Classification of Model Transformation Tools:
Pattern Matching Techniques

Claudio Gomes, Bruno Barroca, and Vasco Amaral

CITI, Departamento de Informatica,
Faculdade de Ciéncias e Tecnologias,
Universidade Nova de Lisboa,
Portugal

Abstract. While comparing different model transformation languages
(MTLs), it is common to refer to their syntactic and semantic features
and overlook their supporting tools’ performance. Performance is one of
the aspects that can hamper the application of MDD to industrial scenar-
ios. An highly declarative MTL might simply not scale well when using
large models due to its supporting implementation. In this paper, we fo-
cus on the several pattern matching techniques (including optimization
techniques) employed in the most popular transformation tools, and dis-
cuss their effectiveness w.r.t. the expressive power of the languages used.
Because pattern matching is the most costly operation in a transforma-
tion execution, we present a classification of the existing model transfor-
mation tools according to the pattern matching optimization techniques
they implement. Our classification complements existing ones that are
more focused at syntactic and semantic features of the languages sup-
ported by those tools.

Keywords: Model Transformations, Languages Design, Pattern Match-
ing Techniques

1 Introduction

The immersion of computer technology in a wide range of domains leads to a
situation where the users’ needs become demanding and increasingly complex
(the problem domain). Consequently, engineering successful software systems
also becomes increasingly complex (solution domain). A promising “divide-and-
conquer” idea to break down this increasing complexity, is to intensively use
Models during all stages of software development.

In Model Driven Development (MDD), both the design and development of
new software systems is done by having multiple levels of abstraction, where
each level deals only with a particular aspect of the system (therefore decreasing
its complexity), and assuring the consistency between them (e.g., translations,
synchronizations, etc.). In practice, each level of abstraction can be formalized
by means of a Domain Specific Modelling Language (DSML), and materialized
by its respective supporting tools ,i.e., editors, simulators, interpreters, analysers
and compilers [1-3].



In this context, Model Transformation Tools (MTTs) are specifically designed
to transform models according to a transformation specification expressed in a
Model Transformation Language (MTL) [4]. Model transformation specifications
are expressed by means of a set of symbolic representations of the source lan-
guages syntactic structures (also known as patterns) that represent is to be
transformed during its execution.

Meanwhile, there exist so many different MTLs, with so many different prop-
erties and features, that anyone using them, here denominated as Transformation
Engineer, can have serious problems selecting which one is the most appropri-
ate to be used in a particular model transformation task. Moreover, the level
of abstraction used on these MTLs, in practice, impacts both the productiv-
ity, and the scalability. In the one hand, it is known that the high level of
abstraction employed in declarative MTLs, implies that model transformations
expressed on them are not only easier to read and maintain by the Transforma-
tion Engineers [5]. In the other hand, this high level of abstraction still imposes
a considerable downside on the run-time performance of the execution of the
model transformations expressed on these MTLs [6-12]. This can be explained
by the fact that the operation of finding the specified pattern in an arbitrary
input model of the source language (also called pattern matching) is equivalent
to the problem of finding a graph isomorphism [13, 14], which is an NP-Complete
problem.

Run-time performance of MTLs is one of the aspects that can hamper the
application of MTLs and consequently MDD, to industrial scenarios. In the gen-
eral practice of software engineering, Transformation Engineers that use highly
declarative MTLs in order to express their model transformations, can be forced
to repeat themselves using imperative low-level programming languages, just
because, it is still a major challenge for a declarative MTL to reach the point
where its productivity outweighs its performance problems, at least compared
with as imperative approach. We believe that research will continue to improve
the performance aspect to the point where scalability will no longer be an issue.
It is of utmost importance to provide the Transformation Engineer with a classi-
fication of the existing MTLs along with their supporting Model Transformation
Tools (MTTs) in what matters to optimization techniques supported.

In this paper, we observe several Model Transformation Tools (MTTs), with
particular focus on the implementation and optimization of the pattern matching
techniques they employ.

This article contributes with the extensive collection of many different tech-
niques ranging from the amount and kind of performance-related information
required from the user, to the optimization techniques used on those tools.

