HybridSim: A Modeling and Co-simulation Toolchain for Cyber-physical
Systems [251].

92

Summary. The approach described in this reference allows to arrange and process co-simulation
units, Modelica models and TinyOS applications. SysML is used to configure the co-simulation
master. The coordination of simulators is done through the FMI standard.

nfr : ip protection
nfr : config reusability
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :coupling model:io assignments
fr :alg loop: explicit
fr :communication model:gauss seidel
fr :num sim:two
fr :domain:ct
fr :standard:fmi
fr :sim rate: single
fr : sim step size : variable
fr : results visualization :post mortem

Ref 32. Hafner2013: An Investigation on Loose Coupling Co-Simulation with the BCVTB [114].

Summary. This work discusses the consistency and stability of the Jacobi and Gauss-Seidel co-
simulation methods. Later, it presents a case study in HVAC systems.

nfr :accuracy
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :coupling model:io assignments
fr : results visualization :post mortem
fr :communication model:jacobi
fr :communication model:gauss seidel
fr :alg loop: explicit
fr :domain:ct
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed

Ref 33. Zhao2014: Co-simulation research and application for Active Distribution Network based
on Ptolemy II and Simulink [267].

Summary. This work describes the co-simulation between Ptolemy II and Simulink.
nfr : distribution
sr : causality :causal
sr : rel time : analytic

93

sr : rollback :none
sr : availability :remote
fr :coupling model:io assignments
fr :domain:ct
fr :communication model:gauss seidel
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop: explicit
fr : results visualization :post mortem

Ref 34. Li2011c: VPNET: A co-simulation framework for analyzing communication channel
effects on power systems [157].

Summary. This work describes the coupling of two simulation tools (VTB and OPNET) to achieve
co-simulation.

sr : availability : local
sr : rollback :none
sr : causality :causal
sr : rel time : analytic
fr : results visualization :post mortem
fr :alg loop: explicit
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr :domain:ct
The coordination is a sample discrete time system.
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed

Ref 35. Awais2013b: Distributed hybrid simulation using the HLA and the Functional Mock-up
Interface [20].

Summary. The main difference between this work and [18] is that this proposes a variable step size
wrapper around CT components. The approach taken to do this is quantization.

nfr : distribution
nfr : parallelism
sr : rollback :none
sr : causality :causal
sr : rel time : analytic
sr : availability :remote
sr : availability : local
fr :alg loop: explicit
fr :communication model:gauss seidel
fr :communication model:jacobi

94

fr :standard:fmi
fr :standard:hla
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : variable
fr :coupling model:io assignments
fr :domain:de
fr : results visualization :post mortem

Ref 36. Awais2013a: Using the HLA for Distributed Continuous Simulations [18].

Summary. This work addresses the need to adapt CT simulators as DE simulators, in order to be
used in a hybrid co-simulation scenario that is fundamentally DE oriented.

nfr : distribution
nfr : parallelism
sr : rollback :none
sr : causality :causal
sr : rel time : analytic
sr : availability :remote
sr : availability : local
fr :alg loop: explicit
fr :communication model:gauss seidel
fr :communication model:jacobi
fr :standard:fmi
fr :standard:hla
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr :coupling model:io assignments
fr :domain:de
fr : results visualization :post mortem

Ref 37. Kuhr2013: FERAL - Framework for simulator coupling on requirements and architecture
level [146].

Summary. They describe a framework that borrows many concepts from Ptolemy, but that is
fundamentally event based co-simulation. It allows for the specialization of basic directors for the
semantic adaptation of simulation units.

nfr : ip protection
nfr : extensibility
sr : info : signal
sr : causality :causal
sr : rollback :none
sr : availability : local
sr : rel time : analytic

95

fr :sim rate:multi
fr :communication model:gauss seidel
fr :standard:fmi
fr :domain:de
fr :domain:ct
fr :num sim:three more
fr : sim step size : variable

Ref 38. Viel2014: Implementing stabilized co-simulation of strongly coupled systems using the
Functional Mock-up Interface 2.0. [250].

Summary. This work describes the implementation of the method described in [10] in the context
of the FMI standard.

nfr :accuracy
nfr : ip protection
sr : info :jacobian:out
sr : info :input extrapolation
sr : info :record outputs
sr : info : stateserial
sr : causality :causal
sr : rel time : analytic
sr : availability : local
sr : rollback :none
fr :domain:ct
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop: implicit
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:gauss seidel
fr :standard:fmi

Ref 39. Sicklinger2014: Interface Jacobian-based Co-Simulation [220].

Summary. Describes a co-simulation method that makes use of the Jacobian information for fixed
point computations.

nfr :performance
nfr :accuracy
sr : availability : local
sr : rel time : analytic
sr : rollback : single
sr : info :jacobian:out
sr : causality :causal
fr : results visualization :post mortem

96

fr :communication model:gauss seidel
fr :communication model:jacobi
fr :coupling model:algebraic constraints
fr :domain:ct
fr :alg loop: implicit
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed

Ref 40. Zhang2014: A co-simulation framework for design of time-triggered automotive cyber
physical systems [266].

Summary. The work describes a co-simulation that integrates SystemC and CarSim.
sr : availability : local
sr : rollback :none
sr : causality :causal
sr : info : full model
sr : rel time : analytic
fr :coupling model:io assignments
fr :domain:de
fr :domain:ct
fr :alg loop: explicit
fr : results visualization :post mortem
fr : sim step size : fixed
fr :sim rate: single
fr :num sim:two

Ref 41. Kounev2015: A microgrid co-simulation framework [139].

Summary. Describes the coupling of two simulators written in MATLAB and OMNeT++.
nfr :performance
sr : availability : local
sr : rel time : analytic
sr : rollback :none
The DEV’s orchestration is conservative.
sr : causality :causal
sr : info : predict step sizes
fr :coupling model:io assignments
fr : results visualization :post mortem
fr :communication model:gauss seidel
fr :domain:de
fr :num sim:two
fr :sim rate: single
fr : sim step size : variable
fr :alg loop: explicit

97

Ref 42. Bogomolov2015: Co-Simulation of Hybrid Systems with SpaceEx and Uppaal [36].

Summary. The orchestration algorithm is the one described in [46]. The work exploits the standard
by allowing zero step transitions.

sr : info : causality :feedthrough
sr : rollback :none
sr : info : stateserial
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :coupling model:io assignments
fr :standard:fmi
fr :num sim:two
fr :communication model:jacobi
fr :alg loop: explicit
fr :sim rate: single
fr : sim step size : variable
This is due to the rejection of steps, not due to accuracy.
fr :domain:ct
fr :domain:de
They abuse the FMI standard to be able to support state transitions.
fr : results visualization :post mortem

Ref 43. Bian2015: Real-time co-simulation platform using OPAL-RT and OPNET for analyzing
smart grid performance [33].

Summary. Not many details are provided about the co-simulation orchestration. However, due to
the fact that it is real-time, we can infer certain features.

nfr :performance
sr : rollback :none
sr : causality :causal
sr : rel time : fixed real scaled time simulation
sr : availability :remote
Communication is done through UDP.
fr : sim step size : fixed
fr :sim rate: single
Two simulators do not give more than this.
fr :domain:ct
fr :coupling model:io assignments
fr :num sim:two
fr :alg loop: explicit
fr : results visualization :post mortem

Ref 44. Dols2016: Coupling the multizone airflow and contaminant transport software CONTAM
with EnergyPlus using co-simulation [73].

98

Summary. The work described the coupling of the CONTAM and EnergyPlus tools to achieve
HVAC simulation. The coupling is done through FMI. The coupling is done through the compiled
binaries. The case study highlights the problems with an explicit method for co-simulation, even if
the Gauss-seidel. Instabilities occur.

nfr : ip protection
sr : rollback :none
sr : rel time : analytic
sr : causality :causal
sr : availability :remote
fr : results visualization :post mortem
fr :domain:ct
fr :num sim:two
fr :standard:fmi
fr :alg loop: explicit
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr : sim step size : fixed
It uses a 5-minute synchronization step.
fr :sim rate: single

Ref 45. BenKhaled2012: Multicore simulation of powertrains using weakly synchronized model
partitioning [133].

