
Developing a Physical and Digital Twin:
An Example Process Model

Hao Feng
Cláudio Gomes

Michael Sandberg
Casper Thule

Kenneth Lausdahl
and Peter Gorm Larsen

DIGIT, Department of Electrical and Computer Engineering
Aarhus University

Åbogade 34, Aarhus N, DENMARK
Email: {haof,claudio.gomes,ms,casper.thule,lausdahl,pgl}@ece.au.dk

Abstract—As a result of the fast development of technologies
and diversity of requirements, complexity exists not only in a
system itself but also in the development process and environ-
ment. The complexity in the development process comes from
specialization and concurrency, and a Digital Twin (DT) has the
potential to mitigate these issues. We hope, during the process
of building a DT, the accidental complexity can be minimized by
application of model-based systems engineering and the Multi-
Paradigm Modeling (MPM). In this paper, we give an example
of the process of building a DT combined with a process model.
Our long term goal is to model the development of various DTs
to identify the commonalities and variations across multiple DTs.

Index Terms—development process, digital twin, multi-
paradigm modeling, process model, cyber-physical systems

I. INTRODUCTION

It is not just that systems are complex [1]: their development
process and environment are also complex. While systems
comprised of many interacting, heterogeneous, components,
are fundamental to our society [2], [3], we argue that the
complexity in their development process should also be tack-
led. One can identify two main causes of complexity in the
development process [4]: specialization and concurrency.

Specialization arises as our knowledge matures on each
domain, opening new markets for supplier companies [5].
While there are clear benefits to specialization, the Original
Equipment Manufacturer (OEM) has difficulties obtaining
detailed descriptions of externally supplied components, due
to Intellectual Property. In multi-paradigm modelling (MPM),
every aspect of a problem is modelled explicitly, at the right
level(s) of abstraction, using the most appropriate formalism(s)
[6]. This paradigm, supported by model transformations [7],
[8] and co-simulation [9], [10], embraces specialization and
mitigates its effects.

We are grateful to the Poul Due Jensen Foundation, which has supported
the establishment of a new Centre for Digital Twin Technology at Aarhus
University. We are thankful for the discussions with Yuan Zhao, funded
by Natural Science Foundation of Tianjin 20JCQNJC0039. Hao Feng also
acknowledges support from China Scholarship Council.

The second cause of complexity in the development process,
concurrency, arises out of the need to deliver products faster
[11]. However, concurrent development processes require fre-
quent communication among different teams, to avoid late
integration problems [12], [13]. Here, process models play a
fundamental role by facilitating communication, eliciting tool
and tool integration requirements and risks, assessing matu-
rity of companies, managing inconsistencies, and supporting
automated workflows [14]–[16].

The concept of DT has emerged as a way to facilitate
reasoning about a system’s environment and to enable self-
adaptation and optimization [17]. The sheer number of tech-
niques to accomplish this goal makes the concept broad and
interdisciplinary. As a result, there is no unifying and formal
definition of what a DT is [18]–[20], but there are many
commonalities among its features across a wide range of
application domains. For example, the majority of DTs usually
use one or more models, which is one of the common features
of DTs. While a model plays an important role in a DT, it is
not a DT. Usually, a DT is a system that integrates a model
and different techniques increasing the value of the physical
system, and a DT is synchronized with the physical system
in real-time. These commonalities make it an ideal setting to
focus on the modelling and engineering process of DTs.

Our vision is that the accidental complexity of building DTs
should be minimized by application of model based systems
engineering and the MPM paradigm. Process modelling is
thus an important step in identifying the commonalities and
variations across multiple DTs.

Contribution. This paper focuses on the development pro-
cess followed in the development of an incubator system,
while the components of a DT and detailed description can be
found in the technical report [21]. We argue in [22] that such
a system highlights the essential complexity in developing
a DT, and that therefore the process exemplified here is
also representative of a larger scale development. In addition,
this paper does not try to solve the complexity problem but

Temperature
SensorsHeatbed

Content

Fan
Temperature

Sensor

Insulated
Container

Controller

If T < LL, turn heater on.

cooling
down

after H s

heating

after C s,
if T > UL

after C s,
if T< UL

waiting
heater off

Legend

H - heating duration
C - waiting duration
LL - Lower limit
UL - Upper limit
T - Temperature

Fig. 1. Schematic overview of the incubator. The left is the incubator system.
The right is the state-chart of the controller.

only an example process model which may help mitigate the
complexity issue.