In the next section, we present our methodology to select and classify existing
MTTs. Then, in Section 3, we present some of the most used techniques, how
they are organized according to our classification and which tools implement
them. In Section 4, we explore our classification, how it can be used, and how
it complements existing other existing classifications. Finally, we conclude in



Section 5 by relating the degree of optimization of each MTT with the syntactic
features of the supported Model Transformation Language (MTL).

2 Methodology

In order to properly classify and compare the existing tools and their pattern
matching techniques, we need to establish a common view and understanding
of what is a model transformation environment and the execution process as a
whole.

2.1 Transformation Environment Overview

A model transformation is “the automatic generation of a target model from a
source model, according to a transformation definition” [15]. Fig. 1 establishes
a common view of a generic MTL, its supporting tools and the involved models
(input and output). Notice that all represented models are conforming to their
respective metamodels.

Input Transformation Output
Metamodel Metamodel Metamodel
conforms to
Transformation conforms to
conforms to Model
Y
executes :

Input . Output
Model Model

Fig. 1. Model transformation overview: language, tool and models.

2.2 Transformation Execution Overview

In order to improve pattern matching, existing tools employ optimizations at
multiple stages of the transformation process. This is very similar to what hap-
pens in database systems where, prior to any query execution, there is index
creation so that, when a query is made, other techniques such as exploring dif-
ferent evaluation plans, are applied to get the most efficient execution of that
query [16]. It is because of that, that in order to study each pattern matching
technique, we need an high-level description of a typical transformation execu-
tion highlighting the multiple stages of the process.



Load Transformation Model
Perform Global Optimizations

Compile Transformation

Select
Rule

Perform Local
Optimizations

?

Load Transformation Model

Load Input Model

’ Perform Global Optimisations ]

Y

Execute Transformation

Store Output Model

Store Output Model

® ®
(a) Interpretation process (b) Compilation process of
of a transformation model. a transformation model.

Fig. 2. Execution process of a transformation model.

Fig. 2 identifies the two most followed approaches to MTL execution: inter-
pretation (left) and compilation (right). We stress the fact that the presented
diagrams are not supposed to describe exactly how model transformation tools
operate, but instead to provide a clear view of the stages where optimization
techniques can be employed. But these diagrams are general enough to fit even
imperative tools (e.g., ATC [17]), where most of the stages are manually coded
by the Transformation Engineer. We also assume that a transformation is com-
prised of a set of rules, each containing a Left Hand Side (LHS) pattern, that
needs to be found in the input model, and a Right Hand Side (RHS) pattern
which represents the model that will be output in the end of the execution. There
is no loss of generality, since these rules (with the mentioned patterns) do not
need to be explicitly represented in the MTL, but instead be explicit.

These Figures also show that an MTT always starts by loading the trans-
formation and, in the particular case of interpretation, the input model. At this
point, some existing MTTs perform global optimizations, such as the definition
of indexes, refactorings, based on the analysis of the transformation specification.
For instance, a global optimization may influence the order of rule selection, and
even the information shared between different rules. Then the tool executes the
transformation, selecting each rule and optionally performing some local opti-
mizations. These optimizations are concerned with minimizing the search space



while searching for the occurrences of the LHS pattern in a given input model,
i.e., while executing one rule.

We define global and local optimizations in terms of the scope of their
impact. While local optimizations are concerned with improving one particular
pattern match operation, global optimizations can impact several ones. Further-
more, global optimizations handle information from the whole input model, or
from a representative one while local ones rely on limited information, either
about the pattern in execution, or from some kind of aggregation provided by
some other global technique.

The main difference between a compilation and an interpretation, from the
point of view of the pattern matching process, is when the information input
model is available to the tool. The two approaches have advantages and disad-
vantages: in interpretation mode, an MTT has to spend some cycles gathering
information about the input model before executing the actual transformation
process; whereas while compiling a transformation, a MTT can only access to
statistics about typical input models. However, in order to compensate for the
lack of information available during the compilation process, some tools can still
prepare the generated transformation code so that the actual input model can
be analysed when it gets executed. This means that, in both execution modes,
the information about the input models can always be retrieved so, in principle,
each optimization technique can be applied regardless of whether we are talking
about a compilation approach or an interpretation approach. Of course there are
techniques that do not depend on the information about the input model.

In summary, the possible optimization techniques that can be employed do
not depend on the execution mode of the transformation tools, and so we do not
need to classify the optimization techniques according to the execution approach
in which they are employed.

