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Abstract

The reported productivity gains while using models and model transformations to
develop entire systems, after almost a decade of experience applying model-driven ap-
proaches for system development, are already undeniable benefits of this approach. How-
ever, the slowness of higher-level, rule based model transformation languages hinders
the applicability of this approach to industrial scales. Lower-level, and efficient, lan-
guages can be used but productivity and easy maintenance seize to exist.

The abstraction penalty problem is not new, it also exists for high-level, object ori-
ented languages but everyone is using them now. Why is not everyone using rule based
model transformation languages then?

In this thesis, we propose a framework, comprised of a language and its respective
environment, designed to tackle the most performance critical operation of high-level
model transformation languages: the pattern matching. This framework shows that it is
possible to mitigate the performance penalty while still using high-level model transfor-
mation languages.

Keywords: Model Transformations, DSL, Language Design, Pattern Matching, Model
Transformation Optimization, Model-Driven Development
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Resumo

Os aumentos de produtividade reportados ao longo quase uma década de utilização
de modelos e transformações entre modelos para desenvolver sistemas complexos cons-
tituem uma prova irrefutável dos benefícios desta abordagem. Conduto, a lentidão na
execução de transformações expressas em linguagens de alto nível, baseadas em regras,
prejudica muito a applicabilidade da abordagem. As linguagens de baixo nível, que são
muito rápidas, podem ser usadas mas nesse caso não se consegue produtividade e fácil
manutensão das transformações.

Este problema da abstração não é novo. Também as linguagens orientadas por objec-
tos passaram pelo mesmo mas hoje em dia toda a gente as usa. Então porque é que não
acontece o mesmo com as linguagens de transformação? O que falta fazer?

Nesta tese, propomos uma linguagem de transformação e respectivo ambiente de
suporte, concebida para contornar o maior obstáculo à aplicabilidade industrial das lin-
guagens de transformação de alto nível: a captura de padrões. Com a nossa abordagem
demonstramos que é possível mitigar o problema da abstração.

Palavras-chave: Transformações de Modelos, Linguagens de Domínio Específico, Dese-
nho de Linguagens, Captura de Padrões, Optimização de Transformações, Desenvolvi-
mento baseado em Modelos
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1
Introduction

The immersion of computer technology in a wide range of domains leads to a situation
where the users’ needs become demanding and increasingly complex. Consequently, the
development of successful software systems also becomes increasingly complex.

Models are an important mechanism to deal with system complexity [Sch06; KBJV06].
In the context of software engineering, models can be used to describe and prescribe en-
tire systems. Therefore, a promising divide-and-conquer idea to break down this increasing
complexity in software engineering, is to intensively use models during all stages of soft-
ware development, as in the Model Driven Development (MDD) approach.

MDD is a software engineering approach that uses models and model transforma-
tions as first class citizens to create and evolve software systems [HT06]. Typically, several
different models of the same system are combined across multiple levels of abstraction
resulting in the implementation of that system. In MDD, both the design and develop-
ment of new software systems is done by having multiple levels of abstraction, where
each level deals only with a particular aspect of the system (therefore decreasing its com-
plexity), and assuring the consistency between them (e.g., translations, synchronisations,
etc.). In practice, each level of abstraction can be formalised by means of a domain spe-
cific modelling language (DSML), and materialised by its respective supporting tools (i.e.,
editors, simulators, interpreters, analysers and compilers).

Model-Driven Development (MDD) has already been applied to the development of
web applications (e.g.,[FP00] and [TMNAOH04]), real-time systems (e.g., [BGHST05]),
role-playing games (e.g., [MBBB12]), and many more domains but its wide adoption de-
pends on how easily transformations between models can be specified and how fast those
transformations can be executed. Notice that the execution of model transformations is
typically slow.

1



1. INTRODUCTION 1.1. Problem Statement

1.1 Problem Statement

In order to effectively enable MDD, the consistency between models has to be ensured by
model transformations. These transformations have to be easy to specify, maintain and
quick to execute. However, as we will see in the following chapters, designing a model
transformation language that satisfies those three requirements is really difficult.

There are model transformation languages that are quick to execute, for instance,
any general purpose programming language equipped with a proper library such as
Java+EMF [Gro09]; and languages that promote productivity and maintainability, such
as AGG [Tae04], Atom3 [LVA04] or Viatra2 [VB07].

The former languages are typically imperative in the sense that the user of the lan-
guage specifies how the transformation is supposed to execute. The latter ones are declar-
ative, where the user specifies a set of rules that relate the input models to the output
models. The model transformation engine handles the other details. The rules are com-
prised of a left hand side graph-like pattern and right hand side graph-like pattern. Dur-
ing the transformation execution, the engine must search the input model for occurrences
of the left hand side pattern and, when a match is found, an instance of the right hand side
pattern is produced in the output model. Due to the graph-like representation of mod-
els, searching for occurrences of some graph-like pattern is known to be an NP-Complete
problem [Zün96].

This shows that there is a price to pay for increased abstraction in model transforma-
tion languages. Taking that in consideration, our research question can be stated as:

How can we avoid the abstraction penalty in model transformation languages?

1.2 Expected Contributions

In this thesis we explore how to mitigate the abstraction penalty in model transformation
languages. We propose a framework, comprised of a language and its respective envi-
ronment, designed to tackle the most performance critical operation of high-level model
transformation languages: the pattern matching.

The language proposed, instead of following a rule based approach, like most of the
state of the art, represents the transformation as a network with explicit structures to
control the flow of information from the input model to the output model. This explicit
representation of the transformation allows for the application of several analysis and
optimizations.

Upon successful completion, we will show that it is possible to mitigate the abstrac-
tion penalty in high-level model transformation languages.
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1.3 Document Structure

This thesis’ structure reflects the main development steps of our solution. Each chapter
is a step in achieving that solution.

The first four chapters represent our state of the art investigation. Then, Chapter 5
clarifies the problem we are trying to solve. Chapter 6 plans and explores our approach
to solve that problem and Chapters 7, 8 and 9 implements the solution to the problem.
Finally, Chapter 10 evaluates the implemented solution and Chapter 11 presents our con-
clusions.
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2
Model Driven Development

This chapter is intended to make the thesis as self-contained as possible. We present all
the necessary concepts to understand the context of this thesis. We start by conveying the
definition of the word model and introducing the example that will be used throughout
the chapter. We explain how models can be used to describe complex systems and the
role of model transformations in that process. We conclude with an overview of the most
used pattern matching and optimization techniques.

2.1 Models

It is by no means reasonable to build a map the same size as the city it represents. Ab-
straction, along with problem decomposition and separation of concerns is one of the
best ways to deal with complexity [Sch06; KBJV06]. A map of a city is an abstraction of
that area that addresses a particular concern. There are several types of maps: road maps
(the most widely used), economical maps, political maps, etc. . . A map is a model.

Given a system M0, a model M1 is (i) a representation based on the system M0 (ii)
reflecting only the relevant parts of M0 (iii) to serve a given purpose [Kuh06].

In the context of software engineering, models are often represented as graphs1 be-
cause graphs can express complex structures and relations; they are intuitive, expressive
and suited for automatic manipulation [Ehr06]. We will be using the terms graphs and
models interchangeably. UML Class Diagrams are widely used to create models of the
static information in a software system.

1More precisely, models are often represented as typed and attributed graphs. For more details please
refer to [Ehr06].
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Using models like the one shown in Figure 2.1, social scientists, without any program-
ming expertise, are able to deploy full featured web applications to conduct their studies.
In order to accomplish this, these scientists use applications such as eSurveysPro2 or Lime-
Service3 to read and translate questionnaire models into web applications [ABDT10].

Figure 2.1: Questionnaire model. Taken from [ABDT10].

In technical terms, one of the ways to serialize a model is through the XML Metadata
Interchange (XMI) format [Om02]. XMI is a standard XML format created to enable both
human and machine readable representation of models.

How does one guarantee that social scientists will always build syntactically correct
questionnaire models? By syntactically correct we mean that they are suited for being
parsed by some application. Note that a successfully parsed questionnaire does not have
to make any sense. We will discuss syntax and semantics in the next section.

2.2 Syntax and Semantics

In order to better understand syntax and semantics consider the following example:

The expression “5
0” is syntactically correct with respect to integer arith-

metic because “5” and “0“ are valid integers and the division is a binary op-
erator; but semantically incorrect since “5

0” does not mean anything or has

2http://www.esurveyspro.com
3http://www.limeservice.org
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the wrong meaning. The expression “5 ∗ 3” is syntactically and semantically
correct: it means “15”. The expression “5+” is syntactically incorrect because
the plus operator needs two operands.

A syntactically correct model has to respect some well-formedness rules. A semanti-
cally correct model can be interpreted to produce something with meaning.

Since models are to be automatically parsed and interpreted, there must be a way to
unambiguously specify well-formedness rules. That is were a metamodel comes in.

2.3 Metamodels

A metamodel is a set of rules that describes all possible syntactically correct models, i. e.,
given a model M1 and a metamodel M2 of M1, it is easy to check if M1 is syntactically
correct with respect to M2 [KBJV06]. When this happens, we say that M1 conforms to
M2. Moreover, given M2, a computer is able to parse any M1, that conforms to M2, and
further do something useful with that information. This is analogue to what happens
between a program and its programming language. The program has to be parsed by
some compiler (or interpreter), hence the need for a set of rules dictating syntactically
correct programs.

Figure 2.2 shows a simplified metamodel for questionnaire models. This metamodel
can be used by applications that parse questionnaire models to check if they are syntac-
tically correct. As the questionnaire metamodel shows, a questionnaire is formed by a
forest of blocks. Each block contains a set of questions with zero or more options. Ques-
tions with zero options expect any textual answer. A questionnaire has attributes such
as title, introduction, logo, appreciation text, acknowledgements and an expected time
to complete. The information about the each particular metamodel element lies in its
attributes. Comparing the model shown in Figure 2.1 and the metamodel of Figure 2.2
one is able to determine to determine the correspondence between each model element
and metamodel element. For instance, the SchoolViolence element corresponds to a Block.
This relation between a model element and its corresponding metamodel elements is the
instance of relation. In our example, the SchoolViolence is an instance of the Block element.

Formally, a model M1 conforms to a metamodel M2 iif it is possible to build a instanceof

relation between the set of nodes and associations N1 and A1 of model M1 and the set of
nodes and associations N2 and A2 of M2 such that the following conditions hold:

∀a∈A1instanceof(src(a)) = src(instanceof(a))

∀a∈A1instanceof(trg(a)) = trg(instanceof(a))

where src(a) and trg(a) denote the source and target elements of the association a. For
more details, Hartmut Ehrig presents a formalization on type and attributed graphs in
[Ehr06].
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Figure 2.2: Questionnaire metamodel. Taken from [ABDT10].

Figure 2.3 shows the instanceof relation between the model of Figure 2.1 and the meta-
model of Figure 2.2.

There are tools called modelling environments that offer support to the creation of
metamodels and tools to manipulate models. For instance, a user can use a modelling
environment to create a questionnaire metamodel like the one shown in figure 2.2 and
automatically generate a set of editors that ease the manipulation of questionnaire mod-
els. Eclipse Modeling Framework (EMF) [Gro09] is an example of a modelling environ-
ment but there are others such as Generic Modelling Environment (GME) [LBMVNSK01]
or MetaEdit+ [TR03].

How does the modelling environment guarantees that the created metamodels are
syntactically correct? Where are the set of rules that prescribe well formed metamodels?

2.4 Meta-metamodels

A metamodel M2 conforms to a meta-metamodel M3. A meta-metamodel represents the
set of all well formed metamodels. Note that this makes the metamodel a model M2

conforming to M3. Figure 2.4 shows a simplification of a meta-metamodel: the Ecore
meta-metamodel. The Ecore is the meta-metamodel used in the Eclipse Modelling Envi-
ronment (EMF).

The relation between a metamodel M2 and a meta-metamodel M3 is the same as the
one between a model M1 and M2: M2 is an instanceof M3. The instanceof relation is
(partially) shown in Figure 2.5.

The meta-metamodel must also obey to some well formedness rules. It turns out
that the meta-metamodel is supposed to conform to itself, i.e., it is reflexive. This means
we don’t need a meta-meta-metamodel. Unfortunately, there are some issues about in-
terpreting a reflexive meta-metamodel from a pragmatic point of view as identified in
[Sei03]. Fortunately, in practice this limitation is negligible since most tools operate at
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Figure 2.3: Questionnaire model and metamodel. Taken from [ABDT10].

the level of metamodels and below [Fav04]. Figure 2.6 summarizes the four levels of ab-
straction described until now. The M0 denotes the system under study that needs and
abstraction; M1 denotes the model of M0; M2 is the metamodel to which M1 conforms to;
and M3 is the meta-metamodel.

2.5 Model Driven Development

Model-Driven Development (MDD) is a software engineering approach that uses mod-
els as first class citizens to create and evolve software systems [HT06]. The software
code is generated from a set of models thus enabling massive reuse and “correct-by-
construction” software [Sch06].

The Model-Driven Architecture (MDA) is a set of guidelines proposed by the Object
Management Group4 (OMG) on how to produce applications using MDD [Sol00]. These
guidelines suggest that when building a complex system, Platform Independent Models
(PIMs) should be used to describe that system. Then, PIMs are translated to Platform
Specific Models (PSMs). Furthermore, MDA proposes a meta-metamodel (M3) called
Meta Object Facility (MOF) and the four abstraction levels shown in Figure 2.6.

Platform Independent Models (PIMs) denote those models that don’t keep specific

4http://www.omg.org/
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Figure 2.4: (Highly) Simplified Ecore Metamodel.

information about a system’s ultimate execution environment (operating system, pro-
gramming language, etc. . . ) [AK05]. The questionnaire model of Figure 2.1 does not keep
information about its execution environment, i.e., it is a PIM. Because of this, an applica-
tion like eSurveyPro can choose to generate a web application or a desktop application,
or even a mobile version, to evaluate the survey.

After a total or partial specification of the necessary PIMs to describe a system, a set of
Platform Specific Models (PSMs) is generated from those PIMs. PSMs carry information
about the system’s execution environment and are well suited for being used to generate
(automatically or semi-automatically) that system.

An application like eSurveyPro, capable of processing a questionnaire model to pro-
duce a web application, would operate in the following way:

1. A questionnaire model is given as input to the application;
2. The application checks if the model conforms to the questionnaire metamodel.
3. Assuming the model is syntactically correct, there are three equivalent alternatives:

(a) The application interprets the model and presents the user with a web page
containing the questions and choices declared in the model.

(b) The application translates the model to a set of Java classes that, when run,
present the user with a web page containing the questions and choices de-
clared in the model.

(c) the application translates the questionnaire model to a Enterprise JavaBeans
(EJB) model5 and then the EJB model is translated to a set of classes imple-
menting the questionnaire. The classes generated include support for trans-
actions, remote and distributed execution, persistence, etc. . . This EJB-to-Java
translation is done by other application (e.g., AndroMDA6 is a tool capable of

5http://www.oracle.com/technetwork/java/javaee/ejb/index.html
6http://www.andromda.org
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Figure 2.5: (Partial) Relations of conformance between model, metamodel and meta-
metamodel.

performing the translation), specifically devised to translate EJB models to ex-
ecutable Java classes.

The alternatives 3a, 3b and 3c have the same purpose: they provide semantics (a
meaning) to the questionnaire model. The first alternative gives semantics in an opera-
tional manner. The second and third ones do this through a transformation into a model
that already has defined semantics (EJB is a model and code can also be seen as a model
[Béz05]).

The alternative 3c is the easiest to realize because the transformation we have to build
is one between models conforming to similar metamodels (Questionnaire and EJB) as
to building an interpreter or a compiler (options 3a and 3b). Option 3c is also the safest
alternative because the probability of introducing bug in the transformation process is
far smaller than in the other options. Figure 2.7 shows a possible (simplified) EJB model
produced with such a transformation applied to the questionnaire model of Figure 2.1.
By observing the EJB model, we can immediately come up with a set of heuristics on
how to perform the transformation: 1. Each questionnaire item is translated into a Session
Bean and a persisted Entity Bean. The Session Bean objects provide the necessary controls
to allow the user to answer the questionnaire. 2. Blocks, Questions and Options are all
translated into respective Entities as they need to be persisted after each session.

The keen reader will observe that the heuristics presented are applicable to any pos-
sible questionnaire model, not just the one shown in Figure 2.1.

here are at least two possible ways to implement the translation between question-
naire models and EJB models. One is to manually code a visitor that parses the XMI file
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Figure 2.6: System, Model, metamodel and meta-metamodel.

Figure 2.7: Simplified EJB model generated from a questionnaire model.

of a questionnaire model and generates a XMI file representing the EJB model. This is the
visitor based approach [JUH10]. It is also possible to use templates to orchestrate the gen-
eration of the EJB model contents, i.e., following a template based approach. However,
these two alternative are more suited to perform model-to-code transformations as they
allow for easy code generation. In this case we are interested in performing a model-to-
model transformation. Model Transformations are the subject of the next chapter.
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3
Model Transformations

A model transformation is “the automatic generation of a target model from a source
model, according to a transformation definition” [KWB03].

The transformation definition is expressed in some language. The language can be a
general purpose language like Java or a more specific model transformation language.

Model transformation languages, together with their supporting model transforma-
tion tools provide an high-level and highly productive environment where transforma-
tion specifications consist of rules like the one shown in Figure 3.1.

Figure 3.1: Example rule used to specify a model transformation.

3.1 Environment

Model transformation tools interpret a transformation specification the relates some in-
put model, conforming to metamodel, to some output model, conforming to some other

13
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metamodel. Typically, even the transformation itself is a model conforming to a meta-
model [Béz04] as is illustrated in Figure 3.2.

Figure 3.2: Overview of the model transformation process.

The MMM denotes the meta-metamodel (e.g. Ecore or MOF) and the MMt is the
metamodel of the transformation specification. This metamodel, MMt, is often called
the transformation language. Note that if n = m = 0 and MM0 = MM′

0 we have a
transformation between models conforming to the same metamodel, i. e., an endogenous
transformation [MVG06]. When the input and output metamodels are different we have
an exogenous transformation [MVG06].

There is a great variety of MTTs, each unique in features provided, language used, and
approach followed to solve the model transformation problem [GGZVEVGV05]. Some
operate with just a set of transformation rules applying them in any order (declarative
approaches); others allow the user to control rule scheduling (or rule selection) (hybrid
approaches); others take this further by providing an imperative language with loop
constructs, branching instructions, composition mechanisms, etc. . . that allow the user to
program all the transformation process (imperative approaches). Czarnecki and Helsen
provided a classification of model transformation approaches in [CH03] that captures
most of the MTTs’ features from a usability point of view.

3.2 DSLTrans - A Model Transformation Language

DSLTrans [BLAFS11] is a visual rule-based language for model transformations. It uses
layers to define an order to apply the rules to the input model. Figure 3.3 shows an
excerpt of a transformation that translates questionnaire models into EJB models as is
described in section 2.5.
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A transformation in DSLTrans is formed by a set of input model sources called file-
ports (“inputQuestionnaire” in Figure 3.3) and a list of layers. Input model sources are
typed by the input metamodel and layers are typed by the output metamodel. Each layer
is a set of rules that are executed in a non deterministic fashion. The top part of each rule
is called the “match” and the bottom is “apply”.

In the example presented in Figure 3.3, in the first layer, left rule, for each Question
instance found in the input model, a new EntityBean instance is created in the output
model, with the name “Question” and id equal to the id of the found Question instance.
In addition, a trace link is created internally identified by the “Q2E_Trace” string. These
trace links can be used in the subsequent layers to retrieve a Question instance and the
corresponding EntityBean instance created in the rule. In the right rule, a similar opera-
tion is performed to all the Option instances found in the input metamodel. In the rule
of the second layer, all the question and respective offered questions are being matched
in the input model, together with the corresponding previously created EntityBeans and
a new association called “first" is being created.

For more details about DSLTrans, please refer to section 6.2 in chapter 6.

3.3 State of Art

Off course DSLTrans is not the only model transformation language. There are many
others, each with it’s particular set of features, advantages and limitations. In our study,
we tried to cover as much languages as possible, namely: (i) imperative tools such as
ATC [EPSR06] and T-Core [SV10]; (ii) declarative tools such as AGG [Tae04], Atom3
[LVA04] and Epsilon Flock [RKPP10a]; (iii) programmed graph rewriting approaches
such as GReAT [BNBK07], GrGen.NET [KG07], PROGReS [Sch94], VMTS [LLMC05] and
MoTif [SV11]; (iv) incremental approaches such as Beanbag [XHZSTM09], Viatra2 [VB07]
and Tefkat [LS06]; (v) and bidirectional approaches such as BOTL [BM03a].

3.4 The Model Transformation Process

Based on our study of the state of the art tools, we built a general process that identifies
the main stages occurring in most model transformation executions.

Figure 3.4 identifies the main stages in two typical transformation execution modes:
interpretation (left) and compilation (right). The only difference between these two modes
is that, in the compilation, the execution of the transformation is separated from the trans-
formation load, parse and compile tasks and off course, the performance, as we will see
in chapter 10.

We stress the fact that the presented diagrams are not supposed to describe exactly
how model transformation tools operate, but to provide instead a clear overview of the
main stages in most model transformation executions. However, these diagrams are
general enough to describe even imperative tools (e.g., ATC [EPSR06]), where most of
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the transformation execution stages (in the Execute Transformation State) are manually
coded by the transformation programmer. We also assume that a transformation is com-
prised of a set of rules, each containing an Left-Hand Side (LHS) pattern, that needs to
be found in the input model, and a Right-Hand Side (RHS) pattern which represents the
output model. There is no loss of generality, since these rules (with the mentioned pat-
terns) do not need to be explicitly represented in the transformation language. They can
be implicit in the transformation programmer’s mind when coding the transformation.
For simplicity’s sake, we only consider one input model and one output model but it is
easy to see how the process can be adapted to multiple input/output models.