We recognize however some limitations to our contribution:
we did not have experienced suppliers who could provide us
with detailed specifications of the components. This makes it
more difficult to develop first time right, because the initial
models we built were not accurate (due to missing param-
eter values that had to be guessed from publicly available
information). An experienced system integrator, together with
suppliers, could produce accurate models to inform the design
stage of the product. Instead, since cost was not a constraint,
we assembled the prototype and then measured how accurate
our initial models were.

The rest of the paper is organized as follows: in order to
have an overview of the incubator system and its DT, section II
introduces the end product of the incubator system and its
DT. Next, section III presents the development process and
the process model with details, including the comparison of
different models. This is summarized in fig. 12, including
the connections with each subsections. Finally, based on the
incubator system, we give the discussion, challenges, and
future work in section IV and we conclude in section V.

II. INCUBATOR SYSTEM AND ITS DIGITAL TWIN

In order to better understand the concept of DT, we will
introduce the incubator Physical Twin (PT) first. Then we will
present the incubator DT which comprises of multiple models
of the PT and other auxiliary services.

A. Incubator Physical Twin

The incubator is a system with the ability to hold a desired
temperature within an insulated container. The systematic
diagram of the incubator is shown in Fig. 1.

As shown in Fig. 1, the incubator system consists of an in-
sulated container, a heatbed, a fan, a controller, and three tem-
perature sensors. The three temperature sensors are used for
measuring the temperature inside the container and the room
temperature. The fan is used to circulate the airflow inside
the container to make the temperature uniformly distributed.
The controller is similar to a bang-bang controller, reading the
temperature and turning on/off the heatbed (a heating unit) and
the fan. However, due to the delayed temperature propagation
effect of the heatbed, the controller needs to wait after each
actuation, to make sure the temperature does not rise too much.
The state chart of the controller is in Fig. 1.

Fig. 2. Visualization interface of incubator PT. The horizontal axis represents
time. The plots below shows the state the heatbed (purple line) and the
fan (blue line). The plots above show the sensor temperatures and the
desired temperature. The right section shows the parameters and states of
the controller.

B. Incubator Digital Twin

Based on the incubator PT, we built multiple models of the
incubator and services that increase the value of the incubator
PT.

We consider a DT to be a set of services (that communicate
with each other) and models (used by the services), whose goal
is to provide feedback to the PT. In the following, we introduce
some of these services and the models will be discussed in
section III.

a) Data Storage: A crucial service in every DT is the
collection and aggregation of data from several streams. This
service is also responsible for allowing other services to access
the data. Examples of possible tools are: InfluxDB and Kafka.

b) Data Visualization: This service helps an operator of
a system to have a better understanding of the system because
compared with the raw data, graph or other visual interface
has the advantages in understanding information. In addition,
this service becomes easier to be developed due to the recent
advances in tools for creating visual interfaces such as Unity,
Qt, Grafana, Dash, Gazebo, and so on. In the incubator, we
used the InfluxDB because of its simplicity and powerfulness.
The example of data visualization is shown in Fig. 2.

c) State Estimation: Most of the services in a DT rely on
the states of the PT. However, it is not always feasible to obtain
the states directly. Therefore, the need for state estimation
in a DT arises. In the incubator, the air temperature can be
measured directly from the temperature sensors while it is non-
trivial to measure the temperature of the heatbed directly. In
addition, the measurement data from the temperature sensors
contain noise that covers the true state of the air temperature.
Under these circumstances, it is necessary to estimate the
states of the air temperature and the heatbed temperature. We
used a Kalman Filter (KF) to do the state estimation. It com-
bines the predicted behaviours produced by a dynamic model
with the multiple sequential measurements from sensors, to
form an estimate of the system’s varying state, that is better
than the estimate obtained by only using measurements.

d) Monitoring: Monitoring enables us to observe and
evaluate the behaviours of the incubator as it operates. Due to
the properties of the monitoring, we were able to develop the
anomaly detection. Anomaly detection refers to the problem
of finding patterns in data that do not conform to expected
behaviour [23]. Anomaly detection is not trivial due to noise,
availability of labelled data, evolution of normal behaviours,
and so on. We used a KF for basic anomaly detection by
combining the measured behaviours from the PT and the
predicted behaviours. While the incubator was in operation,
we opened the lid as an anomaly, and the KF was successful
in detecting the anomaly that is shown in Fig. 3.