2.3 Classification Rationale

In order to identify most of the existing pattern matching techniques, we tried to
cover as many and as diverse MTTs as possible. We achieved variety on the dif-
ferent observed MTTs, by taking into account their distinguishing syntactic and
semantic features as identified in [18], namely: (i) imperative tools such as ATC
[17] and T-Core [19]; (ii) declarative tools such as AGG [20], Atom3 [21]; (iii) pro-
grammed graph rewriting approaches such as GReAT [22], GrGen.NET [23],
PROGReS [24], VMTS [25] and MoTif [26]; (iv) incremental approaches such as
Beanbag [27], Viatra2 [9] and Tefkat [28]; (v) and bidirectional approaches such
as BOTL [29]. Notice that there are many more MTTs but we had to restrict our
search to MTTs that published at least one paper about its internal execution
mechanisms and optimization techniques. For instance, we did not consider tools
such as SmartQVT [30] because we did not find any paper about optimization
techniques being used in SmartQVT.

We followed a systematic approach to classify the pattern matching tech-
niques. We first paid attention to the degree of domain and tool knowledge the
Transformation Engineer has to have in order to perform (and/or improve) the



pattern matching execution of a model transformation. For instance, there are
MTTs that require the Transformation Engineer to both manually code and im-
prove the pattern matching procedure (these are called manual approaches).
However, most of the existing MTTs do not require (or even allow) any inter-
vention from the Transformation Engineer in the pattern matching procedure
(automatic approaches). Yet, in an attempt to obtain the best of both worlds,
there are MTTs whose languages introduce special syntactic constructs, so that
if performance is at stake, the Transformation Engineer is able to interfere and
optimize their execution (semi-automatic approaches).

We then organised the pattern matching techniques with respect to the scope
of their impact. i.e., whether they are global or local optimizations.

We observed that some local techniques had a planning phase, were a cost
model is used to perform the optimization, and some techniques rely on heuristics
and hence, do not have a planning phase. These were classified in planned and
unplanned.

These categories are just the foundation to classify most of the existing pat-
tern matching optimization techniques. We found more categories while explor-
ing a specific set of techniques. For instance, most global techniques are either
caching, indexing or overlapped pattern matching techniques. In the next
section we explore each of these categories and the concrete techniques with
examples and referring to the state of the art MTTs that implement them.

3 Classification

Table 1 shows many MTTs and which pattern matching techniques they make
use of. Since tools evolve very rapidly we have included the year next to the
tool in which a paper was published concerning the tool’s internal mechanisms
to perform pattern matching. The header of Table presents the techniques we
studied, organized according to the categories we introduced in the previous
section. Notice that we do not include all the pattern matching techniques that
we have found: we give special emphasis to those that are more pervasive across
multiple MTTs.

We try to provide a simple and general explanation for each pattern matching
technique with the help of the sample patterns shown in Fig. 4. We present each
pattern as being matched against the input model shown in Fig. 3(a). Notice
that, in the input model, the id attribute of each element appears to the left of
its type.

3.1 Manual Techniques

MTTs that enable the Transformation Engineers to manually code and op-
timize the pattern matching process, usually do so by providing an API with
the necessary imperative constructs to perform CRUD (Create-Read-Update-
Delete) operations in the input model of the transformation. For instance, if
the Transformation Engineer wants to match the pattern shown in Fig. 4(a)



*
M id:String
id:String ces:int

(b)

Fig. 3. Sample input model (left) and corresponding metamodel (right).

ol
ac

z:C

ccs=2

Fig. 4. Sample patterns.

against the input model of Fig. 3(a), s/he could leverage his/her domain knowl-
edge by manually coding the pattern matching process as shown in Algorithm 1.
The Transformation Engineer combines two crucial bits of information: (i) do-
main knowledge, since s/he knows that any instance of B is always contained
in an instance of A (as it is shown in the metamodel of Fig. 3(b)); and (i) tool
knowledge, since s/he knows that the underlying model storage framework keeps
inverse associations (such as y.ablnverse in Algorithm 1). Also note that the
GetAlllnstances(B) operation is part of the tool’s API, and is used to fetch the
set of all instances of B in the input model of Fig. 3(a).