Summary. According to [28], this work explores variable step solvers.
nfr : parallelism
nfr :performance
sr : info : causality :feedthrough
sr : info : full model
sr : rel time : fixed real scaled time simulation
sr : rollback :none
sr : availability : local
fr :standard:fmi
fr :coupling model:io assignments
fr :num sim:three more
fr :domain:ct
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop: explicit
fr : results visualization :post mortem
fr :communication model:jacobi
fr :communication model:gauss seidel

Ref 46. BenKhaled2014: Fast multi-core co-simulation of Cyber-Physical Systems: Application
to internal combustion engines [28].

99

Summary. This paper focus on the parallelization of co-simulation. The approach is to start with
a single model and partition it into multiple models, which are then executed in separate FMUs in
parallel. The partitioning is important for accuracy reasons (e.g., break the algebraic loops at less
sensitive variables).

nfr : parallelism
nfr :accuracy
nfr :performance
nfr : scalability
sr : info : full model
sr : info :wcet
sr : info : causality :feedthrough
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :communication model:gauss seidel
fr : sim step size : fixed
fr :sim rate: single
fr :standard:fmi
fr :domain:ct
fr :num sim:three more
fr :alg loop: explicit
It breaks the loops by establishing an order and delaying one of the variables in the loop.

Ref 47. Saidi2016: Acceleration of FMU Co-Simulation On Multi-core Architectures [208].

Summary. The paper addresses the problem of performance in FMI co-simulation. The solution
proposed is to go parallel. The parallelization approach is the same as the one presented in [133].
Since FMI does not enforce thread safety across multiple instances of the same FMU, the work pre-
sented ensures that these do not execute concurrently by using mutexes or changing the scheduling
policy.

nfr : parallelism
nfr :performance
nfr : ip protection
nfr : scalability
sr : info :wcet
sr : info : causality :feedthrough
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :communication model:jacobi
fr :standard:fmi
fr :domain:ct
fr :num sim:three more
fr :alg loop: explicit

100

Ref 48. Yamaura2016: ADAS Virtual Prototyping using Modelica and Unity Co-simulation via
OpenMETA [256].

Summary. The co-simulation framework includes 4 tools. The communication between the tools is
realized using OpenMeta. The work uses Unity for the modelling and simulation of the environment,
allowing for live interaction. Communication is over UDP but there is no report on extra caution
due to network delays and failures.

nfr : parallelism
sr : info : full model
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr :num sim:three more
fr :domain:ct
fr : results visualization : live
fr : results visualization : interactive live
fr :coupling model:io assignments
fr :sim rate: single
fr :alg loop: explicit

Ref 49. Camus2015: Combining DEVS with multi-agent concepts to design and simulate multi-
models of complex systems (WIP) [55].

Summary. This work is the preliminary description of [56].
nfr : parallelism
nfr : distribution
nfr : ip protection
nfr :accuracy
sr : rollback :none
sr : info : stateserial
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:de
fr :alg loop: explicit
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : variable
fr :standard:fmi
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr : results visualization :post mortem

101

Ref 50. Camus2016: Hybrid Co-simulation of FMUs using DEV & DESS in MECSYCO [56].

Summary. It proposes to use a FMU wrapper around DEV and DESS models, meaning that the
co-simulation proceeds using a DE approach. It handles black box FMUs and the algorithm used
to drive the co-simulation is the conservative parallel DEVS simulator. It requires that the FMU
is able to perform rollback (through the use of state set and get).

nfr : parallelism
nfr : distribution
nfr : ip protection
nfr :accuracy
sr : rollback :none
sr : info : stateserial
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:de
fr :alg loop: explicit
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : variable
fr :standard:fmi
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr : results visualization :post mortem

Ref 51. Pedersen2016: FMI for Co-Simulation of Embedded Control Software [195].

Summary. The paper describes the adaptation of an embedded system to comply with FMI and
thus interface with other FMUs. To validate the implementation, they run a co-simulation.

nfr : distribution
nfr : parallelism
sr : rel time : fixed real scaled time simulation
fr :domain:ct
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed
fr :communication model:gauss seidel
fr :standard:fmi
fr :coupling model:io assignments
fr :alg loop: explicit
fr : results visualization : live

Ref 52. Oh2016: A Co-Simulation Framework for Power System Analysis [191].

102

Summary. The paper proposes a co-simulation framework that takes into account network delays
and compensates for that. It proposes to use cubic spline extrapolation to compensate for the delay
but recognizes that if there are faults in the line (resulting in voltage drops), the derivatives used in
the extrapolation assume gigantic proportions, thus wreaking havoc in the simulation. To address
that, the framework employes an algorithm to detect discontinuities. The detection is simple: they
check the derivative of the signal to see whether it exceeds a pre-determined empirically threshold.
Basically, it looks for and Dirac delta. Figure 7 shows the effect of not handling a discontinuity.

nfr : distribution
nfr :accuracy
nfr : parallelism
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed
fr :communication model:gauss seidel
Due to the parallel interface protocol that they use.
fr :coupling model:io assignments
fr :domain:ct
fr :alg loop: explicit
sr : availability :remote
sr : causality :causal
sr : rel time : analytic
sr : rollback :none

Ref 53. Xie2016: Continuous-Mass-Model-Based Mechanical and Electrical Co-Simulation of
SSR and Its Application to a Practical Shaft Failure Event [255].

Summary. Between two simulators. As it is explained in the paper, prior to co-simulation, the most
common approach would be to run two simulations: one complete for one sub-system, and then
another for the second sub-system, using the first as inputs. This is an open loop approach, whose
results can be misleading due to ignoring the feedback loops. Each simulator advances in parallel
and their communication is made with a barrier.

nfr : parallelism
fr :communication model:jacobi
fr :num sim:two
fr :domain:ct
fr : sim step size : fixed
fr : results visualization :post mortem
fr :sim rate: single
sr : availability : local
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
fr :alg loop: explicit
fr :coupling model:io assignments

103

Ref 54. Manbachi2016: Impact of EV penetration on Volt–VAR Optimization of distribution
networks using real-time co-simulation monitoring platform [163].

Summary. It describes an application of co-simulation in the distribution of energy in smart grids,
supported by a real-time co-simulation framework. The simulators involved are the RTDS, which
simulates the distribution network model, and the VVO Engine, coded in MATLAB.

sr : rel time : fixed real scaled time simulation
fr :num sim:two
sr : causality :causal
sr : rollback :none
sr : availability : local
fr :coupling model:io assignments
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop: explicit
fr :communication model:jacobi

Ref 55. Schierz2012a: Co-simulation with communication step size control [211].

Summary. Describes a master algorithm. Does not allow for interpolation of inputs. Needs rollback.
It touches upon accuracy, as it suggests an adaptive step size control mechanism. It does not address
algebraic loops. It assumes that there is no feedthrough information.

nfr :performance
nfr :accuracy
sr : info : derivatives :out
sr : info : stateserial
sr : causality :causal
sr : rel time : analytic
sr : rollback : single
sr : availability : local
fr :standard:fmi
fr :coupling model:io assignments
fr :num sim:three more
fr :domain:ct
fr :sim rate: single
fr : sim step size : variable
fr :alg loop: explicit
fr : results visualization :post mortem
fr :communication model:jacobi

Ref 56. Fourmigue2009: Co-simulation based platform for wireless protocols design explo-
rations [90].

104

Summary. Application of co-simulation to wireless network development. One of the simulators is
the actual Linux operating system, and the other is represents a wireless network protocol simulator.

sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :coupling model:io assignments
fr :num sim:two
fr :domain:de
fr :communication model:jacobi

Ref 57. Liu2001: Calculation of Wing Flutter by a Coupled Fluid-Structure Method [160].

Summary. A fully implicit method, dealing with parallelism.
nfr : parallelism
nfr :performance
sr : causality :causal
sr : rel time : analytic
sr : rollback : single
sr : availability :remote
fr :coupling model:io assignments
fr :num sim:two
fr :domain:ct
fr :alg loop: implicit
fr : results visualization :post mortem

Ref 58. Carstens2003: Coupled simulation of flow-structure interaction in turbomachinery [59].

Summary. Relates to the application of a co-simulation algorithm to the simulation of the defor-
mation in the blades of a transonic compressor rotor under airflow. One of the simulators calculates
deformation of the blades, while the other calculates the flow dynamics around the blades.

The communication of orchestration algorithm in use is shifted by half a step.
nfr :performance
They highlight the need for it, because the computation of a rotor is just too expensive.
sr : info : derivatives :out
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
It seems that they perform the computation in separate computers.
fr :coupling model:io assignments
fr :num sim:two
fr :domain:ct
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop: explicit

105

fr : results visualization :post mortem
fr :communication model:gauss seidel
Although it is a gauss seidel shifted in time.

