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Abstract. The description of a complex system in terms of constituent
components and their interaction is one of the most natural and in-
tuitive ways of decomposition. Causal Block Diagram (CBD) models
combine subsystem blocks in a network of relationships between input
signals and output signals. Popular modeling and simulation tools such
as Matlab/SimulinkR© implement different variants from the family of
Causal Block Diagram formalisms.
This chapter gives an overview of modeling and simulation of systems
with software and physical components using Causal Block Diagrams. It
describes the syntax and - both declarative and operational - semantics
of CBDs incrementally. Starting from simple algebraic models (no notion
of time), we introduce, first a discrete notion of time (leading to discrete-
time CBDs) and subsequently, a continuous notion of time (leading to
continuous-time CBDs). Each new variant builds on the previous ones.
Because of the heavy dependency of CBDs on numerical techniques, we
give an intuitive introduction to this important field, pointing out main
solutions as well as pitfalls.
After reading this chapter, the reader will be able to judge when to use
the CBD formalism and how to use it, as well as the main issues often
encountered with the description of physical systems and the implemen-
tation of CBD simulators.

1 Introduction

The design process of complex systems, aided by the technology advances in the
last century, is rapidly shifting from small scale development of isolated systems,
to large scale development of integrated systems [1, 6, 14].

The graphical representation of a system using blocks and arrows is one of the
first methods used to represent systems. One of the benefits of this notation is
that complex systems can be hierarchically decomposed into sub-systems, thus
providing a way to deal with complexity. Causal Block Diagrams (CBD) is a
formalization of this intuitive graphical notation.

Originally, CBDs were widely used to represent analog circuits [1, 13, 2, 8] (see
the blocks commonly used in Table 1). Nowadays, this formalism is widely used
in the development of systems that comprise physical and software parts, as in
the system depicted in Fig. 1. In this kind of system, the software monitors the
activity of physical processes by means of sensors, takes appropriate decisions,



and influences the physical processes through actuators. This architecture can be
generalized to networked software and to any processes, not necessarily physical.
For the purposes of introducing the formalism, we hold on to the traditional view
of a physical process being controlled by a software component, also known as a
feedback control system.

Table 1. Block representation for analog circuits. Reproduced from [3].

So�ware PlantActuators

Sensors

PhysicalCyber

Fig. 1. Generic embedded system structure.

In the next section, a simple running example will be introduced, as well
as some necessary background concepts. In the remaining sections, CBDs are



introduced gradually in three different flavors: algebraic, discrete time, and con-
tinuous time CBDs. These are distinguished by the class of blocks at the disposal
of the modeler. The gradual presentation allows for a deeper understanding of all
the concepts related to modeling and simulation of CBDs. The last few sections
of the chapter deal with advanced concepts, related to the simulation of CBDs.

2 Background

A dynamical system is characterized by a state and a notion of evolution rules.
The state is a set of point values in a state space. The evolution rules describe
how the state evolves over an independent variable, usually time.

The domain of the time variable dictates the kind of dynamical system: if
time ranges over a continuous set, usually R, then the dynamical system is
continuous time. Similarly, if time ranges over a countable set, usually N, then
the dynamical system is discrete time.

2.1 Cruise Control System

Consider the cruise control system depicted in Fig. 2. The car is a dynamical
system whose state (e.g., the velocity) evolves continuously in time. The state of
software controller, on the other hand, evolves discretely through time, as any
software variable does, by consequence of assignment instructions.

The system in Fig. 2 is an example of a feedback control system: the physical
system – the car – is actuated by control inputs generated by control software
– the cruise controller. The sensors are the tachometers that translate wheel
revolutions per minute into instantaneous velocity. The actuators are the motor
throttle and brakes. The cruise controller software decides, based on current
speed of the car, which amount of traction (throttle or brakes) should be applied
to restore the car to a desired speed despite drag, weight, and other factors.

Cruise Controller Car (Plant)Thro�le

Tachometer

Desired

Speed

PhysicalCyber

Fig. 2. Cruise control system.

Because of cost-efficiency, security, it is not desirable to wait for a car proto-
type to be built, in order to test the control software. This motivates the need
for two dynamical systems:
1. A continuous dynamical system which acts as a mock-up of a real car.



2. A discrete time dynamical system which acts as a mock-up of the software
unit.

With these models, early evaluation of many different control strategies can be
performed, at a much lower cost. Furthermore, the chosen controller model can
then be used to automatically generate the software code.

2.2 Models of Physical Systems

Physical systems are inherently continuous: their state evolves continuously
through time. Ordinary Differential Equations (ODE) describe how physical
quantities change continuously in time. ODEs are thus ideal models to describe
physical systems’ behavior. They take the form:

x′(t) = F (x,u, t)

y(t) = G(x,u, t)

x(0) = x0

(1)

where x(t),x′(t), y(t),u(t) are vectors, x(t) = [x1(t), . . . ,xn(t)]
T

represents the
state vector, u(t) represents the input, and x0 is the initial state. The state here
denotes the minimal information required to determine, together with the input
u(t) and function F (x,u, t), the complete future states of the system. Function
G is the output function.

A possible model of the dynamic behavior of the car, to be used in the design
of a cruise controller, is:

v′ =
1

m
(T − kv)

y = v
(2)

where v is the velocity, v′, T is the traction force and k depends on the air
density and car shape. This model assumes that the car moves in a straight line
and neglects any effects that gravity might induce. Reasonable assumptions for
early experimentation.

2.3 Discrete Time Models

While the solution of ODEs is continuous, the state of the software unit, in
the cruise control system presented in Section 2.1, can only evolve discretely,
by the nature of the digital computer on which it runs. To see why this is the
case, suppose that the state of the control system takes values in R and evolves
continuously over the time variable. This means that the state, over a finite
interval of the time variable, may assume an infinite number of different values.
In software running on a digital computer, variables get new values, computed
from old ones, through assignment instructions, which take non-zero wall-clock
time to execute. As a consequence, we would have to wait an infinite amount of
wall-clock time for the computer to assign the infinite number of different values
to state variables.



For mathematical analysis purposes, differential equations may be used for an
early specification of the control software. However, when it comes to simulating
those models in a digital computer, the only available option is to use discrete
time models.

First order difference equations allow the specification of such models. They
take the form

x[s+1] = F (x[s],u[s+1])

y[s] = G(x[s],u[s])

x[0] = x0

(3)

where s denotes the step, x[s] is the state vector at step s, u[s+1] is the input
vector, y[s] the output vector, and x0 the initial value of the state vector. The
new vector x[s+1] is computed from the old one x[s] and input u[s+1], according
to the specification function F . The output function G allows values to be read
from the dynamical system. The repeated application of functions F and G yields
the discrete evolution of the state and output vectors. Difference equations can
also be written as

x[s] = F (x[s−1],u[s])

y[s] = G(x[s],u[s])

x(0) = x0

Obviously, the two representations are equivalent.
The cruise control software can be described by the following difference equa-

tion:

e[s+1] = e[s] + h
(
v
[s+1]
d − v[s+1]

)
T [s] = Kp

(
v
[s]
d − v

[s]
)

+Kie
[s]

(4)

where vd is the velocity that the car should be kept at (input); v is the actual ve-

locity (input) of the car;
(
v
[s+1]
d − v[s+1]

)
is the instantaneous error; e[s] denotes

the accumulated error (state); T [s] is the traction force to be transmitted to the
car (output). Finally, Kp and Ki are constant parameters of the controller.

The controller gets the car velocity input v[s] from the readings of the tachome-
ter (recall Fig. 2). If the differential equation Eq. (2) is used to model the car,
then v(t) is a continuous quantity and so we can relate it to the input of the
controller by v[s] = v(s × ∆t), where ∆t denotes the constant interval of time
between two successive tachometer readings.

Intuitively, the traction force T [s] is proportional to the instantaneous error

v
[s]
d − v[s] and to the accumulation of errors e[s] from previous steps. From now

on, assume that Eq. (2) is being used in place of the real car to test the controller
proposed in Eq. (4). The following two paragraphs give an intuitive rationale for
each component of Eq. (4).

Kp

(
v
[s]
d − v[s]

)
component. When the instantaneous error is large, the current

velocity is far away from the desired one, so the traction force should be large in



order to ensure that the car quickly accelerates/brakes toward the desired speed.
When the instantaneous error is small, the car is almost at the desired speed, so
the traction force should be smaller to avoid causing discomfort to the driver. For
now, neglect the Kie

[s] component in the traction force calculation. After a while,

if the traction force given by T [s] = Kp

(
v
[s]
d − v[s]

)
becomes symmetric (same

magnitude, opposite direction) with the drag force in Eq. (2), the car acceleration
will be null and its speed will be kept constant. However, that speed will not

be exactly equal to the desired speed, because −kv 6= 0 =⇒
(
v
[s]
d − v[s]

)
6= 0.

This is where the Kie
[s] component, neglected until now, has its use.