ATC [17] and T-Core [19] are good examples of low-level, imperative lan-
guages that require the Transformation Engineer to manually code the pattern
matching process.

Due to the imperative nature of these languages, there are no optimization
techniques that fall under the Manual category: if we want optimization, we
have to do it ourselves.

3.2 Semi-Automatic Techniques

There is a wide array of Semi-automatic techniques such as the usage of
lazy rules (as in ATL [31]), or the user-specified strategies employed to solve
systems of equations involving several attributes (as in BOTL [32]). Most of the



Algorithm 1 A manually coded algorithm to match the pattern shown in
Fig. 4(a) that takes advantage of the metamodel topology and the existence
of inverse associations.
1: function MATCH
2: for y € GetAlllnstances(B) do
z < y.ablnverse
results < results U {(z,y)}
end for
return results
end function

considered Semi-automatic techniques are exclusive of each individual tool
but there is one that is pervasive in almost all the studied tools: Pivoting. It
basically consists of reusing previously matched objects.

In order to support Pivoting, the MTL must include the necessary syn-
tactic and semantic features that enable: (i) rule parametrization; and (ii) a
way to instantiate those parameters with concrete model elements, effectively
providing a starting point for the pattern matching process. It falls under the
Semi-automatic category because the Transformation Engineer must identify
which rules are suited to be parametrized, and forward previously matched model
elements into those rules. As an example, let us assume that the pattern shown
in Fig. 4(b) is matched before the pattern of Fig. 4(c). A keen Transformation
Engineer parametrizes the pattern of Fig. 4(c) with elements that are to be
matched in the pattern Fig. 4(b). Algorithm 2 shows the resulting generated
code that matched the pattern of Fig. 4(c). For the sake of brevity, we omit
the code generated to match the pattern of Fig. 4(b) as it would be similar to
Algorithm 1. We also omit the generated code that calls the function defined in
Algorithm 2 with the set of bindings collected during the matching process of
pattern of Fig. 4(b).

GReAT [22,11] and MoTif [33] allow for semi-automatic Pivoting. In those
MTTs, a transformation specification consists of a network of rules with a well
defined interface of input and output parameters. The input interface declares
the rule’s incoming partial matches that serve as a starting point for the pattern
matching. The output interface represents the bindings that will be propagated
to the next rules in the network.

3.3 Automatic Techniques

Most of the identified techniques are automatic, i.e., they require minimal inter-
vention and knowledge from the Transformation Engineer in order to be used.
The MTTs that employ these techniques typically work with declarative rules
and, optionally, provide imperative constructs in order to enable the control (or
configuration) of the rule scheduling. In what matters to the pattern matching
process, we distinguish Local techniques from Global techniques.



Algorithm 2 An algorithm to match the pattern of Fig. 4(c).

1: function GENERATEDMATCH(AacCOccurrences)
for (z,z) € AacCOccurrences do
for y € z.ab do
results < results U {(z,y,2)}
end for
end for
return results
end function

&

The Local pattern matching techniques are algorithms that have to trans-
verse the input model (in the worst case), while checking if there is a match for
each element in the pattern.

Since their execution involves the selection of multiple choice points (i.e., pos-
sible candidate nodes to be checked), and going back to those choice points to
test further alternatives, these algorithms are said to be local search based [34].
Even MTTs that reduce the pattern matching problem to a constraint satis-
faction problem (e.g., AGG [12]), or even a database query problem (e.g., Gr-
Gen(PSQL) [35]) are indirectly performing local search [36, 16]. Because of this,
they all fall in the category of Local optimization techniques.

While studying these techniques, we found that some involved a planning
phase in which they use special data structures (such as search graphs in Vi-
atra2 [9], or pattern graph in PROGRES [37]); and some simply execute the
search immediately using nothing but some global data structures (such as in-
dexes, as is done in VMTS [25]). We classified the former kind of techniques as
Planned and the later as Unplanned. The referred data structures in Planned
techniques are typically built automatically from LHS patterns, and provide a
representation of all possible ways of searching for a given LHS pattern. For in-
stance, a possible way to represent the search graph for the pattern of Fig. 4(d)
is represented in Fig. 5(a). Notice that from the starting point, represented as
a smaller circle, the local search can begin at either A, or B, or C. Suppose it
starts from C, as indicated by the bold arrows, it then can proceed to A elements
(maybe taking advantage of inverse relations), and so on for B elements. The
bold arrows represent one of the many search plans.

