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Abstract. The synchronization between a Digital Shadow (DS) and a
Cyber-Physical System (CPS) is paramount to enable anomaly detec-
tion, predictive maintenance, what-if analysis, etc. Such synchronization
means that a simulation reflects, as closely as possible, the states of the
CPS. The simulation however, requires the complete initial state of the
system to be known, which is often infeasible in real applications. In our
work, we study the conditions under which knowing the initial state of
the system is irrelevant for a simulation to eventually synchronize with
the CPS. We apply traditional stability analysis to answer this question
for linear periodic systems. We demonstrate the method using a simple
but representative system, an incubator with a periodic control signal.

Keywords: Digital Shadow · Cyber-Physical System · Stability · Track-
ing.

1 Introduction

A DS is a type of monitoring system. It contains not only the digital version of
the system but also amounts of services that can improve the value of the physical
system. One of the services could be real-time simulation that accurately mimics
a CPS and its environment, and it is paramount to enable many of the benefits
that the Digital Twin vision offers, such as the improvement of productivity
[1], automation [3], system intelligence [13], and more. A DS is also key in,
for example, anomaly detection that can prevent failures by triggering alarms,
so new process conditions can be employed in time to increase asset lifetime.
Figure 1 shows two possible architectures for enabling anomaly detection.

One architecture that is an easy way to realize the anomaly detection mainly
consist of the real-time simulation of a plant model (P ′

PT in Fig. 1), feeding all
inputs from the real plant to a simulation model, and observing whether the
resulting behavior matches the measured. This concept is illustrated in Fig. 1
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(when omitting the Kalman filter). Figure 1 also shows a second architecture,
in which the Kalman filter is taken into account. Here, the latter architecture
requires partial state measurement from the plant.
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Physical System Digital Shadow
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Anomaly
Detector
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partial state
full state

Fig. 1. Illustration of the two architectures for anomaly detection. One architecture
is represented by the solid lines. Another one is the previous one combined with the
Kalman filter.

When applicable, the Kalman filter architecture is superior to the real-time
simulation architecture because the Kalman filter utilizes the state measurement
data and the prediction data from a model, which makes it suffer less from state-
drift problems. In contrast, the real-time simulation architecture does not take
into account the state measurement data. State drifting is most commonly known
in localization problems, where, for example, a moving object’s acceleration and
velocity are measured through an accelerometer and integrated to obtain the
position. Here, assuming that the initial position and velocity are known, the
process of integrating (essentially simulating a point mass system) yields the
position over time, which almost always diverges from the real position of the
moving object. Figure 2 shows one reference trajectory (in green), one tracking
simulation trajectory that was started from different initial conditions (in blue),
and two trajectories that are diverging.

The application of the Kalman filter is, however, not always possible as it
requires a model to obey a certain structure. For instance, it requires the ability
of updating the state of the model, which makes black-box models difficult to
extend with Kalman filters. For example, the authors in [4] had to propose an
extension to the Functional Mockup Interface (FMI) standard version 2.0 [2], to
be able to apply Kalman filters.

In this paper, we focus on the conditions that make it possible for a real-
time simulation architecture (without a Kalman filter) to avoid state drifting.
Since real-time simulation models can utilize co-simulation interfaces [10], this
approach can be applied to virtually any black-box model. In the approach,
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Fig. 2. A reference trajectory (line 4), and one converging tracking simulation that is
started with different initial conditions (line 2). The line 3 and line 1 curves depict
tracking simulations that suffer from state drifting.

we employ traditional stability analysis to demonstrate that a periodic linear
system can be accurately tracked by a real-time simulation, even if the initial
state of the plant is unknown. We exemplify the application of the method by
using an open-loop incubator system, based on our previous work in [7, 6]. The
analyses in this work are limited to systems that are periodic and linear, and
our incubator system fulfills these conditions.

We have empirical evidence that the closed-loop incubator system can also
be tracked by real-time simulations, and we expect that more advanced stability
analysis can be applied to CPSs that are non-linear or hybrid. The stability of
these systems has been studied extensively (see, for example, [9, 11, 12, 15, 14]),
and in future work, we seek to apply these methods to the closed-loop periodic
systems as well.

The rest of the paper is organized as follows: Section 2 gives the background
for the work, and details how to discretize continuous-time linear systems (an
important step in our proposed method). Then, in Section 3, we introduce our
contribution and apply it to the analysis of the incubator system. Next, Section 4
corroborate the results of the theoretical analysis with experimental results, and
finally, Section 5 concludes the paper and discusses future work.

2 Background

This section gives background of the physical incubator system and its continu-
ous and discrete-time models.