Kie
[s] component. This component accumulates the instantaneous error over

time, and contributes to the traction force accordingly. Suppose that the trac-
tion force is counteracted by the drag force and the car is kept at a constant
speed, below the desired velocity, just like in the previous paragraph. Then, the
accumulated error will keep growing, ensuring that the second component con-
tinues to increase the traction force until it overcomes the drag force. Notice that
this might cause the car to overshoot the desired speed, which can be danger-
ous. The accumulated error will start decreasing once that happens, decreasing
the traction force. The choice of parameters Kp and Ki is an important part of
tuning the controller.

2.4 Summary

This section has introduced a running example, to be used throughout the cur-
rent chapter. The example represents a typical feedback control system, the ma-
jority of which are developed with the aid of Causal Block Diagrams (CBDs).
Making use of the example, two kinds of mathematical models of systems where
introduced: differential equations for continuous systems (e.g., the car), and
difference equations for discrete systems (e.g., the software cruise controller).
Knowledge of differential and difference equations ensures that the formal mean-
ing of the different flavors of Causal Block Diagrams will be understood in sec-
tions that follow.

3 Algebraic Causal Block Diagrams

Algebraic Causal Block Diagrams (CBDs) are CBDs in which the only atomic
blocks permitted are algebraic ones: summation, negation, inversion, product,
raise to power and roots. These can be used to represent systems where there is
no notion of time and no notion of evolving state. In other words, the time is a
constant now.

While it may seem restricted, this kind of systems arise in the study of
the steady state behavior of dynamic systems. As an example, consider the car
dynamics in Eq. (2). The steady state behavior of the car happens when it is



not accelerating. That is, for known constants T , k:

0 =
1

m
(T − kv)

The equation gives insight about the torque required to keep the car at the same
speed: T = kv. The larger the drag force, the larger the torque, and the more
energy is required.

3.1 Syntax

The main constituents of a CBD are blocks and connections between blocks.
Blocks can be atomic or composite. Composite blocks stand for an external
CBD, specified elsewhere. These blocks will be drawn with a dashed contour. In
algebraic CBDs, atomic blocks can be summation, negation, inversion, product,
raise to power, and roots. These will be denoted with the appropriate mathe-
matical symbol.

Since a block can have more than one input and more than one output, the
notion of ports is essential to distinguish between inputs and between outputs.
Atomic blocks have up to two input ports - depending on the operation - and
one output port. Composite blocks can have any number of input and output
ports.

Fig. 3 shows an example of an Algebraic CBD, that calculates the drag force
d affecting a car, as it moves with a velocity v, given as input. The composite
block c refers to an algebraic CBD that calculates the drag coefficient, detailed
in Fig. 4.

Fig. 3. Algebraic CBD of the drag force block.

The ports associated with a block will not be drawn explicitly but they are
part of the CBD and have identifiers (ids). The directed connections will make
clear which input ports and output ports are associated with a block. When there
is a need, the input port id is shown at the border of the associated block. In the
specification of a composite block, the input and output ports are represented
as triangles. Whether the port is input or output is clear from the context.



Fig. 4. Algebraic CBD of the drag coefficient block, used in the diagram of Fig. 3.

Blocks are also referred to by ids. The identifier of a port is comprised of the
name of the port, and the identifier of the parent block. The identifier of a block
is formed by its name, along with the identifier of its parent CBD. Note the
recursive definition. While the identifier is almost never visible in the graphic
representation, it is always defined.

Some of the uses of identifiers are: the unambiguous description of connec-
tions between ports and the unambiguous identification of individual blocks after
the flattening process (Section 3.2).

More often, the names of the blocks will be depicted in the graphical repre-
sentations, to enhance the readability. Names are not identifiers, they are a part
of the identifier. For instance, the product blocks in Fig. 3 have two ports with
distinct identifiers, even though these are not depicted in the graphical repre-
sentation. In the same picture, the name v of the input and the name d of the
output port are shown. Similarly, the name c of the composite block is shown.
The reader may notice that in Fig. 4 the same name c denotes the output port.
There is no ambiguity as the composite block and the output port have distinct
identifiers, even though they have the same name.

Whenever a composite block is used, all its internal blocks adopt different
identifiers, based on the id of the CBD where the composite block is used. For
instance, the fact that the composite block c is used in the CBD of Fig. 3
means that, when processing that CBD, the identifiers of the inner blocks/ports
of c (detailed in Fig. 4) include the identifier of c. This has two important
consequences:
1. the identifier of any element depends ultimately on where it is being used,

or where any of its parents are being used;
2. if the composite blocks are replaced by their specification in a flattening pro-

cess, there will be no two identifiers alike, thus ensuring the well formedness
of the CBD.

3.2 Semantics

The meaning of an algebraic CBD is an association of a value to each of the ports
in the CBD. It can be conveyed in two general ways: by writing the mathematical



equations that correspond to the CBD (translational semantics), or by giving
an algorithm which computes the value associated with each input/output port
(operational semantics).

To simplify both these approaches, it is assumed that all composite blocks
are replaced by their specification in a flattening process. This process is done
recursively until all composite blocks have been replaced by their specification
[10]. The following aspects are important to ensure the well-formedness of the
flattened CBD:
1. After replacing a composite block, their input/output ports (e.g., the trian-

gular ones in Fig. 4) will be connected from both sides. These are redundant
ports and hence substituted by a single connection.

2. The identifier of the replaced composite block is still part of the identifiers
of its inner blocks/ports. This ensures uniqueness among identifiers after the
flattening process is complete.
Fig. 5 shows the result of replacing the composite block c with its specification

(in Fig. 4). The identifiers, shown explicitly in the picture, contain the identifier
of the composite block replaced. During the process, the port c of the composite
block became redundant and thus was removed.

Fig. 5. Flattened version of algebraic CBD depicted in Fig. 3.

The meaning of a flattened CBD is the same as the original CBD. Every
block/port has a unique identifier and every connection is between ports. The
of CBDs can be thus explained assuming flattened CBDs only. This greatly
simplifies the exposition.



Translational Semantics
Given a flattened algebraic CBD, the equations that it represents can be written

down using the rules shown in Table 2.

Table 2. Translational semantics of a flattened algebraic CBD.

1. Assign a unique mathematical variable to the identifier of each port in the
CBD.

2. Let (p, q) denote a connection from port id p to port id q, and let var(p) and
var(q) denote the mathematical variables corresponding to p and q, according
to the assignment made in Rule 1. Then, the equation associated with the
connection (p, q) is var(p) = var(q).

3. For each atomic block, let the sequence p1, p2, . . . denote the list of ids of its
inputs ports, and let q denote id of the output port:
(a) If the block is a constant with value c, then it has no input ports and the

resulting equation is var(q) = c;
(b) If it is a summation, then the resulting equation is var(q) = var(p1) +

var(p2);
(c) If it is a product, then the resulting equation is var(q) = var(p1)×var(p2);
(d) If it is a negation, then the resulting equation is var(q) = −var(p1);
(e) If it is an inversion, the resulting equation is var(q) = 1

var(p1)
;

(f) If it is a raise-to-power, the resulting equation is var(q) = var(p1)var(p2);

(g) If it is a root, the resulting equation is var(q) = var(p1)
1

var(p2) ;

The system of equations that results from applying the following rules to
each port, block and connection of an algebraic CBD can then be solved for the
unknowns to get the values associated with each port in the CBD.



As an example, the flattened algebraic CBD depicted in Fig. 5 is translated
into the following set of algebraic equations:

var(v) = var(b1.i1)

var(v) = var(b1.i2)

var(b1.o1) = var(b2.i1)

var(b2.o1) = var(d)

var(c.b3.o1) = var(b2.i2)

var(c.Cd.o1) = var(c.b1.i1)

var(c.b1.o1) = var(c.b2.i1)

var(c.p.o1) = var(c.b1.i2)

var(c.A.o1) = var(c.b2.i2)

var(c.b2.o1) = var(c.b3.i1)

var(c.b3.o1) = var(c.b4.i1)

var(c.b4.o1) = var(c.b3.i2)

var(c.Cd.o1) = Cd

var(b1.o1) = var(b1.i1)× var(b1.i2)

var(b2.o1) = var(b2.i1)× var(b2.i2)

var(c.p.o1) = p

var(c.b1.o1) = var(c.b1.i1)× var(c.b1.i2)

var(c.A.o1) = A

var(c.b2.o1) = var(c.b2.i1)× var(c.b2.i2)

var(c.b3.o1) = var(c.b3.i1) + var(c.b3.i2)

var(c.b4.o1) = −var(c.b4.i1)

(5)

The system in Eq. (5) can be simplified to a quadratic drag force var(b2.o1) =
var(v)2 × 1

2 × Cd × p × A, where p is the air density, CD the drag coefficient,
and A the cross sectional area of the car. Obviously, the value of the input port
v has to be known in order to solve for the value of the output port b2.o1.