In order to be able to compare between search plans, and select a good one,
MTTs use a cost model. We distinguish different Planned techniques accord-
ing to the cost model used. Some cost models only use information about the
metamodel (these are called Metamodel Sensitive); other cost models use sta-
tistical information about the input model (these are called Model Sensitive);
or even explicit information about the tool’s implementation (these are called
Implementation Sensitive).

Metamodel Sensitive cost models employ a set of heuristics that make use
of the match metamodel in a given model transformation—these were presented
in [37], and used in the PROGRES tool. An example of such heuristics is the
first-fail principle: a good plan should start the search in the most restricted



pattern element, since it will have the fewest possible occurrences. Following
this principle, a good plan to search for occurrences of the pattern shown in
Fig. 4(d) would be to start by searching all the z elements, given that they
specify attribute constraints.

Model Sensitive cost models use statistical information about the current
input model or, at least, of a representative collection of input models. As an
example, we demonstrate the cost model used in the Viatra2 [9]. According
to [9], the cost of a search plan is given by the potential size of the search tree
formed by its execution. For instance, if we consider the search graph presented
in Fig. 5(a), then the potential size of the search tree corresponding to a possible
search plan shown in bold is given by zZ + Z * &, + Z % @, * y,, where: Z denotes
the expected number of model elements that can be matched by the z element;
2, denotes the average number of model elements that can be matched by x
after binding z to some model element; and 1, denotes the same for y after
binding 2 to some model element. In Fig. 5(b), we show a weighted version of
the presented search graph, but now considering the statistics of a given input
model. Following the presented cost model (i.e., computing the potential sizes
of the different search trees), it is clear that, in this case, the evaluation of a
search plan that follows the order z — x — y (shown in bold) yields a cost of
9.99, is preferable to a search plan that follows the order y — x — z, since its
evaluation yields a higher cost of 12.

An Implementation Sensitive cost model such as the one presented in [6]
and implemented in the GrGen.NET [23] tool, takes into account not only the
size of the search tree, but also the cost of each individual operation such as the
search for all the elements given some type. This allows the MTT to consider
the existence of indexes and other characteristics of its own implementation in
the cost model. This is similar to the cost model used in database systems since
they typically take the indexes and other implementation features into account
[16].

x:A y:B
X:A 1.33 y:B
1
4
z:.C 2:C 3
(a) (b)

Fig. 5. Search graph (left) and weighted search graph (right). These graphs represent
the pattern of Fig. 4(d).



In what matters to Global techniques, we identify three different types
of optimization techniques: Caching, Indexing, and Overlapped Pattern
Matching.

Most of the analysed MTTs allow the definition of variables and conditions
composed of multiple expressions over elements in a match pattern definition.
Depending on the number of times that the same expression is used in different
match patterns, its repeated evaluation may degrade the overall performance of
the transformation. To mitigate this problem, transformation tools such as ATL
[31], apply Caching techniques, by evaluating all expressions once, and storing
the resulting values so that they can be directly retrieved later.

All of the observed MTTs use indexes. Most of the indexes used keep model
elements grouped by their corresponding type as described in the metamodel
(Type Indexing). However, we have identified two additional kinds of indexes:
Attribute and Structural. While the former allows the MTTs to efficiently
find elements given a condition on one of their attributes, the later allows MTT's
to index whole patterns that are matched often in the transformation. In order
to perform indexing, the required intervention and knowledge from the Trans-
formation Engineers range from minimal (as in PROGRES [37,24]), to none (as
in Viatra2 [10,9]), where in the later case, the structural indexes are automat-
ically created for all of the patterns defined in a transformation specification.

Finally, there are MTTs that try to automatically factorize two or more
match patterns, in order to identify a common pattern that can be matched
before them. In this technique, known as Overlapped Pattern Matching,
the common (or overlapped) pattern occurrences are then passed as pivots in
order to be matched by the remaining patterns of the two rules [38]. Note that the
difference between this technique and Pivoting is in the common occurrences
detection, which has to be fully automated. If the user is required to identify
common occurrences, then it is just Pivoting, as is done in Great [22,11] and in
Viatra2 [10,9]. To the best of our knowledge, only VMTS [25] implements this
technique.