2.1 Incubator System

The incubator is a system that has the ability to regulate the temperature within
an insulated container. A systematic diagram of the incubator is illustrated in
Fig. 3 and Fig. 5 (right) shows a picture of the physical system.
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Fig. 3. Schematic overview of the incubator. The physical system can be seen in Fig. 5
(right).

The main components of our incubator system are an insulated container,
a heatbed, a fan, three temperature sensors, and a controller. The heatbed is
used to generate heat energy for heating the air inside the insulated container
(referred to as ”air temperature”), and it has two different states, on and off.
The fan circulates the air, to achieve a more uniform temperature distribution.
There are three sensors, two of which are used to measure the air temperature
and one for the ambient room temperature. In the experiments, the fan is always
on, but the controller can regulate both the heatbed and fan states. For detailed
information about the incubator, see [7].

In this work, we configure the controller to turn on and off the heatbed in
periodical intervals. This approach is in contrast with the closed-loop controller
introduced in [7], which activates the heatbed based on the measured tempera-
ture. To keep the temperature relatively low in the experiments (defined here as
< 50◦C), we set the on-state to be shorter than the off-state (6 vs. 27 seconds).

2.2 Models

The state variables that enter our time-dependent thermal model of the incu-
bator system are the air and heatbed temperatures, Tbair and Theater. Here,
we consider the rate of energy to establish an Ordinary Differential Equation
(ODE). In reality, the temperature of the system is not completely uniformly
distributed, meaning that Tbair and Theater are lumped state variables. While
Theater is not directly measured from the system, we consider the average of the
signal from the two internal temperature sensors to be representative of Tbair.
The ODEs read
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dTheater

dt
=

1

Cheater
(V I −Gheater(Theater − Tbair)) (1a)

dTbair

dt
=

1

Cair
[Gheater(Theater − Tbair)−Gbox(Tbair − Troom)], (1b)

For more details, see [5]. In Eq. (1), C denotes the lumped thermal capacitiy, G
is the effective heat transfer coefficient, Troom is the ambient room temperature,
and V I represents the product of the voltage and the current representing the
power of the heatbed when turned on.

To use Eq. (1) in stepwise simulations, it is necessary to convert it to a
discrete-time model. In this paper, we give a brief explanation of the steps needed
to accomplish this, but readers who are interested in more details can refer to
[8].

In general, linear and continuous-time dynamical systems can be converted
into a state-space model that has the generic form:

ẋ(t) = Ax(t) +Bu(t) (2a)

y(t) = Cx(t) +Du(t). (2b)

The solution of Eq. (2a) is given as

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ. (3)

Using Eq. (3), the temperature state at any time instance can be obtained. In
Eq. (3), we can see that the initial point of x(t0) is necessary when approxi-
mating the model behavior. However, in a computational unit, it is not possible
to generate continuous behaviors, as it has to be sampled which is a discrete-
time behavior. If an interval of the sampling process is T , then the time series
is 0, T, 2T, . . . , kT, (k + 1)T, . . ., where k is an integer. In addition, the inputs
between two sampling instants are constants, which means that u(τ) = u(kT )
for kT ≤ τ ≤ (k + 1)T . In Eq. (3), let t0 = kT . Then the next sample we can
obtain is x((k+1)T ), thus we set t = (k+1)T . Substitute these back into Eq. (3)
and we have

x((k + 1)T ) = eA(T )x(kT ) +

∫ (k+1)T

kT

eA((k+1)T−τ)Bdτu(kT ). (4)

Since the T is known, we can simplify Eq. (4) into the form of

x(k + 1) = A′x(k) +B′u(k), (5)

where A′ = eAT , B′ =
∫ (k+1)T

kT
eA((k+1)T−τ)Bdτ . Note that Eq. (5) is similar to

Eq. (2a) but the coefficients are different and the time interval between x(k+1)
and x(k) is T .

To summarize, Eq. (5) is the discrete-time model of the continuous-time
model of Eq. (2) and it is feasible to implement Eq. (5) to generate behaviors in
a computational unit. In the section below, we show how to apply this technique
to prove that simulations of the incubator system will converge towards the real
system behavior.
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3 Stability Analysis of Periodic Linear Systems

This section gives an introduction about the stability of a dynamic system and
how to utilize it to tackle the issues of tracking a periodic physical system under
unknown initial conditions.

Stability is a property of a dynamic system. A pendulum, for example, is
a stable system. Regardless of what the initial state of a pendulum is, unless
perfectly upright, the pendulum will oscillate around the equilibrium point that
is the state of vertical down if it is a perfect pendulum and has no friction.
However, if there is friction, the pendulum will eventually go into the state of
vertical down as its initial gravitational potential energy is consumed by friction
and other energy losses. This is called asymptotic stability that is the property
that a system will eventually converge to a stable state when it is started close
to one.