As is illustrated in Figure 3.4, an engine always starts by loading the transformation
and, in the case of interpretation, the input model. At this point, some existing engines
perform global optimizations, which will be explained and categorized in section 4.2.
Next, the engine executes the transformation by selecting each rule and optionally per-
forming some local optimizations (see section 4.2). After those optimizations, a search in
the input model must be performed in order to find where to apply the rule. In this task,
the engine has to find occurrences of the rule’s left-hand side pattern in the input model.
From a performance point of view, this operation is the most expensive, and usually all
the optimizations target the reduction of its cost (see chapter 4). The application of the
rule’s right hand side is performed for each occurrence found and, if there are more rules
to be applied, the transformation continues. Else, the transformation execution ends.
After that, the output model is stored.

3.5 Performance

In order to better understand how much the pattern matching operation (the Match LHS
State in Figure 3.4) costs, we picked a benchmark created for the Tool Transformation
Contest (TTC) 2010. For all details about the benchmark case study, input models and
tools used, please refer to chapter 10.

From the available submissions we selected transformations expressed in Epsilon
Flock, ATL and GrGen.NET tools. We also coded a transformation entirely in Java, using
the Eclipse Modelling Framework (EMF) library to load and store the models.

Running each transformation with increasingly larger input models yielded the re-
sults shown in Figure 3.5. Note the logarithmic scale in both axes. The vertical axis
denote the total transformation time, i.e., the input model load, transformation parse,
execution and output model storage tasks. The horizontal axis denotes the input model
size.

It is clear that, in terms of performance, there is a big gap between model transfor-
mation languages and a general purpose programming language like Java. In a sce-
nario where performance is very important, Java, or any other low-level general purpose
language, might be the only tool for the job. Off course, creating and maintaining a
transformation entirely written is Java is, at least compared with model transformation
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languages, a tiring, unproductive and error-prone task. Not to mention that the code is
tightly coupled to the EMF library to load and store models.

The three tools used have a very intuitive, compact and declarative syntax to specify
the transformation. Compared to Java, it is really easy and quick to create the transforma-
tion in all three languages. Also it should be straightforward to cope with any change to
the representation of models. The problem is that at industrial scales, any transformation
written in these languages becomes useless.

Only after high-level transformations are shown to run fast enough, people will use
them at industrial scales. Optimization techniques play an important role for that pur-
pose.

In the next chapter, we will see why the pattern matching process is the most critical in
terms of performance and a categorization of the state of the art optimization techniques
to mitigate this problem.
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Figure 3.3: Excerpt of a transformation expressed in DSLTrans.
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(a) Interpretation process of a transfor-
mation model overview.

(b) Compilation process of a transfor-
mation model overview.

Figure 3.4: Overview of the execution process of a transformation model.

Figure 3.5: Transformation running times of some state of art tools.
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4
Pattern Matching Optimization

Techniques

In this chapter, we study the pattern matching process. Optimizing this NP-Complete
[Zün96] problem is one of the most effective ways to reduce execution times and achieve
industrial applicability for model transformations. We identify and classify several pat-
tern matching optimization techniques and we present the categorization of the state of
the art tools.

In the following sections we provide a simple and general explanation for each opti-
mization technique with the help of some examples. The input model used, and corre-
sponding metamodel, are presented in Figure 4.1. The metamodel states that instances of
M are comprised of zero or more instances of A. A elements refer to zero or more elements
of type B or C. C elements may reference multiple C instances. All elements have an id
string attribute and C elements have an extra ccs integer attribute. Note that containment
associations (with the black diamond in the source) state that a child element (association
target) may only exist inside one parent element (association source). Later we will see
why this fact has an impact on the performance of the pattern matching operation.

4.1 The Pattern Matching Problem

Consider the pattern shown in Figure 4.2. The search for occurrences of that pattern in
some model is called the pattern matching. More specifically, for an occurrence to be
found, each element in the pattern, including the associations, has to be mapped to an
element of the input model. Figure 4.3 shows one such mapping for the input model
of figure 4.1a but there can be thousands of possible matches in large models. In this
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(a) Model used as input for the illustra-
tion of pattern matching techniques. (b) Metamodel.

Figure 4.1: Sample input model (left) and corresponding metamodel (right).

example, there are two: the first one is shown in the figure and the second one has the
mapping {(x, a3), (z, c3), (y, b3)}. Had we omitted the restriction ccs=2 and there would
be 6 possible mappings.

Figure 4.2: Sample pattern.

In order to find such mapping in any given input model, a transformation engine has
to follow an algorithm similar to Algorithm 1. A few remarks about the notation: 1. The
GetAllInstances(Type) function returns the set of all elements from the input model that are
instances of Type; 2. element.association returns, all the model elements that are connected
to element by the association association as targets; 3. element.attribute returns the value of
the attribute attribute of the element element; 4. It should be clear by the context whether
we are navigating an association or accessing an attribute with these two last operations;
5. The BAC unique identifies the pattern in Figure 4.2;

The algorithm starts by finding all the instances of A and then, for each instance a,
navigates along the edges a.ab and a.ac to find the remaining elements.

For the worst case scenario, assume that GetAllInstances(T) has to search through the
entire model to find all elements of type T and assume that A elements are connected to
every B and every C elements in the model. The time complexity of the Algorithm 1, in
this scenario, is O(((|M |+ |A|+ |B|+ |C|)+(|A|× |B|× |C|)) where |T | denotes the size of
the GetAllInstances(T) set. Note that this is just the cost of one particular pattern matching
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Figure 4.3: Example occurrence of the Left-Hand-Side (LHS) pattern of the rule in Fig-
ure 3.1.

Algorithm 1 An algorithm to find occurrences of the pattern shown in Figure 4.2.

function FINDALLOCCURRENCESBAC
occurrences← {}
for a ∈ GetAllInstances(A) do

for b ∈ a.ab do
for c ∈ a.ac do

if c.ccs = 2 then
occurrences← occurrences ∪ {(x, a), (y, b), (z, c)}

end if
end for

end for
end for
return occurrences

end function

operation. In a whole transformation execution, several patterns need to be matched.

Most model transformation tools, when loading the input model (see the process in
figure 3.4), create an index to store elements organized by their type. Using this feature
the tool does not have to search the whole input model to find an element of a given
type1. This causes the GetAllInstances(T) function to return immediately with the set of
all instances of T. So, the worst case, for most model transformation tools, of Algorithm 1
is O(|A| × |B| × |C|).

In general, given an arbitrary pattern with {n1, n2, . . . , nm} matching elements, each
being instance of types {T1, T2, . . . , Tm}, respectively, an algorithm to match those ele-
ments has a worst case time complexity of O(|T1| × |T2| × . . .× |Tm|). Note that if Ti = Tj

for all i and j, we have O(Tm) meaning that the algorithm is exponential in the size of
the pattern.

1Recall that most pattern elements are syntactically typed
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4.2 Optimization Techniques

The good news is that, in the model transformation context, models are typically sparsely
connected, model elements are indexed by their type and patterns in rules are generally
small. Because of these facts, the average pattern matching process has a complexity
that can be “(. . . ) overapproximated by a linear or quadratic function of the model size”
[VFVS08]. Also, there is lots of room for improvement in Algorithm 1.

4.2.1 Indexing Techniques

For instance, the tool could be improved to, when loading the input model, create an
index with the inverse associations of the existing associations. This feature is so useful
that it is usually supported by the model management frameworks used by tools, such
as UDM [MBLPVAK03] or EMF [Gro09]. It also means that, for each instance of an as-
sociation T1

assoc−−−→ T2, there would be an instance of the association T2
assocInv−−−−−→ T1. The

implications are clear: If there are only associations T1
assoc−−−→ T2 in the model and we are

given an element t2 instance of T2, it is still possible to obtain all the instances of T1 that
are connected to t2 without having to search all instances of T1 in the model. We do that
with t2.assocInv. If an engine supports this indexing technique, then the Algorithm 1
could be improved to Algorithm 2.

Algorithm 2 An algorithm to find occurrences of the pattern shown in Figure 4.2 taking
advantage of inverse associations.

function FINDALLOCCURRENCESBAC
occurrences← {}
for c ∈ GetAllInstances(C) do

if c.ccs = 2 then
for a ∈ c.acInv do

for b ∈ a.ab do
occurrences← occurrences ∪ {(x, a), (y, b), (z, c)}

end for
end for

end if
end for
return occurrences

end function

In Algorithm 2 we switched the order of the loops because, since we can only have
an occurrence if the z element satisfies the restriction z.ccs = 2, we might as well start by
looking for such z elements. Notice that we can only take advantage of this heuristic if
the engine has built inverse relations.

In the worst case, all the z elements satisfy the z.ccs = 2 restriction the complexity
remains at O(|C| × |A| × |B|). But, in the average case, it will be O((|C| × P (z.ccs =

2)) × |A| × |B|) where P (z.ccs = 2) is the probability of picking one instance z of C

24



4. PATTERN MATCHING OPTIMIZATION TECHNIQUES 4.2. Optimization Techniques

that satisfies the restriction z.ccs = 2. In Chapter 8 we will show how this probability can
be estimated. For now, if the input model shown in figure 4.1a is representative, then
P (z.ccs = 2) = 1

3 .

We can improve the indexing techniques of the tool to provide attribute indexes. This
way, if an element T with an attribute T.attr of type P is frequently accessed throughout
a transformation, then building an index Tattr : P → T can yield a major speed up.
Algorithm 3 shows how this index can be used to fetch immediately all the instances
c of C satisfying the restriction c.ccs = 2. Note that since the index fetches the correct
instances there is no need for the verification of the restriction. Normally, the creation
of these indexes is controlled by the user so that only the most relevant attributes are
indexed but the tool can analyse all the transformation and determine which attributes
deserve to be indexed. In order to fill the index with the necessary instances, the tool,
when loading the input model, scans all C instances and organize them in the index.

Algorithm 3 An algorithm to find occurrences of the pattern shown in Figure 4.2 taking
advantage of attribute indexes.

function FINDALLOCCURRENCESBAC
occurrences← {}
for c ∈ Cccs(2) do

for a ∈ c.acInv do
for b ∈ a.ab do

occurrences← occurrences ∪ {(x, a), (y, b), (z, c)}
end for

end for
end for
return occurrences

end function

We can take these indexing techniques one step further and implement structural
indexes. These allow for the storage of instances of whole patterns. For example, assume
that the pattern B

ab←− A
ac−→ C, identified by BAC’ is frequently matched throughout the

transformation. By detecting this fact, the engine creates an index IBAC′ : B×A×C that,
when accessed, returns all the instances of that pattern. Algorithm 4 shows an example
match operation that uses the structural index that we gave as example. Similarly to the
previous indexing techniques, the engine has to fill the index after loading the model, and
particularly for this indexing technique, this operation can be costly. But the average cost
of Algorithm 4 lowers to O(|IBAC′ | × P (z.ccs = 2)). Normally, the creation of structural
indexes is controlled by the user (as in PROGRES [Zün96; Sch94] ) but there are tools that
create indexes for all patterns in the transformation (such as Viatra2 [BÖRVV08; VBP06]).
These tools keep the transformation running and update the indexes whenever the input
model changes. In this way, retrieving the output model is extremely fast and there is no
need to perform pattern matching for all rules when a minor change occurs in the input
model [VVS06]. This technique is called incremental pattern matching.
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Algorithm 4 An algorithm to find occurrences of the pattern shown in Figure 4.2 taking
advantage of structural indexes.

function FINDALLOCCURRENCESBAC
occurrences← {}
for (b,a,c) ∈ IBAC′ do

if c.ccs = 2 then
occurrences← occurrences ∪ {(x, a), (y, b), (z, c)}

end if
end for
return occurrences

end function

Up until know we have seen three indexing techniques: Type, Attribute and Struc-
tural. These techniques are applied automatically by the engine, all the necessary struc-
tures are initialized in the “Perform Global Optimizations” stage of the transformation
process of Figure 3.4, and they impact more than one pattern matching operation. That
is why we call them global optimizations as opposed to local ones, in which the impact
is on the current pattern matching operation.

4.2.2 Caching

Yet another global optimization technique, similar to indexing, is to cache pattern match-
ing operations. This can be performed automatically by detecting which match opera-
tions’ results can be reused in other operations. The Cache act as a map that returns all
instances of a given pattern identifier. For instance, consider Algorithm 5 that imple-
ments the look up for the pattern of Figure 4.4. Note how the cache is being accessed and
updated. If all the pattern matching algorithms used in the transformation behave the
same way with respect to the cache, then the matching of the pattern of Figure 4.4 could
be matched by Algorithm 6. If the engine matches the pattern of Figure 4.4 before match-
ing the one of Figure 4.2, then Algorithm 6 will always hit the cache and only iterates the
C instances. Note that AB is a unique identifier for the pattern in Figure 4.4 and that BAC
is a unique identifier for the pattern in Figure 4.2.

Caching techniques serve not only the purpose of storing patterns. For instance, they
can be used to store derived attributes2 as is done in ATL [JABK08]. Derived attributes
can be computed and stored when loading the input model.

Figure 4.4: Sample pattern.

2Derived attributes are attributes that are computed when they are accessed.
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Algorithm 5 An algorithm to find occurrences of the pattern shown in Figure 4.4 using
cache.

function FINDALLOCCURRENCESAB
if Cache[AB] = ∅ then

occurrences← {}
for a ∈ GetAllInstances(A) do

for b ∈ a.ab do
occurrences← occurrences ∪ {(x, a), (y, b)}

end for
end for
Cache[AB]← occurrences

end if
return Cache[AB]

end function

Algorithm 6 An algorithm to find occurrences of the pattern shown in Figure 4.2 using
cache.

function FINDALLOCCURRENCESBAC
if Cache[BAC] = ∅ then

occurrences← {}
for {(x, a), (y, b)} ∈ Cache[AB] do

for c ∈ a.ac do
occurrences← occurrences ∪ {(x, a), (y, b), (z, c)}

end for
end for
Cache[BAC]← occurrences

end if
return Cache[BAC]

end function

27



4. PATTERN MATCHING OPTIMIZATION TECHNIQUES 4.2. Optimization Techniques

4.2.3 Search Plan Optimization

Algorithm 2 presents a different loop order to take advantage of the z.ccs=2 restriction in
pattern of Figure 4.2. The argument is that the average cost of the whole pattern matching
operation is less than the cost of Algorithm 1. This is true but for an engine to reason
about such things there must be a notion of plan and cost.

Generically, a search plan [VFVS08; Zün96] for a pattern is a representation of the al-
gorithm to be performed to find occurrences for that pattern. Changes to the search plan
imply changes to the algorithm. A search plan with a lower cost, implies that the algo-
rithm, in the average case, should have a lower cost. Search plan optimizations are local
because, each time they are applied, they attempt to reduce the cost of each individual
pattern matching optimization.

Each model transformation tool that implements search plan optimizations has its
own representation of a plan, and cost. But in the tools that we studied we were able to
identify three kinds of cost models, which we named according to the kind of information
they require. There are cost models that take into account a sample of representative in-
put models, the current (under transformation) input model, the input metamodel struc-
ture and even the cost of the underlying structures such as index look ups, disc access,
etc.

A cost model that only requires information about the metamodel is called metamodel
sensitive. It employs a set of heuristics that take into account the kind of restrictions in
the pattern, the type of associations between metamodel elements, etc. . . We have already
presented an example of one of these heuristics, which is also the most used one, the first-
fail principle: a good search plan should start the search in the most restricted pattern
element since it will have the fewest possible occurrences. The Algorithm 2 starts by
iterating all the C instances because of the attribute constrain. Algorithm 1 may have to
iterate several A and B instances before discovering that none of those form a pattern
occurrence because the few connected C instances don’t satisfy the restriction. Other
heuristics, such as taking into account multiplicities in associations or the existence of
indexes, are presented in [Zün96] and used in the PROGRES tool.

Cost models that, in addition to using information from the metamodel, also use
statistics and other relevant data from the model are called model-sensitive. As an ex-
ample, consider the cost model used in the Viatra2 [VFV06]. According to Varró et al.
[VFVS08], the cost of a search plan is given by the potential size of the search tree formed
by its execution. To estimate that cost, probabilities are calculated using statistics that
were collected from a sample of representative models. This is all performed at compile
time in Viatra2, so multiple alternative algorithms are generated to perform the same pat-
tern match. At run-time, the best alternative is selected taking into account the current
input model’s statistics.

An implementation sensitive cost model such as the one presented in [VBKG08] and
implemented in the GrGen.NET [KG07] tool takes not only the size of the search tree
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into account but also the cost of each individual operation such as the search for all the
elements given some type. This allows the tool to seamlessly consider the existence of
indexes and other characteristics of its own implementation in the cost model. This is
similar to the cost model used in database systems since they typically take the indexes,
hard-disc access and other implementation features into account [SKS10].

4.2.4 Pivoting

Contrarily to the previous techniques, that can be performed automatically by the tool,
Pivoting requires the user to interfere. In order to apply this technique, the tool has to
support rule parametrization and a way to instantiate those parameters with concrete
model elements; and the user has to identify which rules are suited to be parametrized
and forward previously matched model elements to those rules. As an example, assume
that the pattern shown in Figure 4.4 is matched before the pattern of Figure 4.2. A keen
transformation engineer parametrizes the second pattern with elements that are to be
matched in the first pattern. In that case, the Algorithm 7, that performs the match for
the pattern in Figure 4.2, could be invoked with all the occurrences of the sub pattern AB.

Algorithm 7 An algorithm to find occurrences of the pattern shown in Figure 4.2 using
pivoting.

function FINDALLOCCURRENCESBAC(occurrencesAB)
occurrences← {}
for {(x, a), (y, b)} ∈ occurrencesAB do

for c ∈ a.ac do
occurrences← occurrences ∪ {(x, a), (y, b), (z, c)}

end for
end for
return occurrences

end function

The specific mechanism that transports matched elements from one match operation
to other vary greatly with each tool. GReAT [BNBK07; VAS04] and MoTif [SV08b] al-
low for pivoting. A transformation specification expressed in these languages consists
of a network of rules with well defined input parameters (or input interface) and output
parameters (output interface). The input parameters declare the rule’s incoming occur-
rences that serve as a starting point for the pattern matching (just as in Algorithm 7. The
output interface represents those occurrences that will be transported to the following
rules in the network.

4.2.5 Overlapped Pattern Matching

Overlapped Pattern Matching is a technique where two or more patterns are factorized
in order to identify a common pattern that can be matched before them. The common
pattern occurrences are then passed as parameters to match the remaining patterns of
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the two rules [MML10]. This is very similar to pivoting but it is performed without user
intervention. The impact is that the overall number of pattern matching operations is
greatly reduced. For a example of application of this optimization and impact analysis
see section 9.6 in page 116.

As an example, consider the patterns shown in Figures 4.2 and 4.4. A tool support-
ing this technique computes the intersection between the two patterns and obtains the
common pattern B

ab←− A, i.e., the pattern that is in Figure 4.4. The common pattern is
matched before the other two patterns and then its occurrences are passed as parameters
to both algorithms. VMTS [LLMC05] applies this technique in pairs of similar rules.

There is a wide array of other pattern matching optimization techniques such as the
usage of lazy rules in ATL [JABK08] or the user-specified strategies to solve systems of
equations in BOTL [BM03b] involving several attributes, etc... The ones the we presented
were are the most prominent and well documented.

4.3 State of the Art

In this section, we present a summary of the state of the art tools and optimization tech-
niques that they use. The tools we considered are: PROGRES [Zün96; Sch94], BOTL
[BM03a; BM03b], AGG [Tae04; Rud00], Atom3 [LVA04], Great [BNBK07; VAS04], ATC
[EPSR06], GrGen.NET [VBKG08; KG07; JBK10], Motif [SV08b; SV08a], BeanBag [XHZSTM09],
VMTS [MML10; LLMC06] and T-Core [SV10].

Table 4.1 shows the results of our study. Since model transformation tools evolve
very rapidly we have included the year next to the tool in which a paper was published
concerning the tool’s internal mechanisms to perform pattern matching.

It is important to note that there are tools, such as AGG and GrGen(PSQL) that use
a constraint satisfaction solver or a database management system as underlying pattern
matching engine. In this sense, a pattern matching process relying on a CSP solver or a
DBMS adopts the techniques employed in the underlying engine. CSP solvers perform
backtracking search, use heuristics such as the first-fail principle, leverage information
about the input model to determine the variables’ domain, perform forward checking
and other optimization techniques [RN03]. That is why AGG is characterized as shown
in Table 4.1. DBMSs use query evaluation plans with sophisticated cost models that take
into account statistics about the relations, indexes on their columns and the individual
costs of operations [SKS10].

4.3.1 Discussion

There is a wide variety of approaches to the pattern matching optimization problem.
However, each approach is independent from the execution mode (interpretation or com-
pilation) so the optimization techniques identified can be applied in both modes. Also, as
said previously, techniques employed by tools that reduce the pattern matching problem
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to the CSP or DB domain also fit in the presented categorization. These facts allows us to
compare the different pattern matching approaches and the tools that support them with-
out having to consider other aspects such as their execution modes or if they perform a
reduction to other domain.

In terms of performance, the imperative languages (see Czarnecki’s categorization
[CH03]) such as ATC [EPSR06] or T-Core [SV10] or Java, despite not supporting many
optimizations techniques, can be extremely fast. This is because the user can choose to
directly code the optimizations. So it can apply virtually any optimization technique, as
long as the language is expressive enough, which is generally true.