Tools
PROGRES (1996)
BOTL (2003)
AGG (2004)
Atom3 (2004)
Great (2004)

ATC (2006)
Viatra2 (2006)
Tefkat (2006)

ATL (2008)
GrGen.NET (2008)
Motif (2008)
BeanBag (2009)
VMTS (2010)
T-Core

Table 1. State of art tools and the pattern matching techniques in use.

Semi-A Automatic
Local Global Local Global
Pivoting Planned L d Cachi i Overlapped
P.M.
Model Sensitive M del itation Type Attribute Structural
Sensitive Sensitive
Multiple Single
X X X X X X
X X

X X X X
X X

X X
X
X X X X X X X

X X X X X

X X X X

X X X

X X X

X X X X
X X X X X
X



4 Discussion

Performance is one of the aspects that can hamper the application of MDD
to industrial scenarios. Before undergoing a major project, the Transformation
Engineer should study which tools are better suited for that project. S/He can
not risk choosing a declarative and productive MTL and, at a later stage of the
project, discovering that the transformations specified in that language, sup-
ported by that tool, do not scale well.

Our classification in Table 1 complements existing ones by looking at the
optimizations employed in the implementation of the MTLs. Of course this is a
moving target: in theory, a language is independent of its implementation, so we
expect that more and more optimizations will emerge that will outdate Table 1.
However, we do not expect the kinds of optimization techniques as identified
in Section 2, such as Manual vs Semi-automatic vs Automatic, Local vs
Global, Planned vs Unplanned, and so on...to change that much.

Perhaps the most widely applicable categorization of MTLs is presented in
[18]. Their MTL categorization is done in a comprehensive way by means of
a feature model that elicits the variability of MTLs w.r.t. both their syntactic
constructs and their semantic features. However, they do not make explicit any
features regarding the run-time performance of their transformation engines.

On a more pragmatic point of view of MTL’s usage context, [39] provides a
taxonomy that aims to aid Transformation Engineers in deciding which MTL is
best suited to carry out a particular model transformation activity. They iden-
tify as important characteristics the degree of automation and complexity. This
taxonomy was extended in [40] by grouping several model transformation pur-
poses (e.g., simulation, synchronization, optimization), according to the models,
metamodels and abstraction levels involved in a given transformation.

In the context of quality engineering, [41] proposes a comprehensive evalu-
ation schema based on ISO 9126 [42]. The proposed evaluation schema aims
to help the Transformation Engineers on choosing an appropriate MTL, by
comparing different MTL’s tooling support, implementation, syntactic features,
community support and their future perspectives. In a similar line of research,
[43] compares four different MTLs and corresponding MTTs using a common
transformation problem. Their categorization is based on the following charac-
teristics: the representation of models and metamodels, the constructs used to
define transformation rules, rule scheduling constructs and formal analysis sup-
port. They also take into account the tooling support for each language such
as: Editors, Transformation Simulation Support, Compilation, Debugging and
Validation.

To our knowledge, only [9] provides a categorization of graph transformation
tools based in their pattern matching strategies but with focus in the execution
of individual rules.

In summary, there is no classification directed at the underlying techniques
employed in the transformation engines of the existing model transformation
languages across the whole transformation process. Instead, most classifications
are directed at their usability w.r.t their syntactic and semantic features and



usage scenarios. Knowing the optimization techniques supported by a given tool
allows the Transformation Engineer to assess if that tool can be applied to
industrial scenarios.

5 Conclusions

There is a wide variety of approaches to the pattern matching problem, hav-
ing different outcomes, in what matters to the required amount of effort from
the Transformation Engineer, and the end result in what matters to run-time
performance. In this paper, we presented a classification of the different model
transformation approaches w.r.t. the employed pattern matching techniques.

MTTs that focus on Manual approaches typically provide imperative (see
Czarnecki’s categorization [18]) constructs in their MTLs. Therefore, they re-
quire domain expertise and knowledge about the tool’s internal pattern match-
ing mechanisms. Their MTLs are powerful and expressive. However, the specified
transformations are verbose and difficult to read, which hinders the productivity
of the Transformation Engineer. Nevertheless, their execution can be extremely
fast, since the Transformation Engineer is able to directly code any kind of opti-
mizations using his/her knowledge about the domain. Therefore, these MTTs are
ideally suited to perform critical model transformations, or even to implement
higher-level MTLs, as is the case of T-Core [19], which was used to implement
MoTif [44].