e) What-If Simulation: What-if simulation is a data-
intensive simulation whose goal is to inspect the behaviour
of a physical system under some given hypotheses called
scenarios [24]. This service would enable a human operator
to try alternative interventions purely in a virtual setting to
inspect what the consequences would be under some scenarios,
before taking a final decision about what intervention would be
best. For example, we used what-if simulation to determine the
best parameters of H of the controller among four parameters
set in the scenarios that we want the longest cooling time with
a little tolerance of overheating.

f) Self-Adaptation: Self-adaptation is the ability of a
computer system to change parts of its working algorithm
over time [25], [26]. The goal of the self-adaptation is to
make a DT be able to affect the PT automatically and step
towards automation. We give, as an example, the following
self-adaptation loop applied to the incubator. Those steps are
finished automatically with the aid of the orchestration services
inside a DT.
1) Starting when an anomaly is detected. This could for

example be due to an object (e.g., a bucket of ice) being
placed in the incubator. The KF and anomaly detector can
be used to detect the changes in the system.

2) Schedule an experiment to gather relevant data. The nature
of this experiment is application-specific, and design of
experiments can be used for this [27].

3) Configure the controller to schedule the new experiment.
4) Gather experiment data, using the data recorder.
5) Run parameter estimation for new experiments.
6) Re-configure the KF with new parameters.
7) Run what-if simulations to optimize controller behaviours.
8) Re-configure the controller.

III. PROCESS MODEL OF INCUBATOR AND DT
DEVELOPMENT

Section II has introduced the end product of the incubator
and its DT. This section focuses on the development process,
sketched in Fig. 12. In the following, we will focus on specific
regions of the process model, and discuss them in more
detail. Overall we applied the following formalism: algebraic
equation, ordinary differential equations, and state machines.

A. Early 0D Models
In this stage of the development, we carried out the activities

summarized in Fig. 4. We highlight the following:

0DModelling: We sketched the algebraic equations, with the
goal of understanding the power requirements of the
system. We collected some typical parameter values and
wrote the equations that represent the energy increase of
the system, assuming a fully insulated box.

CheckEnoughPower: Having the equation that relates the
total energy in the box to the temperature, it is possible
to calculate how much energy is needed to warm up the
air from 25◦C to 35◦C. The conclusion was that around
400J were needed, and that a power supply of 100W
could provide that in about 4s.

B. Prototyping and Assumption Checking

As summarized in Fig. 5, in this stage, we assembled the
system and ran some preliminary experiments with two goals:
Assumption Checking: To check how fast the obtained

power supply could warm up the air inside the box, how
uniform the temperature inside the box was (given the
acquired fan), and how fast temperatures could be read
from the temperature sensors.

Optimization: To optimize the placement of two of the three
temperature sensors, in order to capture the average
temperature in the box.

Fig. 6 shows the experimental setup and results, after finding
a good enough position for the temperature sensors and the
fan. As can be seen, the temperature is not uniform as the
incubator warms up. The largest temperature difference is
about 6◦C. Moreover, it was concluded that 3 seconds was
enough to read all three temperature sensors. This means that
any incubator controller will have a sample time of at least
3 seconds. Finally, it can be seen that our initial estimate
regarding the time it takes to increase the temperature by 10
degrees (4s) was wildly incorrect. In practice, we observed
that it took 100s to warm up the air from 25◦C to 35◦C. The
results also show that one of the sensors (t1) could be removed,
so that it can be re-used to measure the room temperature.

C. Plant & Controller Modeling

This stage, summarized in Fig. 7 consisted of mostly creat-
ing models at different levels of abstraction, and using them
to fine tune the controller model. Aside from the algebraic
equation models created in the early modelling stage, we cre-
ated and calibrated a two-parameter model, a four-parameter
model, a seven parameter model, and a Computational Fluid
Dynamics CFD one. As shown later in section III-F, the two-
parameter model is a very rough approximation of the system
dynamics, but still useful for certain purposes, such as fine-
tuning the controller parameters.

In addition, a hardware abstraction was created, so that the
controller can be deployed and simulated in a real-time co-
simulation together with an emulator of the plant, as described
next.

D. Real-time Co-simulation

The real-time co-simulation was an important step in the
development process of the incubator and its DT, because

Fig. 3. Results of KF for anomaly detection.