Accordingly, a simulation of the incubator system can be started with differ-
ent initial conditions that will all eventually converge to its single stable state.
This also applies for the true initial conditions, and this property alleviates the
issue of having unknown initial conditions.

While it does not make sense to talk about a stable periodic incubator sys-
tem, because the temperature will continuously oscillate, we can transform the
system into an equivalent system that represents the temperature evolution at
certain periods of time. This new system is then asymptotically stable, which is
illustrated in Fig. 4, where the solution to the original system is not asymptoti-
cally stable, but the equivalent sampled discrete-time system is.

Fig. 4. This figure illustrates how the probed temperature is not asymptotically stable,
but the equivalent sampled discrete-time system is.
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The incubator continuous-time model is presented in Eq. (1). For simplicity,
we use the generic discrete-time model of Eq. (5) to represent the incubator.
Note that to convert the continuous-time model to a discrete-time model, the
sampling rate that is the T in Eq. (4) is needed and we call it Tsampling. Note that
the Tsampling is normally chosen according to the system based on the hardware.
In addition, we set A′ and B′ to A and B respectively for consistency. Then we
have a linear system in the form of

x(k + 1) = Ax(k) +Bu(k). (6)

The controller only controls the states of the heatbed that are on (heating for
short) or off (cooling for short), and we assume the room temperature is constant

in between controller samples. As a result, the u(k) has to be either
[
V I Troom

]T
or

[
0 Troom

]T
. Substitute the two u(k) back to Eq. (6), then we obtain two

different models that indicate the advancements of temperatures in terms of
heating or cooling. These two models are given by

x(k + 1) = Ax(k) +M (7a)

x(k + 1) = Ax(k) +N, (7b)

where Eq. (7a) is the model of heating and Eq. (7b) of cooling. In each sampling
step, Tsampling, either of the models in Eq. (7) is executed and therefore, the
time for heating (Theating) or cooling (Tcooling) should be equal to n · Tsampling,
where n is a non-negative integer.

To highlight the main idea of the method, suppose that the controller al-
ways switches from heating to cooling at every time sample, which means that
Theating = Tsampling and Tcooling = Tsampling. Then, if we start with the heating
state at time step k, the temperatures at next time step k + 1 is

x(k + 1) = Ax(k) +M. (8)

Afterward, the incubator goes to the cooling state from time step k+1, thus the
temperatures at time step k + 2 are obtained by Eq. (7b)

x(k + 2) = A(Ax(k) +M) +N

x(k + 2) = A2x(k) +AM +N.
(9)

Equation (9) represents the temperatures during one period of heating and cool-
ing. If the initial k is 0, we get the temperatures at time step 2 according to
Eq. (9). If the periodic control signal continues, we have the equation represent-
ing the temperatures at time step 2k

x(2k) = A2kx(0) + (AM +N)(A2k−2 +A2k−4 + . . .+A0). (10)

Note that Eq. (10) is only valid for Theating = Tsampling and Tcooling = Tsampling.
If Theating = m ∗ Tsampling and Tcooling = n ∗ Tsampling, where m and n are
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integers, then in order to obtain Eq. (10), it involves m times and n times
compositions of Eq. (7a) and Eq. (7b) respectively.

If the eigenvalues of the matrix A that represents the properties of the sys-
tem are less than 1, which means the system is stable, then limk→+∞ A2k = 0.
As a result, the temperatures at time step 2k, when k is large enough, is
x(2k) = (AM + N)(A2k−2 + A2k−4 + . . . + A0), which is independent of the
initial conditions, x(0). If the absolute value of all eigenvalues of the matrix A
are less than 1, then (AM + N)(A2k−2 + A2k−4 + . . . + A0) converges. This
means under such a periodic control signal, the temperatures will eventually
convergence toward limk→+∞(AM +N)(A2k−2 + A2k−4 + . . . + A0) no matter
the initial conditions. This proves that a DS can track a periodic system even
when the initial conditions are unknown.

If the absolute value of one of the eigenvalues of A is bigger than 1, a system
is not stable and there are no stable states. In this case, a DS would not be able
to track the periodic system without knowing the initial conditions.

Overall, if a system is stable when subject to a given control signal and if it
only has one possible stable state, then a DS of the system can track the physical
system without knowing exactly the initial conditions. Our incubator system is
a stable system when subject to the periodic control signal and the eigenvalues
of A are less than 1, which will be shown in the next section. Therefore, a DS
of the incubator can track the physical incubator without knowing exactly the
initial conditions.