Any system of algebraic equations that uses operations supported by the
atomic blocks of algebraic CBDs can be represented as an algebraic CBD. For
example, the CBD in Fig. 4 can be drawn directly from the equation

c = CD × p×A− c (6)

where c is the output, and CD, A, p constants.

Operational Semantics
Instead of deferring the responsibility of computing the values associated with

each port, to an equation solver, it is possible to do so directly. Two such algo-
rithms are presented.



Algorithm 1 presents the dataflow version of the operational semantics. A list
of atomic blocks to be computed is revisited iteratively until no blocks remain.
A block can be computed only after all the blocks it depends on have been com-
puted. The algorithm terminates after O((#atomic blocks in D)

2
) iterations.

The inefficiency of this algorithm lies in not taking advantage of the depen-
dencies between blocks to come up with an optimal execution order for blocks.
An improved algorithm will be presented later, after formalizing the dependency
information between blocks.

Dependency Graph
The advantage of Algorithm 1 is its simplicity. It represents the execution model

of the dataflow paradigm and, provided that no algebraic loops exist, it finds
the values associated with every port of a flattened CBD.

An algebraic loop arises when a block depends indirectly on itself. It is thus
natural to think of the CBD in terms of a dependency graph and identify the
cycles thereof. In the CBD of Fig. 5, blocks c.b4 and c.b3 are part of one algebraic
loop. Algebraic loops also happen in algebraic systems of equations. For example,
in Eq. (6), the c variable depends on itself.

Both these loops where introduced artificially for the purposes of illustration.
They can easily be removed by reformulating the mathematical expression that
the CBD represents. However, in general, not all algebraic loops can be removed
by this method and a way to detect them is required.

Given a flattened CBD, its corresponding dependency graph can be created
applying the rules in Table 3. For example, Fig. 6 shows the dependency graph
of the flattened CBD shown in Fig. 5.

Table 3. Rules for constructing the dependency graph.

1. For each block identified by b, create a unique node v. Let node(b) denote the
corresponding node.

2. For each connection (p, q) from port id p to port id q, let bp and bq denote
the block ids associated with ports p and q, respectively. If p or q have no
associated blocks, then ignore this connection and proceed to the next one.
Create a directed edge (node(bq), node(bp)) in the dependency graph, to mark
that fact that bq depends on bp.

Solving Algebraic Loops
The dependency graph makes the detection of algebraic loops a simple matter of

detecting the strong components in the graph. Formally, a strong component S =



Algorithm 1 Data-flow algorithm to evaluate an Algebraic CBD D.

function EvalAlgebraicCBD(D, v1, . . . , vn)
Let val(p) be the computed value associated with port identified by p.
Let i1, . . . , in be the ids of the input ports associated with the CBD D.
Let o1, . . . , om be the ids of the output ports associated with the CBD D.
Then, val(i1) := v1, . . . , val(in) := vn are the values associated with each input

ports of D.
Let B denote the set of atomic blocks of D not yet computed.
Initially, B := all atomic blocks in D.
while B 6= {} do

for bi ∈ B do
Let p denote the single output port of bi.
Let P = {p1, p2, . . .} denote the inputs ports of bi.
Let Q = {q1, q2, . . .} denote the output ports connected to each input port

pj ∈ P , respectively.
Let B = block(q1) ∪ block(q2) ∪ . . . be the set of blocks that bi depends

on, where block(qj) is the block associated with port qj or the empty set, if no such
block exists.

if B ∩B = {} then
Remark: val(q1), val(q2), . . . have been computed before.
val(p) :=ComputeBlock(bi, val(q1), val(q2), . . .)
Let P = {ρ1, ρ2, . . .} be the set of ports to which port p connects to.
val(ρj) := val(p), for ρ1 ∈ P
B := B\ {bi}

end if
end for

end while
P = {}
return val(o1), . . . , val(om)

end function
function ComputeBlock(b, val(q1), val(q2), . . .)

if b is a summation block then
return val(q1) + val(q2)

end if
if b is a Constant Block with value v then

return v
end if
. . .

end function

{n1,n2, . . .} of a graph G is a set of nodes where, between every ni,nj ∈ S, there

are two different paths: p1 : ni
∗⇒ nj and p2 : nj

∗⇒ ni. This implies that every
node in a strong component is either the only node in that strong component, or
depends on itself, through some other node, also in the same strong component.
Fig. 6 illustrates the strong components of the dependency graph. As expected,
the blocks c.b4 and c.b3 are part of the same strong component.



Node
Strong component

Fig. 6. Dependency graph and strong components.

Tarjan’s algorithm [11] accepts a graph and outputs a sorted list of strong
components. The sort order of the strong components is a topological order
according to the dependencies between strong components. For the example in
Fig. 6, one possible topological order is:

{c.CD} , {c.p} , {c.A} , {c.b1} , {c.b2} , {c.b3, c.b4} , {b1} , {b2}

If no algebraic loops exist in the flattened graph, then the sorted list of strong
components returned by the algorithm is just the topological sort of the nodes
in dependency graph. In this list, a singleton strong component always appears
after the nodes it depends on.

In the case where algebraic loops exist, all nodes belonging to the same al-
gebraic loop will be in the same strong component. Regarding the sort order,
non-singleton strong components appear after all components on which it de-
pends on. A strong component depends on other if any one of its comprising
nodes depends on at least one of the other’s nodes.

These two facts about the sorted strong component list, given by Tarjan’s
algorithm [11], provide a basis for an improved algebraic CBD operational se-
mantics, that not only can compute the values associated with all output ports
much faster than Algorithm 1, but also detects algebraic loops. Algorithm 2
summarizes the steps for computing the values of all ports of a flattened CBD,
under the improved algorithm.

The SolveLoop function computes the values of all unknown ports (whose
value is unknown) associated with the blocks in the loop. A input port is un-
known when an unknown output port is connected to it. An output port in
unknown when the block it is associated with belongs to the strong component.



Algorithm 2 Evaluation an Algebraic CBD D with support for algebraic loops.

function EvalAlgebraicCBD(D, v1, . . . , vn)
Let val(p) be the computed value associated with port identified by p.
Let i1, . . . , in be the ids of the input ports associated with the CBD D.
Let o1, . . . , om be the ids of the output ports associated with the CBD D.
Then, val(i1) := v1, . . . , val(in) := vn are the values associated with each input

ports of D.
Let G denote the dependency graph induced by D.
Let SC = (S1,S2, . . .) denote the sorted list of strong components obtained with

Tarjan’s algorithm.
for Si ∈ SC do

if Si = {n} then
Let b denote the id of the unique block such that node(b) = n.
Let p denote the id of the output port associated with b.
Let {q1, q2, . . .} denote the ids of the input ports of b.
Remark: val(q1), val(q2), . . . have been computed.
val(p) :=ComputeBlock(b, val(q1), val(q2), . . .)
Let P = {ρ1, ρ2, . . .} be the ports that port p connects to.
val(ρj) := val(p), for pj ∈ P

else if Si = {n1,n2, . . .} then
Let b1, b2, . . . be the unique blocks such that node(b1) = n1, node(b2) =

n2, . . .
Let p1, p2, . . . denote the ids of the outputs ports of b1, b2, . . . respectively.
Let Q1,Q2, . . . denote the sets of ids of the inputs ports of b1, b2, . . . re-

spectively, where Qi =
{
q
(i)
1 , q

(i)
2 , . . .

}
.

For each Qi there might be input ports whose value is unknown, because

these are connected to unknown output ports. Let Q̄i =
{
q̄
(i)
1 , q̄

(i)
2 , . . .

}
⊆ Qi denote

the set of input ports whose value is known.
(val(p1), val(p2), . . .) :=SolveLoop(b, val(q̄

(1)
1 ), val(q̄

(1)
2 ), . . . , val(q̄

(2)
1 ), . . .)

for pi ∈ p1, p2, . . . do

Let Pi =
{
ρ
(i)
1 , ρ

(i)
2 , . . .

}
be the ports that port pi connects to.

val(ρ
(i)
j ) := val(pi), for ρ

(i)
j ∈ Pi

end for
end if

end for
return val(o1), . . . , val(om)

end function

Equivalently, an input port is known when a known output port is connected to
it. A known output port is associated with a block that does not belong to the
strong component.



Essentially, solving an algebraic loop amounts to computing the solution of
a matrix equation of the form X = F (X,U):val(p1)

val(p2)
. . .


︸ ︷︷ ︸

X

=

F1(val(p1), val(p2), . . . , val(q̄
(1)
1 ), val(q̄

(1)
2 ), . . . , val(q̄

(2)
1 ), . . .)

F2(val(p1), val(p2), . . . , val(q̄
(1)
1 ), val(q̄

(1)
2 ), . . . , val(q̄

(2)
1 ), . . .)

. . .


︸ ︷︷ ︸

F (X,U)

(7)

Where X = [val(p1), val(p2), . . .]
T

denotes the unknown values of the output

ports of the strong component, and U =
[
val(q̄

(1)
1 ), val(q̄

(1)
2 ), . . . , val(q̄

(2)
1 ), . . .