Ref 59. Stettinger2014: Model-based coupling approach for non-iterative real-time co-simulation [221].

Summary. Proposes to address the challenges in real-time co-simulation by using a model based
coupling approach. The master has to keep track of two values for each packet of data: receiving
time delay tr – the time it takes for a packet to reach the master from the simulator –, and sending
time delay ts – the time it takes for a packet to leave the master and reach the simulator. When a
sample is delayed, the master acts as a replacement for it. Basically, it is a dead reckoning model.

nfr :performance
nfr : parallelism
nfr :accuracy
sr : causality :causal
fr :domain:ct
fr :num sim:two
sr : availability : local
fr :coupling model:io assignments
sr : rollback :none
sr : rel time : fixed real scaled time simulation
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop: explicit
fr : results visualization :post mortem
fr :communication model:jacobi
fr :communication model:gauss seidel

Ref 60. Benedikt2016: Automated configuration for non-iterative co-simulation [31].

Summary. Describes how a co-simulation master can configure some parameters throughout the
co-simulation execution. This is the idea behind adaptive master algorithms.

nfr : ip protection
nfr :accuracy
sr : info : causality :feedthrough
sr : causality :causal
sr : availability : local
sr : rollback :none
sr : rel time : analytic
fr :domain:ct
fr :num sim:three more
fr :coupling model:io assignments
fr :sim rate: single
fr : sim step size : variable
fr :alg loop: explicit
fr : results visualization :post mortem

106

Ref 61. Busch2011: An explicit approach for controlling the macro-step size of co-simulation
methods [52].

Summary. Presents an approach to estimate the local truncation error caused by the extrapolations
of inputs in a co-simulation. The sub-systems are assumed to make no error. It does not require
rollback or re-initialization.

Categories:
nfr :accuracy
Because they study the global error and control the local error.
nfr : ip protection
nfr :performance
They control the step size, which increases performance. And they study how to get an optimal

step size.
sr : info : causality :feedthrough
sr : rollback :none
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
fr : sim step size : variable
fr :alg loop: explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
In theory, they seem to support any communication model. In the paper they studied assuming

the Jacobi.

Ref 62. Quesnel2005: DEVS coupling of spatial and ordinary differential equations: VLE frame-
work [202].

Summary. Proposes a way to wrap a continuous time ODE simulator as a DEVS model. It requires
that the state variables, and derivatives are available.

Categories:
nfr :hierarchy
nfr :open source
sr : info : derivatives :out
sr : info : statevars
sr : info : predict step sizes
sr : causality :causal
fr :domain:de
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
Any discrete event framework is by definition multi-rate.

107

fr : sim step size : variable
Any discrete event framework is by definition in this category.
fr :alg loop: explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:gauss seidel
A discrete event framework is in this category as there is no extrapolation of inputs. Also,

Gauss seidel does not violate the causality of inputs and outputs, because it sorts according to
these dependencies. Events are processed to retain their causality.

Ref 63. Arnold2014a: Error analysis for co-simulation with force-displacement coupling [15].

Summary. Describes an FMI based master called SNiMoWrapper.
Categories:
nfr :accuracy
Because they study the global error and control the local error.
nfr : ip protection
sr : info : causality :feedthrough
sr : rollback :none
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop: explicit
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
fr :standard:fmi

Ref 64. Arnold2014: Error Analysis and Error Estimates for Co-simulation in FMI for Model
Exchange and Co-Simulation v2.0 [14].

Summary. Studies the error control method known as Richard’s extrapolation.
Categories:
nfr :accuracy
Because they study the global error and control the local error.
nfr : ip protection
sr : info : causality :feedthrough
sr : info : statevars
sr : rollback : single
sr : causality :causal

108

fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
fr : sim step size : variable
fr :alg loop: explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
fr :communication model:gauss seidel
fr :standard:fmi

Ref 65. Arnold2001: Preconditioned Dynamic Iteration for Coupled Differential-Algebraic Sys-
tems [11].

Summary. Studies the convergence of the Gauss-Seidel dynamic iteration method and proposes a
way to ensure it. The way to do it though, requires information from the model.

Categories:
nfr :accuracy
Because they study the global error.
sr : info :jacobian:out
sr : info :record outputs
sr : info : full model
sr : rollback : single
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop: implicit
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:gauss seidel

Ref 66. Schweizer2014: Semi-implicit co-simulation approach for solver coupling [215].

Summary. Proposes a predictor corrector master that evaluates the macro step twice and uses a
perturbation on the inputs to get an estimate of the required partial derivatives. This approach is
then generalized to multiple kinds of joints in the mechanical domain. A double pendulum, double
mass-spring-damper and a slider crank mechanism are used as numerical examples.

Categories:
sr : rollback : single

109

sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:two
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop: semi implicit
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 67. Schweizer2015d: Stabilized implicit co-simulation methods: solver coupling based on
constitutive laws [218].

Summary. It presents an implicit and semi-explicit methods for the co-simulation of scenarios cou-
pled via applied forces. The difference between this paper and the previous ones by the same author
seems to be in the fact that the coupling constraints are integrated and differentiated, to enrich the
information being used to ensure that the original coupling constraints are met.

Categories:
sr : rollback : single
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop: semi implicit
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 68. Sadjina2016: Energy Conservation and Power Bonds in Co-Simulations: Non-Iterative
Adaptive Step Size Control and Error Estimation [207].

Summary. Proposes a master for co-simulation that requires the identification of power bonds
between sub-systems. It assumes that the scenario is energy conserving and thus calculate the
energy residual as an error to be minimized. The step size is adapted via a PI-Controller. When
the step size is reduced, it is only on the next co-simulation step, so the method is explicit.

nfr : ip protection
nfr :accuracy
Due to step size control.
sr : rollback :none
sr : causality :causal

110

sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : variable
fr :alg loop: explicit
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi

Ref 69. Busch2016: Continuous approximation techniques for co-simulation methods: Analysis
of numerical stability and local error [50].

Summary. Analyses the stability and local error of multiple co-simulation approaches with multiple
extrapolation approaches for the inputs. It considers Gauss-Seidel and Jacobi. It also talks about a
method called the extrapolated interpolation method, which ensure no discontinuities at the inputs
of the subsystems.

sr : rollback :none
The method is explicit.
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop: explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
fr :communication model:gauss seidel

Ref 70. Arnold2010: Stability of Sequential Modular Time Integration Methods for Coupled
Multibody System Models [10].

Summary. Studies stability of a gauss Seidel co-simulation method proposed in previous work:
[11]. Based on that analysis, it proposes an implicit stabilization technique that uses Gauss-Seidel
iteration. The resulting method is implicit but the equations that are being solved are linear.

Categories:
nfr :accuracy
Because they study the global error.
sr : info :jacobian:out
sr : info :record outputs
sr : info : full model

111

sr : rollback : single
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop: implicit
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:gauss seidel

Ref 71. Gu2001: Co-simulation of algebraically coupled dynamic subsystems [105].

Summary. Describes a technique to deal with algebraically coupled sub-systems using a control
theoretic approach. The highlights of this method are: it supports scenarios of arbitrary index; the
boundary condition coordinator is seen as a co-simulation unit (this is an elegant approach) and
the method is explicit. The beauty of making the BCC as a co-simulation unit, is that it can, just
like any other sub-system be run at a different rate and in the paper they show that by running it
at a higher rate, the stability of the co-simulation increases.

sr : rollback :none
sr : causality :causal
fr :domain:ct
fr :num sim:two
sr : rel time : analytic
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop: explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 72. Gu2004: Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclo-
sure of Proprietary Subsystem Models [107].

Summary. Describes a technique to solve causal conflicts using a Boundary Condition Coordinator
(BCC). Causal conflicts arise naturally from the coupling of different sub-systems and they are
a relevant challenge that needs to be overcome in order to perform correct co-simulation. While
in [105], the BCC requires the knowledge of the state variables of the simulations, in [107], some
modifications are made to ensure that this information is not required.

nfr : ip protection
nfr : distribution
sr : rollback :none

112

sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop: explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 73. Schweizer2016: Co-simulation method for solver coupling with algebraic constraints
incorporating relaxation techniques [219].