: Create0DModels

: DefineRequirements : Requirements

0d_model :
AlgebraicEquation

: GuessParameters

parameterized_0d_model :
AlgebraicEquation

: Assumptions

: CalculatePowerRequirements

power_requirements :
RealNumber

: CheckEnoughPower

: BuyComponents

bom_initial : BillOfMaterials

bom_final : BillOfMaterials

: Components

Fig. 4. Early Modelling Stage.

it is now used as “baseline” integration test, to try out new
DT components, and ensure that existing ones are working
correctly. The following steps were taken, summarized in
Fig. 8:
Setup Timeseries Frameworks: To configure the data gath-

ering with InfluxDB, and RabbitMQ, as the latter was
the preferred method for communicating between DT
components. This architecture was validated with the
creation of a basic DT component: a KF.

Controller Implementation and Deployment: We created a
plant emulator, which is simply a wrapper of a plant
model, that is simulated in real-time and uses dependency
injection to mimic the sensors and respond to actuation
signals, so that the controller is tested in its production
environment. Multiple failures modes for the controller
were identified through the use of fault injection on the
plant emulator. Counter measures were coded accord-
ingly. For instance, if the temperature of the plant exceeds
a maximum threshold, then the heatbed is turned off
permanently, until the controller is restarted.

E. Digital Twin Component Development
The final stage of our development process, summarized

in Fig. 9, focused on the iterative development of each
of the DT Services. Thanks to the real-time co-simulation
infrastructure developed earlier and thanks to the virtualization
technology provided by Docker [28], we enabled continuous
integration of DT services, supported by numerous tests and
rapid development feedback. This also greatly enhanced safety,
since there is less chance bugs can affect the real PT, and the
fact that anyone can setup the development environment and
run the tests means that remote collaboration is made possible.

The process diagram in Fig. 9 only shows the development
of two DT services, for conciseness. The remaining services
were developed in a similar iterative fashion.

F. Models, Complexity, and Their Relationship to the PT
This section gives the details of development of models.
While our early 0D models based on conservation of ther-

mal energy in the system (section III) are a conceptually valid
representation of the PT, a Digital Model needs to approximate
state variables in time. This can be done with different levels
of complexity.

1) 2-Parameter Model: To describe the time-dependent
development in temperature of the incubator system, we again
considered the conservation of thermal energy (section III).
Now, however, we consider the rate of energy change to es-
tablish an Ordinary Differential Equation (ODE) that describes
the development in temperature.

As noted, the temperature in the incubator system is not
uniformly distributed. For this elementary simulation model,
we assumed that the average of the signal from the two
temperature sensors inside the incubator is representative as
a temperature estimation of the full system, Tsystem. Accord-
ingly, the thermal capacitance of the system was lumped into
a single variable, Csystem, that characterize the heater bed, the
air inside the incubator, as well as the styrofoam box itself.
As such, we assumed that the heat from the heatbed generated
during warm-up would immediately be transmitted to the other
parts of the incubator. The ODE of the 2-Parameter Model
reads as follows:

dTsystem

dt
=

1

Csystem
[V I −Gbox(Tsystem − Troom)]. (1)

Similar to the early 0D models (section III), we modeled
the energy that entered the system as the voltage times the

parameterized_0d_model :
AlgebraicEquation: Assumptions

: BuyComponents

assemble_prototype_lab
: Assemble

: Components

run_experiments_and_optimize
: Experiment

plant_prototype : Plant

calibrate_0d_model
: Calibrate

experiment_report : Text

measured_data : Table
calibrated_0d_model :

AlgebraicEquation

assess_guesses
: CompareResults

guess_assessment : Report

reproducibility_artifacts :
Code

Fig. 5. Prototyping and Assumption Checking.

t1

t2

t3

Fig. 6. Experimental setup and results.

ampere of the heatbed, but in the simulation model, this
measure was now conditional based on the heatbed signal. In
addition, the energy leaving the system was now considered.
This was characterized as the temperature difference towards
the ambient surroundings proportional to an effective heat
transfer coefficient, Gbox. Essentially, this approach lumped
any convective cooling, conduction, and heat radiation towards
the ambient surroundings into a single term. In conclusion,
the 2-Parameter Model had two free parameters, Csystem and
Gbox, that were calibrated with least-squares analysis using
data from experiments.

The temperature response produced with the 2-Parameter
Model is illustrated in Fig. 10 and compared to experimental

data. As the figure shows, the development in temperature
overall appeared to be well captured, but not without defi-
ciencies. While the model predicted that the temperature of
the system immediately dropped once the heatbed was turned
off, the experimental measurements showed an intermediate,
continued rise in temperature. This suggests that the approach
of using a single temperature variable for the full system is
insufficient since energy was obviously still transmitted from
the heatbed after it was turned off.