]T
denote the known values of the input ports.

In Eq. (7), the unknown input ports are not considered because these depends
directly, by algebraic equality, on the output ports connected to them. So finding
the values of the unknown output ports is enough to be able to find the values
of all unknown ports of the strong component.

The definition of F depends on the atomic blocks that belong to the strong
component. If F is linear, then the above equation can be written in the form
AX = BU and solved with any technique suitable to solve linear systems of
equations (Gaussian Elimination, Gauss-Seidel iteration, Jacobi-iteration, Gra-
dient descent, etc. . . ). Matrices A and B depend on the blocks in the strong
component, and the product BU is known.

If F is non-linear, successive substitution techniques (e.g., Jacobi or Gauss
Seidel), or derivative based methods (e.g., Newton–Raphson or Wegstein method)
can be used in an attempt to find X. Caution has to be taken when non-linear
loops are solved, as they might not have a solution, or a unique solution. The
iterative methods require initial guess values to be provided for X, and de-
pending on those initial guesses, different solutions might be attained. Both the
initial guesses, and the solutions attained have to be physically meaningful, as
the equations often represent the characteristics of physical systems (e.g., drag
forces, concentrations, etc. . . ).



For the algebraic loop containing bocks c.b4 and c.b3 in Fig. 6, the resulting
linear system of equations and its analytical solution is:

val(c.b3.o1) = val(c.b3.i1) + val(c.b3.i2)

val(c.b3.i2) = val(c.b4.o1)

val(c.b4.o1) = −val(c.b4.i1)

val(c.b4.i1) = val(c.b3.o1)

↔

{
val(c.b3.o1)− val(c.b4.o1) = val(c.b3.i1)

val(c.b3.o1) + val(c.b4.o1) = 0
↔[

1 −1
1 1

]
︸ ︷︷ ︸

A

[
val(c.b3.o1)
val(c.b4.o1)

]
︸ ︷︷ ︸

X

=

[
1
0

]
︸︷︷︸
B

[
val(c.b3.i1)

]︸ ︷︷ ︸
U

↔

[
val(c.b3.o1)
val(c.b4.o1)

]
=

[
1
2val(c.b3.i1)
− 1

2val(c.b3.i1)

]

3.3 Summary

In this section, the syntax and semantics of Algebraic CBDs were described.
A flattening process that pre-processes any CBD into a canonical form was
presented. This process will be used in the following sections to simplify the
definition of Discrete time and Continuous time CBDs.

For the semantics of algebraic CBDs, two well known approaches were given:
translational and operational. For a given Algebraic CBD, both of these are
approximately equivalent, i.e., they give the same approximate values for the
same ports of the CBD. This equivalence can be summarized by the commuting
diagram in Fig. 7. The solutions are only approximately equal because, in the
presence of algebraic loops, these may have to be solved iteratively to get an
approximate solution.

Flat Algebraic CBD Algebraic Equation

Solution BSolution A

Tra
ns. 

Sem
an

tics
 

(vi
a T

ab
le 

2)

Op. Semantics 
(via Algorithm 2) 

Algebraic 
Manipulation 

Algebraic CBD

Flat. Process

Fig. 7. Algebraic CBDs semantic equivalence (approximate).

Finally, it was mentioned that any algebraic system of equations can be
written as an algebraic CBD.

In the next section, we expand the available atomic blocks to introduce the
notion of evolving state via discrete jumps in time.



4 Discrete-time CBDs

In this section, the Discrete time CBDs are presented. Syntactically, the only
difference to the Algebraic CBDs, is that the Discrete time CBDs allow the mod-
eler to use not only algebraic blocks, but also a step delay block. Because the
Delay block has a state, which gets updated whenever the block is computed,
the other blocks in a Discrete time CBD no longer have static outputs (as in
the algebraic CBDs case), but instead change whenever they are computed. Dis-
crete time CBDs share many similarities with discrete time dynamical systems,
presented in Section 2.3.

4.1 Syntax

The step delay block has two inputs i1, ic and one output o1. It is represented
with a D symbol, as highlighted in the discrete time CBD of Fig. 8. The input
port ic is called the initial condition and is distinguished by its subscript.

Fig. 8. Discrete-time CBD of the cruise controller with an highlighted Delay block D.
Equivalent to Eq. (4).

4.2 Semantics

The fact that the output of the delay block changes whenever it is computed
means that the output of any other block that depends on the delay will also
be dynamic. To formalize the multiple different values that any single port can
assume, the notion of step is necessary. A step is a natural index that allows the
distinction between the different outputs of each block. It is no different than
the index used in difference equations, presented in Section 2.3.

Translational
The output of the delay block is defined in terms of the input provided at



the previous step. This is the essence of difference equations, where the current
values are calculated from the previous ones. It is then natural that the meaning
of a discrete time CBD is a set of difference equations.

Similarly to the algebraic CBD case, the flattening process ensures that only
atomic blocks remain in the discrete time CBD. Given a flattened discrete time
CBD, the difference equations that it represents can be written following the
rules specified in Table 4.

Table 4. Translational semantics of a flattened discrete time CBD.

1. Assign a unique mathematical variable to the identifier of each port in the
CBD.

2. Let (p, q) denote a connection from port identified by p to port identified by
q, and let var(p) and var(q) denote the mathematical variables corresponding
to p and q, following the assignment made in Rule 1. Then, the equation
associated with the connection (p, q) is
var(p)[s+1] = var(q)[s+1].

3. Let p1, p2, . . . denote the list of ids of inputs ports of an atomic block, and let
q denote id of its single output port:
(a) If the block is a delay block, then the resulting equations are

var(q)[s+1] = var(p1)[s] and
var(q)[0] = var(pc)

[0];
(b) If the block is a constant block with value c, then the resulting equation

is
var(q)[s+1] = c;

(c) If the block is a summation block, then the resulting equation is
var(q)[s+1] = var(p1)[s+1] + var(p2)[s+1];

(d) If the block is a product block, then the resulting equation is
var(q)[s+1] = var(p1)[s+1] × var(p2)[s+1];

(e) If the block is a negation block, then the resulting equation is
var(q)[s+1] = −var(p1)[s+1];

(f) If the block is an inversion block, then the resulting equation is
var(q)[s+1] = 1

var(p1)
[s+1] ;

(g) If the block is a raise-to-power block, then the resulting equation is

var(q)[s+1] =
(

var(p1)[s+1]
)var(p2)[s+1]

;

(h) If the block is a root block, then the resulting equation is

var(q)[s+1] =
(

var(p1)[s+1]
) 1

var(p2)[s+1]
;

The result is a set of difference equations, along with initial conditions (see
Rule 3(a) of Table 4), that can be solved, either to obtain a closed-form solu-



tion, or simulated, by an independent solver. As an example, the discrete time
CBD represented in Fig. 8 corresponds to, after simplification and renaming of
variables, the software controller of Eq. (4).

Conversely, any difference equation written in the form of Eq. (3) can be
represented as a Discrete time CBD. This is illustrated in Fig. 9.

...

......

...

Fig. 9. Difference equation (written in the form of Eq. (3)) can be represented in a
Discrete time CBD. The i-th component of the vector x is represented as xi.

Operational
When compared to the algebraic CBDs operational semantics, in Algorithm 2,

any algorithm that simulates discrete time CBDs has to compute not single
values for variables, but discrete signals. A discrete signal is an ordered list of
values, indexed by the step.

The operational meaning of the discrete time CBDs is thus the computation
of the discrete time signal associated with each port. That can be done by fixing
the step at 0, then computing all values in the CBD, as if it were an algebraic
CBD. Then, step is incremented to 1, and the evaluation of all values is repeated,
and so on. The fact that, within the same step, the discrete time CBD is evalu-
ated as if it were an algebraic CBD, allows us to reuse the EvalAlgebraicCBD
function, defined in Algorithm 2, with some minor changes:
– A parameter s is added to the ComputeBlock function, denoting the cur-

rent step.
– All values are indexed by the current step. For example, the instruction

val(p) :=ComputeBlock(b, val(q1), val(q2), . . .)
becomes
val(p)(s) :=ComputeBlock(b, val(q1)(s), val(q2)(s), . . . , s);
Algorithm 3 summarizes the operational semantics of discrete time CBDs.

The definition of the ComputeBlock function is included, to specify the com-
putation of the delay block. The computations of the remaining atomic blocks
are trivial.