Naturally, those optimization techniques that depend on user intervention are the
ones that contribute more to the performance but with an impact in the productivity and
maintenance. On the other hand, those techniques that can be applied automatically,
require less knowledge from the user and ease the creation and maintenance of the op-
timized transformation specifications. As shown in Table 4.1 tools that invest more in
optimization tend to combine manual and automatic techniques.

All the studied techniques, without exception, target the pattern matching operation.
This strengthens the fact that pattern matching is the most critical operation in a model
transformation.
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5
Problem Definition

It is very clear by now that, in terms of performance, lower-level and imperative lan-
guages are much better than high-level, declarative languages. The problem is that, at a
lower level of abstraction, transformations written in imperative languages are hard to
create, read and maintain. However, only after transformations written at an high level
of abstraction are shown to run fast enough, people will use them at industrial scales.
Optimizations, and in particular those that target the pattern matching operation, play a
key role.

This trade-off between abstraction and performance is not new, it is at least as old as
the first high-level languages appeared.

5.1 Abstraction Penalty

There are plenty of sites, for example [Ful13] and [Att], that compare different program-
ming languages with respect to their performance and, by observing one of the results
taken from [Att] and shown in figure 5.1, it is clear that higher-level languages are typ-
ically much slower than lower level ones. Another trivial conclusion is that compiled
code, shown in red, runs a lot faster than interpreted code, in black.

But if higher level languages are so slow when compared to lower level ones, why
are they so used? That is because, by applying well know optimization techniques, their
performance improved enough to be superseded by the productivity and maintainability
advantages. This is what must be done for model transformation languages.
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Figure 5.1: Programming languages benchmark on sudoku solving. Taken from [Att].

5.2 How to Avoid the Penalty

In order to understand what is the best way to mitigate the abstraction penalty, we have
the study how General Purpose Programming Languages (GPLs) tackled that problem.

Assembly is a lot faster than C. Despite this, only a few people today code entirely
in assembly. This is mainly because of three things: the raising complexity of software
systems; the raising variety of processor architectures and, last but not least, performance
optimization in the C compiler. There has been a lot of research in compiler optimization
techniques and they have been applied to the C compiler [Aho08; SS08]. As a result, the C
compiler has evolved to produce assembly code that is efficient enough to make coding
directly in assembly a bad investment, i.e., it mitigated, for the most cases, the abstraction
penalty.

As is shown in Figure 5.2, the optimizing C compiler does not produce assembly code
directly from C, it uses multiple intermediate representations of a program that serve
specific optimization techniques. The C programs are translated first through these rep-
resentations and after that, to assembly code. For the sake of simplicity we are skipping
several steps in the compilation process.
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Figure 5.2 illustrates one particular representation that is used for many optimiza-
tions: the Control Flow Graph (CFG). This representation supports many data-flow anal-
yses that, once performed, result in optimizations such as reaching definitions, live vari-
ables, available expressions [Aho08], etc. . . Note that we focused only on data flow anal-
yses because they are machine independent optimization techniques. There are other,
machine or architecture dependent but, since we are trying to solve the same (abstraction
penalty) problem for model transformation languages which by nature promote platform
independence, we are not interested in machine/platform dependent optimizations.

High  L.  Program	


Low  L.  Program	


Input	
 Output	


Intermediate  Rep.	
 Opt. 

C	


Assembly	


C.  F.  Graph	


Processor	


Figure 5.2: C Compilation Overview.

If we bring that architecture for the model transformation languages domain, we have
something similar to what is illustrated in Figure 5.3: an High-Level language, a process
that translates the high-level representation of transformations to an intermediate one
and then another that generates the final representation of the transformation. The high-
level transformation language has to promote productivity and maintenance while the
lower level language has to be fast. The intermediate representation has to promote anal-
ysis and optimization.

DSLtrans [BLAFS11] which we presented in section 3.2, page 14, is a good example
of high level transformation language and, since it was developed internally, we have a
much better understanding of its semantics than we have of other high-level transforma-
tion languages.

Java, which we have shown to be really fast in the chart of Figure 3.5 (section 3.5),
serves well enough to be our low-level transformation language. Other GPLs such as C
or C++ have better performances but Java has a complete model manipulation library
support from Eclipse Modelling Framework (EMF).

What is missing in Figure 5.3 is an appropriate intermediate representation.
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Figure 5.3: High level model transformation language compilation overview.

5.3 General Requirements

As we have seen in Chapter 4, the most performance-critical operation is the pattern
matching so it is only natural that this intermediate representation has to support natively
the representation of this operation. It also has to allow for a fine-grained control over
the how the operation will be executed. Off course, simplicity is always desirable when
we want to achieve analyzability.

Since we are in the context of model transformations and model driven development,
all the transformations in figure 5.3 should be model transformations and the intermedi-
ate representation should be a full fledged language: with syntax and semantics.

With these requirements in mind we set out to design a proper intermediate repre-
sentation together with its supporting analyses and optimizations. The next chapters tell
that story.
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6
Design

We need to find a language that links an high-level and productive transformation lan-
guage to a low-level, fast one. In this thesis we will be using DSLTrans as the high-level
language and Java as the low level language but we believe that the principles studied
here are applicable to other high-level transformation languages and are independent of
Java.

The main desirable traits of our language are: the ability to model the pattern match-
ing operation and both syntactic and the semantic simplicity.

Figure 6.1 shows the general architecture of the solution to the abstraction penalty.
The intermediate language is called TrNet (Transformation + Network) because it re-
sembles a network of channels where input model elements and patterns flow and are
transformed until they reach the output models. Analysis and optimizations operate as
model transformations, processing the network, rearranging channels, defining parame-
ters, etc. . .

In the following section we will the languages involved in this architecture, namely,
the intermediate languages (TrNet), the high-level language (DSLTrans) and the tech-
nologies used to design such languages.

6.1 TrNet

A transformation expressed in TrNet resembles a network of channels with a series of
filters and intersections. The input model is broken down into several pieces. These
pieces are distributed across the channels’ entrances, where they are propagated deeper
and deeper into the network. In the intersections, elements are mixed together, forming
other elements, which continue to be propagated. Some elements are filtered. All the
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Figure 6.1: Proposed approach to solve the abstraction penalty.

pieces are propagated until they reach the other end of the network, were they combined
to form the output model.

What does this analogy have in common with model transformations? Well, if we
hard-code the behaviour of these channels, and if we input them the correct input model’s
elements, then we can get the expected output models’ elements without having to re-
peatedly search the input model for certain patterns.

Traditionally, we look at model transformations with a computational mindset in
which there is an engine that actively searches the input model for specific patterns in
order to run some rules. Here, we try to invert that search: the input elements go meet
the rules that will handle them and the rules just passively wait for them to come. So
there is no explicit notion of indexing, search plan optimization, of overlapped pattern
matching. But these notions will emerge (some sooner than we thought) as we develop
the language and they will be intrinsic to the language and not creations of an optimizing
engine.

6.1.1 Transformations

Figure 6.2 shows a simplified version of TrNet’s metamodel main concepts and Figure 6.3
shows an example of concrete syntax with a few extra labels and callouts to allow for
easier reference. The metamodel is expressed in the Ecore1 language and the concrete
syntax editor was built using Eugenia2.

A TrNetModel represents the transformation itself and contains Patterns, Operators,
Operands and Results. A Pattern, represented as the white outer rounded rectangles in
Figure 6.3, is an intermediate storage for pattern elements. A Combinator, represented
as a grey rounded rectangle in the concrete syntax, is an operation that manipulates the

1http://www.eclipse.org/modeling/emft/?project=ecoretools
2http://www.eclipse.org/epsilon/doc/eugenia

38

http://www.eclipse.org/modeling/emft/?project=ecoretools
http://www.eclipse.org/epsilon/doc/eugenia


6. DESIGN 6.1. TrNet

pattern elements the exist inside Patterns. An External operator represents a source ou
a sink of pattern elements. In the concrete syntax, External operators are represented
as empty, white rounded rectangles. AnyOperands and AnyResults are represented as
arrows connecting patterns to operators and vice versa, respectively. The concrete syntax
example shows one AnyOperand and two AnyResults.

Figure 6.2: Excerpt of TrNet metamodel - top level elements (simplified).
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Pat1 

Pat2 
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Figure 6.3: TrNet sample transformation labelled.

As figure 6.4 shows, Patterns contain MandatoryNode elements and EdgePatterns that
connect those nodes. In Figure 6.3 there is one MandatoryNode named “Partition” in the
topmost Pattern and, in the bottommost Pattern, there are two MandatoryNodes and an
EdgePattern named “trace” connecting them. The graph formed by the MandatoryNodes
and EdgePatterns represents the “type” of the pattern. It means that, during run-time,
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the Pattern will store patterns that are instances of the graph represented inside that Pat-
tern. This will become more clear as we explore the language. NodePatterns also contain
AttributePatterns. These attributes serve as declarations that can be used to perform Cal-
culations or the evaluation of Conditions when executing Operators.

Figure 6.4: Excerpt of TrNet metamodel - nodes and edges (simplified).

The blue rectangle in Figure 6.3 represents an ExternalAttributeCalculationCall. In Fig-
ure 6.3, it means that the AttributePattern “name” of “Partition” will be used to calculate
the value of the “name” AttributePattern inside the “ActivityPartition” MandatoryNode.
Figure 6.5 represents the excerpt of the TrNet metamodel that is related to ExternalAt-
tributeCalculationCalls. An ExternalAttributeCalculationCall is an AttributeCalculation char-
acterized by an id attribute and a qualified name. The qualified name represents the
operation, pertaining an external library, that will be responsible for performing the cal-
culation. An ExternalAttributeCalculationCall can reference zero or more Parameters that
are given to the external operation when the calculation is performed. Both NodePatterns
and AttributePatterns can be used as Parameters. In the concrete syntax, the dashed arrow
connecting the blue rectangle to the “name” AttributePattern represents a ParameterRef
element and the full arrow pointing to the “name” AttributePattern of the “ActivityParti-
tion” NodePattern is were the result of the calculation is stored.

The last uncovered syntactic element of Figure 6.3 is a blue arrow that connects the
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Figure 6.5: Excerpt of TrNet metamodel - Attribute Calculations (simplified).

MandatoryNode “Partition” in the topmost Pattern to the MandatoryNode in the bottom-
most Pattern. It means that, when executing, the Combinator will not create new “Parti-
tion” elements but instead, will place the source “Partition” element inside the bottom-
most pattern. The blue arrow is called a Keep restriction. Figure 6.6 shows the part of the
metamodel where it appears.

Now that all syntactic elements of Figure 6.3 are introduced, we can see what the
transformation presented there means. For the sake of simplicity, we assume that the
input model exists, is valid, and is accessible to the transformation. In Chapter 7 we will
show how these mechanisms are implemented.

When the transformation is executed, each Operator is executed in turn, according to
a specific predefined order. For this example, assume that the order is: External (Op1)
and then Combinator (Op2). In Chapter 9 we explain how to come up with the best pos-
sible execution order. When an Operator gets executed, it reads elements from its inputs,
combines them and writes elements for its outputs. The inputs/outputs of an Operator
are Patterns. As said previously, Patterns are a storage mechanism. For now, assume that
each Pattern in Figure 6.3 is a set. So the topmost Pattern is the set Pat1 and the bottom-
most is Pat2.

In Figure 6.3, the External (Op1) operator represents a source of elements that come
from the input model. This External operator will filter all the input model elements and
store only those that are “Partition” instances in the topmost Pattern (Pat1). For instance,
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Figure 6.6: Excerpt of TrNet metamodel - Restrictions (simplified).

consider the sample model shown in figure 6.7 which has, among other elements, two
“Partition” instances: p1 and p2. After executing, the External (Op1) operator will select
p1 and p2 and place them inside the set Pat1, as shown in Figure 6.8.

Figure 6.7: Sample model with two Partition instances.

The next operator to be executed is the Combinator (Op2). In simple terms, it will read
each element existing in the set Pat1, create a new compound element and add it to the
set Pat2. Suppose Op2 reads p1. It then creates a new instance of “ActivityPartition”
ap1 and sets its “name” attribute to the result of applying the “Copy” function to the
attribute p1.name. Then, the operator Op2 places the pair (p1, ap1) inside the set Pat2.
Algorithm 8 summarizes Op2’s behaviour, where MAKENEWNODE is a generic function
that creates model elements of a given type and COPY is the function referred to by the
External Attribute Calculation Call.

Notice that the “trace” edge is not represented explicitly in Algorithm 8. That is be-
cause, since Patterns are strongly typed, we always know that each pair (pi, apj) ∈ Pat2

has a “Partition” instance pi, an “ActivityPartition” instance apj, and a “trace” connec-
tion between pi and apj. There are many advantages in this approach:

• There is no need to represent and process associations throughout the transforma-
tion, which makes execution time independent of the number of associations man-
aged inside the transformation.
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Pat1 

Pat2 

Op1 

Op2 

p1:	
  Par((on	
  

p2:	
  Par((on	
  

Figure 6.8: Transformation configuration after the completion of Op1.

Algorithm 8 Algorithm showing the behaviour of Op2.

function EXECUTEOP2
for p ∈ Pat1 do

ap←MAKENEWNODE(“ActivityPartition”)
ap.name← COPY(p.name)
Pat2← Pat2 ∪ {(p, ap)}

end for
end function

• Since each Pattern is a set, it is necessary to avoid duplicates. Without strongly
typed Patterns, this operation would be a graph isomorphism but with strongly
typed Patterns it is simply a matter of comparing tuples of the same length: (x1, . . . , xn) =

(y1, . . . , yn) ⇔ x1 = y1 ∧ . . . ∧ xn = yn. The comparison of individual elements is
performed by comparing a unique identifier, for instance, a memory address. More
details about this in Chapter 7.

But there is also a pitfall: it is possible to give the wrong name to an edge without provok-
ing an error in the transformation. Fortunately this can easily be solved with a validation
algorithm that searches the transformation for those errors and, even without validation,
if the wrong association makes the output model non conformant to the output meta-
model, it will not be created in that model.

There are more syntactic elements in TrNet. Consider Figure 6.9, which is the contin-
uation of the transformation that starts in Figure 6.3.
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Figure 6.9: TrNet sample transformation (continuation).

The green connection between the two “Partition” MandatoryNodes is called a Same
restriction. Figure 6.6 shows this construction in the metamodel. As an example, assume
that Pat2 = {(p1, ap1), (p2, ap2)} and Pat3 = {(p1, s1), (p1, s2)}. The Algorithm 9 shows
the behaviour of Op3 when executed. You can see that the Combinator Op3 performs a
Cartesian product of the two Operands and that, according to the Same restriction, guar-
antees the two partition instances are the same. Only if that is true, an element will be
added to the output. If the Same restriction did not exist, a result for each element of the
Cartesian product would be produced.

Notice that, because of the Keep restrictions, no new elements are created. When an
operator does not create any new elements, we call it a matching operator since it is only
producing more complex patterns from simpler ones.

Figure 6.10 shows the whole transformation and also its final configuration, i.e., the
elements in each set after all operators have been executed. In case you are wondering
how the elements in the patterns that are connected to the output External operator are
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Algorithm 9 Algorithm showing the behaviour of Op3.

function EXECUTEOP3
for {(p, ap)} ∈ Pat2 do

for {(p′, s)} ∈ Pat3 do
if p = p’ then

Pat4← Pat4 ∪ {(ap, p, s)}
end if

end for
end for

end function

going to form the output model, that is explained in section 6.1.3.
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Figure 6.10: TrNet sample transformation (final configuration).

There are a few more syntactic constructions which were not used in the previous
examples: ExternalConditionCalls, ExternalActionCalls and ExternalCalculationCall. They
are shown in the metamodel excerpt of Figure 6.11, 6.12 and 6.13 and there is an exam-
ple with ExternalConditionCalls and ExternalActionCalls in Figure 6.14. The main role of
ExternalCalculations is to allow for composition of expressions inside TrNet as they are
Parameters.

In the concrete syntax, ExternalConditionCalls are represented as a pink rectangle that
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Figure 6.11: Excerpt of TrNet metamodel - Conditions (simplified).

stays inside a Combinator. When executing, the Combinator will evaluate all its inner con-
ditions and if one of them yields false, then that combination of inputs is not passed to
the outputs.

ExternalActionCalls are represented as a green rectangle inside a Combinator and they
are evaluated for each output produced that Combinator.

In Figure 6.14 the two Combinators are using actions to count the number of “Pseu-
doState” elements that have the attribute “kind” equal to “join” and to “fork”. Algo-
rithm 10 shows the behaviour of the left Combinator.

Algorithm 10 Algorithm showing the behaviour of the left Combinator in Figure 6.14.

function EXECUTEOP1
for p ∈ Pat1 do

if ISJOIN(p.kind) then
INCJOIN()
. . .

end if
end for

end function

There can be simple cycles in a transformation. Figure 6.15 shows a cycle that is used
to compute the transitive closure of the “extends” relation between “CClass” elements.
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Figure 6.12: Excerpt of TrNet metamodel - Actions (simplified).

Figure 6.13: Excerpt of TrNet metamodel - Calculations (simplified).

To see how the transformation is executed, let us assume that the transformation of Fig-
ure 6.15 has the following initial configuration:

C0 :

Pat1 = {(c1, c2), (c2, c3)}
Pat2 = {}
Pat3 = {}
Pat4 = {}

When executed, the Combinator Op1 reads every element in Pat1 and adds it to Pat2,
so, after its execution we have the following configuration:

C1 :

Pat1 = {(c1, c2), (c2, c3)}
Pat2 = {(c1, c2), (c2, c3)}
Pat3 = {}
Pat4 = {}
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Figure 6.14: TrNet sample transformation with external action and condition calls.

Now the Combinator Op2 combines every element from Pat1 and Pat2 and produces
only those that have a common “CClass”element into Pat3. In this case ((c1, c2), (c2, c3))

is a valid combination while ((c1, c2), (c1, c2)) is not. So we get to the following configu-
ration:

C2 :

Pat1 = {(c1, c2), (c2, c3)}
Pat2 = {(c1, c2), (c2, c3)}
Pat3 = {(c1, c3)}
Pat4 = {}

Op3 just copies every element in Pat3 to Pat1, thus, after its execution, we have the
configuration:

C3 :

Pat1 = {(c1, c2), (c2, c3), (c1, c3)}
Pat2 = {(c1, c2), (c2, c3)}
Pat3 = {(c1, c3)}
Pat4 = {}

Now the first iteration of the cycle is completed. Op1 executes again to produce the
configuration:

C4 :

Pat1 = {(c1, c2), (c2, c3), (c1, c3)}
Pat2 = {(c1, c2), (c2, c3), (c1, c3)}
Pat3 = {(c1, c3)}
Pat4 = {}

Now when Op2 executes, it won’t produce any new result to Pat3, so, having detected
that Op2 is at the beginning of a cycle, there will be no more changes in every pattern that
comprises the cycle. So the right thing to do is to select Op4 as the next operator to be
executed.
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Figure 6.15: TrNet sample transformation with a cycle.

After Op4 execution, we have the following, final configuration:

C5 :

Pat1 = {(c1, c2), (c2, c3), (c1, c3)}
Pat2 = {(c1, c2), (c2, c3), (c1, c3)}
Pat3 = {(c1, c3)}
Pat4 = {(c1, c2), (c2, c3), (c1, c3)}

It took five steps to complete the transitive closure computation but, since at compile
time we don’t have access to all the input models the transformation will be applied to,
we cannot estimate how many iterations are necessary for the completion of the transfor-
mations. In these cases, a proper operator execution order inference is very important. In
Chapter 9 we explore and explain how to get to that execution order.

Notice that, although a Combinator can have any number of patterns, in this thesis
and for performance reasons, we only use a maximum of two operands. A Combinator
of any number of operands is effectively equivalent to multiple Combinators, each with
two operands.

Until now we have presented how a TrNet transformation works and how model
elements are processed and propagated throughout the network. But we did not explain
how those model elements are read from the input model and how the processed ones
are aggregated to form the output model. In the following sections we explain how this
is done.
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6.1.2 Model Decomposition

In order for the transformation to work, we assume that the input External operator
selects the appropriate model elements and places them in the corresponding Patterns.
Consider the model and metamodel shown in Figure 6.16 and the transformation excerpt
shown in Figure 6.17.

t7	
  

p3	
  

c4	
  

s6	
  s5	
  

s1	
  
t2	
  

(a) Sample Model. (b) Metamodel.

Figure 6.16: Sample input model (left) and corresponding metamodel (right).

After the External operator is executed, we get to the following initial configuration:

C0 :

Pat1 = {c4}
Pat2 = {(c4, s1)}
Pat3 = {s1, s5, s6}
Pat4 = {(s1, t2), (s5, t7)}
Pat5 = {(s1, s5), (s5, s6)}
Pat6 = {t2, t7}
Pat7 = {(s6, p3)}
Pat8 = {p3}
Pat9 = {(c4, p3)}

(6.1)

Before the External operator executes there is a process responsible for breaking down
the input model into the set3:

Minput = {c4, (c4, s1), s1, s5, s6, (s1, t2), (s5, t7), (s1, s5), (s5, s6), t2, t7, (s6, p3), p3, (c4, p3)}

The External operator only copies the appropriate elements to the corresponding Patterns.