Summary. A master algorithm capable of dealing with algebraic constraints is described. It requires
the derivatives of the coupled variables to be available. It executes each communication step twice,
being a semi-implicit method. It uses a predict step and a corrector step. The final corrected
coupling variables are obtained by polynomial extrapolation and relaxation (to avoid instabilities).

Categories:
sr : rollback : single
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
sr : info :jacobian:out
fr : sim step size : fixed
fr :alg loop: semi implicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 74. Schweizer2015: Predictor/corrector co-simulation approaches for solver coupling with
algebraic constraints [214].

Summary. Proposes a predictor corrector master that evaluates the macro step twice and uses a
perturbation on the inputs to get an estimate of the required partial derivatives.

Categories:
sr : rollback : single
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic

113

fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop: semi implicit
sr : info :jacobian:out
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 75. Schweizer2015a: Stabilized index-2 co-simulation approach for solver coupling with
algebraic constraints [216].

Summary. A master algorithm capable of dealing with algebraic constraints is described. It requires
the derivatives of the coupled variables to be available. It executes each communication step twice,
being a semi-implicit method. It uses a predict step and a corrector step. The predictor step
allows the method to estimate the sensitivity of the state variables with respect to the applied
forces/torques.

Categories:
sr : rollback : single
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
sr : info :jacobian:out
fr : sim step size : fixed
fr :alg loop: semi implicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 76. Andersson2016: Methods and Tools for Co-Simulation of Dynamic Systems with the
Functional Mock-up Interface [8].

Summary. This is a Phd Thesis. A linear extrapolation based master is proposed that is convergent
and does not require fixed point iterations. Then, a modification to multi-step methods is proposed
to increase their performance when executing in a co-simulation environment. This modification
avoids the need to restart when dealing with discontinuities.

Categories:
nfr : ip protection
nfr :platform independence
nfr :open source
sr : rollback :none
sr : causality :causal

114

fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr : sim step size : fixed
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
fr :standard:fmi

Ref 77. Krammer2015: Model-Based Configuration of Automotive Co-Simulation Scenarios [140].

Summary. The language is further developed in [140] with the addition of three novel diagrams to
represent different aspects of the co-simulation configuration:
• Architectural – coupling of executable units;
• Tools – assignment of tools to models;
• Connections – connections (it was not clear what does this diagram do);

In addition, they define a couple of well formedness properties that can be checked more easily with
the model-based approach. They give a brief summary of the tool ICOS.

Categories:
nfr : config reusability
nfr : parallelism
nfr :hierarchy
nfr : extensibility
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
sr : availability : local
fr :coupling model:io assignments
fr : results visualization :post mortem
sr : info : full model

Ref 78. Galtier2015: FMI-Based Distributed Multi-Simulation with DACCOSIM [96].

Summary. DACCOSIM is able to perform Distributed simulations and multi-core simulations. The
term “computation node” is used for a collection of FMU wrappers (which include an FMU) and
a local master / global master. The FMU wrappers, and thereby not the masters, are responsible
for passing outputs to connected inputs. This is to avoid bottlenecks. A component node contains
a master and some FMUs, which are wrapped in so-called “FMU-wrappers”. The masters take
responsibility of coordinated step sizes in case an FMU needs to roll back.

nfr :performance
Because of the possibility of splitting the simulation over a cluster / multi-core and the focus

on performance in the article. Additionally because of their use of variable step size
nfr : config reusability

115

It is possible to create multiple co-simulation configuration files in the simulation configuration
GUI. These can be stored and therefore reused.

nfr : ip protection
Some level of IP protection because of FMI..
nfr : parallelism
Because of the possibility of splitting the simulation over a cluster
nfr : distribution
Because a co-simulation can be executed on a cluster of computers
sr : availability :remote
sr : availability : local
nfr :hierarchy
DACCOSIM is weak hierarchical because it has the notion of local and global masters.
nfr : scalability
The framework is considered to be scalable because of the multi-core and distributed architec-

ture.
nfr :platform independence
There are two versions of the DACCOSIM library. A cross-platform version relying on JAVA

and a Windows version using C++ and QTronic SDK.
nfr :accuracy
The article provides an example where the result of the co-simulation using DACCOSIM is

compared to the simulation using Dymola and the results are very close to each other. Accuracy is
ensured by each FMU examining its outputs and estimating how far they are from the exact value.

nfr :open source
The framework is distributed under an open source license from January 2016.
sr : info : stateserial
The framework can perform a single rollback using the state variable serialization.
sr : causality :causal
Because the framework is based on FMI for co-simulation it is considered to be causal.
fr :domain:ct
The framework supports multiple formalisms because it is based on FMI for co-simulation.
fr :num sim:three more
The frameworks is capable of supporting many FMUs and thereby many simulation units. DAC-

COSIM offers its own algorithm depending on global/local masters.
fr :coupling model:io assignments
sr : rel time : analytic
There is no mentioning of any other time models than this in the article.
fr :sim rate: single
The simulation rate is the same for all FMUs.
fr : sim step size : variable
The framework uses Coordinated Variable Step
fr :alg loop: explicit
The framework uses Euler’s method and Richardson’s method. Whether this is default, param-

eterizable or fully customizable is unknown based on this article.
fr :communication model:jacobi
See Co-initialization bullet 2 in the article.
fr :standard:fmi

116

It is based on the FMI standard.
fr : results visualization :post mortem

Ref 79. Fey1997: Parallel synchronization of continuous time discrete event simulators [84].

Summary. Presents two synchronization approaches, detailed in three different synchronization
protocols, to coordinate simulation scenarios that include one discrete event simulator and one
continuous time simulator. The discrete event simulator can implement any parallel simulation
approach that we know, such as Time-Warp. This means that, even internally, the DE simulator
can be forced to rollback due to straggler messages. The focus is on parallel approaches.

Categories:
nfr :performance
nfr : ip protection
nfr : parallelism
nfr :accuracy
fr :domain:de
fr :domain:ct
fr :num sim:two
fr :sim rate:multi
fr : sim step size : fixed
fr : results visualization :post mortem
sr : rel time : analytic
sr : availability : local
sr : rollback : single
fr :coupling model:io assignments
sr : info : full model

Ref 80. Acker2015: Generation of an Optimised Master Algorithm for FMI Co-simulation [236].

Summary. Essentially, this paper shows how a compiled approach increases the performance of the
co-simulation. It also shows that, because there are so many decisions to be made when designing
the master, a compiled approach allows for a more elegant, and specifically tailored master, to be
generated.

nfr :performance
nfr : ip protection
nfr : config reusability
nfr :open source
sr : rel time : analytic
sr : availability : local
sr : info : causality :feedthrough
sr : info : statevars
sr : rollback :none
sr : causality :causal
sr : info : preferred step sizes
fr :domain:ct

117

fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr : results visualization :post mortem
fr :standard:fmi
fr :communication model:gauss seidel
fr :alg loop: implicit
fr :coupling model:io assignments

Ref 81. Enge-Rosenblatt2011: Functional Digital Mock-up and the Functional Mock-up In-
terface - Two Complementary Approaches for a Comprehensive Investigation of Heterogeneous
Systems [79].

Summary. The paper describes and compares two approaches to performing co-simulation of het-
erogeneous systems, namely the Functional Digital Mock-up (FDMU) and the Functional Mock-up
Interface (FMI). Besides describing these approaches it also introduces the “FDMU framework”, a
framework that implements the Functional Digital Mock-up approach. Furthermore, proposals are
presented for combining FDMU and FMI approaches.

The FDMU approach is a tool-independent and web service-based framework build on the Web
Service standards. It is capable of coupling different simulation tools and provide visualization
based on CAD models.

FDMU consists of three main concepts: functional building blocks (FBB), wrappers, FDMU
master, and FDMU Console. The functional building block can wrap geometric information (CAD
Models), behavioral models, and a simulator tool. It is the responsibility of the wrappers to establish
a connection between the different simulation tools and the FDMU Master Simulator. Finally, the
FDMU master ensures correct communication between the simulators. The FDMU Console is the
user’s front-end.

nfr :performance
Communication overhead of a web service-based approach.
nfr : ip protection
Because of the the web service-based approach IP protection should be possible.
nfr : parallelism
Because of the web service-based approach it is parallel by nature. It uses thread-safe queues

and deadlock-free transmission of data.
nfr : distribution
Because of the web service-based approach it is easy distributable.
nfr : scalability
The distributed systems paradigm ensures scalability.
nfr :platform independence
web service-based approach.
nfr : extensibility
A new wrapper can be implemented.
sr : causality :causal
Every input of an FBB must have an appropriate output belonging to another FBB.
fr :domain:ct
fr :coupling model:io assignments

118

fr :num sim:three more
fr :sim rate:multi
sr : availability :remote
fr : results visualization : live
The framework provides an interactive 3D visualization based on CAD.
fr :standard:fdmu

Ref 82. Karner2010a: Heterogeneous co-simulation platform for the efficient analysis of FlexRay-
based automotive distributed embedded systems [130].