Algorithm 3 Operational Semantics of an Discrete time CBD D.

function EvalDiscreteTimeCBD(D, v1, . . . , vn, N)
Let val(p) be the computed value associated with port identified by p.
Let i1, . . . , in be the ids of the input ports associated with the CBD D.
Let o1, . . . , om be the ids of the output ports associated with the CBD D.
Then, val(i1) := v1, . . . , val(in) = vn are the values associated with each input

ports of D.
s := 0
while n ≤ N do

EvalAlgebraicCBD(D, v
(s)
1 , . . . , v

(s)
n , s)

s := s+ 1
end while
return val(o1), . . . , val(om)

end function
function ComputeBlock(b, val(q1), . . . , s)

if b is a delay block then
if s = 0 then

return val(qc)
(0), where qc is the id of the initial condition port.

else
return val(qc)

(s−1).
end if

end if
if b is a summation block then

return val(q1)(s) + val(q2)(s)

end if
. . .

end function

Algebraic Loops
If there are algebraic loops in the discrete time CBD, they are handled in

the same as way in the algebraic CBDs (or they wouldn’t be called algebraic
loops. . . ).

A note has to be made, however, about the dependencies of the delay block.
At the first step (s = 0), the output of the delay block is equal to the input
associated with its initial condition port (val(qc)

(0) in Algorithm 3). At any
other step s > 0, the output is computed from the previous step s− 1.

This means that, except for s = 0, the delay block has no algebraic depen-
dencies. And at s = 0 it depends on whatever block is connected to its initial
condition port.

As a result, Rule 2 of Table 3 has to be adapted specifically for the Delay
block and the current step being computed.

4.3 Summary

Following the same structure as Section 3, this section presented the syntax and
semantics, both translational and operational, of discrete time CBDs.



A discrete time CBD can be translated into a system of difference equations
by applying the rules of Table 4. Analogously, a difference equation written in
the form of Eq. (3) can be translated into a discrete time CBD as shown in
Fig. 9.

Difference equations, or discrete time CBDs, as exemplified in Section 2.3, can
be used for the description of software components whose state evolves discretely
in time.

The operational semantics of discrete time CBDs reuse the operational se-
mantics of algebraic CBDs, with minor modifications.

As in the algebraic CBDs case, any solution obtained via the translational
approach is approximately the same as the one obtained via Algorithm 3. This
is summarized in the commuting diagram of Fig. 10.
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Fig. 10. Discrete time CBDs approximate semantic equivalence.

5 Continuous-time CBDs

The meaning of algebraic CBDs is a set of algebraic equations (see Fig. 7) and
the meaning of Discrete time CBDs is a set of difference equations (see Fig. 10).

As shown in Section 2.2, differential equations are ideal to represent physical
systems, whose state evolves continuously in time. By the end of this section, it
will be clear that continuous time CBDs too, are suited to model these systems.

5.1 Syntax

Syntactically, continuous time CBDs include the standard algebraic blocks, a
derivative, and an integral block. The Delay block is not included.

The derivative and integral blocks have two inputs i1, ic, and one output o1.
The input subscripted by c denotes the initial condition. Both blocks will be
denoted by the appropriate mathematical symbol: d

dt and
∫

.
Fig. 11 shows a continuous time CBD example, with the Drag block specified

in Fig. 12.



Drag-

+

Fig. 11. Continuous time CBD of the car in the cruise control system of Fig. 2.

Fig. 12. Continuous time CBD of the drag.

5.2 Semantics

Translational – To Differential Equations
The meaning of a flattened continuous time CBD is a system of Ordinary

Differential Equations (ODEs). Table 5 shows the rules that build such system.
The meaning of Fig. 11 is represented, after simplification and renaming the
variables, in Eq. (2).

Furthermore, any ODE written in the form of Eq. (1) can be translated to a
Continuous time CBDs as illustrated in Fig. 13.

...

......

...

Fig. 13. First order ODE, written in the form of Eq. (1), can represented as a contin-
uous time CBD. The i-th component of the vector x is represented as xi.



Table 5. Translational semantics of a flattened continuous time CBD.

1. Assign a unique mathematical variable to the identifier of each port in the
CBD.

2. Let (p, q) denote a connection from port identified by p to port identified by
q, and let var(p) and var(q) denote the mathematical variables corresponding
to p and q, following the assignment made in Rule 1. Then, the equation
associated with the connection (p, q) is var(p)(t) = var(q)(t).

3. Let p1, p2, . . . denote the list of ids of inputs ports of an atomic block, and let
q denote id of its single output port:
(a) If the block is an Integral block, then the resulting equation is var(q)(t) =∫ t

0
var(p1)(τ)dτ + var(pc)(0);

(b) If the block is a Derivative block, then the resulting equations are
var(q)(t) = var(p1)′(t) and var(q)(0) = var(pc)(0);

(c) If the block is a summation block, then the resulting equation is
var(q)(t) = var(p1)(t) + var(p2)(t);

(d) . . .

Basics of ODE Discretization
In many ODEs arising in science and engineering, and this includes, by the

translational semantics, continuous time CBDs, a closed-form solution cannot be
found. One of the possible ways to get insight into the solution is via simulation.
Nowadays, most simulations are performed in a digital computer, where the state
of software can only evolve discretely through time. In this context, solutions to
ODE’s obtained via simulation can only be approximate.

Contrarily to differential equations, the solution to difference equations (re-
call Section 2.3) can be obtained exactly in a digital computer, provided that
roundoff errors due to the floating point representation are neglected.

In the following paragraphs, we show how to translate ODEs into difference
equations, whose solution, obtained via simulation, approximate the solution
of the ODEs. The reader is referred to [6, 4] for a more detailed exposition
on numerical approximation methods. The method explained is then used in
Section 5.2 as the basis to describe how a continuous time CBD is translated
into discrete time CBDs, which approximate the solution to the original.

Forward Euler Method
Consider a first order ODE without input:

x′(t) = F (x, t)

x(0) = x0
(8)

where x(t) = [x1(t), . . . ,xn(t)]
T

is the state vector, F (x, t) = [F1(x, t), . . . ,Fn(x, t)]
T

the state derivative function, and x0 the initial value of x. Let xi(t) denote the



i-th state trajectory and x′i(t) = Fi(x, t) the i-th state derivative. Assuming that
xi(t) and any of its derivatives are smooth, it can be approximated around any
point t∗ by the Taylor series:

xi (t∗ +∆t) = xi (t∗) + x′i (x (t∗) , t∗)∆t+ x
(2)
i (t∗)

∆t2

2!
+ . . . (9)

Using Taylor’s theorem, it is possible to write the Taylor series expansion in
the finite form of a polynomial and a residual in Lagrange form [4]:

xi(t
∗+∆t) = xi(t

∗)+x′i(x(t∗), t∗)∆t+ . . .+x
(n)
i (t∗)

∆tn

n!
+x

(n+1)
i (ξ(t∗))

∆tn+1

(n+ 1)!

where ξ(t∗) is an unknown number between t∗ and t∗ + ∆t. The residual term

x
(n+1)
i (ξ(t∗))∆t

n+1

(n+1)! denotes the truncation error. It cannot be computed directly

but, since any of the derivatives of xi are smooth in all points between t∗ and
t∗+∆t, there exists a maximum constant K <∞, such that, for any t∗ and any
n,

x
(n+1)
i (ξ(t∗))

(n+ 1)!
≤ K

An upper bound can then be written for the remainder term in the Big O
notation:

lim
∆t→0

x
(n+1)
i (ξ(t∗))

(n+ 1)!
∆tn+1 ≤ K∆tn+1 = O(∆tn+1)

Notice that the Big O notation O(∆tn+1) highlights the dominant term as
∆t→ 0

Taylor theorem allows us to write the Taylor series taking into account the
ODE of Eq. (8) and replacing the residual term by its order:

xi (t∗ +∆t) = xi (t∗) + F i (x (t∗) , t∗)∆t+O(∆t2) (10)

For small ∆t < 1 we can neglect the O
(
∆t2

)
term and approximate xi (t∗ +∆t)

by:
xi (t∗ +∆t) ≈ xi (t∗) + F i (x (t∗) , t∗)∆t (11)

Going back to the vector case, this suggests that we can approximate the solution
vector x (t) by the following algorithm:

x(∆t) :≈ x(0) + F (x(0), 0)∆t

x(∆t+∆t) :≈ x(∆t) + F (x(∆t),∆t)∆t

x(2∆t+∆t) :≈ x(2∆t) + F (x(2∆t), 2∆t)∆t

. . .

(12)

Let x[s] = x(s∆t), we get the Forward Euler method to numerically approx-
imate Eq. (8):

x[s+1] = x[s] + F (x[s], s∆t)∆t (13)



Geometrically, the Forward Euler can be derived by fitting a line going from
a known point x[s], along a known slope F (x[s], s∆t). The slope is given because
F (x[s], s∆t) is the derivative of x[s]. An alternative interpretation is that x[s+1]

is the area, approximated by rectangles, under the curve F up to (s + 1)∆t.
Fig. 14 illustrates these views.

Fig. 14. Geometric interpretation of the Forward Euler method.