The model loading process loads the model and then, starting at the root element4,
visits the entire model. Algorithm 11 shows the set of functions that visit each type of el-
ement found in the input model and produce the Minput set. Each function is responsible
for decomposing the input model recursively starting with its parameter and they all are
mutually recursive. The input model is decomposed by calling the VISITCIRCLE function
with the root element and an empty set. Note that the process always terminates because

3The term “set” is used just to note the non-existent duplicate elements.
4We assume that input and output models have one root element. This is a fairly common assumption

and it is a good practice when creating a language. It there is a model with more than one root element, it is
easy to adapt the algorithms.
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Figure 6.17: Transformation excerpt - inputs.

only the containment relations are navigated recursively. Other relations, such as the one
between squares and pentagons, which can form cycles, are not visited recursively.

Notice that the model loading process only produces elements that are atomic, i.e.,
either an element (e.g., c4) or an association (e.g., (c4, c1)). This means the transformation
can only begin with Patterns that correspond to either elements or associations. While
this can be seen as a limitation, there is no interest in allowing the model loading process
to build more complex patterns because that is the role of the transformation. And the
transformation is more efficient at that than the model loading process.

The Algorithm 11 depends solely on what is described in the metamodel. In Sec-
tion 7.1.2 we demonstrate the implementation of this process in more detail. Now how
can we build a model from a set of atomic elements?
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Algorithm 11 Functions that perform the decomposition process of all models conform-
ing to the metamodel of figure 6.16b.

function VISITCIRCLE( c, Minput)
Minput ←Minput ∪ {c}
for s ∈ c.squares do

Minput ←Minput ∪ {(c, s)}
VISITSQUARE(s, Minput)

end for
for p ∈ c.pentagons do

Minput ←Minput ∪ {(c, p)}
VISITPENTAGON(p, Minput)

end for
end function
function VISITSQUARE(s, Minput)

Minput ←Minput ∪ {s}
for p ∈ s.pentagons do

Minput ←Minput ∪ {(s, p)}
end for
for s’ ∈ c.squares do

Minput ←Minput ∪ {(s, s′)}
VISITSQUARE(s’, Minput)

end for
for t ∈ s.triangles do

Minput ←Minput ∪ {(s, t)}
VISITTRIANGLE(t, Minput)

end for
end function
function VISITTRIANGLE(t, Minput)

Minput ←Minput ∪ {t}
end function
function VISITPENTAGON(p, Minput)

Minput ←Minput ∪ {p}
end function
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6.1.3 Model Composition

Consider Figure 6.18 which shows the output of a transformation. Assuming the trans-
formation has already completed and we have the configuration Cfinal, how can we build
the output model? The metamodel of the output model is the one shown in Figure 6.16b.

Cfinal :

Pat1′ = {cd}
Pat2′ = {(cd, sa), (cd, sw)}
Pat3′ = {sa, se, sf}
Pat4′ = {(sa, tb), (se, tg)}
Pat5′ = {(sa, se), (se, sf)}
Pat6′ = {tb, tg}
Pat7′ = {(sf, pc), (sx, py)}
Pat8′ = {pc}
Pat9′ = {(cd, pc), (cd, pv)}

(6.2)

Similarly to the model loading process, the model storage process performs a visit to
the output model, at each step collecting the model elements that ought to be there. This
information comes exclusively from the metamodel of Figure 6.16b.

Algorithm 12 shows the behaviour of the output model storage process. The output
model is built by calling the BuildModel with the final configuration of the transformation.
In this example we show how the output model is built starting in the circle but the
output model can be built from any element in the metamodel.

Apart from the BuildModel, each function corresponds to a relation in the metamodel
of figure 6.16b starting from an element given as parameter. It is responsible for materi-
alizing that relation in the output model. The most important step in this materialization
process is to find all elements that are connected to the parameter by the relation that the
function corresponds to. This is done by the GET<SOURCETYPE><RELATION> functions
which we do not show for brevity reasons but, as an example, consider the GETCIRC-
LESQUARES function shown in Algorithm 13. In simple terms, it selects all the squares
that are connected to the given circle and that must exist alone in Moutput. Notice that the
this last condition guaranties that there will be no dangling edges in the output model. For
instance, the relation element (cd, sw) does not appear in the final model because sw does
not exist by itself, only a relation exists. All the other GET<SOURCETYPE><RELATION>
function are very similar to GETCIRCLESQUARES.

The recursive process always terminates because only the functions that materialize
containment relations have recursive calls. For more details about the implementation of
the composition process, please refer to section 7.1.4.
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Algorithm 12 Functions that perform the composition process of all models conforming
to the metamodel of figure 6.16b.

function BUILDMODEL( Moutput)
output← {}
for c ∈ GETCIRCLES(Moutput) do

BUILDCIRCLEPENTAGONS(c, Moutput)
BUILDCIRCLESQUARES(c, Moutput)
output← output ∪ {c}

end for
return output

end function
function BUILDCIRCLEPENTAGONS( c, Moutput)

for p ∈ GETCIRCLEPENTAGONS(c , Moutput) do
c.pentagons← c.pentagons ∪ {p}

end for
end function
function BUILDCIRCLESQUARES( c, Moutput)

for s ∈ GETCIRCLESQUARES(c , Moutput) do
BUILDSQUAREPENTAGONS(s, Moutput)
BUILDSQUARETRIANGLES(s, Moutput)
BUILDSQUARESQUARES(s, Moutput)
c.squares← c.squares ∪ {s}

end for
end function
function BUILDSQUARESQUARES( s, Moutput)

for s’ ∈ GETSQUAREPENTAGONS(s , Moutput) do
BUILDSQUAREPENTAGONS(s’, Moutput)
BUILDSQUARETRIANGLES(s’, Moutput)
BUILDSQUARESQUARES(s’, Moutput)
s.squares← s.squares ∪ {s′}

end for
end function
function BUILDSQUAREPENTAGONS( s, Moutput)

for p ∈ GETSQUAREPENTAGONS(s , Moutput) do
s.pentagons← s.pentagons ∪ {p}

end for
end function
function BUILDSQUARETRIANGLES( s, Moutput)

for t ∈ GETSQUARETRIANGLES(s , Moutput) do
s.triangles← s.triangles ∪ {t}

end for
end function

Algorithm 13 GETCIRCLESQUARES function.

function GETCIRCLESQUARES( c, Moutput) return {sx ∈Moutput|sx : Square ∧ (c, sx) ∈Moutput ∧ sx ∈Moutput}
end function

54



6. DESIGN 6.2. DSLTrans

Figure 6.19 shows the final output model produced by applying the function Build-
Model with the set

Moutput = {cd, (cd, sa), (cd, sw), sa, se, sf, (sa, tb), (se, tg), (sa, se), (se, sf)}∪

{tb, tg, (sf, pc), (sx, py), pc, (cd, pc), (cd, pv)}

, which comes from the final configuration Cfinal.

Now we have the whole picture of a TrNet transformation execution: first the model
load process breaks down the input model into atomic elements; these elements are pub-
lished to the input External operator, which in turn places the appropriate elements in
the corresponding Patterns; the transformation executes, propagating the elements and
transforming them into other elements through the network onto the final patterns (con-
nected to the output External operator); the output External operator takes these atomic
elements and delivers them to the model storage process; the model storage process ag-
gregates the atomic elements into a full output model. In the next chapter we will explain
in more detail each of these processes and how they fit together.

TrNet is considered a low level language because elements have to be combined to
form more complex patterns and that combination has to be explicit in the transforma-
tion. While this hinders productivity and maintenance, analysis and optimizations can
be greatly simplified. More about this in Chapter 9.

6.2 DSLTrans

While TrNet is a low level model transformation language, DSLTrans [BLAFS11] is con-
sidered to be an high level one because transformations are comprised of a set of rules
that contain patterns of any complexity.

Figure 6.20 shows a transformation expressed in DSLTrans that is equivalent to the
one expressed in TrNet shown in figure 6.10. It is comprised of 2 layers and 3 simple rules.
The topmost rounded rectangle is a FilePort and represents an input model. The first
layer, represented by a blue rounded rectangle is executed first. Its rules state that each
Partition found in the input model is translated into an ActivityPartition in the output
model and that each State is translated into an ActivityNode. The “name” attribute of
both elements is copied to the corresponding ones.

DSLTrans transformations are formed by a set of FilePorts (in figure 6.20 we have only
one called “InputActivityDiagram”) and a list of Layers. Both FilePorts and Layer require
the identification of a metamodel. For FilePorts, this is the input model’s metamodel and
for Layer, this is the output model’s metamodel. Each Layer can produce an output
model, as long as its “OutputFilePathURI” attribute is properly filled.

A Layer is comprised of Rules and each Rule contains one or more MatchModels
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and an ApplyModel. Each MatchModel has one or more match elements and each Ap-
plyModel contains one or more apply elements. Match elements can be AnyMatch-
Class, PositiveMatchAssociation, BackwardLinks, etc. . . For the sake of simplicity, we will
mostly work with these elements. Apply elements can be ApplyClasses or ApplyAssoci-
ations.

In order to better understand how the DSLTrans engine processes transformations,
consider the model illustrated in figure 6.21 and the transformation shown in figure 6.20.

Each layer is executed sequentially according to its dependencies (expressed by the
arrows between Layers). The execution of a layer consists of executing each individual
rule in a non-deterministic order.

When executing the rule P2A, the engine will search for all Partition instances in
the input model and then translate each partition into an ActivityPartition. Thus, the
rule’s output is RP2A = {(ap1, p1)}. We represent each Partition in the output of the
rule because one traceability link has been created for each ActivityPartition generated
that leads to the corresponding Partition. The traceability link for rule P2A is identi-
fied by P2A_Trace. Next, Rule S2A gets executed. It takes each State instance in the
input model and produces one ActivityNode instance. The rule’s output is RS2A =

{(s1, an1), (s2, an2)}. Again, in addition to the newly created ActivityNodes, we rep-
resent the States that originated them because of the traceability link being created.

When rule C2N, in layer Relations, executes, it searches for all Partitions instances
connected to State elements, and also the ActivityNode and ActivityPartition elements
that were used in the previous Layers’ execution. So the execution of a rule with back-
ward links not only searches for instances of the match pattern in the input model, but
also combines those results with the traceability links produced in the previous layers’
rules. This rule creates a new relation between the previously created ActivityPartitions
and ActivityNodes. The result is RC2N = {(ap1, an1), (ap1, an2)}. This rules does not
create traceability links because no name is given to them (as it is done in rules P2A and
S2A). The resulting output model is shown in Figure 6.22.

Transformations expressed in DSLTrans normally start by translating individual ele-
ments in the first layer, and creating the relevant traceability links between them. Then,
in the following layers the rules capture more complex patterns and create more relations
and elements in the output model.

During the transformation process, DSLTrans engine has to repeatedly perform pat-
tern matching in the input model and in all the traceability links. Once for each rule.

Currently, transformations expressed are executed using a Prolog engine: the input
models are translated into facts and, upon each rule’s execution, those facts are queried to
obtain the matches. Despite Prolog’s highly optimized engine, for large transformation,
this process is really slow. The output model is built throughout the transformation, after
each rule is applied.

In the next chapter we will show how DSLTrans transformations can be translated
into TrNet transformations.
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Figure 6.18: Transformation excerpt - outputs.
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Figure 6.19: Output model build with Algorithm 12 .
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Figure 6.20: DSLTrans sample transformation equivalent to the one in figure 6.10.
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Figure 6.21: Sample activity diagram model (UML 1.4).
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Figure 6.22: Sample activity diagram model (UML 2.1).
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7
Implementation

7.1 TrNet Compilation

Transformations in TrNet are compiled to Java code and ran.

We decided to compile the transformations instead of interpret them for obvious per-
formance reasons.

We use Java as the target language because Java is really fast (see figure 3.5 in page
19) and has a great library for model management (EMF) which helps a lot when loading
and storing models.

When executed, a complete TrNet transformation has three phases: input model de-
composition, transformation and output model composition. Figure 7.1 illustrates these
three processes and the information used to generate the code that implements them.

Both composition and decomposition processes’ code depend only on metamodels.
They are completely independent of the transformation. The transformation code is gen-
erated entirely from the transformation specification, written in TrNet. To facilitate com-
munication between the processes, there is a common representation for model elements,
listeners and publishers.

7.1.1 Runtime

In order to keep the processes as loosely coupled as possible, the publisher/listener pat-
tern is used to pass information between them and there is a common representation for
model elements. Figure 7.2 shows the class diagram.

A ModelPattern is a generic representation of an arbitrary pattern composed of Mod-
elNodes and ModelEdges connecting those nodes. ModelNodes represent model nodes
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Figure 7.1: TrNet transformation execution process.

Figure 7.2: TrNet common runtime.

and ModelEdges represent the associations in the model. ModelNodes have a set of types
which represents all types from which the actual model element inherits from, and a map
of attributes. A ModelEdge has a name, which is the name of the association it represents.
It is important to note that two ModelNodes are compared by comparing their memory
address (e.g., using the == operator in Java). No attributes are compared.

A ModelPattern publisher is an entity that can pass ModelPatterns to a set of listeners.

7.1.2 Decomposition

The decomposition process is responsible for loading the input model, visiting each ele-
ment and relation in the model, convert that element or relation to a ModelPattern, and
deliver the ModelPattern to the transformation’s input External operators.

It is implemented in Java and uses the generated classes from the metamodel to load
the model to memory. EMF takes a metamodel and generates a set of classes that al-
low the representation and manipulation of models, conforming to that metamodel, in
memory.

Most of the decomposition process is implemented in one single class: the InputVis-
itor class. Figure 7.3 shows the class and its relations to the common runtime classes.
The class is generated from a metamodel and the name of the class is the metamodel
name concatenated with InputVisitor. The InputVisitor is a ModelPatternPublisher and

62



7. IMPLEMENTATION 7.1. TrNet Compilation

depends on the ModelPattern, ModelNode and ModelEdge classes to represent the input
model elements.

Figure 7.3: Decomposition process classes.

If the input visitor was generated from the metamodel shown in figure 7.4 it would
have the code similar to listing 7.1. In addition to the constructor and a utility method
to load a model given a file path which are not shown in the Algorithm, there is a visit
function for each type declared in the metamodel. Inside a visit function, the input visitor
publishes a new ModelPattern with information about the current element being visited;
the visitor then produces a model pattern for each relation that the current element has
with other elements, according to the information given in the metamodel; and then
recursively visits each element that is contained in the current one. A map is used to
avoid creating two ModelNode instances for the same element in the metamodel. The
memory address of each ModelNode is what identifies it uniquely.

Listing 7.1: Input visitor code generated from the metamodel shown in Figure 7.4
1 public class ShapesInputVisitor implements ModelPatternPublisher {

2

3 LinkedList<ModelPatternListener> listeners;

4 HashMap<EObject, ModelNode> nodesMap;

5

6 public ShapesInputVisitor() {

7 ...

8 }

9 public void registerListener(ModelPatternListener listener) {

10 ...

11 }

12 public void notifyListeners(ModelPattern element) {

13 ...

14 }

15

63



7. IMPLEMENTATION 7.1. TrNet Compilation

Figure 7.4: Shapes metamodel (equivalent to the one in Figure 6.16b.

16 public Circle load(String path) {

17 ShapesPackage.eINSTANCE.eClass();

18 Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;

19 Map<String, Object> m = reg.getExtensionToFactoryMap();

20 m.put("xmi", new XMIResourceFactoryImpl());

21 ResourceSet resSet = new ResourceSetImpl();

22 Resource resource = resSet.getResource(URI.createURI(path), true);

23 Circle rootEClass = (Circle) resource.getContents().get(0);

24 return rootEClass;

25 }

26

27 public void visitSquare(Square element) {

28 ModelNode node;

29 if (!nodesMap.containsKey(element)) {

30 node = new ModelNode();

31 if (element.getClass() == SquareImpl.class) {

32 node.types.add("Square");

33 }

34 nodesMap.put(element, node);

35 } else {

36 node = nodesMap.get(element);

37 }

38 ModelPattern pattern = new ModelPattern();

39 pattern.nodes.add(node);

40 notifyListeners(pattern);

41 for (Triangle elementTarget : element.getTriangles()) {

42 ModelEdge edge = new ModelEdge();

43 edge.name = "triangles";

44 ModelNode nodeTarget;

45 if (!nodesMap.containsKey(elementTarget)) {

46 nodeTarget = new ModelNode();

47 if (elementTarget.getClass() == TriangleImpl.class) {

48 nodeTarget.types.add("Triangle");
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49 }

50 nodesMap.put(elementTarget, nodeTarget);

51 } else {

52 nodeTarget = nodesMap.get(elementTarget);

53 }

54 edge.source = node;

55 edge.target = nodeTarget;

56 pattern = new ModelPattern();

57 pattern.nodes.add(node);

58 pattern.nodes.add(nodeTarget);

59 pattern.edges.add(edge);

60 notifyListeners(pattern);

61 }

62 for (Pentagon elementTarget : element.getPentagons()) {

63 ModelEdge edge = new ModelEdge();

64 edge.name = "pentagons";

65 ModelNode nodeTarget;

66 if (!nodesMap.containsKey(elementTarget)) {

67 nodeTarget = new ModelNode();

68 if (elementTarget.getClass() == PentagonImpl.class) {

69 nodeTarget.types.add("Pentagon");

70 }

71 nodesMap.put(elementTarget, nodeTarget);

72 } else {

73 nodeTarget = nodesMap.get(elementTarget);

74 }

75 edge.source = node;

76 edge.target = nodeTarget;

77 pattern = new ModelPattern();

78 pattern.nodes.add(node);

79 pattern.nodes.add(nodeTarget);

80 pattern.edges.add(edge);

81 notifyListeners(pattern);

82 }

83 for (Square elementTarget : element.getSquares()) {

84 ModelEdge edge = new ModelEdge();

85 edge.name = "squares";

86 ModelNode nodeTarget;

87 if (!nodesMap.containsKey(elementTarget)) {

88 nodeTarget = new ModelNode();

89 if (elementTarget.getClass() == SquareImpl.class) {

90 nodeTarget.types.add("Square");

91 }

92 nodesMap.put(elementTarget, nodeTarget);

93 } else {

94 nodeTarget = nodesMap.get(elementTarget);

95 }

96 edge.source = node;

97 edge.target = nodeTarget;

98 pattern = new ModelPattern();
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99 pattern.nodes.add(node);

100 pattern.nodes.add(nodeTarget);

101 pattern.edges.add(edge);

102 notifyListeners(pattern);

103 }

104 for (Triangle child : element.getTriangles()) {

105 if (child.getClass() == TriangleImpl.class) {

106 visitTriangle((Triangle) child);

107 }

108 }

109 for (Square child : element.getSquares()) {

110 if (child.getClass() == SquareImpl.class) {

111 visitSquare((Square) child);

112 }

113 }

114 }

115

116 public void visitCircle(Circle element) {

117 ModelNode node;

118 if (!nodesMap.containsKey(element)) {

119 node = new ModelNode();

120 if (element.getClass() == CircleImpl.class) {

121 node.types.add("Circle");

122 }

123 nodesMap.put(element, node);

124 } else {

125 node = nodesMap.get(element);

126 }

127 ModelPattern pattern = new ModelPattern();

128 pattern.nodes.add(node);

129 notifyListeners(pattern);

130 for (Pentagon elementTarget : element.getPentagons()) {

131 ModelEdge edge = new ModelEdge();

132 edge.name = "pentagons";

133 ModelNode nodeTarget;

134 if (!nodesMap.containsKey(elementTarget)) {

135 nodeTarget = new ModelNode();

136 if (elementTarget.getClass() == PentagonImpl.class) {

137 nodeTarget.types.add("Pentagon");

138 }

139 nodesMap.put(elementTarget, nodeTarget);

140 } else {

141 nodeTarget = nodesMap.get(elementTarget);

142 }

143 edge.source = node;

144 edge.target = nodeTarget;

145 pattern = new ModelPattern();

146 pattern.nodes.add(node);

147 pattern.nodes.add(nodeTarget);

148 pattern.edges.add(edge);
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149 notifyListeners(pattern);

150 }

151 for (Square elementTarget : element.getSquares()) {

152 ModelEdge edge = new ModelEdge();

153 edge.name = "squares";

154 ModelNode nodeTarget;

155 if (!nodesMap.containsKey(elementTarget)) {

156 nodeTarget = new ModelNode();

157 if (elementTarget.getClass() == SquareImpl.class) {

158 nodeTarget.types.add("Square");

159 }

160 nodesMap.put(elementTarget, nodeTarget);

161 } else {

162 nodeTarget = nodesMap.get(elementTarget);

163 }

164 edge.source = node;

165 edge.target = nodeTarget;

166 pattern = new ModelPattern();

167 pattern.nodes.add(node);

168 pattern.nodes.add(nodeTarget);

169 pattern.edges.add(edge);

170 notifyListeners(pattern);

171 }

172 for (Pentagon child : element.getPentagons()) {

173 if (child.getClass() == PentagonImpl.class) {

174 visitPentagon((Pentagon) child);

175 }

176 }

177 for (Square child : element.getSquares()) {

178 if (child.getClass() == SquareImpl.class) {

179 visitSquare((Square) child);

180 }

181 }

182 }

183

184 public void visitPentagon(Pentagon element) {

185 ModelNode node;

186 if (!nodesMap.containsKey(element)) {

187 node = new ModelNode();

188 if (element.getClass() == PentagonImpl.class) {

189 node.types.add("Pentagon");

190 }

191 nodesMap.put(element, node);

192 } else {

193 node = nodesMap.get(element);

194 }

195 ModelPattern pattern = new ModelPattern();

196 pattern.nodes.add(node);

197 notifyListeners(pattern);

198 }
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199

200 public void visitTriangle(Triangle element) {

201 ModelNode node;

202 if (!nodesMap.containsKey(element)) {

203 node = new ModelNode();

204 if (element.getClass() == TriangleImpl.class) {

205 node.types.add("Triangle");

206 }

207 nodesMap.put(element, node);

208 } else {

209 node = nodesMap.get(element);

210 }

211 ModelPattern pattern = new ModelPattern();

212 pattern.nodes.add(node);

213 notifyListeners(pattern);

214 }

215 }

7.1.3 Transformation

Before describing the generated code from a TrNet transformation, note that there are
two important regions in a transformation: the input frontier and the output frontier.