Summary. Motivation: FlexRay is a wired network for automotive high-speed control applications
and no solutions exist that simulates all parts of the network.

What: a co-simulation platform called TEODACS FlexRayExprt.Sim. The simulation approach
used in the platform covers mechanics and all parts of the network from physical layer to application
layer, which is not done by other solutions. The framework CISC SyAD is used to perform the
microelectronics co-simulation, CarMaker/AVL InMotion for the mechanics, and they are bridged
by TEODACS FlexRayEprt.Sim. The platform uses a very interesting approach to faster co-
simulations, namely the use of model switching, where a less detailed model replaces a more detailed
model in parts of the simulation.

The paper provides an overview of existing approaches such as transaction based modeling,
HDLs such as SystemC and Verilog, and cable harness and topology modeling along with why
these contain shortcomings to this domain. Furthermore, the paper provides some details of the
implementation of the models used in the co-simulation and showcases how the platform can analyse
a system with specific examples.

nfr :accuracy
Because of model switching.
nfr :performance
Because of model switching.
fr :dynamic structure
Because the structure of the co-simulation is changed via model switching.
fr :domain:ct
Because SyAD supprots multiple formalisms and CarMaker / AVL InMotion.
fr :domain:de
fr :coupling model:io assignments
fr :num sim:three more
Multiple FlexRay nodes can be added.
sr : rel time : analytic
From model switching and similar it is clear that analytic simulation is used.
fr : results visualization :post mortem

Ref 83. Aslan2015: MOKA: An Object-Oriented Framework for FMI Co-Simulation [16].

Summary. The paper describes MOKA, which is a framework for performing co-simulations and
creating FMUs using FMI 2.0 for co-simulation. The framework turns the creation of FMUs into
an object-oriented process by using C++. An FMU is created by inheriting one of the classes and

119

implementing virtual functions thereby avoiding writing boilerplate code. The implementation of
FMUs is realised by the concepts of FMUBlock, which is to be inherited, FMUPort, and FMUS-
tateVariables. FMUBlock is to be extended by a concrete FMU slave and implements common
computation phase functions for slaves. It contains FMUPort for data exchange and FMUState-
Variables for state tracking during the simulation. The FMUPort classes provides the data exchange
interface of a slave. It abstracts the value references by automatically assigning a value reference to
the variable. The BaseStateVariable class also functions as base that is to be extended. It provides
virtual functions for state variable services. The StateVariable inherits from BaseStateVariable
and represents state variables for the slave. The framework also provides a template for the FMU
Master so the master code changes minimally for different scenarios.

The article exemplifies an application of the MOKA framework where two FMUs are used: The
bouncing ball and integer counter example from the QTronic SDK, where the bouncing ball has
been re-developed with MOKA.

In future work it is stated that development of a DSL in a current study, so that different
scenarios can be executed without altering the master code.

nfr : ip protection
nfr : config reusability
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :coupling model:io assignments
fr :num sim:three more
fr :standard:fmi
fr :domain:ct
fr :alg loop: explicit
fr :sim rate: single
fr :communication model:gauss seidel
fr : results visualization :post mortem

Ref 84. Wetter2010: Co-simulation of building energy and control systems with the Building
Controls Virtual Test Bed [253].

Summary. Describes a co-simulation framework called Building Controls Virtual Test Bed (BCVTB)
that can be used for real-time simulation and co-simulation. It is a modular extensible open-source
platform to interface different simulation programs with each other. The intention is to give users
the option to use the best tools suited to model various aspects of building energy and control
systems, or use programs where they have expertise. The middleware to couple any number of
simulation programs also provides libraries such that it can be extended. Furthermore, the paper
describes how they gathered capabilities the framework should support. The framework is based
on Ptolemy II, which is extended by some java packages. The simulator package adds functionality
that allows an actor to perform system calls to start any executable on Windows, OSX or Linux.
It simply starts a simulation program, sends input tokens to the simulation program, receives new
values and sends them to its output port. Algorithms are also provided on how simulators are
coupled. These are also exemplified with specific simulators. It is also described how to connect

120

client programs. The article describes how the interfaces are created for simulink, matlab, modelica,
and system cals. Furthermore, a specific example is presented.

nfr : config reusability
nfr : distribution
nfr :platform independence
nfr : extensibility
nfr :open source
sr : causality :causal
sr : rel time : analytic
sr : rel time : fixed real scaled time simulation
fr :domain:ct
In the paper, their explanation is focused on the CT domain.
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi

Ref 85. Neema2014: Model-based integration platform for FMI co-simulation and heterogeneous
simulations of cyber-physical systems [182].

Summary. The article concerns integrating FMI as an HLA federate and extending the Command
and Control Wind Tunnel (C2WT) metamodel to include FMI-specifics. This enables the C2WT
tool to use FMUs as part of a simulation. The C2WT tool is describes as a multi-model integration
platform that allows users to model and synthesize complex, heterogeneous, command and control
simulations. The tool therefore has support for multiple simulation engines and an introduction to
the tool is given in the paper. Furthermore, a case study on Vehicle Thermal Management using
FMUs are presented and The focompared to a simulation in a different environment. The work is
sponsored by the US DoD.

nfr :platform independence
nfr : distribution
nfr : config reusability
fr :domain:de
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr : sim step size : variable
sr : rel time : fixed real scaled time simulation
sr : rel time : analytic
fr : results visualization : live
fr :standard:hla
fr :standard:fmi
fr :communication model:jacobi

121

Ref 86. Larsen16c: Integrated Tool Chain for Model-Based Design of Cyber-Physical Sys-
tems [148].

Summary. This article presents an overview of the INTO-CPS project and thereby a Co-Simulation
tool. The projects concerns production of a well-founded tool chain for model-based design of
CPSs, and therefore consists of a semantic foundation and several baseline tools such as Modelio,
Overture, 20-sim, OpenModelica and RT-Tester. Furthermore, an application called the INTO-CPS
application is the entry point for configuring co-simulations and uses the co-simulation orchestration
engine (COE) to perform the actual simulations. This COE is based on the FMI standard. The
entire tool chain and the semantic foundation are presented in this paper. This is related to [148].

nfr : config reusability
nfr : ip protection
sr : info :nominal values:output
sr : info :nominal values:state
sr : info : derivatives :out
sr : info : derivatives : state
sr : info :jacobian:out
sr : info :jacobian: state
sr : info : preferred step sizes
sr : info : causality :feedthrough
sr : causality :causal
sr : availability : local
sr : info : statevars
sr : info :record outputs
sr : rel time : analytic
sr : info : stateserial
fr :standard:fmi
sr : info : signal
fr :num sim:three more
fr :domain:de
fr :domain:ct
fr :sim rate: single
fr : results visualization :post mortem
fr : results visualization : live

Ref 87. INTOCPSD41d: Design of the INTO-CPS Platform [149].

Summary. This is an EU deliverable related to the INTO-CPS project. It contains the technical
documentation of the INTO-CPS platform at the end of 2015 (the first year of the project). Part
of this project is the Co-simulation Orchestration Engine (COE). This is related to [148].

sr : info : predict step sizes
Supports the FMI suggested extension fmi2getMaxStepSize
nfr :performance
The COE supports variable step size, which can increase performance.
sr : rollback : single
Supports rollback to last successful state.

122

nfr :performance
The COE supports variable step size, which can increase performance.
nfr :accuracy
Contains various constraints such as zero-crossing, bounded difference and sampling rate. Fur-

thermore, support for allowed min and max values.

C Co-Simulation Scenario Categorization

This section describes each category and lists the references that belong to that category, classified
in the previous section.

C.1 Non-Functional Requirements

C.1.1 Fault Tolerance

A co-simulation platform is fault tolerant if, for example, when one simulation unit fails, other can
take its place. This is particularly important for long running simulations. To be fault tolerant,
certain features need to available: periodically store the state of simulation units; record all inputs
to each simulation unit. If a simulation unit fails and the state is periodically stored, then the
simulation can be paused while the state is restored in a new instance of the simulation unit. The
history of input values passed to each simulation unit can be used to bring the simulation unit to
the current state.