Newton’s Difference Quotient
The Taylor series, introduced in Eq. (9) also works backward from any point,

including the point xi (t∗ +∆t):

x((t∗ +∆t)−∆t) = x(t∗ +∆t)− x′(x(t∗ +∆t), t∗)∆t+O(∆t2) (14)

Replacing the derivative by F , from Eq. (8), neglecting the residual term, and
simplifying gives the Newton’s Difference Quotient:

x(t∗ +∆t)− x(t∗)

∆t
≈ F (x(t∗ +∆t)) (15)

Rewritten as a difference equation:

x[s+1] − x[s]

∆t
= F (x[s+1])

Contrary to the Forward Euler, it is not possible to get an iterative algorithm
immediately out of this method: the vector term x[s+1] depends on itself. This
is an algebraic loop (recall Section 3.2). It requires that the matrix equation be
solved for x[s+1]. The presence of these loops distinguishes implicit (with loops)
from explicit (without loops) methods. The important point is that, as shown
in Section 3.2, these loops can be solved at each simulation step.



Translational – To Discrete-time CBDs
As explained in the previous section, differential equations are discretized to

difference equations by means of numerical approximation techniques, which can
then be easily simulated.

Since any continuous time CBD can be translated into an ODE (by Table 5),
and since the meaning of a discrete time CBD is a system of difference equations,
it is natural to wonder whether a discrete time CBD can be transformed directly
into a discrete time CBD, which realizes the approximation. The only blocks that
need to be approximated are the derivative and the integral. All the other blocks
are algebraic. The integral block is left as an exercise.

Derivative Block Approximation
The derivative block outputs the derivative of its input u, at time t:

y(t) = u′(t)

except at time t = 0, where the output y(0) is given by the input initial condition
uc, i.e., y(0) = uc(0).

Applying the Newton’s Difference Quotient, from Eq. (15), yields:

u(t+∆t)− u(t)

∆t
≈ y(t+∆t)

Solving for the output y(t+∆t) and writing as a difference equation gives:

y[s] :≈ u[s] − u[s−1]

∆t
(16)

Since the input is not differentiable at time t = 0, the initial condition of the
derivative block is provided with an initial value y(0) = uc(0).

It is easy to build a discrete time CBD equivalent to Eq. (16) using a delay
and algebraic blocks. The delay block will ensure the delayed signal of the input
(u[s−1]) can be obtained. However, at the initial step, s = 0, the delay block
has to have an initial condition defined because the value u[−1], in Eq. (16), is
unknown. Let u−1 denote this unknown value. u−1 cannot be equal to y[0]. That
does not satisfy the initial condition of the derivative, expressed as:

y[0] ≈ u[0] − u−1
∆t

= u[0]c

To find out the initial condition of the delay, one can rearrange the above equa-

tion to get u−1 = u[0]−∆t · u[0]c , which defines the initial condition of the delay.
Fig. 15 shows the transformation rule.

5.3 Summary

In this section, continuous time CBDs where introduced. These are a suitable
formalism to model continuous time dynamical systems such as the car, in the
cruise control example (recall Fig. 2).

The meaning of continuous time CBDs was given in two ways:



CT CBD

DT CBD

Fig. 15. Sample continuous time CBD with a Derivative block (on the left) and the
corresponding discrete time CBD (on the right).

1. Translation to differential equations. These meaning of these, in turn, can
either be obtained analytically, or approximated via difference equations. In
addition, ODEs can be written as continuous time CBDs (see Fig. 13)

2. Translation to discrete time CBDs, which in turn can be either operationally
simulated, or translated to difference equations. In this translation, inte-
gral/derivative blocks get replaced by composite blocks realizing the ap-
proximation (recall Fig. 15).
Fig. 16 summarizes the translational semantics approximate equivalence.
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Fig. 16. Approximate equivalence between the two translational semantics approaches
presented.



6 Advanced Concepts

Until now, we have introduced the minimal set of concepts that allow the reader
to use and understand the semantics of CBDs. We skipped over a few details
which, for that purpose, are not important, but in order to become a proficient
user of CBDs, one has to understand some advanced simulation concepts.

For example, we took for granted how approximate the solution computed by
the Forward Euler method is. Furthermore, we have not introduced the opera-
tional semantics of continuous time CBDs. Such algorithm can be easily devised
for the approximations of the integral and derivative blocks already given – For-
ward Euler and Newton’s Difference Quotient – with special attention to the
fact that the approximation of the derivative may introduce algebraic loops in
the CBD. However, if those approximation methods are used, the algorithm will
be hardly useful: the translation to discrete time CBDs is equivalent and already
deals with the algebraic loops problem for free (recall Fig. 16 and Section 4.2).

After being introduced to more advanced numerical methods (Section 6.2
and Section 6.3), the reader can devise smarter algorithms for the simulation of
continuous time CBDs directly, while minimizing the error in the approximation
(Section 6.1). We focus on numerical integration methods, that is, approxima-
tions of the integrator block, because these are the most commonly used when
modeling physical systems (see Fig. 13).

Finally, we introduce an extension that is widely used in CBDs: logic blocks.
These allow higher level reasoning to be used in CBDs, conveying more expressive
power to the modeler, but introducing other interesting challenges when it comes
to simulation.

6.1 Approximation Error

Recall the Forward Euler method in Eq. (11) and Eq. (13). To derive it, the
term O(∆t2) of the Taylor series was neglected. Recall Equations 9, 10 and 11.

The resulting method is an iterative approximation, as shown in Eq. (12).
Let x(t) denote the solution to Eq. (8) approximated with Forward Euler, and
let x̂ denote the real solution. The first term x(0) = x̂(0) is known from the
initial condition of Eq. (8).

The second term – x(∆t) = x(0) + F (x(0))∆t – deviates from the true
solution x̂(∆t) by an order O(∆t2), which is the residual term ignored in the
Taylor series (recall Eq. (10) and Eq. (11)). Formally, that is,

‖x̂(∆t)− x(∆t)‖ =
∥∥x̂(0) + F (x̂(0))∆t+O(∆t2)− x(0)− F (x(0))

∥∥ = O(∆t2)

The third term x(2∆t) will deviate further from the true solution not only
because of the residual – of order O(∆t2)– but also because F (x(∆t),∆t) is eval-
uated with the approximated term x(∆t) and most likely F (x(∆t)) 6= F (x̂(∆t))

The iteration continues and it is easy to see that the error accumulates over
the iterations. In order to analyze the accumulation of errors, it is best to distin-
guish two kinds of errors: the local truncation error, due to the ignored residual



term, and the derivative error, due to evaluating the derivative F at approxi-
mated points x. Both these errors contribute to the accumulation of error over
time, that is, the global error.

The local truncation error denotes the deviation made by a single step of the
numerical method, starting from accurate information, i.e., with no previously
accumulated error, just like the first step of the iteration method in Eq. (12).

Let
x̂((s+ 1) ·∆t) = x̂(s ·∆t) + F (x̂(s ·∆t))∆t+O

(
∆t2

)
(17)

denote the real solution expanded with the infinite Taylor series, and let

x((s+ 1) ·∆t) ≈ x̂(s ·∆t) + F (x̂(s ·∆t))∆t

denote the solution computed across one step of the Forward Euler method,
starting from accurate information. The local truncation error is thus given as

‖x̂((s+ 1) ·∆t)− x((s+ 1) ·∆t)‖ = O(∆t2) (18)

Studying the global error is more difficult as it depends on the derivative
error, which, for a generic analysis, can be any function F . If any error in the
parameter of F gets amplified, then the global error will grow faster. If it gets
contracted, then the global error will grow in a slower fashion. To formalize,
suppose that we know something about F :

‖F (x̂(t))− F (x(t))‖ ≤ Kf ‖x̂(t)− x(t)‖ , for all t ∈ R (19)

where 0 ≤ Kf <∞ is a constant.
Then the error at the second step of the Forward Euler can be derived as

follows:

‖x̂(2∆t)− x(2∆t)‖
=
∥∥x̂(∆t) + F (x̂(∆t))∆t+O(∆t2)− (x(∆t) + F (x(∆t))∆t)

∥∥
=
∥∥x̂(∆t)− x(∆t) + (F (x̂(∆t))− F (x(∆t)))∆t+O(∆t2)

∥∥
≤ ‖x̂(∆t)− x(∆t)‖+ ‖F (x̂(∆t))− F (x(∆t))‖∆t+O(∆t2)

≤ ‖x̂(∆t)− x(∆t)‖+Kf ‖x̂(∆t)− x(∆t)‖∆t+O(∆t2)

= (2 +Kf∆t)O(∆t2) = O(2∆t2)

(20)

Notice that, as ∆t→ 0, the big O definition implies that

(2 +Kf∆t)O(∆t2) = O(2∆t2 +Kf∆t
3) = O(2∆t2) (21)



Similarly, for the third step:

‖x̂(3∆t)− x(3∆t)‖
=
∥∥x̂(2∆t) + F (x̂(2∆t))∆t+O(∆t2)− (x(2∆t) + F (x(2∆t))∆t)

∥∥
=
∥∥x̂(2∆t)− x(2∆t) + (F (x̂(2∆t))− F (x(2∆t)))∆t+O(∆t2)

∥∥
≤ ‖x̂(2∆t)− x(2∆t)‖+ ‖F (x̂(2∆t))− F (x(2∆t))‖∆t+O(∆t2)

≤ (1 +Kf∆t) ‖x̂(2∆t)− x(2∆t)‖+O(∆t2)

= O(3∆t2)

(22)

After s steps, we get

‖x̂(s∆t)− x(s∆t)‖ = O(s∆t2)

To run the simulation up to time tf the Forward Euler method performs
tf/∆t steps, which gives

‖x̂(tf )− x(tf )‖ = O(
tf
∆t

∆t2) = O(∆t)

Which says that the global error will not grow worse than linear in the size of
∆t, as ∆t→ 0. For a more accurate expression of the global error of the Forward
Euler method, see [4, 5].

