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ABSTRACT

Distributed co-simulation plays a key role in enabling collaborative modeling and simulation by different
stakeholders while protecting their Intellectual Property (IP). Although IP protection is provided implicitly
by co-simulation, there is no consensus in the guidelines to conduct distributed co-simulation of continuous-
time or hybrid systems with no exposure to potential hacking attacks. We propose an approach for distributed
co-simulation on top of UniFMU with enhanced cybersecurity and IP protection mechanisms, ensuring that
the connection is initiated by the client and the models and binaries live on trusted platforms. We showcase
the functionality of this approach using two co-simulation demos in four different network settings and
analyze the trade-off between IP-protected distribution and performance efficiency in these settings.
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1 INTRODUCTION

The increasing complexity of modern engineering systems has driven the need for collaborative modeling
and simulation approaches that enable stakeholders to work together seamlessly. Distributed co-simulation
has emerged to ease the integration and co-development of heterogeneous models and simulations, allowing
organizations to contribute their expertise while retaining control over their intellectual property (IP). How-
ever, its adoption is hindered by concerns over cybersecurity and IP protection, especially when a company’s
model must run on untrusted platforms (computers outside the control of the company’s IT department)
with standalone software. This problem is recognized in [1], which presents an approach for distributed
co-simulation with secure communication between master algorithm and models. However, connections
that are initiated from the master (untrusted platform) to the model (trusted platform) pose a security risk
that IT departments are often unwilling to take since it requires the trusted platform to have open ports.

Similarly, code executed on untrusted platforms can be extracted or reverse-engineered from memory, as
attackers can use debugging tools, memory dumps, or other techniques to analyze and retrieve sensitive data.
This poses a substantial risk to proprietary information, as critical algorithms, configuration parameters, or
proprietary logic embedded in the code can be exposed, replicated, or misused by unauthorized parties.

This paper introduces a tool (as an extension of the UniFMU tool [2]) and a methodology for IP-protected
distributed co-simulation for collaborative engineering across companies on top of the Functional Mock-up
Interface (FMI) standard. Unlike conventional distributed co-simulation tools, which often require open-
ing network ports or deploying models on potentially untrusted platforms (see Section 2), our approach
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provides a convenient deployment architecture where connections are initiated from trusted platforms host-
ing the models, eliminating the need for exposed ports and thereby reducing susceptibility to cyberattacks.
Moreover, by eliminating the need for models to run on untrusted platforms and keeping them on trusted
machines on the client side, our tool enables secure collaboration, particularly in scenarios involving multi-
ple organizations with stringent IP protection requirements, while keeping efficient and adaptable simulation
workflows by replacing proxy models with their real counterparts as needed.

2 STATE OF THE ART

Co-simulation is a technology that extends the capabilities of simulation, which has been used to answer
questions of the type what-if , by enabling simulations via the composition of simulation units [3].

Existing standards for co-simulation include FMI, which defines the guidelines for Model Exchange and co-
simulation for continuous-time co-simulations; the IEEE 1516-2010 Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA), which defines the guidelines for distributed (co-)simulations (Fed-
erations) in discrete-event co-simulations via a common Real-Time Infrastructure (RTI); the Distributed Co-
simulation Protocol (DCP), which provides the guidelines for standardized interoperability on distributed
hardware platforms extending from FMI; and the IEEE 1730-2022 Recommended Practice for Distributed
Simulation Engineering and Execution Process (DSEEP), which defines a high-level framework for inte-
grating distributed simulation of lower-level systems. In this work, we work with the FMI standard.

Table 1: Summary of approaches in the state of the art.

Contribution Tool Communication layer Standard
Norling et al. [1] TLM for co-simulation Stand-alone over TCP —
Falcone & Garro [4] HLA Development Kit HLA Pub/Sub API FMI & HLA
Skjong et al. & Sad-
jina et al. [5, 6]

Coral (now called The Open Simula-
tion Platform)

Pub/Sub by slave providers FMI

Cakmak et al. [7] — Models (FMUs) embedded with TCP-based REST APIs FMI
Schiera et al. [8] Mosaik Master/Slave over TCP (Mosaik Simulator API) FMI
Meyer et al. [9] xMOD DCP-based over UDP DCP
Zhao et al. [10] LICPIE Stand-alone over TCP & UDP —
Krammer et al. [11] DCPLib DCP-based over UDP DCP & DSEEP
Junior et al. [12] Ptolemy, CertiHLA, & PyHLA HLA Pub/Sub API HLA
Segura et al. [13] Simulink library DCP-based DCP
Reiher & Hahn [14] Portico HLA Pub/Sub API HLA
Hong et al. [15] FMU SDK (now managed by the