MTTs that support many Automatic pattern matching techniques require
less amount of information from the Transformation Engineer and ease the cre-
ation and maintenance of the transformation specifications. The transformations
are typically comprised of a set of rules declaring the manipulations in the in-
put model without any information regarding the underlying required pattern
matching process. Therefore, we can expect the maximum productivity of the
Transformation Engineer. However, if the Transformation Engineer knows some-
thing about the domain that can be used to speed up the transformations’ execu-
tion, he/she will not be able to use that knowledge because all the optimization
decisions are made solely by the tool.

Finally, MTTs that support Semi-automatic techniques still require that
the Transformation Engineer have some knowledge about their internal mech-
anisms, while enabling the expression of high-level declarative transformations.
These tools typically focus on allowing the Transformation Engineer to modu-
larize and parametrize rules (Pivoting) so that matched elements can be shared
among them. The impact in the run-time performance is obvious: the initial
bindings of a rule are automatically shared among the shared rules, decreasing
(sometimes in several orders of magnitude) the amount of computation needed
to match the remaining elements of a given pattern. However, in order to use this
feature, the Transformation Engineer has to explicitly create the transformation
with these features in mind in order to maximize the sharing of initial bindings
between rules—i.e., this imposes a negative impact in the end productivity of
the Transformation Engineer.



Ideally, one could expect that the problem of run-time performance of MTTs
can be solved solely by Automatic pattern matching techniques. However, we
observed that the approaches which invested more research in addressing the
pattern matching problem tend to combine Semi-automatic and Automatic
techniques. In the one hand, they allow the expression of model transformations
as networks of rules, where the flow between rules represents shared LHS pattern
occurrences; and in the other hand, they employ planned search in order to
perform the pattern matching of the declared rules, while taking advantage of
the shared LHS pattern occurrences.

We believe that further improvements on the state of the art regarding MTLs
and their MTTs’ run-time performance, will follow this research trend of power-
ful constructs to enable the tuning of model transformation specifications, and
the configuration of the increasingly sophisticated pattern matching techniques.



References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the
ugly. IBM systems journal 45(3) (2006) 451-461

Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
Software, IEEE 20(5) (2003) 36-41

Van Gorp, P.: Model-driven development of model transformations. Graph Trans-
formations (2008) 517-519

Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. Software, IEEE 20(5) (2003) 42-45

Barroca, B., Amaral, V.: Asserting the correctness of translations. Electronic
Communications of the EASST 50 (October 2011) ISSN=1863-2122.

Veit Batz, G., Kroll, M., Geif3, R.: A first experimental evaluation of search plan
driven graph pattern matching. Applications of Graph Transformations with In-
dustrial Relevance (2008) 471-486

Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern
matching. Mathematical structures in computer science 12(4) (2002) 403-422
Kalnins, a., Barzdins, J., Celms, E.: Efficiency Problems in MOLA Implementation.
19th International Conference, OOPSLA. Citeseer (2004)

Varré, G., Friedl, K., Varro, D., Schurr, A.: Advanced Techniques for the Imple-
mentation of Model Transformation Systems. PhD thesis, PhD thesis, Budapest
University of Technology and Economics (2008)

Bergmann, G., Okrés, A., Rath, L., Varro, D., Varré, G.: Incremental pattern
matching in the viatra model transformation system. Proceedings of the third
international workshop on Graph and model transformations. ACM (2008)
Vizhanyo, A., Agrawal, A., Shi, F.: Towards generation of efficient transformations.
(2004) 298-316

Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern
matching. Theory and Application of Graph Transformations (2000) 381-394
Mehlhorn, K.: Graph algorithms and NP-completeness. (1984)

Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W H Freeman & Company (January 1979)

Kleppe, A.G., Warmer, J.B., Bast, W.: MDA explained: the model driven archi-
tecture: practice and promise. Addison-Wesley Professional (2003)

Silberschatz, A., Korth, H., Sudarshan, S.: Database System Concepts. McGraw-
Hill Science/Engineering/Math (January 2010)