An important conclusion is that, provided that function F is well behaved,
i.e., obeys the condition in Eq. (19), the global error can be minimized by simply
taking smaller ∆t at each step of the simulation using the Forward Euler method.
This is called convergence. A numerical method, to be of any use, should be
convergent.

Since there is a limit to how small ∆t can be made in a digital computer,
a numerical method which has an higher order of accuracy than O(∆t), for
example, O(∆t2), will allow for larger steps to be taken. In the next section, we
introduce other numerical methods.

6.2 Other Numerical Methods

Backward Euler Method
The Taylor series (Eq. (10)) also works backward from any point, including the

point (t∗ +∆t), as was done in Eq. (14). Neglecting the residual term, we get:

xi((t
∗ +∆t)−∆t) ≈ xi(t∗ +∆t)− x′i(x(t∗ +∆t))∆t

After some simplifications we get a method that resembles the Forward Euler
method:

x(t∗ +∆t) ≈ xi(t∗) + F (x(t∗ +∆t))∆t (23)



This suggests the following set of equations to numerically approximate the
solution:

x (∆t) ≈ x (0) + F (x (∆t) ,∆t)∆t

x (∆t+∆t) ≈ x (∆t) + F (x (∆t+∆t) ,∆t+∆t)∆t

x (2∆t+∆t) ≈ x (2∆t) + F (x (2∆t+∆t) , 2∆t+∆t)∆t

. . .

Hence we have the backward Euler method:

x[s+1] = x[s] + F (x[s+1])∆t (24)

When compared to explicit methods, the backward Euler requires the so-
lution to an algebraic loop so it will incur some extra computation at each
simulation step. Furthermore, the global and local errors of the backward Euler
are of the same order as the Forward Euler’s. Their difference lies in the fact
that the derivative used to make the estimation of x[s+1] is the closest to it. In
the Forward Euler, the derivative is an out-dated one. This has benefits when
dealing with stiff systems. See [5, 4, 7] for more details.

Fig. 17 shows the geometric interpretation of the backward Euler method.
Note that F has a similar shape as that of the Forward Euler (in Fig. 14) but
this is not necessarily the case as F depends on x, which is being approximated
with a different method.

Fig. 17. Geometric Interpretation of the Backward Euler Algorithm



Second Order Taylor Method
Until now we have always neglected the term O(∆t2) of the Taylor series. Let us

see what happens when we neglect higher order terms. For example, the Taylor
series, after neglecting the term O(∆t3), becomes:

x(t∗ +∆t) ≈ x(t∗) + F (x(t∗), t∗)∆t+
dF (x (t∗) , t∗)

dt

∆t2

2!

The derivative dF (x(t∗),t∗)
dt can be expanded with the chain rule 1:

dF (x(t∗), t∗)

dt
=
∂F (x(t∗), t∗)

∂x
F (x(t∗), t∗) +

∂F (x(t∗), t∗)

∂t

The second order Taylor series method then becomes:

x[s+1] = x[s] + F (x[s], s ·∆t)∆t

+

(
∂F (x[s], s ·∆t)

∂x
F (x[s], s ·∆t) +

∂F (x[s], s ·∆t)
∂t

)
∆t2

2!

(25)

The local truncation error of this method is the neglected termO(∆t3), better
than the Euler methods. The disadvantage of this method is that it requires the
calculation (symbolically or numerically) of the partial derivatives of F – a costly
operation. The global error is in the order of O(∆t2) for well behaved derivatives.

Higher order Taylor methods require even more derivative calculations, mak-
ing them impractical. There are methods that offer that same global error order
with far less computation at each step. We show one next.

Midpoint Method
The backward Euler method makes use of the most up-to-date derivative to

estimate the solution at t∗ + ∆t with the disadvantage that it requires more
computation to solve the implicit equation. To avoid this, but still trying to be
better than Forward Euler, we can try to estimate the derivative at halfway
between t∗ and t∗ +∆t and use that derivative to compute x(t∗ +∆t):

x(t∗ +∆t) = x(t∗) + F (x(t∗ +
∆t

2
))∆t

However, we do not know the value of x(t∗+ ∆t
2 ). We can use Taylor series again

to get

x(t∗ +
∆t

2
) = x(t∗) + F (x(t∗))

∆t

2

Thus we arrive at the midpoint method:

x[s+1] = x[s] + F

[
x[s] + F

(
x[s], s ·∆t

) ∆t
2

,

(
s+

1

2

)
·∆t

]
∆t (26)

1 Notice that, to be general, we represent the derivative F (x(t∗), t∗) as a function that

depends directly on the time. If this is not the case, then ∂F (x(t∗),t∗)
∂t

= 0.



The midpoint method, Eq. (26), can be generalized to

x
[s+1]
C = x[s] + βC1 ·∆t · F [s] + βC2 ·∆t · F

(
x[s] + βp · F [s] ·∆t, (s+ αp) ·∆t

)
where F [s] = F

(
x[s], s ·∆t

)
, βp = αp = 1

2 , βC1 = 0, and βC2 = 1.

Expanding F
(
x[s] + βp · F [s] ·∆t, (s+ αp) ·∆t

)
with the multi-variate ver-

sion of the Taylor series, we get:

F
(
x[s] + βp · F [s] ·∆t, (s+ αp) ·∆t

)
≈ F [s] + βp ·

∂F [s]

∂x
· F [s] ·∆t+ αp ·

∂F [s]

∂t
·∆t

Where the quadratic term was neglected. Plugging it into the previous equation
gives:

x
[s+1]
C = x[s] + βC1 · F [s] ·∆t +

βC2 ·
[
F [s] + βp ·

∂F [s]

∂x
· F [s] ·∆t+ αp ·

∂F [s]

∂t
·∆t

]
·∆t

= x[s] + (βC1 + βC2)F [s] ·∆t +

βC2

[
βp ·

∂F [s]

∂x
· F [s] + αp ·

∂F [s]

∂t

]
·∆t2

To find the local truncation error, let us find the Taylor series expansion of
the true solution and then compare it to the previous equation. The true solution
can be expanded as:

x̂[s+1] = x̂[s] + F [s] ·∆t+
1

2

∂F [s]

∂x
∆t2 +O(∆t3)

Applying the chain rule to the derivative yields:

x̂[s+1] = x̂[s] + F [s] ·∆t+
1

2
·
[
∂F [s]

∂x
F [s] +

∂F [s]

∂t

]
·∆t2 +O(∆t3)

Comparing x̂[s+1] with x
[s+1]
C , and assuming that these start from a true

solution x̂[s] gives:

x
[s+1]
C = x̂[s+1] ↔

x̂[s] + (βC1 + βC2)F [s] ·∆t+ βC2

[
βp ·

∂F [s]

∂x
· F [s] + αp ·

∂F [s]

∂t

]
·∆t2

= x̂[s] + F [s] ·∆t+
1

2
·
[
∂F [s]

∂x
F [s] +

∂F [s]

∂t

]
·∆t2 +O(∆t3)



When solved for the parameters, the above equation gives:
βC1 + βC2 = 1

2βC2βp = 1

2βC2αp = 1

As long as the parameters βp,αp,βC1,βC2 obey the above system of equa-
tions, the generic method will have a local truncation error of order O(∆t3)),
without having to compute any derivative of F . This also shows that the mid-
point method is but an element of a family of methods, all with different sets of
parameters, called the two stage Runge Kutta methods.

By the same argument as the Forward Euler (in Section 6.1), we conclude
that the global error of the two stage Runge Kutta method is of order O(∆t2)

6.3 Adaptive-Step Size

The numerical integration schemes introduced until now use a step size ∆t as-
sumed to be constant throughout the simulation process. These type of numerical
algorithms are computationally expensive in systems where the dynamic behav-
ior changes slowly except in some limited regions.

Recall that the order of growth of the global error ultimately depends on
the Lipschitz constant Kf , in Eq. (19). This constant represents the worst case
deviation of function F as a response to deviations in its parameters 2, for all
possible values of x̂(t).