Modelica Association)
Data Distribution Service Pub/Sub FMI

Dad et al. [16] DACCOSIM ZeroMQ middleware FMI
Rautenberg et al. [17] — DCP-based over UDP DCP
Mao et al. [18] DRLFluent CORBA —
Mehlmann et al. [19] VILLAS Framework MQTT, Kafka, FIWARE, WebRTC, RTP, UDP, and TCP —

Existing works in the literature tackle the need for distributed co-simulation, especially the recent DCP
protocol (for continuous-time simulation) and the HLA standard (for discrete-event simulation). However,
there is yet no optimal solution (and guidelines) to conduct distributed co-simulation of continuous-time
or hybrid systems which guarantees no exposure to cyber attacks of the machine where the IP-protected
models run. Table 1 shows a summary of contributions in the literature that have addressed techniques
to implement distributed co-simulation using different tools, communication methods, and standards. Of
the 16 entries, six work with FMI, three with HLA, four with DCP, and the rest are not specified. From
these, we can also identify that those following HLA and DCP are more standardized at the communication
layer, whereas those following either FMI or none are more diverse. Although all the approaches provide
IP protection implicitly, extra cybersecurity mechanisms to avoid vulnerability of the machine where the
IP is and of the models and binaries include: [4, 19] ensure that the models and binaries do not need to be
shared with third parties, [10, 18] provide session control for simulation units, and [1] has encryption in the
messaging between the master algorithm and the simulation units, but the connection is initiated from the
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master, i.e., an untrusted platform. Our approach also ensures that the models and binaries do not need to be
shared with third parties, making the IP hermetic to hostile platforms or users; additionally, the connection
is started from the client-side and, therefore, there is no need for open ports or firewall control.

3 APPROACH

We propose a technique to carry out distributed co-simulation based on the FMI standard. To do so, we
build on top of the existing UniFMU [2], which already provides the capabilities to split the FMU binary
from the model using a Pub/Sub connection over ZeroMQ. Following the same concept, we split the FMU
binary and the model using different processes, which may be executed in different network clients, i.e., one
process for the FMU binary and one process for the model execution.

In this approach, the FMU works as a proxy (without any model), which waits for a connection from the
model, through a ZeroMQ connection. The proxy and the model exchange data in the form of one-to-one
acknowledged Protobuf messages following FMI over ZeroMQ, where participants can only access data
streams of their own models. The proxy forwards the messages from the co-simulation master algorithm to
the model and vice-versa, as shown in Figure 1. The master algorithm, on the other hand, has access to data
streams generated from inputs and outputs of the orchestrated proxies and other eventual FMUs.

When the master algorithm calls the instantiate function on a proxy-model pair, this enters a blocking
state, waiting for the client, i.e., the model, to connect to the ZeroMQ broker created by the FMU proxy.
When the model connects to the ZeroMQ broker, the co-simulation starts until termination, releasing the
resources of the two processes, that is, proxy and model. This occurs for each proxy-model pair in the
co-simulation. The master algorithm can combine FMUs whether they are proxies or not.

<<Co-simulation server (untrusted)>>

Master
algorithm

FMU proxy 1 FMU proxy nFMI
calls

UniFMU
binary

UniFMU
binary

<<Client n (trusted)>>

Backend Model n
FMI
calls

<<ZMQ connect>>

ZMQ Pub/Sub

Figure 1: Deployment diagram of distributed co-simulation with UniFMU.

It is worth mentioning that the connection is established by the client (the trusted platform), avoiding the
need for open ports and firewall control for the connection on the client side, i.e., where the IP lives. Thus,
the open ports are only needed on the proxy side (the untrusted platform), where the collaborative co-
simulation is executed, without access to the IP. At connection time, authentication can also be provided.
This approach can also run distributed co-simulations with existing FMUs, where the box Model n in Fig-
ure 1 is replaced by the existing FMU, and the FMI calls are executed on it using the FMPy library [20].

4 DEMONSTRATION AND LIMITATIONS

To demonstrate the use of this approach, we provide two publically available demos on GitHub [21]. In the
first demo (Demo 1), we use the default template created by UniFMU, which provides a pair proxy-model
with a set of variables to perform simple calculations of the type sum, rest, string concatenation, and boolean
operations; all these operations are executed on demand by the master algorithm, in this case, using FMPy.
In the second demo (Demo 2), we use a co-simulation with three FMUs that replicate a test bench for a 16
MW test facility of wind turbine nacelles. The three FMUs represent the test bench controller, test bench
motor, and the drive train generator of the device under test. This demo uses Maestro [22].