4 Simulation and Experiments Results of Incubator

In Section 3, we analyzed the theoretical stability of the incubator. This section
presents the simulation and experimental results of our analysis. Note that due
to limitations of utilized hardware, it takes around one second to fetch data from
one sensor, and three seconds for all three sensors.

As a first step before the stability analysis, we conducted a small experiment
to investigate the internal temperature distribution of the air inside the insulated
container. These results are shown in Fig. 5.

We used three temperature sensors to measure the temperature at different
locations, marked t1, t2, and t3 in Fig. 5. As it can be seen, the temperature is not
uniform when the incubator warms up. Here, the largest temperature difference
was about 6°C. According to this experiment, we found that the temperature at
sensor t1 is close to the average temperature of sensors t2 and t3 (Fig. 5). This
finding supports our decision of moving t1 outside for measuring the ambient
room temperature and using the average temperature of sensors t2 and t3 as
representative of the internal air temperature. We used this new setup in the
following experiments.

Next, we conducted another experiment to determine the best-fit parameters
in Eq. (1), and as Fig. 6 shows, the calibrated model captured the physical system
very well. Nevertheless, for control conditions that deviate from the ones in the
experiments, recalibration might be needed. Also, it is important to note that
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t3

Fig. 5. Experimentally measured temperature, heater signal, together with maximum
and std. deviation of the measured temperature (left). The experimental setup can be
seen in the figure to the right.

the model is incapable of capturing other complex process conditions such as
opening the incubator lid as shown in Fig. 7 despite calibration.

heatbed control signal

temperature data
from sensors

temperature data
from the model

Temperature (°C)

Incubator Temperatures

Fig. 6. Calibration results of (1). The blue line is the average temperature representing
the air temperature, while the green line shows the results of our calibrated model. The
red line shows the two states of the heatbed, heating and cooling.

After the calibrated model was demonstrated to be representative of the
physical system, we utilized it to demonstrate that the incubator system is,
in fact, stable and that it converges towards the same temperature state no
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Fig. 7. Example of how the model initially captures the physical system very well, but
starts to deviate when the process conditions change as the lid is opened. This cannot
be resolved by recalibration, as the underlying model does not reflect the disturbance
that is introduced by opening the lid.
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Fig. 8. Incubator simulation results. The top figure presents the simulation results of
the air temperature starting with five different initial conditions, while the lower figure
shows the controller signal for the heater bed (6 s on, followed by 27 s off).

matter the initial conditions following our approach described in Sections 2 and 3.
To do this, we ran five simulations with different initial conditions of the air
temperature that are 40°C, 30°C, 25°C, 20°C, and 10°C. The room temperature
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Fig. 9. Experimental results recorded and visualized using InfluxDB. The top figure
shows the measured temperatures t2 (red) and t3 (orange), as well as the average
temperature (purple). The lower figure shows the control signal.
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in the experiments was set to 22.44°C and the voltage and the current to the
heatbed were 12V and 10.45A. The simulation results are shown in Fig. 8.

As it can be seen in Fig. 8, all five initial conditions converged to the same
stable state, meaning that the discrepancy between DS and the real physical
system will be identical no matter the initial conditions after enough time. We
also confirmed this by running experiments on the physical system. Here, we
used InfluxDB to record and visualize the air temperature data. While it was
not possible to control the initial starting temperature of the physical system,
the experiment showed (Fig. 9) that the temperature increased at the early
stage and gradually converged towards the same 47 − 48°C when the system
was started at room temperature. Since this result matches the simulation, this
verifies the reliability of our model and approach. Note that, as consequence, if
the lid is opened and closed again during one experiment, the temperature will
also converge to the stable states because it is analog to start a simulation with
a different initial condition. Finally, we note that the eigenvalues of the A matrix
in our model are 0.942 and 0.448, both less than 1. This concludes that our DS
can track the real physical system and that the system is stable.

5 Conclusion and Future Work

In order to tackle the problem of tracking a physical system with unknown
initial conditions, we transformed it into a problem of proving the stability of
the system. For a system with an open-loop controller that can enter into a
stable state, we showed that a DS starting with a different initial conditions will
also reach a similar stable state and track the physical system. Subsequently,
we demonstrated this theory using our incubator system fitted with a periodic
open-loop controller that resulted in a stable system. By conducting simulations
and experiments, we verified our theory and concluded that a DS can track the
periodic physical system if the system is stable and only has one stable state.

In the future, we are interested in analyzing the system with a closed-loop
controller since this is more robust and general compared to an open-loop system.
Also, we want further develop the DS of our incubator system, making it capable
of coping with disturbances from opening the lid, etc.
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