References in this category:
Fuller2013

C.1.2 Configuration Reusability

This category refers to the fact that frameworks can provide a way to configure co-simulation
scenarios that can be reused. This means that the configuration is considered external to the
execution of the co-simulation. External in this context means that the configuration can reused
without altering the binaries for the co-simulation application.

If a tool/frame does not provide a way to reuse configurations for co-simulation, then it is a
time-consuming, error-prone and non-trivial process to set up co-simulations [140].

References in this category:
Wang2013
Krammer2015
Galtier2015
Acker2015
Aslan2015
Wetter2010
Neema2014

C.1.3 Performance

Performance is a relative measure: a co-simulation platform is performant when it is able to simulate
a great deal in a short amount of time while needing little resources. This can be achieved by using

123

variable step integration methods and signal extrapolation techniques. Parallelism also plays a role
but mostly on the time aspect of performance.

References in this category:
Hoepfer2011
Faure2011
Sun2011
Friedrich2011
Gonzalez2011
Gunther2012
Eyisi2012
Riley2011
Benedikt2013
Sicklinger2014
Kounev2015
Bian2015
BenKhaled2012
BenKhaled2014
Saidi2016
Schierz2012a
Liu2001
Carstens2003
Stettinger2014
Busch2011
Galtier2015
Fey1997
Acker2015
Enge−Rosenblatt2011
Karner2010a

C.1.4 IP Protection

IP Protection deals with not requiring the models participating in the co-simulation to provide de-
tailed structure, variables, etc. . . There are multiple levels of protection ranging from fully protected
to not protected at all. A good IP protection enables component suppliers to provide the system
integrators with detailed simulations of their components avoiding expensive lock-in contracts.

There are multiple techniques can be be employed to ensure some degree of protection. For
instance, making the models (and corresponding simulation units) available as a web service is a
possible solution. Another example is any framework that implements the FMI Standard [34, 35],
which allows models and simulation units to be exported as a single functional unit, in binary
format, that can be imported into a co-simulation.

References in this category:
Hoepfer2011
Sun2011
Bastian2011a
Friedrich2011
Broman2013

124

Fuller2013
Wang2013
Kuhr2013
Viel2014
Dols2016
Saidi2016
Camus2015
Camus2016
Benedikt2016
Busch2011
Arnold2014a
Arnold2014
Sadjina2016
Gu2004
Andersson2016
Galtier2015
Fey1997
Acker2015
Enge−Rosenblatt2011
Aslan2015

C.1.5 Parallelism

A co-simulation framework is parallel when it makes use of multiple processes/threads to perform
the co-simulation. This is typically in the same computer or same local network.

Techniques such as signal extrapolation help improve the speed-up gained from parallelism.
Furthermore waveform relaxation techniques and the Jacobi iterations promote parallelism [167].

References in this category:
Faure2011
Bastian2011a
Friedrich2011
Gunther2012
Awais2013b
Awais2013a
BenKhaled2012
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
Pedersen2016
Oh2016
Xie2016
Liu2001
Stettinger2014
Krammer2015

125

Galtier2015
Fey1997
Enge−Rosenblatt2011

C.1.6 Distribution

A co-simulation framework is parallel and distributed when it allows each simulation unit to be
remote, across a wide area network.

This is very important since suppliers can, instead of transferring the simulation units in ex-
ecutable form across computers, can make them available over the web. This offers much more
control over how the simulation units are used.

The same techniques used in parallelism can be used to promote distribution, but fault tolerance
is also important.

References in this category:
Friedrich2011
Nutaro2011
Busch2012
Quaglia2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Fuller2013
Bombino2013
Zhao2014
Awais2013b
Awais2013a
Camus2015
Camus2016
Pedersen2016
Oh2016
Gu2004
Galtier2015
Enge−Rosenblatt2011
Wetter2010
Neema2014

C.1.7 Hierarchy

A hierarchical co-simulation framework is able to abstract a co-simulation scenario as a black box
simulation unit. This is very intuitive and promotes abstraction of complex systems.

References in this category:
Quesnel2005
Krammer2015
Galtier2015

126

C.1.8 Scalability

A co-simulation framework is scalable when it supports a large number of simulation units. It is
intimately related to performance and paralelism.

References in this category:
Fuller2013
BenKhaled2014
Saidi2016
Galtier2015
Enge−Rosenblatt2011

C.1.9 Platform Independence

A co-simulation framework is platform independent when it works on multiple computing platforms.
For this to be achieved, a platform independent language, such as Java, can be used to coordinate
the simulation.

References in this category:
Bastian2011a
Eyisi2012
Riley2011
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Andersson2016
Galtier2015
Enge−Rosenblatt2011
Wetter2010
Neema2014

C.1.10 Extensibility

A co-simulation framework is extensible when it can be easily extended to support new kinds of
simulation units, with new kinds of capabilities. A higher level, domain specific, language can
be used to specify the behaviour in a platform agnostic way. Code is then generated from this
description. The hypothesis is that the high level description can be more easily extended to
describe new behaviour and that the code generation process can be adapted accordingly.

References in this category:
Kuhr2013
Krammer2015
Enge−Rosenblatt2011
Wetter2010

C.1.11 Accuracy

A co-simulation is accurate when the error between the trace produced and the correct trace is
minimal. This can be achieved by error control mechanisms.

References in this category:

127

Hoepfer2011
Tomulik2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Schierz2012
Gunther2012
Fitzgerald2010
Fitzgerald2013
Benedikt2013
Benedikt2013b
Hafner2013
Viel2014
Sicklinger2014
BenKhaled2014
Camus2015
Camus2016
Oh2016
Schierz2012a
Stettinger2014
Benedikt2016
Busch2011
Arnold2014a
Arnold2014
Arnold2001
Sadjina2016
Arnold2010
Galtier2015
Fey1997
Karner2010a

C.1.12 Open source

We consider open source the frameworks that make available the source code under certain licenses
that are not paid for in any way.

References in this category:
Roche2012
Quesnel2005
Andersson2016
Galtier2015
Acker2015
Wetter2010

C.2 Simulator Requirements

This sub section covers the taxonomy that focuses on individual simulators’ capabilities.

128

C.2.1 Information Exposed

Frequency of State The instantaneous frequency of the state of the sub-system can be used to
adjust the communication step size.

Frequency of Outputs The instantaneous frequency of the output of the sub-system can be
used to adjust the communication step size, as is done in [29].

References in this category:
Benedikt2013b

Detailed Model Simulators that make the equations of the dynamic system available fall into
this category.

References in this category:
Schmoll2012
Hassairi2012
Schierz2012
Zhang2014
BenKhaled2012
BenKhaled2014
Yamaura2016
Arnold2001
Arnold2010
Krammer2015
Fey1997

Nominal Values of Outputs This information indicates the order of magnitude of output sig-
nals.

Nominal Values of State This information indicates the order of magnitude of state signals.

I/O Signal Kind The kind of output signal helps the master algorithm understand what as-
sumptions are in a signal.

References in this category:
Kuhr2013

Time Derivative

Output References in this category:
Hoepfer2011
Tomulik2011
Gunther2012
Schierz2012a
Carstens2003
Quesnel2005

129

State References in this category:
Hoepfer2011

Jacobian

Output References in this category:
Tomulik2011
Bastian2011a
Busch2012
Schierz2012
Viel2014
Sicklinger2014
Arnold2001
Arnold2010
Schweizer2016
Schweizer2015
Schweizer2015a

State

Discontinuity Indicator A discontinuity indicator is a signal that indicates the presence of a
discontinuity in the output of the simulation unit.

Deadreckoning model A deadreckoning model is a function that can be used by other simulation
units to extrapolate the behavior of this simulation unit.

Preferred Step Size References in this category:
Acker2015

Next Step Size The next step size indicates the next communication time that is appropriate
for the current simulator.

References in this category:
Lin2011
Gunther2012
Eyisi2012
Riley2011
Broman2013
Kounev2015
Quesnel2005

Order of Accuracy The order of accuracy can be used to determine the appropriate input
extrapolation functions to be used in a co-simulation scenario.