https://github.com/INTO-CPS-Association/UniFMU_DistributedCoSimDemo
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For Demo 1, we initialize a co-simulation of the proxy-model pair with FMPy, and iterate through one
thousand steps with step size ∆t = 0.01 s and simple operations, as described in this setting, more precisely,
we run one thousand times a set of setReal, doStep, and getReal calls. For Demo 2, we execute a
co-simulation with three proxy-model pairs for a total of 50.0 s of co-simulation time with a step size of
∆t = 0.1 s. Once the third FMU pair has established connection, the master algorithm proceeds with the
co-simulation execution for 50.0 s given the co-simulation scenario. Both demos are executed in real-time
and non-real-time modes. For the former, we expect that the average step time (ASt) is ASt ≃ ∆t ; for the
latter (normal simulation time), ASt depends on the network and computation capabilities, usually ASt < ∆t .

The main limitation is the performance degradation, due to network communication. To understand the
trade-off between IP protection and Performance Efficiency, we follow the guidelines of the ISO/IEC 25010
for systems and software quality requirements and evaluation. For this, we measure the time behavior
and resource utilization of the demos in four network settings. Settings 1 and 2 are for collaborative co-
simulations where stakeholders can gather physically together, whereas settings 3 and 4 can be used for
geographically distributed co-simulations, which may compromise security and performance. Both demos
were tested in the four settings, providing the same co-simulation results with different computation times.

Wireless Local Area Network (WLAN) (Setting 1). In this setting, we distribute proxy and model pro-
cesses on two different machines with a private connection over the WLAN using a domestic modem.
Switched LAN (Setting 2). In this setting, we use an industrial switch (HP Aruba 2930F) to distribute
the two processes as in Setting 1, but this one uses a wired network on the data-link layer instead.
Public server from a non-controlled private network (Setting 3). In this setting, we distribute the
processes on two different machines, where the proxies are hosted on a public server (an AWS EC2 in-
stance), and the models are hosted on a private machine running on a non-controlled network.
Public server from an IT-controlled network (Setting 4). In this setting, we use the same settings as
in Setting 3, but instead, the private machine runs on an IT-controlled network with more strict policies.

The performance efficiency results for time behavior of this approach are collected in Table 2. Notice
that the resource utilization for Demo 1 is minimal since the computation accounts for the sum of two
real numbers and abuses the network resources, whereas the resource utilization for Demo 2 is moderate,
with the execution of the dynamics of a coupled system. In particular, for the last row (Demo 2 in real-
time mode), we clearly see that Settings 3 and 4 cannot perform in real-time as expected, exceeding the
50.0s of computation because every step takes longer than required (ASt > ∆t), opposite to Settings 1 and
2. With Table 2, we confirm there is a trade-off between hard real-time requirements and (geographical)
distribution of IP-protected co-simulation due to incremental network delays. If hard or near-hard real-time
is needed, following Setting 2 is the recommended option, which is the fastest yet secure setup.

5 CONCLUDING REMARKS

Table 2: Measures of performance for time behavior (all mea-
sures are in seconds).

Demo Real-time mode Setting 1 Setting 2 Setting 3 Setting 4

Demo 1 No 13.8128 1.4747 52.4733 63.6923
Demo 1 Yes 27.2524 16.6968 61.7995 74.5381
Demo 2 No 20.8260 3.2366 79.4714 93.6664
Demo 2 Yes 50.2971 50.1930 88.9710 93.8596

In this work, we proposed an ap-
proach for distributed co-simulation
following the FMI standard upon
UniFMU. The demonstration in Sec-
tion 4 shows that this approach for
distributed co-simulation is useful
when models need to be hidden from
the co-simulation master algorithm,
i.e., models are protected from run-
ning on external platforms, ensuring
IP protection and integrity. This is also beneficial since the client hosts the model, avoiding dependen-
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cies which may not be contained in the FMUs on the co-simulation server, and decides when to start the
connection without the need for open ports or firewall control.

Although the use of strong authentication mechanisms and containerization can improve the security of
tools that assume incoming connections on trusted platforms, in practice, engineers participating in these
simulations do not necessarily have the required background or permissions to handle this. In our experience
with IT departments, changing firewall settings to allow such connections is a cumbersome process.

Additionally, there are limitations for hard real-time applications with small step sizes due to network de-
lays, especially if hardware-in-the-loop is involved. In such scenarios, it is suggested to work on a switched
LAN with dedicated equipment or using other alternatives, such as DCP co-simulation with operation mode
for hard or soft real-time. Our approach has still limited support for the FMI 3.0 version, which is a work in
progress. In future work, we plan to improve the authentication and security mechanisms for data confiden-
tiality and integrity of this approach and evaluate the performance of using Virtual LANs.
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