A larger Kf indicates that the global error may grow faster, which means
that the step size ∆t should be smaller. To clarify: if a system has a large
Kf , it means that there is at least one pair of values x(t) and x̂(t) for which
‖F (x̂(t))− F (x(t))‖ is large. This does not imply the deviations of F are large
for all possible pairs of values x(t) and x̂(t). Furthermore, it does not imply that,
if the system were to be simulated in a bounded region (e.g, for 0 < t < tf ), the
Lipschitz constant in that region would be smaller. A smaller Lipschitz constant
means that the ∆t can be larger.

For a given derivative F , it is hard to find the proper Kf in order to pick the
right ∆t.

An algorithm that can change the ∆t throughout the simulation, not only
leverages the features of each region in the state space to improve the run-time
performance of the simulation but also frees the user from the burden of picking
an appropriate ∆t. All of this without sacrificing accuracy.

The change of the ∆t has to be triggered by some estimate of the error being
committed at each simulation step. Assuming the estimate is available, ∆t is
increased if the error becomes too small and decreased if the error is too large.

The challenge is to come up with a good estimate of the error being commit-
ted. Suppose we are given two methods, with local truncation errors O(c∆tv)
and O(c′∆tv

′
), respectively, with c, c′, v, v′ positive constants. Formally, let x(t)

2 F (x(t)) = F (x̂(t) + e(t)), with e being the approximation error



be the solution computed by the first method, x̃(t) by the second, and x̂(t) be the
real solution. Then, after one inaccurate step, solutions x(t+∆t) and x̃(t+∆t)
can be written as:

x(t+∆t) = x̂(t+∆t) +O(c∆tv)

x̃(t+∆t) = x̂(t+∆t) +O(c′∆tv
′
)

(27)

Comparing x(t+∆t) with x̃(t+∆t) yields

‖x(t+∆t)− x̃(t+∆t)‖ =
∥∥∥O(c∆tv)−O(c′∆tv

′
)
∥∥∥

The bigO notation tells that there exist constants K1 and K2 such that, in the
limit ∆t→ 0, ∥∥∥O(c∆tv)−O(c′∆tv

′
)
∥∥∥ =

∥∥∥K1c∆t
v −K2c

′∆tv
′
∥∥∥

Assuming that c′ > c and that v′ < v – the other cases are similar– we have, as
∆t→ 0:

‖x(t+∆t)− x̃(t+∆t)‖ = O(c′∆tv
′
) = ‖x̃(t+∆t)− x̂(t+∆t)‖

Thus proving that comparing the solutions of the two methods gives an estimate
of the error in the same order as the local truncation error of the least accurate
method.

From the previous sections, there are two approaches to affect the accuracy of
a method: (a) use a smaller step-size and (b) use an higher order approximation
method (e.g., the midpoint).

The approach (a) is widely used because of its simplicity: simply take any
existing numerical method, compute the solution twice (once with two half steps,
and once with a single step), and compare the two estimates.

For an example of approach (b), use the midpoint method to compute the
solution x(t), and, at each step, compare it with the result x̃(t) of the Forward
Euler method. It is easy to see that there is some redundant computation in this
approach. Fortunately, higher order Runge-Kutta methods can be combined,
reusing most of the redundant computation. These are called the Runge-Kutta
Fehlberg methods.

6.4 Logic blocks

Decision blocks are widely used in CBDs to increase the expressiveness of the
language. The most common decision block is the switch block. The switch block,
shown in Fig. 18, outputs the value u(t) or v(t) depending on the value of c(t).
If c(t) ≥ 0, u(t) is the output, otherwise v(t). The translational semantics are:

y(t) =

{
u(t), if c(t) ≥ 0

v(t), otherwise

As will be presented shortly, the operational semantics of this block introduce
interesting challenges.



Fig. 18. Switch block

Discontinuity Handling – Zero-Crossing Detection and Location
Recall that the simulation of continuous time CBDs can only be performed

approximately in a digital computer. See Section 5.2. This means that the sim-
ulation of a continuous CBDs is actually a discrete set of points

x(0),x(1∆t1),x(2∆t2), . . .

computed with an adaptive step size method (see Section 6.3).
Suppose the time is t and the simulator is going to compute the solution to

the output of the switch block y(t+∆t). Furthermore, assume that y(t) = u(t),
that is, c(t) ≥ 0. If c(t+∆t) ≤ 0, then two issues can be identified:
1. y(t+∆t) = v(t+∆t) may be very different than y(t), because v(t+∆t) 6=
u(t+∆t).

2. t+∆t may not represent the exact time at which the signal c(t) crossed the
zero. That is c(t+∆t) = 0− δ, for some ε > 0.
The second issue implies that, by the intermediate value theorem, there exists

at least one point t∗ ∈ [t, t+∆t], at which c(t + ∆t) = 0. Ideally ∆t should be
picked in a way such that t+∆t ≈ t∗, thus minimizing δ, for two reasons:
– Accuracy is improved since all the blocks that depend on the solution x(t+
∆t) will produce outputs that are close to the switching point t∗;

– Integrator blocks, which apply the numerical methods presented in Sec-
tion 6.2 may need to be aware of the discontinuity in their inputs, caused by
the discontinuity of y around the point t∗ (issue 1 above).

To see why this can be a problem, consider the abstract CBD shown in Fig. 19.
It can be written as a differential equation (recall Fig. 13):

x′(t) = F (x(t))

At the time of the discontinuity t∗, in the limit ε→ 0, x(t∗ − ε) = x(t∗ + ε), but
F (x(t∗−ε)) 6= F (x(t∗+ε)) because of the switch block. This causes a fundamental
assumption about the behavior of F – the Lipschitz condition, Eq. (19) – to be
violated. Formally,

‖F (x(t∗ + ε))− F (x(t∗ − ε))‖ ≤ Kf ‖x(t∗ + ε)− x(t∗ − ε)‖ ≤ 0

is a contradiction.
Without the Lipschitz condition assumption, it is hard to guarantee an or-

der for the growth of the global error. There are multiple ways to address this



problem, once the exact time of the discontinuity is located. See [9, 15]. We focus
here in the location of the time of the discontinuity (also called root-finding, or
zero crossing location in the literature).

...

...

Fig. 19. Abstract CBD which may violate the condition in Eq. (19).

Fig. 20. The bisection method

Different algorithms have been proposed over the years (see [4, 7]). The
essence is always the same: locate t∗ in an interval [t, t+∆t] such that the
condition of the switch c(t+∆t) = 0.

A robust yet simple algorithm is the bisection method. As the name hints,
the method works by iteratively bisecting the interval. At each iteration it selects
the subinterval where the zero-crossing is present to search for the zero location.
The algorithm is shown in Fig. 20. The initial steps detects a zero-crossing in the
interval between t1 and t2. The iterative procedure evaluates first point a, then
point b, then point c and finally point d that is within the tolerance bounds.



Other algorithms are described in the literature. For example, the false posi-
tion method (or regula-falsi) method tries to reduce the number of iterations by
using a linear approximation between the two calculated points. For example,

referring to Fig. 20, the point a is calculated as a = t2 − t1∗c(t2)−t2∗c(t1)
c(t2)−c(t1) .

7 Conclusions

Causal Block Diagrams represent a formalization of the intuitive graphical nota-
tion of blocks and arrows. This chapter introduced the different variants of this
formalism, in a gradual manner.

Algebraic CBDs represent algebraic systems, i.e., where there is no notion
of passing time. Discrete time CBDs mixes in the passage of time, although at
discrete points. These are analogous to difference equations. Finally, continuous
time CBDs, were time is a continuum, correspond to differential equations.

To connect these three variants, a running example of a cruise control system
was used. The most typical use cases are:
Algebraic CBDs – study the steady state behavior of systems;
Discrete time CBDs – represent computation and software components;
Continuous time CBDs – modeling physical systems;

In order to perform simulation, discrete time CBDs can also be used to rep-
resent a discretized approximation of continuous time CBDs, just like difference
equations are used to approximate differential equations.

The advantage of CBDs over plain difference/differential equations is the
natural support for hierarchical descriptions of complex systems, providing a
way to manage complexity.

The disadvantage is in the ability to reuse models of physical components,
represented as CBDs. Physical objects do not have a notion of inputs and out-
puts. They are best modeled with equations where any variable can be an in-
put/output, depending on whether it is known. This way, the same component
can be reused in many different settings, with its input/outputs defined upon in-
stantiation. In CBDs, the modeler is forced to think of the possible instantiations
of the model, and define the inputs/outputs accordingly.

CBDs are widely used in the development of embedded systems. Understand-
ing their semantics and the numerical techniques employed provides the reader
with a stepping stone into understanding other modeling languages.

8 Further Reading

Among the references already cited, we highlight: [7] provides an extensive
overview of the simulation of continuous systems. [12] gives a good introduction
to continuous system modeling and simulation, for the reader with a background
in Computer Science. [4] provides a mathematically oriented description of mul-
tiple numerical techniques. Last but not least, [9] and [15] provide an overview
of the the challenges involved in hybrid system simulation, of which CBDs with
logic blocks are part of.
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