130

I/O Causality Feedthrough
References in this category:
Broman2013
Bogomolov2015
BenKhaled2012
BenKhaled2014
Saidi2016
Benedikt2016
Busch2011
Arnold2014a
Arnold2014
Acker2015
Propagation Delay
The propagation delay indicates how many micro-steps have to be performed before a change in

the input affects an output. In Simulink, this is the number of delay blocks in chain from an input
to an output.

Input Extrapolation This information denotes the kind of input extrapolation being performed
by the simulation unit.

References in this category:
Viel2014

State Variables References in this category:
Hoepfer2011
Quesnel2005
Arnold2014
Acker2015

Serialized State References in this category:
Bastian2011a
Broman2013
Viel2014
Bogomolov2015
Camus2015
Camus2016
Schierz2012a
Galtier2015

Micro-Step Outputs This information denotes the output of the simulation unit, evaluated at
each of the micro-steps.

References in this category:
Benedikt2013
Viel2014
Arnold2001
Arnold2010

131

WCET This denotes the worst case excution time.
References in this category:
Faure2011
BenKhaled2014
Saidi2016

C.2.2 Causality

Causal References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Tomulik2011
Sun2011
Bastian2011a
Friedrich2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Sicklinger2014

132

Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
Oh2016
Xie2016
Manbachi2016
Schierz2012a
Fourmigue2009
Liu2001
Carstens2003
Stettinger2014
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Galtier2015
Acker2015
Enge−Rosenblatt2011
Aslan2015
Wetter2010

A-Causal

133

C.2.3 Time Constraints

Analytic Simulation References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Tomulik2011
Sun2011
Friedrich2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Sicklinger2014
Zhang2014
Kounev2015
Bogomolov2015
Dols2016
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
Oh2016

134

Xie2016
Schierz2012a
Fourmigue2009
Liu2001
Carstens2003
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Krammer2015
Galtier2015
Fey1997
Acker2015
Karner2010a
Aslan2015
Wetter2010
Neema2014

Scaled Real Time Simulation
Fixed

A simulator is fixed scaled real time when it simulated time progresses according to a fixed linear
relationship with the real time.

References in this category:
Faure2011
Bian2015
BenKhaled2012
Pedersen2016
Manbachi2016
Stettinger2014
Wetter2010
Neema2014
Dynamic

135

A simulator is dynamic scaled real time when the relation between the simulated time and the
real time can be changed throughout the simulation.

References in this category:
Bombino2013

C.2.4 Rollback Support

None References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Faure2011
Sun2011
Bastian2011a
Friedrich2011
Gonzalez2011
Schmoll2012
Ni2012
Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
BenKhaled2014

136

Saidi2016
Yamaura2016
Camus2015
Camus2016
Oh2016
Xie2016
Manbachi2016
Carstens2003
Stettinger2014
Benedikt2016
Busch2011
Arnold2014a
Sadjina2016
Busch2016
Gu2001
Gu2004
Andersson2016
Acker2015
Aslan2015

Single Single rollback means that the simulation unit is capable of saving a certain state in the
past (simulated time) and revert to that state. Once reverted, the simulation unit cannot revert
further in the past.

References in this category:
Tomulik2011
Nutaro2011
Busch2012
Bombino2013
Sicklinger2014
Schierz2012a
Liu2001
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Arnold2010
Schweizer2016
Schweizer2015
Schweizer2015a
Fey1997

Multiple Multiple rollback means that the simulation unit is capable of saving a certain state
in the past (simulated time) and revert to that state. Once reverted, the simulation unit revert
further into the past as many times as necessary.

137

C.2.5 Availability

Remote References in this category:
Friedrich2011
Busch2012
Quaglia2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Fuller2013
Bombino2013
Zhao2014
Awais2013b
Awais2013a
Bian2015
Dols2016
Yamaura2016
Oh2016
Liu2001
Carstens2003
Galtier2015
Enge−Rosenblatt2011

Local References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Faure2011
Tomulik2011
Sun2011
Bastian2011a
Gonzalez2011
Nutaro2011
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Gunther2012
Al−Hammouri2012
Broman2013
Benedikt2013
Benedikt2013b
Wang2013

138

Hafner2013
Li2011c
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Sicklinger2014
Zhang2014
Kounev2015
Bogomolov2015
BenKhaled2012
BenKhaled2014
Saidi2016
Camus2015
Camus2016
Xie2016
Manbachi2016
Schierz2012a
Fourmigue2009
Stettinger2014
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Krammer2015
Galtier2015
Fey1997
Acker2015
Aslan2015

139

C.3 Framework Requirements

C.3.1 Standard

High Level Architecture References in this category:
Eyisi2012
Riley2011
Awais2013b
Awais2013a
Neema2014

Functional Mock-up Interface References in this category:
Pedersen2015
Sun2011
Bastian2011a
Broman2013
Wang2013
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Bogomolov2015
Dols2016
BenKhaled2012
BenKhaled2014
Saidi2016
Camus2015
Camus2016
Pedersen2016
Schierz2012a
Arnold2014a
Arnold2014
Andersson2016
Galtier2015
Acker2015
Aslan2015
Neema2014

Functional Digital Mock-up References in this category:
Enge−Rosenblatt2011

C.3.2 Coupling

Input/Output Assignments References in this category:
Pedersen2015
Lin2011
Faure2011

140

Sun2011
Bastian2011a
Friedrich2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
Yamaura2016
Camus2015
Camus2016
Pedersen2016
Oh2016
Xie2016
Manbachi2016
Schierz2012a
Fourmigue2009
Liu2001
Carstens2003

141

Stettinger2014
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Sadjina2016
Busch2016
Andersson2016
Krammer2015
Galtier2015
Fey1997
Acker2015
Enge−Rosenblatt2011
Karner2010a
Aslan2015
Wetter2010

Algebraic Constraints References in this category:
Tomulik2011
Friedrich2011
Schierz2012
Viel2014
Sicklinger2014
Arnold2001
Schweizer2014
Schweizer2015d
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a

C.3.3 Number of Simulation Units

Two References in this category:
Lin2011
Sun2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Quaglia2012

142

Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Zhao2014
Li2011c
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
Pedersen2016
Oh2016
Xie2016
Manbachi2016
Fourmigue2009
Liu2001
Carstens2003
Stettinger2014
Schweizer2014
Gu2001
Fey1997

Three or More References in this category:
Pedersen2015
Hoepfer2011
Faure2011
Tomulik2011
Bastian2011a
Friedrich2011
Schierz2012
Gunther2012
Broman2013
Hafner2013
Awais2013b
Awais2013a
Kuhr2013
Viel2014

143

Sicklinger2014
BenKhaled2012
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
Schierz2012a
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Arnold2001
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Krammer2015
Galtier2015
Acker2015
Enge−Rosenblatt2011
Karner2010a
Aslan2015
Wetter2010
Neema2014

C.3.4 Domain

CT References in this category:
Pedersen2015
Hoepfer2011
Faure2011
Tomulik2011
Sun2011
Bastian2011a
Friedrich2011
Gonzalez2011
Busch2012
Schmoll2012
Ni2012

144

Hassairi2012
Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Roche2012
Fitzgerald2010
Fitzgerald2013
Broman2013
Benedikt2013
Benedikt2013b
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Kuhr2013
Viel2014
Sicklinger2014
Zhang2014
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
BenKhaled2014
Saidi2016
Yamaura2016
Pedersen2016
Oh2016
Xie2016
Schierz2012a
Liu2001
Carstens2003
Stettinger2014
Benedikt2016
Busch2011
Arnold2014a
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2001
Gu2004

145

Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Krammer2015
Galtier2015
Fey1997
Acker2015
Enge−Rosenblatt2011
Karner2010a
Aslan2015
Wetter2010

DE References in this category:
Lin2011
Nutaro2011
Al−Hammouri2012
Eyisi2012
Riley2011
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Fuller2013
Awais2013b
Awais2013a
Kuhr2013
Zhang2014
Kounev2015
Bogomolov2015
Camus2015
Camus2016
Fourmigue2009
Quesnel2005
Fey1997
Karner2010a
Neema2014

C.3.5 Dynamic structure

References in this category:
Karner2010a

C.3.6 Co-simulation Rate

Single References in this category:
Pedersen2015
Lin2011

146

Hoepfer2011
Faure2011
Tomulik2011
Sun2011
Bastian2011a
Friedrich2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Viel2014
Sicklinger2014
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
BenKhaled2014
Yamaura2016
Pedersen2016
Oh2016
Xie2016
Manbachi2016
Schierz2012a
Carstens2003

147

Stettinger2014
Benedikt2016
Busch2016
Arnold2010
Galtier2015
Aslan2015
Wetter2010

Multi Multi-rate co-simulation denotes that the framework distinguishes between slow and fast
sub-systems and dimensions the communication step size accordingly, providing for interpola-
tion/extrapolation of the slow systems.