The input frontier is the set of patterns that are directly connected to an input Exter-
nal operator. For instance, in figure 7.5, patterns P1 and P3 belong to the input frontier.
Similarly, the output frontier is the set of patterns that are directly connected to an output
External operator. A pattern can belong to the two sets without any unintended conse-
quences. In the example, patterns P5, P6 and P7 belong to the output frontier.

7.1.3.1 Pattern Instances

As described in section 6.1.1, TrNet patterns are strongly typed in order to avoid compar-
isons between generic ModelPatterns as it would be too costly. This is implemented by
generating a class for each pattern in a TrNet transformation. The class diagram is shown
in figure 7.6. The Instance class, whose name depends on the id of the pattern that it rep-
resents, has one field for each node the pattern has. Each field is typed by ModelNode.
For instance, for pattern P4 in the Figure 7.5 we would have a class similar to listing 7.2.
Notice how the equality of two patterns of the same type is greatly simplified and runs
linear to the number of nodes in that pattern.

Listing 7.2: Class generated from the pattern Pat4 in Figure 7.5
1 public class P4Instance{

2 public ModelNode state;

3 public ModelNode partition;

4 public ModelNode activityPartition;

5

6 @Override
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Figure 7.5: Transformation with input and output frontiers.

7 public int hashCode() {

8 final int prime = 31;

9 int result = 1;

10 result = prime * result + ((state==null) ? 0 : state.hashCode());

11 result = prime * result + ((partition==null) ? 0 : partition.hashCode());

12 result = prime * result + ((activityPartition==null) ? 0 :

13 activityPartition.hashCode());

14 return result;

15 }

16

17 @Override

18 public boolean equals(Object obj) {

19 if (this == obj)

20 return true;

21 if (obj == null)

22 return false;

23 if (getClass() != obj.getClass())

24 return false;

25 P4Instance other = (P4Instance) obj;
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Figure 7.6: Class diagram for each class generated from a TrNet pattern.

26 if (state==null) {

27 if (other.state != null) {

28 return false;

29 }

30 } else if (! state.equals(other.state)) {

31 return false;

32 }

33 if (partition==null) {

34 if (other.partition != null) {

35 return false;

36 }

37 } else if (! partition.equals(other.partition)) {

38 return false;

39 }

40 if (activityPartition==null) {

41 if (other.activityPartition != null) {

42 return false;

43 }

44 } else if (! activityPartition.equals(other.activityPartition)) {

45 return false;

46 }

47 return true;

48 }

49 }

Because we know exactly which pattern generated each class, we can always know
the edges and, since they are not manipulated in the transformation as nodes are, there
is no need to represent them explicitly in the generated code.

Patterns in the input or the output frontier, in addition to generating a pattern instance
class like the one shown in figure 7.6, generate a publisher and listener interfaces for
pattern instances as is described in the class diagram of figure 7.7. The reason for this
will become clear when we explain the code for external operators.

7.1.3.2 External Operators

Each input external operator generates an ExternalInput class whose name depends on
the id of the operator. In addition to being a ModelPattern Listener (remember that the
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Figure 7.7: Class diagram for each class generated from a TrNet pattern that is in the
input or output frontiers.

InputVisitor was a ModelPatternPublisher), this class implements Publisher for each pat-
tern that is directly connected to the external operator. The class diagram is shown in fig-
ure 7.8. The ExternalInput class, when notified of a new ModelPattern element, attempts
to convert that element to a specific pattern instance and then publishes it. Listing 7.3
shows the class generated from the input external operator of the transformation shown
in Figure 7.5.

Figure 7.8: Class diagram for classes generated from the input external operators and
patterns in the input frontier.

Listing 7.3: Input external operator code generated from the transformation in Figure 7.5
1 public class InputModelExternalInput implements ModelPatternListener,

2 P3InstancePublisher, P1InstancePublisher {

3

4 public void notify(ModelPattern element) {
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5 if (element.nodes.size() == 2 && element.edges.size() == 1) {

6 ModelEdge elementEdge = element.edges.get(0);

7 ModelNode elementNodeSource = elementEdge.source;

8 ModelNode elementNodeTarget = elementEdge.target;

9 if (elementEdge.name.equals("contents")

10 && elementNodeSource.types.contains("Partition")

11 && elementNodeTarget.types.contains("State")) {

12 P3Instance patternInstance = new P3Instance();

13 patternInstance.partition = elementNodeSource;

14 patternInstance.state = elementNodeTarget;

15

16 notifyListeners(patternInstance);

17 }

18 }

19 if (element.nodes.size() == 1 && element.edges.size() == 0) {

20 ModelNode elementNode = element.nodes.get(0);

21 if (elementNode.types.contains("Partition")) {

22 P1Instance patternInstance = new P1Instance();

23 patternInstance.partition = elementNode;

24 notifyListeners(patternInstance);

25 }

26 }

27 }

28

29 LinkedList<P3InstanceListener> listenersP3Instance;

30 public void registerListener(P3InstanceListener listener) {

31 ...

32 }

33 public void notifyListeners(P3Instance element) {

34 ...

35 }

36 LinkedList<P1InstanceListener> listenersP1Instance;

37 public void registerListener(P1InstanceListener listener) {

38 ...

39 }

40 public void notifyListeners(P1Instance element) {

41 ...

42 }

43 public InputModelExternalInput() {

44 ...

45 }

46 }

Each output external operator generates an ExternalOutput class, whose name de-
pends on the id of the operator, that implements model pattern publisher (you can guess
that the OutputVisitor will be a ModelPatternListener) and is a listener for each pattern
directly connected to the external operator. The class diagram is shown in figure 7.9 and
an example is shown in listing 7.4. When an ExternalOutput class is notified with a pat-
tern element, it converts it to a ModelPattern instance and publishes it.
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Figure 7.9: Class diagram for classes generated from the output external operators and
patterns in the output frontier.

Listing 7.4: Output external operator code generated from the transformation in Fig-
ure 7.5

1 public class OutputModelExternalOutput implements ModelPatternPublisher,

2 P7InstanceListener, P5InstanceListener, P6InstanceListener {

3

4 LinkedList<ModelPatternListener> listeners;

5

6 public OutputModelExternalOutput() {

7 listeners = new LinkedList<ModelPatternListener>();

8 }

9

10 public void registerListener(ModelPatternListener listener) {

11 listeners.add(listener);

12 }

13

14 public void notifyListeners(ModelPattern element) {

15 for (ModelPatternListener listener : listeners) {

16 listener.notify(element);

17 }

18 }

19

20 public void notify(P7Instance element) {

21 ModelPattern genericPattern = new ModelPattern();

22 genericPattern.nodes.add(element.activityNode);

23 notifyListeners(genericPattern);

24 }

25

26 public void notify(P5Instance element) {

27 ModelPattern genericPattern = new ModelPattern();

28 genericPattern.nodes.add(element.activityNode);

29 genericPattern.nodes.add(element.activityPartition);

30 {

31 ModelEdge edge = new ModelEdge();
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32 edge.name = "nodes";

33 edge.source = element.activityPartition;

34 edge.target = element.activityNode;

35 genericPattern.edges.add(edge);

36 }

37 notifyListeners(genericPattern);

38 }

39

40 public void notify(P6Instance element) {

41 ModelPattern genericPattern = new ModelPattern();

42 genericPattern.nodes.add(element.activityPartition);

43 notifyListeners(genericPattern);

44 }

45 }

7.1.3.3 Transformation Class

The whole transformation behaviour is implemented in one class shown in figure 7.10.
In order to implement the communication between the class and the decomposition and
composition processes (implemented by the InputVisitor and OutputVisitor classes, re-
spectively), the transformation class implements listener for each pattern in the input
frontier and publisher for each pattern in the output frontier.

Figure 7.10: Class diagram for the class that implement the behaviour of the transforma-
tion along with the classes it relates to.

For each external operator, the class has a field to reference the class representing that
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operator.

For each pattern in the transformation, the class has the following fields: an ArrayList,
a HashSet and a variable number of HashMaps with ModelNode as keys and the pattern
class as values. These fields store the pattern instances during the transformation execu-
tion. They represent, at any given time, the transformation configuration. The ArrayList
is used to iterate the instances, the HashSet is used to avoid duplicates and the vari-
able number of HashMaps act as indexes that allow a quick retrieval of all the pattern
instances with a given ModelNode. This is most useful when performing combination
where there are Same restrictions.

For each operator in the transformation, a Boolean method is generated in the trans-
formation class that implements that operator’s behaviour. This method, when executed,
will change the configuration of the transformation by reading from some pattern fields,
create new pattern instances, process attributes and add the those instances to other pat-
tern fields. The specific behaviour depends on the operands, results, restrictions, condi-
tions and actions surrounding that operator in the transformation. The method returns
true if it changed the configuration of the transformation and false otherwise.

As an example, consider listing 7.5 where we show an excerpt of the transformation
class generated for the transformation of figure 7.5.

Listing 7.5: Transformation code generated from the transformation in Figure 7.5
1 public class SampleSimpleTransformationTransformation implements

2 P1InstanceListener, P3InstanceListener, P6InstancePublisher,

3 P5InstancePublisher, P7InstancePublisher {

4

5 InputModelExternalInput inputInputModel;

6 OutputModelExternalOutput outputOutputModel;

7 ArrayList<P5Instance> p5Array;

8 HashSet<P5Instance> p5Set;

9 ArrayList<P6Instance> p6Array;

10 HashSet<P6Instance> p6Set;

11 ArrayList<P7Instance> p7Array;

12 HashSet<P7Instance> p7Set;

13 ArrayList<P4Instance> p4Array;

14 HashSet<P4Instance> p4Set;

15 ArrayList<P2Instance> p2Array;

16 HashSet<P2Instance> p2Set;

17 ArrayList<P3Instance> p3Array;

18 HashSet<P3Instance> p3Set;

19 HashMap<ModelNode, LinkedList<P3Instance>> partitionInP3Hash;

20 ArrayList<P1Instance> p1Array;

21 HashSet<P1Instance> p1Set;

22

23 public SampleSimpleTransformationTransformation() {

24 ...

25 listenersP6Instance = new LinkedList<P6InstanceListener>();

26 listenersP5Instance = new LinkedList<P5InstanceListener>();
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27 listenersP7Instance = new LinkedList<P7InstanceListener>();

28

29 inputInputModel = new InputModelExternalInput();

30 inputInputModel.registerListener((P3InstanceListener) this);

31 inputInputModel.registerListener((P1InstanceListener) this);

32

33 outputOutputModel = new OutputModelExternalOutput();

34 this.registerListener((P7InstanceListener) outputOutputModel);

35 this.registerListener((P5InstanceListener) outputOutputModel);

36 this.registerListener((P6InstanceListener) outputOutputModel);

37 }

38

39 public void run() {

40 executeOperatorInputModel();

41 executeOperatorO1();

42 executeOperatorO3();

43 executeOperatorO2();

44 executeOperatorO4();

45 executeOperatorO5();

46 executeOperatorOutputModel();

47 }

48

49 public void notify(P1Instance element) {

50 if (p1Set.add(element)) {

51 p1Array.add(element);

52 }

53 }

54

55 public void notify(P3Instance element) {

56 if (p3Set.add(element)) {

57 p3Array.add(element);

58 {

59 if (!partitionInP3Hash.containsKey(element.partition)) {

60 partitionInP3Hash.put(element.partition,

61 new LinkedList<P3Instance>());

62 }

63 partitionInP3Hash.get(element.partition).add(element);

64 }

65 }

66 }

67

68 LinkedList<P6InstanceListener> listenersP6Instance;

69 public void registerListener(P6InstanceListener listener) {

70 ...

71 }

72 public void notifyListeners(P6Instance element) {

73 ...

74 }

75

76 LinkedList<P5InstanceListener> listenersP5Instance;
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77 public void registerListener(P5InstanceListener listener) {

78 ...

79 }

80 public void notifyListeners(P5Instance element) {

81 ...

82 }

83

84 LinkedList<P7InstanceListener> listenersP7Instance;

85 public void registerListener(P7InstanceListener listener) {

86 ...

87 }

88 public void notifyListeners(P7Instance element) {

89 ...

90 }

91

92 boolean executeOperatorO3() {

93 boolean operatorHasExecuted = false;

94 int sourcePatternSize = p2Array.size();

95 for (int i = 0; i < sourcePatternSize; i++) {

96 P2Instance sourcePatternInstance = p2Array.get(i);

97 {

98 P6Instance targetInstance = new P6Instance();

99 {

100 targetInstance.activityPartition =

101 sourcePatternInstance.activityPartition;

102 }

103 if (p6Set.add(targetInstance)) {

104 p6Array.add(targetInstance);

105 operatorHasExecuted = true;

106 }

107 }

108 }

109 return operatorHasExecuted;

110 }

111 boolean executeOperatorOutputModel() {

112 boolean operatorHasExecuted = false;

113 {

114 int sourcePatternSize = p7Array.size();

115 for (int i = 0; i < sourcePatternSize; i++) {

116 P7Instance sourcePatternInstance = p7Array.get(i);

117 notifyListeners(sourcePatternInstance);

118 }

119 }

120 {

121 int sourcePatternSize = p5Array.size();

122 for (int i = 0; i < sourcePatternSize; i++) {

123 P5Instance sourcePatternInstance = p5Array.get(i);

124 notifyListeners(sourcePatternInstance);

125 }

126 }
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127 {

128 int sourcePatternSize = p6Array.size();

129 for (int i = 0; i < sourcePatternSize; i++) {

130 P6Instance sourcePatternInstance = p6Array.get(i);

131 notifyListeners(sourcePatternInstance);

132 }

133 }

134 return operatorHasExecuted;

135 }

136 boolean executeOperatorO5() {

137 ...

138 }

139 boolean executeOperatorO4() {

140 boolean operatorHasExecuted = false;

141 int sourcePatternSize = p4Array.size();

142 for (int i = 0; i < sourcePatternSize; i++) {

143 P4Instance sourcePatternInstance = p4Array.get(i);

144 {

145 P5Instance targetInstance = new P5Instance();

146 {

147 ModelNode node = new ModelNode();

148 node.attributes.put("name", generic.utils.Copy

149 .copy(sourcePatternInstance.state.attributes

150 .get("name")));

151 node.types.add("ActivityNode");

152 targetInstance.activityNode = node;

153 }

154 {

155 targetInstance.activityPartition =

156 sourcePatternInstance.activityPartition;

157 }

158 if (p5Set.add(targetInstance)) {

159 p5Array.add(targetInstance);

160 operatorHasExecuted = true;

161 }

162 }

163 }

164 return operatorHasExecuted;

165 }

166 boolean executeOperatorO2() {

167 ...

168 }

169 boolean executeOperatorO1() {

170 ...

171 }

172 boolean executeOperatorInputModel() {

173 return true;

174 }

175 public void registerInputModelPublisher(ModelPatternPublisher publisher) {

176 ...
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177 }

178 public void registerOutputModelListener(ModelPatternListener listener) {

179 ...

180 }

181 }

The transformation class’ constructor is responsible for allocating the necessary mem-
ory for each pattern’s fields and create and register an instance of each external operator
as publishers or listeners. See Section 8.2 for more details about how to estimate the nec-
essary memory. The transformation class registers itself as listener in each class generated
from the input external operators and registers each class generated from the output ex-
ternal operators as listeners.

In each transformation class there is a single run() method which contains all the
calls, in sequence, to the operators’ methods, implementing the transformation execution.
More about this method in section 9.1.

7.1.4 Composition

The composition process is responsible for performing the exact opposite of the decom-
position process: from atomic model elements, i.e., ModelPattern instances, it builds and
stores the output model. But it is more complex since it has to keep track of every ele-
ment produced by the transformation and store it in the appropriate sets. Then is has to
aggregate elements as efficiently as possible to build the output model.

Similarly to the decomposition process uses generated classes from a metamodel by
EMF to create a model in memory and then store it.

Most of the composition process is implemented in one class: the OutputVisitor class
as figure 7.11 shows.

Figure 7.11: Composition process classes.

Consider listing 7.6 as an excerpt of the generated code from the metamodel show in
figure 7.4.
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Listing 7.6: Output visitor code generated from the metamodel shown in Figure 7.4
1 public class ShapesOutputVisitor implements ModelPatternListener {

2

3 HashSet<ModelNode> SquareSet;

4 HashMap<ModelNode, Square> modelNode2Square;

5 HashSet<ModelNode> CircleSet;

6 HashMap<ModelNode, Circle> modelNode2Circle;

7 HashSet<ModelNode> PentagonSet;

8 HashMap<ModelNode, Pentagon> modelNode2Pentagon;

9 HashSet<ModelNode> TriangleSet;

10 HashMap<ModelNode, Triangle> modelNode2Triangle;

11 HashMap<ModelNode, LinkedList<ModelPattern>> SquareSquaresSquareMap;

12 HashMap<ModelNode, LinkedList<ModelPattern>> SquarePentagonsPentagonMap;

13 HashMap<ModelNode, LinkedList<ModelPattern>> SquareTrianglesTriangleMap;

14 HashMap<ModelNode, LinkedList<ModelPattern>> CircleSquaresSquareMap;

15 HashMap<ModelNode, LinkedList<ModelPattern>> CirclePentagonsPentagonMap;

16

17 public ShapesOutputVisitor() {

18 ...

19 }

20

21 public void store(Circle element, String path) {

22 Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;

23 Map<String, Object> m = reg.getExtensionToFactoryMap();

24 m.put("xmi", new XMIResourceFactoryImpl());

25

26 ResourceSet resSet = new ResourceSetImpl();

27 Resource resource = resSet.createResource(URI.createURI(path));

28

29 resource.getContents().add(element);

30

31 try {

32 resource.save(Collections.EMPTY_MAP);

33 } catch (IOException e) {

34 e.printStackTrace();

35 }

36 }

37

38 public void notify(ModelPattern element) {

39 if (element.nodes.size() == 1 && element.edges.size() == 0) {

40 {

41 ModelNode node = element.nodes.get(0);

42 if (node.types.contains("Square") || false) {

43 node.types.add("Square");

44 SquareSet.add(node);

45 }

46 }

47 {

48 ModelNode node = element.nodes.get(0);

49 if (node.types.contains("Circle") || false) {
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50 node.types.add("Circle");

51 CircleSet.add(node);

52 }

53 }

54 {

55 ModelNode node = element.nodes.get(0);

56 if (node.types.contains("Pentagon") || false) {

57 node.types.add("Pentagon");

58 PentagonSet.add(node);

59 }

60 }

61 {

62 ModelNode node = element.nodes.get(0);

63 if (node.types.contains("Triangle") || false) {

64 node.types.add("Triangle");

65 TriangleSet.add(node);

66 }

67 }

68 } else if (element.nodes.size() == 2 && element.edges.size() == 1) {

69 {

70 ModelEdge edge = element.edges.get(0);

71 if ((edge.source.types.contains("Square") || false)

72 && edge.name.equals("squares")

73 && (false || edge.target.types.contains("Square"))) {

74 if (!SquareSquaresSquareMap.containsKey(edge.source)) {

75 SquareSquaresSquareMap.put(edge.source,

76 new LinkedList<ModelPattern>());

77 }

78 SquareSquaresSquareMap.get(edge.source).add(element);

79 }

80 }

81 {

82 ModelEdge edge = element.edges.get(0);

83 if ((edge.source.types.contains("Square") || false)

84 && edge.name.equals("pentagons")

85 && (false || edge.target.types.contains("Pentagon"))) {

86 if (!SquarePentagonsPentagonMap.containsKey(edge.source)) {

87 SquarePentagonsPentagonMap.put(edge.source,

88 new LinkedList<ModelPattern>());

89 }

90 SquarePentagonsPentagonMap.get(edge.source).add(element);

91 }

92 }

93 {

94 ModelEdge edge = element.edges.get(0);

95 if ((edge.source.types.contains("Square") || false)

96 && edge.name.equals("triangles")

97 && (false || edge.target.types.contains("Triangle"))) {

98 if (!SquareTrianglesTriangleMap.containsKey(edge.source)) {

99 SquareTrianglesTriangleMap.put(edge.source,
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100 new LinkedList<ModelPattern>());

101 }

102 SquareTrianglesTriangleMap.get(edge.source).add(element);

103 }

104 }

105 {

106 ModelEdge edge = element.edges.get(0);

107 if ((edge.source.types.contains("Circle") || false)

108 && edge.name.equals("squares")

109 && (false || edge.target.types.contains("Square"))) {

110 if (!CircleSquaresSquareMap.containsKey(edge.source)) {

111 CircleSquaresSquareMap.put(edge.source,

112 new LinkedList<ModelPattern>());

113 }

114 CircleSquaresSquareMap.get(edge.source).add(element);

115 }

116 }

117 {

118 ModelEdge edge = element.edges.get(0);

119 if ((edge.source.types.contains("Circle") || false)

120 && edge.name.equals("pentagons")

121 && (false || edge.target.types.contains("Pentagon"))) {

122 if (!CirclePentagonsPentagonMap.containsKey(edge.source)) {

123 CirclePentagonsPentagonMap.put(edge.source,

124 new LinkedList<ModelPattern>());

125 }

126 CirclePentagonsPentagonMap.get(edge.source).add(element);

127 }

128 }

129 } else {

130 throw new RuntimeException("Unexpected pattern found.");

131 }

132 }

133

134 public Circle buildModel() {

135 return buildCircle();

136 }

137

138 Circle buildCircle() {

139 for (ModelNode node : CircleSet) {

140 Circle result = modelNode2Circle.get(node);

141

142 if (result == null) {

143 result = ShapesFactory.eINSTANCE.createCircle();

144 modelNode2Circle.put(node, result); // coloca ja o elemento no

145 // mapa por causa das

146 // futuras referencias com

147 // target neste elemento.