Estévez, A., Padrén, J., Sanchez, V., Roda, J.L.: ATC: A Low-Level Model Trans-
formation Language. ...the 2nd International Workshop on Model ... (2006)
Czarnecki, K., Helsen, S.: Classification of model transformation approaches. Vol-
ume 45 of Proceedings of the 2nd OOPSLA Workshop on Generative Techniques
in the Context of the Model Driven Architecture. (2003)

Syriani, E., Vangheluwe, H.: De-/re-constructing model transformation languages.
Electronic Communications of the EASST 29 (2010)

Taentzer, G.: AGG: A graph transformation environment for modeling and valida-
tion of software. Applications of Graph Transformations with Industrial Relevance
(2004) 446-453

Lara, J.D., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars
for multi-paradigm modelling in AToM 3. Software & Systems Modeling 3(3)
(2004) 194209



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

Balasubramanian, D., Narayanan, A., van Buskirk, C., Karsai, G.: The graph
rewriting and transformation language: GReAT. Electronic Communications of
the EASST 1 (2007)

Kroll, M., Geif}, R.: Developing Graph Transformations with Gr-Gen .NET. Appli-
cations of Graph Transformation with Industrial releVancE-AGTIVE 2007 (2007)
Schurr, A.: Progres, a visual language and environment for programming with
graph rewriting systems. Technical report (1994)

Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: A systematic approach to
metamodeling environments and model transformation systems in VMTS. Elec-
tronic Notes in Theoretical Computer Science 127(1) (2005) 65-75

Syriani, E., Vangheluwe, H.: A modular timed graph transformation language for
simulation-based design. Software & Systems Modeling (2011) 1-28

Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H.: Supporting auto-
matic model inconsistency fixing. Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM (2009)

Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat.
Springer (2006)

Braun, P., Marschall, F.: Botl-the bidirectional object oriented transformation
language. Technical report (2003)

Telecom, F.: Smartqvt: An open source model transformation tool implementing
the mof 2.0 qvt-operational language, 2007

Jouault, F., Allilaire, F., Bezivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2) (June 2008)

Braun, P., Marschall, F.: Transforming object oriented models with BOTL. Elec-
tronic Notes in Theoretical Computer Science 72(3) (2003) 103-117

Syriani, E., Vangheluwe, H.: Programmed Graph Rewriting with DEVS. Applica-
tions of Graph Transformations with Industrial Relevance (October 2008)

Knuth, D.E.: The Art of Computer Programming, Volume 4A. Combinatorial
Algorithms, Part 1. Addison-Wesley (January 2011)

Hack, S.: Graphersetzung fiir Optimierungen in der Codeerzeugung. Master’s
thesis, Universitat Karlsruhe (2003)

Russell, S., Norvig, P.: Artificial intelligence: a modern approach. 2003. (2003)
Zindorf, A.: Graph pattern matching in PROGRES. Technical report (1996)
Mészaros, T., Mezei, G., Levendovszky, T.: Manual and automated performance
optimization of model transformation systems. International Journal on ... (2010)
Mészéros, T., Van Gorp, P.: A Taxonomy of Model Transformation. Electronic
Notes in Theoretical Computer Science (ENTCS 152 (March 2006)

Syriani, E.: A multi-paradigm foundation for model transformation language en-
gineering. PhD thesis, McGill University (2011)

Schubert, L.A.: An Evaluation of Model Transformation Languages for UML Qual-
ity Engineering. PhD thesis, Master’s thesis, Georg-August-Universitdt Gottingen,
2010.[cited at p. 101] (2010)

ISO/IEC: ISO/IEC 9126. Software engineering — Product quality. ISO/IEC (2001)
Ehrig, K., Guerra, E., Lara, J.D., Lengyel, L., Prange, U., Taentzer, G., Varro, D.,
et al.: Model transformation by graph transformation: A comparative study. In:
IN MTIP 2005, INTERNATIONAL WORKSHOP ON MODEL TRANSFORMA-
TIONS IN PRACTICE (SATELLITE EVENT OF MODELS 2005), 2005. ROHIT
GHEYI, TIAGO. (2006) 71-80

Syriani, E., Vangheluwe, H.: Programmed graph rewriting with time for simulation-
based design. Theory and Practice of Model Transformations (2008) 91-106