References in this category:
Gonzalez2011
Awais2013b
Awais2013a
Kuhr2013
Camus2015
Camus2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Sadjina2016
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Fey1997
Acker2015
Enge−Rosenblatt2011
Neema2014

C.3.7 Communication Step Size

Fixed References in this category:
Pedersen2015
Faure2011
Tomulik2011
Bastian2011a
Friedrich2011
Gonzalez2011
Busch2012

148

Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Quaglia2012
Roche2012
Kudelski2013
Benedikt2013
Benedikt2013b
Bombino2013
Hafner2013
Zhao2014
Li2011c
Awais2013a
Viel2014
Sicklinger2014
Zhang2014
Bian2015
Dols2016
BenKhaled2012
BenKhaled2014
Pedersen2016
Oh2016
Xie2016
Manbachi2016
Carstens2003
Stettinger2014
Arnold2014a
Arnold2001
Schweizer2014
Schweizer2015d
Busch2016
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Fey1997
Acker2015
Wetter2010
Neema2014

149

Variable References in this category:
Lin2011
Hoepfer2011
Sun2011
Nutaro2011
Gunther2012
Al−Hammouri2012
Eyisi2012
Riley2011
Fitzgerald2010
Fitzgerald2013
Broman2013
Fuller2013
Wang2013
Awais2013b
Kuhr2013
Kounev2015
Bogomolov2015
Camus2015
Camus2016
Schierz2012a
Benedikt2016
Busch2011
Quesnel2005
Arnold2014
Sadjina2016
Galtier2015
Neema2014

C.3.8 Strong Coupling Support

None – Explicit Method References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Faure2011
Sun2011
Friedrich2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Gunther2012

150

Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
Pedersen2016
Oh2016
Xie2016
Manbachi2016
Schierz2012a
Carstens2003
Stettinger2014
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Sadjina2016
Busch2016
Gu2001
Gu2004

151

Galtier2015
Aslan2015

Partial – Semi-Implicit Method References in this category:
Busch2012
Schweizer2014
Schweizer2015d
Schweizer2016
Schweizer2015
Schweizer2015a

Full – Implicit Method References in this category:
Tomulik2011
Bastian2011a
Busch2012
Viel2014
Sicklinger2014
Liu2001
Arnold2001
Arnold2010
Acker2015

C.3.9 Results Visualization

Postmortem The results are available after the simulation. References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Faure2011
Tomulik2011
Sun2011
Bastian2011a
Friedrich2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Roche2012
Kudelski2013
Broman2013
Benedikt2013

152

Benedikt2013b
Fuller2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Viel2014
Sicklinger2014
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
Camus2015
Camus2016
Xie2016
Schierz2012a
Liu2001
Carstens2003
Stettinger2014
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Krammer2015
Galtier2015
Fey1997
Acker2015
Karner2010a
Aslan2015

153

Wetter2010

Live References in this category:
Hassairi2012
Eyisi2012
Riley2011
Fitzgerald2010
Fitzgerald2013
Yamaura2016
Pedersen2016
Enge−Rosenblatt2011
Neema2014

Interactive References in this category:
Bombino2013
Yamaura2016

C.3.10 Communication Approach

Jacobi References in this category:
Pedersen2015
Hoepfer2011
Faure2011
Tomulik2011
Bastian2011a
Friedrich2011
Schmoll2012
Schierz2012
Gunther2012
Kudelski2013
Broman2013
Hafner2013
Awais2013b
Awais2013a
Sicklinger2014
Bogomolov2015
BenKhaled2012
Saidi2016
Xie2016
Manbachi2016
Schierz2012a
Fourmigue2009
Stettinger2014
Busch2011
Arnold2014a
Arnold2014

154

Schweizer2014
Schweizer2015d
Sadjina2016
Busch2016
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Galtier2015
Wetter2010
Neema2014

Gauss-Seidel References in this category:
Lin2011
Hoepfer2011
Sun2011
Bastian2011a
Gonzalez2011
Nutaro2011
Busch2012
Ni2012
Hassairi2012
Schierz2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Sicklinger2014
Kounev2015

155

Dols2016
BenKhaled2012
BenKhaled2014
Camus2015
Camus2016
Pedersen2016
Oh2016
Carstens2003
Stettinger2014
Quesnel2005
Arnold2014
Arnold2001
Busch2016
Arnold2010
Acker2015
Aslan2015

156

D List of Acronyms

CPS Cyber-Physical System
CT Continuous Time
DE Discrete Event
DEVS Discrete Event System Specification
DTSS Discrete Time System Specification
FMI Functional Mock-up Interface
FR Framework Requirement
GVT Global Virtual Time
IP Intellectual Property
IVP Initial Value Problem
NFR Non-Functional Requirement
ODE Ordinary Differential Equation
SR Simulator Requirement

157

	1 Introduction
	1.1 Motivation
	1.2 Co-simulation
	1.3 Need for the Survey
	1.4 Outline

	2 Modeling, Simulation, and Co-simulation
	2.1 Dynamical Systems – Models of Real Systems
	2.2 Simulators – Computing the Behavior Trace
	2.3 Simulation Units - Mock-ups of Reality
	2.4 Compositional Co-simulation

	3 Discrete Event Based Co-simulation
	3.1 DE Simulation units
	3.2 DE Co-simulation Orchestration
	3.3 Challenges
	3.3.1 Causality
	3.3.2 Determinism and Confluence
	3.3.3 Dynamic Structure
	3.3.4 Distribution
	4 Continuous Time Based Co-simulation
	4.1 CT Simulation Units
	4.2 CT Co-simulation Orchestration
	4.3 Challenges
	4.3.1 Modular Composition – Algebraic Constraints
	4.3.2 Algebraic loops
	4.3.3 Consistent Initialization of Simulators
	4.3.4 Compositional Convergence – Error Control
	4.3.5 Compositional Stability
	4.3.6 Compositional Continuity
	4.3.7 Real-time Constraints

	5 Hybrid Co-simulation Approach
	5.1 Hybrid Co-simulation Scenarios
	5.2 Challenges
	5.2.1 Semantic Adaptation
	5.2.2 Predictive Step Sizes
	5.2.3 Event Location
	5.2.4 Discontinuity Identification
	5.2.5 Discontinuity Handling
	5.2.6 Algebraic Loops, Legitimacy, and Zeno Behavior
	5.2.7 Stability
	5.2.8 Theory of DE Approximated States
	5.2.9 Standards for Hybrid Co-simulation

	6 Classification
	6.1 Methodology
	6.2 Taxonomy
	6.3 State of the Art
	6.4 Discussion

	7 Concluding Remarks
	A Historical Perspective of Co-simulation
	A.1 One Formalism and Dynamic Iteration
	A.2 Two Formalisms: Digital and Analog Co-simulation
	A.3 Multi-abstraction/Multi-Formalism Co-simulation
	A.4 Black-box Co-simulation
	A.5 Real-time Co-simulation
	A.6 Many simulation units: Large Scale Co-simulation

	B State of the Art in Co-simulation Frameworks
	C Co-Simulation Scenario Categorization
	C.1 Non-Functional Requirements
	C.1.1 Fault Tolerance
	C.1.2 Configuration Reusability
	C.1.3 Performance
	C.1.4 IP Protection
	C.1.5 Parallelism
	C.1.6 Distribution
	C.1.7 Hierarchy
	C.1.8 Scalability
	C.1.9 Platform Independence
	C.1.10 Extensibility
	C.1.11 Accuracy
	C.1.12 Open source

	C.2 Simulator Requirements
	C.2.1 Information Exposed
	C.2.2 Causality
	C.2.3 Time Constraints
	C.2.4 Rollback Support
	C.2.5 Availability

	C.3 Framework Requirements
	C.3.1 Standard
	C.3.2 Coupling
	C.3.3 Number of Simulation Units
	C.3.4 Domain
	C.3.5 Dynamic structure
	C.3.6 Co-simulation Rate
	C.3.7 Communication Step Size
	C.3.8 Strong Coupling Support
	C.3.9 Results Visualization
	C.3.10 Communication Approach
	D List of Acronyms