148 createAssocCirclePentagons(result, node);

149 createAssocCircleSquares(result, node);
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150 }

151

152 return result;

153 }

154

155 return null;

156 }

157

158 void createAssocSquareSquares(Square modelElement, ModelNode node) {

159 LinkedList<ModelPattern> patternAssocs = SquareSquaresSquareMap

160 .get(node);

161 if (patternAssocs == null) {

162 return;

163 }

164 for (ModelPattern patternAssoc : patternAssocs) {

165 ModelNode targetNode = patternAssoc.edges.get(0).target;

166

167 if (targetNode.types.contains("Square")) {

168 if (SquareSet.contains(targetNode)) {

169

170 Square targetElement = modelNode2Square.get(targetNode);

171

172 if (targetElement == null) {

173 targetElement = ShapesFactory.eINSTANCE.createSquare();

174 modelNode2Square.put(targetNode, targetElement);

175 }

176 createNonContainmentAssocSquarePentagons(targetElement,

177 targetNode);

178 createAssocSquareTriangles(targetElement, targetNode);

179 createAssocSquareSquares(targetElement, targetNode);

180

181 modelElement.getSquares().add(targetElement);

182 }

183 }

184 }

185 }

186

187 void createAssocSquareTriangles(Square modelElement, ModelNode node) {

188 LinkedList<ModelPattern> patternAssocs = SquareTrianglesTriangleMap

189 .get(node);

190 if (patternAssocs == null) {

191 return;

192 }

193 for (ModelPattern patternAssoc : patternAssocs) {

194 ModelNode targetNode = patternAssoc.edges.get(0).target;

195

196 if (targetNode.types.contains("Triangle")) {

197 if (TriangleSet.contains(targetNode)) {

198

199 Triangle targetElement = modelNode2Triangle.get(targetNode);
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200

201 if (targetElement == null) {

202 targetElement = ShapesFactory.eINSTANCE

203 .createTriangle();

204 modelNode2Triangle.put(targetNode, targetElement);

205 }

206

207 modelElement.getTriangles().add(targetElement);

208 }

209 }

210 }

211 }

212

213 void createAssocCircleSquares(Circle modelElement, ModelNode node) {

214 LinkedList<ModelPattern> patternAssocs = CircleSquaresSquareMap

215 .get(node);

216 if (patternAssocs == null) {

217 return;

218 }

219 for (ModelPattern patternAssoc : patternAssocs) {

220 ModelNode targetNode = patternAssoc.edges.get(0).target;

221

222 if (targetNode.types.contains("Square")) {

223 if (SquareSet.contains(targetNode)) {

224

225 Square targetElement = modelNode2Square.get(targetNode);

226

227 if (targetElement == null) {

228 targetElement = ShapesFactory.eINSTANCE.createSquare();

229 modelNode2Square.put(targetNode, targetElement);

230 }

231 createNonContainmentAssocSquarePentagons(targetElement,

232 targetNode);

233 createAssocSquareTriangles(targetElement, targetNode);

234 createAssocSquareSquares(targetElement, targetNode);

235

236 modelElement.getSquares().add(targetElement);

237 }

238 }

239 }

240 }

241

242 void createAssocCirclePentagons(Circle modelElement, ModelNode node) {

243 LinkedList<ModelPattern> patternAssocs = CirclePentagonsPentagonMap

244 .get(node);

245 if (patternAssocs == null) {

246 return;

247 }

248 for (ModelPattern patternAssoc : patternAssocs) {

249 ModelNode targetNode = patternAssoc.edges.get(0).target;
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250

251 if (targetNode.types.contains("Pentagon")) {

252 if (PentagonSet.contains(targetNode)) {

253

254 Pentagon targetElement = modelNode2Pentagon.get(targetNode);

255

256 if (targetElement == null) {

257 targetElement = ShapesFactory.eINSTANCE

258 .createPentagon();

259 modelNode2Pentagon.put(targetNode, targetElement);

260 }

261

262 modelElement.getPentagons().add(targetElement);

263 }

264 }

265 }

266 }

267

268 void createNonContainmentAssocSquarePentagons(Square modelElement,

269 ModelNode node) {

270 LinkedList<ModelPattern> patternAssocs = SquarePentagonsPentagonMap

271 .get(node);

272 if (patternAssocs == null) {

273 return;

274 }

275 for (ModelPattern patternAssoc : patternAssocs) {

276 ModelNode targetNode = patternAssoc.edges.get(0).target;

277

278 if (targetNode.types.contains("Pentagon")) {

279 if (PentagonSet.contains(targetNode)) {

280

281 Pentagon targetElement = modelNode2Pentagon.get(targetNode);

282

283 if (targetElement == null) {

284 targetElement = ShapesFactory.eINSTANCE

285 .createPentagon();

286 modelNode2Pentagon.put(targetNode, targetElement);

287 }

288

289 modelElement.getPentagons().add(targetElement);

290 }

291 }

292 }

293 }

294 }

Being a ModelPatternListener, when notified of an atomic element, the output visitor
class inspects it and identifies its type. Once identified, the element is stored. The storage
mechanism used depends on the kind of atomic element received. If it is a individual
element, it is stored in a set with all elements of the same type. Notice that the generated

85



7. IMPLEMENTATION 7.1. TrNet Compilation

code stores the same ModelNode not only in the set of its type, but also in the set of
each super type. The example does not show that because there is no hierarchy in the
metamodel.

During the transformation execution, the output visitor will accumulate model pat-
terns and once the transformation has finished executing, it can aggregate all those ele-
ments into a model. It does this by starting at the root element of the model, and then
navigating each relation (information that hard coded from the metamodel) it collects all
the remaining elements. The assumption that every model has a root element is a very
common one since a model that has two root elements, when stored into xmi, does not
even make a valid xml document. Be that as it may, almost all models have an aggregat-
ing class that contains all others.

In the example listing 7.6, the buildCircle method start the whole composition pro-
cess. It uses EMF generated code to build a real Circle instance and then goes recursively
building each sub model trying every association encoded in the metamodel. It uses
maps to keep track of what model nodes gave origin to what output model elements in
order to avoid creating two instances for the same ModelNode.

For a containment association, it obtains all the ModelPattern elements that corre-
spond to that association and that start at the source ModelNode of the association. From
all the associations found, it retains only those that have a well defined target, i.e., the tar-
get ModelNode of the association must also exist in its type set, or in any of its subtypes’
set. And this process is repeated for the target ModelNodes of those associations.

For a Non-containment association, the algorithm is almost the same, except that it
does not repeat itself for the targets of the association, since this would result in an infi-
nite loop for some models and it would be redundant because if the target ModelNode
element is contained in some parent, then eventually it will be visited and its information
filled. Otherwise, if the element is not contained in any element that is already in the out-
put model, then it will not appear in the final model, which is the expected and correct
behaviour.

7.1.5 Fitting All Together

In summary, in a typical transformation we have one input visitor class, one transforma-
tion class and one output visitor class, one external input class, an external output class
and several classes, each representing a specific pattern in the transformation. The in-
put visitor class processes the input model into several ModelPattern instances that are
delivered to the external input class. The external input class converts these atomic Mod-
elPatterns into specific pattern instances which are then delivered to the transformation,
by placing them in the corresponding sets. At this point the transformation runs, exe-
cuting all the operators. The final operators to be executed in the transformation are the
outputs which deliver the specific pattern instances to the external output class. The ex-
ternal output class converts those instances to generic ModelPattern instances and passes
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them to the output model visitor. The output model stores all the instances and, when
given the instruction to build the output model, it aggregates them into the output model.

Figure 7.12 summarizes the overall process and listing 7.7 shows a sample usage in
Java.
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Figure 7.12: A typical TrNet transformation process.

Listing 7.7: Typical code to run a TrNet transformation
1 void RunTransformation() {

2 Uml11InputVisitor inputv = new Uml11InputVisitor();

3 Uml21OutputVisitor outputv = new Uml11InputVisitor();

4

5 ActivityMigrationTransformation transformation =

6 new ActivityMigrationTransformation();

7 transformation.registerOriginalInputPublisher(inputv);

8 transformation.registerEvolvedOutputListener(outputv);

9

10 ActivityGraph s = inputv.load("InputModel.xmi");

11 // Decompose

12 inputv.visitActivityGraph(s);

13 // Transform

14 transformation.run();

15 // Compose

16 Package d = outputv.buildModel();

17

18 outputv.store(d, "OutputModel.xmi");

19 }

Note that the while the ModelPattern allows one to represent any arbitrary model,
the instances handled by the input and output visitor are atomic. They either represent
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an atomic element, with only one ModelNode; or they represent an association, with
two ModelNodes and a ModelEdge. This is a design decision that has the advantage
of pushing the complexity onto the transformation and not to the model management
processes. It is much faster to use the transformation to build complex elements from
simpler ones than having the input visitor search for complex patterns in the input model.
That is the performance penalty we are trying to avoid!

The main advantage of this approach is to guarantee that the transformation is in-
dependent of the model management framework. Using a common representation for
patterns and the publisher listener pattern allows for a good degree of decoupling be-
tween the three main processes. If, for instance, our models were stored in a database, all
we have to do is change the input and output visitors. The transformation remains the
same.

The fact that the input and output visitors do not depend on the transformation con-
tents allows one to generate the visitor for purposes other than feeding the transforma-
tion.

The code generation was performed using Epsilon Template Language (ETL) [RKPP10a].

7.2 DSLTrans Compilation

The DSLTrans Compilation is performed rule by rule, layer by layer.
As an example consider the DSLTrans transformation and the corresponding TrNet

transformation shown side by side in Figure 7.13.
Each FilePort is translated into an input external operator.
Each Layer is translated into an output external operator (since in DSLTrans, each

Layer outputs a model). In addition, the layer’s rules are compiled.
The compilation of the rule is divided into three steps: compile all the rule’s match

models, compile the apply model and connect all together.
Each match model is translated into a Pattern containing NodePatterns and EdgePat-

terns. NodePatterns are created for each MatchClass in the match model and EdgePat-
terns are created for each MatchAssociation. MatchAttributes are compiled to AttributePat-
tern inside the corresponding NodePatterns.

Similarly to the match model, each apply model is translated into a Pattern with its
contents being the result of compiling the apply elements of the apply model. An Ap-
plyClass is translated into a NodePattern and an ApplyAssociation is translated into an
EdgePattern. In addition, depending on the existence of the trace attribute in the Ap-
plyClass, a new NodePattern and a EdgePattern can be connected to the ApplyClass’
NodePattern to represent the trace being created.

To connect the patterns created for each match model and the apply model of a rule
it is necessary to: create the necessary Combinators that have as operands the pattern
that were created from each match model; set as a result the pattern that was created
from the apply model; add more elements to the match models’ patterns to match any
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Figure 7.13: A DSLTrans transformation and its corresponding TrNet transformation.

existing backward restrictions (matching traceability links); add the necessary applica-
tion conditions to the combinators to complete the possibly existing attribute matching
in the match models; link the patterns created from each match model to the rest of the
TrNet transformation and do the same for the pattern created form the apply model.

For the sake of brevity, assume that there is only one match model in the rule and
one apply model, which is by far the most common case. The pattern created from the
match model is connected to a new combinator as an operand and the pattern created
from the apply model is connected as a result of that operator. The execution of this new
combinator performs the application of the rule.

In that same combinator, application conditions are added for each existing match
attribute condition inside any match class of the match model. This step guarantees that
the combinator will only be applied to a candidate element if all attribute conditions are
true, which is the expected behaviour os a DSLTrans rule.

Next, any existing backward conditions between a match class and an apply class are
compiled by adding a NodePattern to the match model pattern and a NodePattern to the
apply model pattern. These two NodePatterns correspond to the match class involved in
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the backward restriction and they are connected by a trace relation to the apply class node
pattern in both patterns and with a keep element between them. This step guarantees that
the traceability link represented by the backward link has to be matched before the rule
can be applied.

Once all the previous tasks are performed, we have a pattern that corresponds to
the match model, a pattern that corresponds to the apply model and a combinator that
performs the application of the rule by connecting the match model pattern to the apply
model pattern. It is still necessary to integrate the match model pattern and the apply
model pattern in the rest of the transformation.

To connect the match model pattern to the rest of the transformation it is necessary
to generate its construction through several combinations of atomic pattern elements.
This construction ensures that, when the transformation is executing, the match pattern
is gradually built from smaller patterns. In order to achieve this, an atomic element is
selected in the match model pattern and two new patterns are created: one with the
atomic element and the other with the match model pattern without the atomic element.
The two patterns are operands of a new combinator that outputs to the initial match
model pattern. This process is now repeated recursively until all patterns are atomic.
then, all the atomic patterns are either connected to the input external operator, or, in
they it is a trace, to all the patterns where that trace is being created. Those patterns were
the result of compiling the previous layers’ rules.

The apply model pattern undergoes a similar process to generate its destruction into
several atomic patterns. This process however, is much more simple: a new atomic pat-
tern is created for each atomic pattern in the apply model pattern. The apply model
pattern is then connected to each atomic pattern by means of a new combinator (created
for each pattern). The new atomic patterns are either connected to the output external
operator corresponding to the layer, or, in case if it is a trace atomic pattern, to other
pattern, pertaining to other rule’s match model.

Figure 7.14 shows an excerpt of the TrNet transformation generate for the DSLTrans
rule at the left.

Observing the inherent complexity of the compilation to TrNet, we quickly grasp the
amount of work that is performed entirely automatically by the DSLTrans engine com-
pared to that same work performed by a TrNet. That difference reflects the transforma-
tion complexity: TrNet’s transformations are really complex and big when compared to
the same transformation expressed in DSLTrans. As an example, for the benchmark that
we used (see more details in chapter 10), the DSLTrans transformation has 78 rules while
the resulting TrNet transformation has 467 patterns and 750 operators. Off course we
developed optimizations that can lower this value to 355 patterns and 288 operators (see
section 9.6) but still it shows how much a transformation developer can win by using a
high-level language like DSLTrans.

On the performance perspective, it is possible to see that, while DSLTrans, during an
execution, searches several times the input model for patterns, the compiler hard codes
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... ... 

Figure 7.14: A DSLTrans transformation and its corresponding TrNet transformation
(continuation).

this behaviour by creating the necessary elements to collect the proper atomic elements
and combine them to achieve the pattern needed for the rule to be applied. The major
advantage of this is that the input model is visited only once, at the beginning of the
transformation. From that point, the operators are executed to propagate those elements
throughout the entire transformation.
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8
Analysis

During a compilation of a transformation written in TrNet there are a lot of decisions
that affect the performance of the resulting code. As a consequence, we had to develop
analysis techniques to help to generate code that is as efficient as possible. This analysis
allows for both performance and memory consumption estimation. The kind of analysis
performed here is very similar to what database management systems do when executing
a query [SKS10]. Off course a TrNet transformation can be several times more complex
than a query and there are some peculiarities due to our approach.

As an example, consider the excerpt of a transformation shown in figure 8.1 and the
code in algorithm 14 that implements the behaviour of combinator O1. In Algorithm
14, the instances of pattern Pat1 are iterated one by one. For each instance, an access to
an hash map immediately returns all the interesting instances of pattern Pat2 (note the
same restriction). Having an hash map greatly reduces the cost of the operator execution
but there are, perhaps better, alternatives. For instance, we could start by iterating all the
instances of pattern Pat2 and using an hash map to access the corresponding instances
of Pat1 as is shown in Algorithm 15. How can we know which approach is the cheapest
one?

Algorithm 14 Algorithm showing the behaviour of Combinator O1.

1: function EXECUTEO1
2: for (p, ap) ∈ Pat1 do
3: for (p’ , s) ∈ GETPAT2FROMPARTITION(p) do
4: . . .
5: end for
6: end for
7: end function
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Pat1 Pat2 

Pat3 

O1 

Figure 8.1: Transformation excerpt.

Algorithm 15 Alternative algorithm showing the behaviour of Combinator O1.

1: function EXECUTEO1’
2: for (p’, s) ∈ Pat2 do
3: for (p , ap) ∈ GETPAT1FROMPARTITION(p’) do
4: . . .
5: end for
6: end for
7: end function
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Intuitively, if we had 2 instances in Pat1 and 200 in Pat2, the second approach (Al-
gorithm 15) would make about 200 accesses to the HashMap. If we assume that only 20
elements can be joined with the 2 instances in Pat1, that would give us an hash map hit
rate of 10%. Which is awfull. On the other hand, the first approach (Algorithm 14) would
give us a hit rate of 100% because the 2 accesses to the hash map return the 20 elements
immediately.

Plus, if we decide on the approach of Algorithm 14, is it worth to keep and maintain
the hash map that is never used? No. Maintaining an extra index is costly because when-
ever a new instance is added to that pattern, a new entry in the index has to be created as
showed in section 7.1.3.3.

Since we are using hash set and hash maps for the indexes, when the transformation is
initialized, all these data structures have to be initialized. That means we need to provide
an estimate on the amount of memory to be allocated. Even if these structures support
reallocation to increase capacity (and they do), the cost to perform this expansion in an
hash set or hash map is too high for these transformations. If we can estimate the number
of instances that will be in each pattern at the last configuration of the transformation, i.e.,
when the transformation ends, we can initialize the structures in such a way that chances
of a reallocation in the middle of the transformation are greatly reduced. Given the right
information, we can.

Returning to our previous example, if we knew that Pat1 will have 2 instances and
Pat2 200, we can at the very least, estimate that no more that 400 instances will be created
in Pat3. But since there is a restriction, we know that the real number will probably be
a lot less that 400. We need more information to give a better estimate. If we know
could estimate with how many elements the 2 instances could be joined with we could
provide a much better estimate. Using probabilities is a key technique to perform these
estimations. For instance, if we know that for each instance in Pat1, the probability that
its partition node exists in the any instance in Pat2 is 20% we can estimate that, executing
the operator will create 2 × 0.2 × 400 = 160. The probability of the operator producing
an element is called its selectivity. Equation 8.1 shows the probability of operator O1

producing an element when executing. We have a minimum of two cases because we are
considering the two possible execution order of the operator. If the two order produce
different selectivities it means that the number of distinct values of the nodes in the Same
restriction are different and thus, in a certain order, it is likely that there will be elements
that will not be matched with the elements of the opposite pattern. Since only valid
combinations are processed by the operator, the smaller of the two selectivities is likely
the best guess.

Equation 8.2 shows the result of applying the operator selectivity to the maximum
possible number of elements that can be created in the operation.

O1selectivity = min(
1

Pat1.Partition.ndv
,

1

Pat2.Partition.ndv
) (8.1)
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Pat3.noi = min(
Pat2.noi× Pat1.noi

Pat1.Partition.ndv
,
Pat2.noi× Pat1.noi

Pat2.Partition.ndv
) (8.2)

Unfortunately, with an estimate of 400 for pattern Pat3 we know for sure that the
structures would never need reallocation but with an estimate of 160 obtained through
probabilities, it is possible that the real value surpasses that estimate. But the problem
with over approximating the necessary memory is that, with large transformations, more
memory can be requested that what is actually necessary and in the advent that the
computer does not have enough memory, pagination will spring into action, leaving the
transformation hanged in the initialization phase. It is a tradeof. Our experiments (see
section 8.3) show that the estimates are pretty accurate.

As we saw in the previous example, there are two main pieces of information that
are necessary to perform these estimates for a given pattern Patx: the (expected) number
of instances (NOI) of each pattern PatY that is directly connected to Patx and a way to
estimate the probability of a successful combination.

A pattern PatY is directly connected to a pattern Patx when there is at least one
combinator of which PatY is operand and Patx is a result. In the example, both Pat1

and Pat2 are directly connected to Pat3. That is why they are taken into consideration
for the estimation of the number of instances for pattern Pat3.

The probability of a successful combination can be obtained by knowing the number
of distinct values (NDV) of each node in the patterns. This, together with the assumption
that the distinct values are distributed uniformly, allows us to come up with good enough
probabilities and, thus, estimates.

In order to estimate the number of instances (NOI) and the number of distinct values
(NDV) for patterns that don’t have any predecessors, i.e., don’t have any pattern directly
connected to them, i.e., are results of some input external operator, we need real values
collected from a representative sample of input models. We call this the Catalog.

The general approach to collect and propagate the statistics throughout the transfor-
mation is as follows: we start by generating the catalog model from a metamodel, this
ensures that the catalog, instead of being a generic and not so useful structure, reflects the
structure of the metamodel so it becomes easier to find statistical information later; next,
a set of models are processed and added as samples to the catalog model; each sample
holds statistics about the corresponding model; the samples are aggregated to form aver-
aged statistics about the set of models; this information is then used to initialize the first
patterns in the transformation and the rest is carried out by an algorithm that propagates
the statistics across the entire transformation.

8.1 Catalog

The main purpose of a Catalog model is to store samples of models and aggregate those
samples into statistics. These statistics then serve as a basis to estimate the Number of
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Figure 8.2: Catalog metamodel.

Figure 8.3: Shapes metamodel (equivalent to the one in Figure 6.16b).

Distinct Values (NDV) and Number of Instances (NOI) for all patterns and nodes in the
transformation.

The metamodel of the Catalog is shown in Figure 8.2. A CatalogModel stores type
catalogs and reference catalogs. A Type catalog represents statistical information about
of element of a given type. For instance if the models being sampled have an element of
type Square, there will be a type Catalog for square as Figure 8.5 shows. By the way, the
catalog of Figure 8.5 was generated from the metamodel of Figure 8.3. A Reference cata-
log represents statistical information about one particular association. What completely
defines an association is a the association name, the type of its source element and the
type of its target element. This means a single reference in a metamodel can be trans-
lated into multiple reference catalogs if that reference’s source or target elements have
sub types.

Both type and reference catalog have multiple samples. Each sample is identified by
an index and represent the information gathered that catalog in one particular model.
In the example of Figure 8.5 we have one sample of the type catalog and one of each
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Figure 8.4: Shapes model sample.

# Instances (noi) = 1 

# Instances (noi) = 1 
# Distinct Values Source (ndvsrc) = 1 
# Distinct Values Target (ndvtrg) = 1 

# Instances (noi) = 3 

# Instances (noi) = 2 
# Distinct Values Source (ndvsrc) = 1 
# Distinct Values Target (ndvtrg) = 2 

# Instances (noi) = 1 
# Distinct Values Source (ndvsrc) = 1 
# Distinct Values Target (ndvtrg) = 1 

# Instances (noi) = 2 
# Distinct Values Source (ndvsrc) = 2 
# Distinct Values Target (ndvtrg) = 2 

# Instances (noi) = 2 

# Instances (noi) = 1 

# Instances (noi) = 1 
# Distinct Values Source (ndvsrc) = 1 
# Distinct Values Target (ndvtrg) = 1 

Figure 8.5: Catalog model sample generated from the metamodel of Figure 8.3 and the
sample model of Figure 8.4.
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reference catalog which indicates that the statistics where gathered by consuming one
Shape model (the one on Figure 8.4).

A Type catalog sample counts the number of instances (NOI) of that type in a model
wheres as reference catalog sample counts the number of instances of that reference plus
the number of distinct source instances (NDSI) and the number of distinct Target In-
stances (NDTI). The NDSI by collecting all instances of the reference in a model and
counting the number of distinct source elements. The NDTI is calculated in the same
way. As an example, in the catalog of Figure 8.5 the sample of the “triangles” reference
between squares and triangles has two instances but one distinct source values. This is
because there is a square connected to two triangles. The same sample has three two tar-
get elements (this makes sense since triangles is a containment reference and an element
cannot exist inside two parents).

There are also attribute catalogs, which store the number of distinct values of each
attribute.

The aggregated attributes of a type, reference or attribute catalog is re-calculated
when a new sample is added. Currently, we perform the arithmetic mean to compute
all these values.

We built a simple transformation which takes an Ecore metamodel and produces a
catalog model. Then we built a transformation that loads a given model and adds a new
sample to all the type and reference catalogs in th catalog model and recalculates the
aggregated values.

8.2 Number Of Instances Estimation

Once a properly filled catalog is available we can fill the estimates for those patterns that
do not have any predecessors, i.e., those that are results of an external input operator.
This is very simple since we know that all these patterns are atomic which means they
are either a single element or a relation.

If the pattern is a single element, we search for the corresponding type catalog and fill
the NDV with the aggregated NOI of the type catalog; and we register the attribute cata-
logs pertaining to that type catalog as these statistics will also be propagated throughout
the transformation. The NOI of the pattern is the NOI of the type catalog. As an example,
in pattern Pat1 of Figure 8.6, the Number of Instances is 3 and the Number of Distinct
Values of the Square node is also 3.

If the pattern is a reference, we search for the corresponding reference catalog and fill
the NOI of the pattern with the NOI of the reference. For the source node pattern of the
reference, we fill the NDV with the NDSV of the reference catalog. Analogously, we fill
the target node pattern’s NDV with the NDTV of the reference catalog. Then the attribute
statistics are filled for each node pattern by searching the corresponding type catalog, as
is done for the case with a single element. As an example, the pattern Pat2 statistics were
filled from the “triangles” reference catalog of Figure 8.5.
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Figure 8.6: Transformation input frontier example with statistics filled from the catalog
model of Figure 8.5.

Once the statistics for the patterns that don’t have predecessors are filled, we can
propagate these statistics through the network by using a FixPoint computation. At each
iteration, one pattern is selected and statistics are attached to that pattern. For a pattern
to be selected, all its predecessors have to have attached statistics. This means that, even-
tually, all the patterns in the network will be selected and their statistics computed 1. The
computation stops when no changes are made in the statistics of patterns.

The Algorithm 16 shows how the calculation is performed for a selected pattern. For
the sake of brevity, we omit the implementation several utility functions and the calcula-
tion of the selectivity of operator conditions:

GETINCOMMINGOPERATORS(Pat) Returns the set of operators that, when executing,
might insert elements in pattern Pat.

MAX(X, Y)

MIN(X, Y)

GETNODES(Pat) Returns all the nodes inside pattern Pat.

GETFIRSTOPERAND(Op) Returns the first (in creation order) operand of operator Op.

GETSECONDOPERAND(Op) Returns the second (in creation order) operand of operator
Op.

HASTWOOPERANDS(Op) Return true if the operator has two operands. Otherwise, re-
turns false.

COMPUTESELECTIVITYCOND(Cond) Computes the probability of a condition being true.
This value depends on the number of distinct values of the parameters of the con-
ditions.

1Remember that a network is connected, i.e., there are no separate patterns or operators.
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GETSAMERESTRICTIONS(Op, SrcPat1, SrcPat2) Returns all Same restrictions between
nodes of patterns SrcPat1 and SrcPat2 that affect the execution of operator Op.

GETNODEINRESTRICTION(Restriction, SrcPat2) Returns the node from pattern SrcPat2
that participates in the restriction Restriction.

ISKEPT(Op, Node) Returns true if the Node is a target of a Keep restriction whose source
belongs to some operand of operator Op.

GETSRCKEEPNODE(Op, Node) Assumes that ISKEPT(Op, Node) is true and returns that
source node.

Also notice how Algorithm 16 selects the minimum selectivity from the two possi-
ble combination orders in function COMPUTEMINSELECTIVITY. The reason for this was
already explained in the example at the beginning of this chapter.

Because Algorithm 16 is used in a fixpoint computation, when there are cycles in
the transformation, only the first iteration of the each cycle is taken into account for the
statistics because the statistics are based on the elements on the first pattern of the cycle.
We are not able to predict of many iterations the cycle will perform with the information
from the Catalog model.

We created a transformation that loads a given catalog model, initializes the estimates
for the patterns that don’t have any predecessors in the transformation and then propa-
gates those estimations throughout the network with a fixpoint computation using Algo-
rithm 16.

8.2.1 State of Art Analyses

The method we presented here to perform the estimations is very similar to the method
used in database management systems [SKS10] but adapted since in TrNet, pattern can-
not have duplicates and there can be multiple sources of elements from one pattern.

In the state of the art tools (PROGRES, Viatra2 and GrGen.NET), cost estimation is
performed each time a pattern matching operation is executed or compiled. They use the
concept of a search plan to help materialize the specific of a pattern matching operation,
i.e., the first element of the pattern to be searched, the order of the remaining elements
will be searched, which indexes will be used, etc. . . A search graph is a graph from which
all the possible search plans can be extracted. Each spanning tree is a search plan. For
example, consider the pattern shown in Figure 8.7 and its representative search graph in
Figure 8.8.

In each of these tools, the cost estimation (and subsequent optimization) of one pat-
tern is performed by constructing a search graph, generating multiple search plans, and
selecting the best one, i.e., the one with the least cost. Then they run it, or compile it to be
run latter. Off course each tool has its specific way of representing the search graph and
estimating the cost of each search plan.
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Algorithm 16 Fixpoint algorithm used to propagate the statistics across a TrNet transfor-
mation.

function FILLSTATS( Pat)
for Op ∈ GETINCOMMINGOPERATORS(Pat) do

Selectivity← COMPUTEMINSELECTIVITY(Op,Pat)
MaxNOI← COMPUTEMAXNOI(Op, Pat)
Pat.noi←MAX(Pat.noi , MaxNOI×Selectivity)
for Node ∈ GETNODES(Pat) do FILLSTATSNODE(Op, Pat, Node)
end for

end for
end function
function COMPUTEMINSELECTIVITY(Op, Pat)

if HASTWOOPERANDS(Op) then
SrcPat1← GETFIRSTOPERAND(Op)
SrcPat2← GETSECONDOPERAND(Op)
SelectivityFirst2Second ← COMPUTESELECTIVITYSAMERESTRICTIONS(Op, Src-

Pat1, SrcPat2)
SelectivitySecond2First ← COMPUTESELECTIVITYSAMERESTRICTIONS(Op, Src-

Pat2, SrcPat1)
Selectivity←MIN(SelectivityFirst2Second,SelectivitySecond2First)
return Selectivity ×

∏
Cond∈Op.Cond COMPUTESELECTIVITYCOND(Cond)

else
return

∏
Cond∈Op.Cond COMPUTESELECTIVITYCOND(Cond)

end if
end function
function COMPUTEMAXNOI( Op, Pat)

if HASTWOOPERANDS(Op) then
SrcPat1← GETFIRSTOPERAND(Op)
SrcPat2← GETSECONDOPERAND(Op)
return SrcPat1.noi × SrcPat2.noi

else
SrcPat1← GETFIRSTOPERAND(Op)
return SrcPat1.noi

end if
end function
function COMPUTESELECTIVITYSAMERESTRICTIONS(Op, SrcPat1, SrcPat2)

Selectivity← 1
for Restriction ∈ GETSAMERESTRICTIONS(Op, SrcPat1, SrcPat2) do

SrcNode2← GETNODEINRESTRICTION(Restriction, SrcPat2)
Selectivity← Selectivity × 1

SrcNode2.ndv
end for
return Selectivity

end function
function FILLSTATSNODE(Op, Pat , Node)

if ISKEPT(Op, Node) then
SrcNode← GETSRCKEEPNODE(Op, Node)
Node.ndv←MIN(Pat.noi, MAX(Node.ndv, SrcNode.ndv))

else
Node.ndv← Pat.noi

end if
end function
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As an example, we will demonstrate the approach of Viatra2 [VFV06]. According to
Varró et al. [VFVS08], the cost of a search plan is given by the potential size of the search
tree formed by its execution 2. For example, the potential size of the search tree for the
search plan shown in bold in Figure 8.8 is given by z̄ + z̄ ∗ x̄z + z̄ ∗ x̄z ∗ ȳx, where: z̄

denotes the expected number of model elements that can be matched by the z element;
x̄z denotes the average number of model elements that can be matched by x after binding
z to some model element and ȳx denotes the same for y after binding x to some model
element. Intuitively, each term of the formula represents the number of states at a specific
level of the search tree. z̄ represents the number of states in the first level, i.e., how many
candidate mappings can be found for the z element. z̄∗x̄z represents how many candidate
mappings we can find for x, provided we have already searched for z, i.e., it counts the
number of states in the second level of the search tree. For any arbitrary pattern, the cost
formula would be computed following this pattern.

You can see that the information we gathered in the catalog model can be used to
estimate these values. z̄ is given by the number of instances of C. x̄z can be estimated
using the information about the relation C → A, and so on.

As a concrete example, consider the search graph shown in Figure 8.9 whose weights
have been filled using statistics from some model. The ȳx is represented in the edge x→ y

and its value is 1.333. The ȳx value represents the average number of choices available
after matching x to some model element. The x can be bound to any of the 3 A elements
in the model of Figure 4.1a. If we consider that the 4 edges between A and B elements are
uniformly distributed, we get an average of 1.33 edges going out of each A element. This
means the average number of choices the algorithm has to do for each x element bound
is 1.33. Following this cost model, the evaluation of the search plan of Figure 8.9 yields
a potential size of 9.99 whereas a search plan that follows the order y → x → z yields a
cost of 12, thus the first search plan is better.

We can argue that TrNet is very large search plan and, having the statistics estimated
for each pattern, it is easy to calculate the cost of execution of each operator. In fact,
we do that in section 9.2 to decide on the order in which to combine the operands of a
combinator. The cost of larger portions can then be calculated by summing the cost of
each combinator pertaining to that portion. It is possible to select specific parts of the

2A pattern matching operation is a backtracking search.

Figure 8.7: Sample pattern.
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transformation, change them while keeping the intended result and evaluate them to
decide if the new search plan should be kept instead of the old one. Unfortunately, due
to time constrains, it has not yet been implemented.

8.3 Evaluation

In order to measure how good the estimation TrNet produces are, we took three dif-
ferent transformations and three input models; we created the catalog model for each
of those input models; we ran run the algorithm explained previously to initialize each
transformation with the statistics of the corresponding input model; we compiled the
transformations and ran them. In the end of each transformation we dumped the final
configuration and plotted the charts shown in figures 8.10, 8.11 and 8.12.

The vertical axis of each chart represents the number of instances and the horizontal
one represents the depth of the pattern. Each point represents the number of instances
(NOI) of one pattern. The more to the right a point is, the more far away from the be-
ginning of the transformation the pattern is. We choose to sort the patterns according to
their distance to the beginning (depth) because in some cases we can see the error prop-
agation. There are two lines: the blue is the real NOI, read from the final configuration;
and the red one is the estimated NOI.

Off course one can argue that the estimations are so good because we created the
catalog model for the exact input model that was going to be transformed. Our purpose
for this experiment was to see how the error propagates across the network using our
estimation approach. As you can see in the pictures, it is fairly good.

The first chart was obtained from a transformation that translated class models into
relational models. More importantly, its structure explains the chart: since the transfor-
mation has around 50 patterns, which is not much, and was crafted by hand, meaning it
was not generated, it does not have a high branching factor and that is why, at the depth
of 10 we start to see small errors in the estimation.

The second and third charts (figures 8.11 and 8.12) represent the same transformation:
the case study for our benchmark which is explained in Chapter 10. The particularity here
is that one transformation was crafted manually and has around 70 patterns while the

Figure 8.8: Example search graph and a possible search plan (in bold) for pattern of
Figure 8.7 in page 103.
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Figure 8.9: Weighted search graph a possible search plan (in bold) for pattern of Figure 8.7
in page 103.

Figure 8.10: Expected and real number of instances of a transformation that translated
Class models into Relational model, expressed in TrNet.
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Figure 8.11: Expected and real number of instances of a transformation that migrates
Activity Diagram models into UML 2.0 Activity Diagrams, expressed in TrNet.

Figure 8.12: Expected and real number of instances of a transformation that migrates
Activity Diagram models into UML 2.0 Activity Diagrams, expressed in DSLTrans and
then compiled to TrNet.
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other was generated from an equivalent DSLTrans transformation and has 470 patterns.
The first one is represented in chart of Figure 8.11 and the second one is represented in
figure 8.12. The curiosity is that, for the transformation crafted manually, the error per
pattern is bigger than that of the transformation that was generated. This is because
we took advantage of more advanced application conditions to make the transformation
more compact and, since the estimation algorithm can only assume the probability of
these conditions, it created slightly wrong estimations that were then propagated through
the rest of the transformation. In the generated transformation this was not the case:
DSLTrans does not support these advanced features so, although a lot more “verbose”,
the transformation generated from DSLTrans is a lot more simple causing the estimation
algorithm to give better estimates.

Another peculiarity is that, although the two transformations were run with the exact
same input model, with around 10000 elements of each type, we can see that most of
the patterns in the transformation generated from DSLTrans do not have a NOI equal to
10000 while the other transformation has. The branching factor of the former transfor-
mation is a lot bigger than the one for the transformation crafted manually.

Overall the estimations are very accurate and extremely useful. They are used for
everything since the initialization of data structures to the execution order of operators.
In te next chapter we explain the various optimization techniques that we developed to
enhance the speed and memory consumption of TrNet transformations.
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9
Optimizations

Most of the techniques presented in this chapter depend on the analysis described in the
previous chapter to evaluate the cost of certain operations and to properly manage and
allocate the runtime resources.

The optimization techniques can be applied as an endogenous model transformation
or during the code generation process.

The techniques that are implemented as a model transformation analyze the informa-
tion added by the analyses presented in the previous chapter and then add information
that later instructs the code generator to produce the most efficient code.

Those techniques applied during the code generation process take advantage of the
information in the transformation to decide which structures are the most efficient.

9.1 Execution Order Inference

Execution order inference is an optimization technique that tries to define an execution
order such that each operator executed only once in the whole transformation.

This optimization is so crucial that without it, executing a trnet transformation re-
quires keeping, at runtime, a queue of operators to be executed and managing that queue
throughout the transformation.

Instead, with execution order inference, the execution order is hard-coded so it runs
a lot faster and the runtime environment is also more simple.

The optimization is very similar to a topological sort algorithm where the dependen-
cies between the operations are recorded and then, eliminating one “free” operator at a
time, we come up with an optimal execution order. An operator depends on other oper-
ator if the execution of the later adds elements to any of the former’s operands. Visually,
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Dependency 

Figure 9.1: Sample cycle with dependencies between the combinators.

the later operator is connected to the former by a pattern in between. For the sake of con-
ciseness we do not present the algorithm here. Please refer to this thesis’ accompanying
files.

If a TrNet transformation has no cycles, the algorithm always terminates with an ex-
ecution order that covers all the operators of the network. However, the optimization
supports simple cycles (like the one shown in figure 9.1). Within a cycle, all the operators
have dependencies so no one can be picked (see Figure 9.1). If this happens, the algo-
rithm has to inspect all the operators in the cycle to discover with is the one that marks
the beginning of the cycle and which is the one that marks the end. With those two oper-
ators selected, it defines the execution order inside the cycle, removing the dependencies
between the operators inside the cycle. The algorithm then continues for the rest of the
transformation. Note that support for cycles within cycles was not implemented. De-
tecting complex cycles is a very complex problem as [Joh75] and [LW06] suggest. If the
transformation has complex cycles, this optimization cannot be used. However, most use
cases involved simple to no cycles. They are mostly used to compute transitive closures,
create auxiliary relations (such as the trace relations), and then use those relations to do
something else.

The execution order inference is executed as a model transformation that adds “next”
relations between operators to reflect their execution order. See figure 9.2 for an example.
These relations are then used by the code generator to quickly generate the run method
of the transformation class.
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Dependency 

Execution Order 

Figure 9.2: Sample transformation with dependencies between the combinators and one
selected execution order.

9.2 Join Order Optimization

Join Order Optimization refers to deciding how a combinator that has two operands will
execute. More specifically, since the combinator will execute two for loop, one inside the
other, decider which is the outer loop and which is the inner one is an important decision
regarding performance.

This decision not only affects performance but also helps to reduce memory consump-
tion by letting the code generator component know which indexes will be used in the
transformation. More on this in section 9.3.

As an example, consider the operator of figure 9.3 and the corresponding two possible
algorithms to execute it, 17 and 17.

Algorithm 17 Algorithm showing the behaviour of Combinator O1.

1: function EXECUTEO1
2: for (p, ap) ∈ Pat1 do
3: for (p’ , s) ∈ GETPAT2FROMPARTITION(p) do
4: . . .
5: end for
6: end for
7: end function
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Pat1 Pat2 

Pat3 

O1 

Figure 9.3: Transformation excerpt.

Algorithm 18 Alternative algorithm showing the behaviour of Combinator O1.

1: function EXECUTEO1’
2: for (p’, s) ∈ Pat2 do
3: for (p , ap) ∈ GETPAT1FROMPARTITION(p’) do
4: . . .
5: end for
6: end for
7: end function
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Let us estimate the cost to execute the operator using algorithm 18: the outer loop per-
forms Pat2.noi iterations. For each iteration in the outer loop, theres is an index access,
which costs 1 because it is implemented with an hash table (see Section 7.1). Follow-
ing that access, it performs as many iterations as the elements that are estimated to be
found in the index for each element in Pat2. If you remember the analysis performed
in the previous chapter, the probability that a given element partition exists in Pat1 is

1
P1.Partition.noi . Applying that probability to the number of elements in P1 yields an es-
timation of the number of elements satisfying this condition. Thus the cost formula is:

CP2→P1 = P2.noi× (1 +
P1.noi

P1.Partition.ndv
) (9.1)

Analogously, the cost of execution the combination using algorithm 17 is:

CP1→P2 = P1.noi× (1 +
P2.noi

P2.Partition.ndv
) (9.2)

Now what the optimization does is to define the order of the operands across the
whole transformation by performing these calculations and choosing the order that costs
less.

As for a general combinator, with conditions and other same restrictions, the term of
the cost formula that varies more is the probability of processing a given element from
all the possible combinations of its operands. This is the selectivity of the operator and
its calculation is shown in algorithm 16 of section 8.2.

The Join Order Optimization is implemented as a model transformation that gives an
index to each operand, reflecting the order of the generated loops. The code generator
uses this information to generate the code.

9.3 Index Pruning

Index Pruning is a memory optimization technique that is applied during the code gen-
eration process. The code generator uses the information produced by the Join order
optimization technique to determine which indexes will be used throughout the trans-
formation and only creates those indexes. By default, without using the information left
by the join order optimization, it would generate an index for each mandatory node that
participates in a same restriction as is explained in section 7.1.

As an example, if the join order optimization decides that the combinator depicted in
figure 9.3 is implemented using the algorithm 17, the GETPAT1FROMPARTITION index is
no longer necessary and hence, will not even exist in the generated code. Off course we
assume that this index is not used in the implementation of other combinators.

This optimization is applied during the code generation process.
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9.4 Early Evaluation

Early evaluation is, as the name indicates, an optimization that tries to evaluate condi-
tions as soon as possible. This is best explained with an example: Suppose the Combina-
tor of figure 9.4 is implemented with algorithm 19. Would not it be better if the condition
COND(p) was evaluated outside and before the inner for loop as is shown in Algorithm
20? This can be done since the only parameter of the condition is the first operand, so if
it is false, it is false for all elements of the second operand.

Pat1 Pat2 

O1 

Pat3 

Figure 9.4: Example of a combinator where early evaluation of the condition is possible.

Algorithm 19 Algorithm showing the behaviour of Combinator O1 of the Figure 9.4.

1: function EXECUTEO1
2: for (p, ap) ∈ Pat1 do
3: for (p’ , s) ∈ GETPAT2FROMPARTITION(p) do
4: if COND(p) then
5: . . .
6: end if
7: end for
8: end for
9: end function

In general, if there are conditions that depend only on one operand, and if that operand
is the first, then they are evaluated outside the inner loop. Notice that the way the join
order optimization decides the order of operands favors the application of this optimiza-
tion because we are taking into account the conditions when estimating the probability
of a successful combination. This, by definition, selects the most restricted (both by con-
ditions and number of instances) operand to be the first.

This optimization is applied during the code generation process.
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Algorithm 20 Algorithm showing the behaviour of Combinator O1 of the Figure 9.4 with
early evaluation.

1: function EXECUTEO1
2: for (p, ap) ∈ Pat1 do
3: if COND(p) then
4: for (p’ , s) ∈ GETPAT2FROMPARTITION(p) do
5: . . .
6: end for
7: end if
8: end for
9: end function

9.5 Memory Allocation

Since the analysis presented in the previous chapter allows the code generator to know
the expected number of instances (NOI) in each pattern in the final configuration of the
transformation, it is possible to initialize all the structures used to keep pattern elements
(see section 7.1) with the right amount of memory.

As an example, assume that, in figure 9.4, the NOI of Pat2 is 23 and the noi of Pat1 is
10. In the constructor of the transformation class, the size of the structures for Pat2 would
be initialized to 23 and the same for Pat1, as is shown in listing 9.1.

Listing 9.1: Transformation class constructor.
1 public class ActivityMigrationTransformation

2 implements TrNetPat1InstanceListener, ...{

3

4 HashSet<TrNetPat1Instance> trNetPat1Set;

5 ArrayList<TrNetPat1Instance> trNetPat1Array;

6 HashSet<TrNetPat2Instance> trNetPat2Set;

7 ArrayList<TrNetPat2Instance> trNetPat2Array;

8 ...

9 public ActivityMigrationTransformation() {

10 ...

11 trNetPat1Set = new HashSet<TrNetPat1Instance>(10);

12 trNetPat1Array = new ArrayList<TrNetPat2Instance>(10);

13 trNetPat2Set = new HashSet<TrNetPat2Instance>(23);

14 trNetPat2Array = new ArrayList<TrNetPat2Instance>(23);

15 ...

16 }

17 ...

18 }
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9.6 Overlapped Pattern Matching

Overlapped pattern matching is one of the most complex optimization techniques. The
main purpose is to identify patterns or combinators that are redundant in the transfor-
mation and remove them. While the existence of redundant patterns and/or operator
seems highly unlikely for a TrNet transformation created manually, the same is not true
for an automatically generated one.

For instance, the way rules are compiled from DSLTrans to TrNet already shows us
that there will be a lot of redundant patterns. It would not make sense to try to optimize
the DSLTrans compilation since the purpose is that, in the future, TrNet supports the
implementation of other high-level model transformation languages. Hence, the compi-
lation process should remain as simple and naive as possible, while studying and devel-
opment more sophisticated optimizations in TrNet.

For a pattern PX to be redundant there must be other pattern PY that, in the final
configuration of the transformation, keeps the exact same elements that PX does. In
other words, both PX and PY have the same inputs. If such PY exists, then PX can be
removed from the network and all the operators that depend on PX become connected
to PY . For example, consider the excerpt of a transformation depicted in figure 9.5. One
of the two patterns in red is redundant because their nodes and edges are isomorphic and
they both share the same inputs. Plus, we can remove one of them, provided we inherit
the outputs and restriction, because they are not operands of the same Combinator.

... 

Combinator 

Pattern 

Node 

Figure 9.5: Representation of a transformation excerpt where two patterns are redundant
(in red).

In general, in order to conclude that two patterns, px and py, are equal the following
conditions have to be true:
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... 

Combinator 

Pattern 

Node 

Figure 9.6: Resulting transformation after applying the overlapped pattern matching
technique to the transformation depicted in Figure 9.5.

1. There must be an isomorphism between the graphs formed by the nodes and edges
of px and py.

2. There must be a bijection between the operators that add elements in PX and PY.

3. PX and PY are not operands of the same combinator.

Notice that two nodes are considered equal is they have the same name and the same
computed attributes. Also, a node that is the result of a keep restriction is only considered
equal to other node if, and only if, the other node is also the result of a keep restriction,
and both restrictions have to have the same node as source. Computed attributes, if they
exist, are the attributes that are being created when elements are added to the pattern.

The third condition exists because two, otherwise equal, patterns, when operands of
the same combinator, cannot be reduced to one because the combinator has to perform
the combinations of the two patterns. That would affect the result of the transformation.

Once the optimizer concludes that two patterns, PX and PY are equivalent, it re-
moves one, say PX . This operation has to ensure that all the elements that depend on
the pattern PX will depend instead of the pattern PY . For example, figure 9.6 shows
the result of removing the right pattern identified as redundant in the transformation of
figure 9.5. Notice that the output of the pattern that was remove was inherited to the
other pattern. If there were other restrictions connecting the pattern that was removed to
other patterns they would be inherited too.

In the general case, removing a pattern PX that is equal to a pattern PY involves
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connecting PY to all the operators that are successors of PX and merging the information
of the isomorphic nodes. Any same restriction that connects to a node in PX has to be
altered to connect to the correspondent node in PY.

The optimization also identifies and removes redundant combinators. For a combi-
nator CX to be redundant, other operator CY has to be found satisfying the following
conditions:

1. There must be a bijection between the conditions of each combinator.

2. There must be no actions in one of the combinators.

3. There must be a bijection between the patterns that precede the combinators.

Two conditions are considered equivalent if they refer to the same function and if
there is a bijection between their parameters. There can not be actions in both combi-
nators because since we assume that actions have collateral effects, we can not remove
a combinator that has actions. The third condition compares patterns with the identity
equality and not with the equality described in the previous paragraphs.

As an example, the combinators depicted in figure 9.7 are considered equivalent.

... 

... 

... 

... 

Figure 9.7: Representation of a transformation excerpt where two operators marked in
red are redundant.

Once the optimizer concludes that two combinators CX and CY are equivalent, it
chooses the one that has no actions, say CX to be removed. For example, figure 9.8 shows
the result of removing the right combinator. Notice that the outputs of the operator that
was removed were inherited by the other operator.

In general, removing a combinator CX that is equivalent to other combinator CY in-
volves changing the patterns that succeed CX to be instead successors of CY.
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... 

... 

... 

... 

Figure 9.8: Resulting transformation after applying the overlapped pattern matching
technique to the transformation depicted in Figure 9.7.

This optimization is implemented as a model transformation. Because of all the graph
isomorphisms and bijections, the overlapped pattern matching optimization is a very
costly operation so instead of comparing every pair of pattern or operator for equiva-
lency, the optimizer starts in the input external operators and performs a DFS exploring
every pair of patterns leaving one common operators, or every pair of operators succes-
sors of a pattern.

This optimized approach works because of one simple fact: if two patterns are equiv-
alent, they ought to be both successors of same, common, operator. Even if there are
others, at least one common operator has to exist. If there is not common operator, then
it means that the optimizer as concluded that all pair of precedent combinator are not
equivalent, so the current pair of patterns will not be equivalent as well. The same is true
for pairs of combinators. This means that the optimizer will only explore those pairs of
patterns or combinators that are interesting.

Also, in order to explore all the possible candidate pairs of patterns or operators in all
the transformation, whenever a redundant operator or pattern is removed, the optimizer
restarts the search at the beginning of the transformation. This ensures that, when the
optimizer finishes exploring all elements of the transformation, all possible interesting
pairs of patterns or combinators have been evaluated to not equivalent.

Because of the frequent restarts, we implemented caching mechanisms to avoid re-
computation of interesting pairs of patterns.

Since this optimization is more complex than the others, we wanted to measure its
impact, i.e., we wanted to know if it was really worth the effort to implement. The exper-
iment consisted in instrumenting the optimizer to print the total number of patterns and
operators after each restart (pattern or combinator removal). When the optimization was
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Figure 9.9: Evolution of the number of patterns and number of operators in a TrNet
transformation during the application of the Overlapped Pattern Matching technique.

applied to an hand-made transformation, it had almost no impact but when it was ap-
plied to a transformation that was generated transformation from DSLTrans, the results
were outstanding. Figure 9.9 shows the evolution of the number of patterns and com-
binators after each restart in a transformation that was generated from other DSLTrans
transformation.

As the picture indicates, the total number of patterns were reduced to less than a half
and the number of operators were reduced around 70%. The less patterns we have in
a transformation, the less memory will be allocated and the less operators we have, the
more quickly the transformation executes.

The optimization has a lot of impact in transformations that were generated from
DSLTrans transformations because in DSLTrans, the match pattern of each rule has to be
matched against the input model. This means that, in a corresponding TrNet transfor-
mation, most of the patterns needed to apply the rule are successors of the input external
operator. For example, consider the two rules shown in figure 9.10 and note that the
two rules share a common pattern. When compiled to TrNet, the two rules generated a
transformation like the one shown in Figure 9.11.

After the application of the overlapped pattern matching we have a transformation
like the one shown in Figure 9.12. Notice that, with the optimized version, the common
pattern of the rules is matched in parallel for the two rules. The pattern matching process
is overlapped for the two rules.

Considering the optimization techniques presented in Chapter 4 we conclude that
TrNet:

• By design, applies structural indexing since each pattern in TrNet is an index were
elements are added by the operators;
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Figure 9.10: DSLTrans Transformation sample.

Figure 9.11: TrNet Transformation sample compiled from the one in Figure 9.10.

Figure 9.12: TrNet Transformation sample after the application of Overlapped Pattern
Matching.
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• Uses model sensitive, search plan optimization - although not to its full impact;

• Applies overlapped pattern matching without limitations.

We say that TrNet does not apply full fledged search plan optimization because the
optimizer only decides the order of which the combinator will combine its operands. To
apply this techniques in it maximum, certain parts of the transformation, for instance,
two or three consecutive combinators and patterns in between, should be re-arranged
to meet lower cost of execution. This involved detecting on which parts of the transfor-
mation there are no elements being created so that they can be arranged. Due to time
restrictions, we did implement this technique, yet.
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10
Benchmark

Since this thesis is about developing an approach that mitigates the abstraction penalty,
we needed to found a way to measure empirically how good is our solution. The bench-
mark described in this chapter serves that purpose by comparing our approach with
other existing languages in terms of performance.

10.1 Case Study - Activity Model Migration

The case study we used was proposed in the Transformation Tool Contest (TTC) 2010 and
represents a typical model transformation language usage scenario: A normal language
evolves overtime and, whenever the metamodel changes, there is a risk that all models
conforming to the old metamodel become invalid in relation to the new metamodel so
the model transformation language is used to create and execute a transformation that,
when applied to the invalid models, makes them valid again. An high level model trans-
formation language such as DSLTrans is preferred in this scenario because the purpose is
to rapidly create a transformation that performs all the migration work.

We choose this case study, not only because it represents a typical model transfor-
mation language use case but also because of the tools that implement the case study,
namely, Epsilon Flock, ATL, GrGen.NET, etc. . . These are current tools that have some
success in the community, from a usage perspective. In addition, these were the only
tools that can run in a MacOS X machine. Another challenge was to migrate the transfor-
mations submitted to the contest as the tools, being languages, already had changed.

A solution to the case study is a model transformation that translates activity diagram
models expressed in UML 1.4 to activity diagram models expressed in UML 2.2.

Figures 10.1 and 10.2 show simplified versions of the old activity diagram metamodel
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and the new metamodel, respectively. The conceptual difference in the two versions of
the activity diagram is that in the older version, activities are defined as a special case
of state machines whereas in the later version, they are defined in a more general and
intuitive way [RKPP10b].

Fig. 2. UML 1.4 Activity Graphs (based on [9]).

Fig. 3. UML 2.2 Activity Diagrams (based on [10]).

Figure 10.1: UML 1.4 Activity Graphs (based on [RKPP10b]).

Apart from the conceptual difference, and ignoring concrete syntax differences, activ-
ities now comprise nodes and edges, actions replace states and the subtypes of control
node replace pseudo states and the kind attribute. Partitions are now ActivityPartitions;
Transitions can be either ObjectFlow or ControlFlow, depending their source and target,
etc. . . For full details about the differences please refer to [RKPP10b].

The activity migration transformation expressed in DSLTrans is quite trivial. That is
the main purpose why we should use an high level language to perform the migration
instead of using TrNet or other low-level language.

The DSLTrans transformation contains only two layers: the first one to perform mainly
one-to-one mappings and create the elements that will comprise the migrated model; and
the second one, which connects the previously created elements together to form the mi-
grated model.

We will only show some of the rules. For the full transformation please refer to these
thesis’ provided projects. Figure 10.3 shows a rule that transforms a partition into an ac-
tivity partition, keeping the same name. The rule of figure 10.4 shows how the migration
of a guard expression is performed: an opaqueExpression is created where the body is
the boolean expression body and the name is the guard name. Rule of Figure 10.5 states
that for every pseudo state whose kind is “Initial”, create an InitialNode in the output
model. The three rules presented here pertain to the first layer.
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10. BENCHMARK 10.2. MethodologyFig. 2. UML 1.4 Activity Graphs (based on [9]).

Fig. 3. UML 2.2 Activity Diagrams (based on [10]).
Figure 10.2: UML 2.2 Activity Diagrams (based on [RKPP10b]).

The Rule in Figure 10.6 shows how the ActivityPartitions created in the first layer
are connected to the Activities and Rule in Figure 10.7 shows how OpaqueExpressions,
created from Guards in the first layer, are connected to control flows.

In addition to the DSLTrans transformation, we also build one in TrNet to compare
how fast a TrNet transformation generated from DSLTrans is in comparison to one that
was built “by-hand” in TrNet.

10.2 Methodology

For this experiment we used the only available machine we had:

Processor - Intel Core i5 2.4 GHz, 256 KB L2 and 3 MB L3;

Memory - 4 GB 1333 MHz DDR3

Operating System - OS X Version 10.8.4

We installed and configured Epsilon Flock, ATL and GrGen.NET.
In order to reduce as much operating system interference as possible we ran the ex-

periments with the minimal software process to ensure that the transformations could be
executed and that the results could be collected.

125



10. BENCHMARK 10.3. Results

Figure 10.3: Activity migration transformation rule.

We build a simple procedure to generate four random activity diagram models con-
forming to the UML 1.4 metamodel: one with a N of 10, other of 100, 1000 and 10000.
The parameter N refers to a measure of complexity of the model. Note that a model with
N = 10 will have much more than 10 elements. N is not the size. Each tool we used in
the experiment will transform the same exact four input models.

For each tool, and each input model size, we ran the transformation ten times and
the resulting measurement was calculated by average taking out the worst and the best
times, to account for initialization delays and just-in-time compilations and other external
interferences.

10.3 Results

After several measurements we plotted the chart that is shown in figure 10.8. Notice
that, for clarity reasons, we use a logarithmic scale in both axes. The vertical axis denotes
transformation times in milliseconds and the horizontal denotes the parameter N used
to create the four random models used in this experiment. Each line is the execution
time of an activity model migration transformation expressed in some language. We ran
transformations in the following languages: Epsilon Flock; Atlas Transformation Lan-
guage (ATL); GrGen.NET; a transformation manually crafted in TrNet and compiled to
Java (without optimizations); a transformation expressed in DSLTRans, then compiled to
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Figure 10.4: Activity migration transformation rule.

TrNet and then compiled to Java without optimizations1; then the same transformation,
but compiled with all optimizations turned on.

10.4 Discussion

It is important to notice the conditions on which this experiment was performed: the only
available machine to us is a MAC OS X, which means that the JVM used was Apple’s
JVM. Apple’s JVM performance is somewhat worse than Oracle’s JVM so if this bench-
mark was run in a Windows machines, chances are that the executions times would be
better. Nevertheless, all the tools that need JVM to run (ATL, Flock, TrNet and DSLTrans)
share the same penalty.

After running the experiment, it is safe to say that all tools perform really well in terms
of execution times but not so much in terms of memory consumption. For instance, we
were unable to run the experiment with ATL and model with N = 10000 because there
was not enough memory. Similarly, we were unable to run the experiment with a model
of N = 100000.

The results confirm that the decision to make TrNet a compiled language was the right
one. ATL, Flock and GrGen are interpreted languages and the transformations that were
compiled to TrNet are faster than all of them by a large factor (note the logarithmic scale).
In general, compiled languages are faster than interpreted ones, albeit for development
purposes, an interpreted language is more productive.

The execution times of the DSLTrans transformation compiled to TrNet and then com-
piled to Java with and without optimizations show the real impact of the optimizations:
the execution times were reduced to almost half.

Comparing the transformation crafted manually in TrNet with the same transforma-
tion translated from DSLTrans, we confirm that transformations expressed in a low level

1Only the execution plan inference was used.
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Figure 10.5: Activity migration transformation rule.

language, were you can control most of the transformation process, are indeed faster,
even with optimizations. But there is something curious: with a model with N = 10000

the execution time of the DSLTrans transformation is better than the execution time of the
manually crafted transformation. This is explained by the fact that the transformation
translated from DSLTrans being simpler, albeit more verbose and extensive, than the one
we created manually. In the manually crafted transformation we used conditions and we
took advantage of the hierarchy between metamodel elements to produce a more com-
pact transformation. This means more conciseness but it makes the life of the optimizer
more difficult. You may notice that we did not included the execution times of the man-
ually TrNet transformation with optimizations turned on. That is because the impact of
the optimizer was little to none. Also, the statistical analysis of the transformation gener-
ated from DSLTrans was more successful because of the simpler structure. If you observe
figures 10.9 and 10.10, you will notice that, the ratio between correct estimates and total
number of patterns is better in the transformation generated from DSLTrans than for the
manually crafted transformation. This means that it is likely that, during transforma-
tion execution, fewer memory reallocation occurred. Also, by inspecting figures 10.9 and
10.10 you can see that no pattern need to allocate space for 10000 elements in the trans-
formation generated from DSLTrans whereas many patterns need to allocate this chunk
of memory in the manually crafted transformation. This means that the (re-)allocation
operations, in addition to being more frequent in the manually crafted transformation,
are also more expensive in terms of execution. All these factors combined yield a better
execution time for models with N = 10000. Unfortunately, due to lack of memory we
were unable to confirm this trend for models with N = 100000.
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Figure 10.6: Activity migration transformation rule.

Figure 10.7: Activity migration transformation rule.
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Figure 10.8: Benchmark results.

Figure 10.9: Estimated NOI for the activity migration transformation created by-hand.
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Figure 10.10: Estimated NOI for the activity migration transformation created by-hand.
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11
Conclusion

This thesis addresses the abstraction penalty problem in the model transformation do-
main: how can a high level model transformation language be executed fast enough to
be applicable in industrial scenarios?

Our approach is based on the widely used solution for the general purpose languages
domain: an high level program is compiled into a lower level one. During the compi-
lation process, intermediate representations of the same program are used to facilitate
optimizations.

In our case, we studied the state of the art optimization techniques and classified
them according to where they take place in the transformation process, their impact and
the information required. Armed with that knowledge, we designed an intermediate rep-
resentation for model transformations that facilitates the application of those techniques:
TrNet. Furthermore, we developed optimization on top of that intermediate language,
including one of the most advanced techniques: overlapped pattern matching.

In order to measure the impact of the optimizations in a typical TrNet transformation
we ran a benchmarks. Besides comparing the unoptimized TrNet transformation with
the optimized version of the same transformation, we collected the running times of other
state of the art model transformation tools.

The experiment showed that not TrNet is indeed faster than the other tools, but also
that the optimizations that we developed, and in particular overlapped pattern match-
ing, have a great impact in TrNet transformations that are generated from higher level
transformations such as DSLTRans’.

This already shows that our approach can help to mitigate the abstraction penalty.
Since the optimizations have greater impact in generated transformations, it pays off to
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Figure 11.1: Example of a sequential join that creates a more complex pattern.

use an high level model transformation language to develop transformations in a pro-
ductive fashion, then compile them to TrNet transformations where they are optimized
and then compiled to java.

Due to the runtime architecture, TrNet transformations can work independently of
the model management framework. In this thesis we developed the integration with the
EMF but other could be used.

11.1 Future Work

In the benchmark we ran, we only collected running time statistics but we notice that
most tools, including TrNet, require a lot of memory to transform large input models.
Unfortunately, we did not have the time to collect memory consumption statistics for the
tools but, at least for TrNet, due to its architecture, there should be more investigation in
novel memory optimization techniques. A possible direction is to try to aggregate two or
more sequential operators such that their execution can be in stream mode and thus, not
requiring the intermediate storage of elements in data structures.

Other possible open challenge is to extend the join order optimization technique to
detect sequential joins in the network, such as the one shown in figure 11.1, where no
new elements are created, evaluate their total cost and try several other arrangements in
order to find the cheapest one, for instance, figure 11.2.

Other high level language should be selected and a compiler to TrNet should be pro-
duced. Then, the same kind of experiments developed here should be made to compare
the TrNet transformation execution with the traditional execution of that high level lan-
guage.
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Figure 11.2: Example of a sequential join that creates a more complex pattern equivalent
to the one shown in Figure 11.1.
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