2) 4-Parameter Model: To address the deficiency discussed
of the 2-Parameter Model, the 4-Parameter Model was devel-
oped and it has the form of
dTheater

dt
=

1

Cheater
(V I −Gheater(Theater − Tbair)) (2a)

dTbair

dt
=

1

Cair
[Gheater(Theater − Tbair)−Gbox(Tbair − Troom)],

(2b)

where C converts the changing rate of temperature to energy
and G determines the proportion of energy converted from the
difference of temperatures. Theater represents the temperature
in the heatbed and Tbair the temperature of the air inside
the incubator. The main difference with this model was that
the temperature of the heatbed is now modeled explicitly, by
adding an additional ODE to describe its temperature behavior.
As (2) indicate, the thermal capacitance of the system was now
split into the heatbed, Cheater, and the air inside the box, Cair.
Essentially, the latter also includes the thermal capacitance of
the styrofoam box itself. Finally, referring to (2), Gheater is an
effective heat transfer coefficient that characterizes convective,

: Requirements0d_model :
AlgebraicEquation

: BuyComponents

create_2P_model
: CreateODE

2p_model : ODE

sketch_controller_sm
: CreateStateMachine

controller :
StateMachine

parameterized_controller_model :
StateMachine

measured_data : Table

calibrate_2p_model
: Calibrate

parameterized_2p_model : ODE

tune_controller
: Optimize

define_hardware_abstraction
: Code

api : RabbitMQSpec

create_4p_model
: CreateODE 4p_model : ODE

calibrate_4p_model
:

parameterized_4p_model :
ODE

assess_guesses
: CompareResults

plant_prototype : Plant

Fig. 7. Plant & Controller Modelling Process.

conductive, and radiative heat transfer from the heatbed to
the rest of the system. Similar to the 2-Parameter Model, the
four free parameters in the 4-Parameter Model were calibrated
using least-squares.

As it can be seen in Fig. 10, the temperature response now
appears better captured. After the heatbed was turned off, the
model now predicted an intermediate, continued temperature
rise, and overall, the simulated behavior followed the exper-
iments closely. However, as the lid was opened later in the
experiment (indicated in Fig. 10), the predicted temperature
from the simulation model started to drift away from the
experimental data.

3) 7-Parameter Model: If the lid of the incubator is opened,
the resistance for the thermal energy to escape the system is
significantly lowered. To include this behavior, we made the
effective heat transfer coefficient of the incubator, Gbox, con-
ditional on whether the lid was open or not. In order to enable
the ”Self-Adaptation” service introduced in section II-B, we
also modeled a foreign object being placed inside the incubator
(e.g., an ice bucket, etc.). Similar to our approach for modeling
the heatbed, we added an additional ODE for the temperature
of the foreign object, Tfo, as well as an effective heat transfer
coefficient, Gfo, describing the energy exchange between the
foreign object and the air inside the incubator. In total, the
7-Parameter Model includes three ODEs with in total seven
free parameters:

dTheater

dt
=

1

Cheater
(V I −Gheater(Theater − Tbair)) (3a)

dTbair

dt
=

1

Cair
[Gheater(Theater − Tbair)

−Gbox(Tbair − Troom)−Gfo(Tbair − Tfo)]
(3b)

dTfo

dt
=

1

Cfo
Gfo(Tfo − Tbair) (3c)

While we will not discuss temperature behavior related
to placing foreign objects inside the incubator in this study,
Fig. 10 shows that 7-Parameter Model is capable of capturing
the temperature response related to opening the lid, provided
that the timing of opening and closing the lid are known.

4) Computational Fluid Dynamics model: The final level
of complexity that we considered in this study was a full
CFD model of the system. In a CFD model, partial differential
equations describing the behavior of the components in both
time and space are solved, which means that this approach
does not rely on model reduction techniques. As such, one
can say that it gives the full picture instead of the temperature
at a few selected points. The CFD model in this study was
based on the solution of the Navier-Stokes equations assuming
incompressible, non-isothermal flow and solved using the
commercial finite element software COMSOL Multiphysics.
A selected frame from the simulation can be seen in Fig. 11

parameterized_controller_model :
StateMachine

: IdentifyFailureModes

failure_modes : Table

implement_controller
: Code

define_hardware_abstraction
: Code

api : RabbitMQSpec

controller : Code

create_plant_emulator
: Code

parameterized_4p_model :
ODE

plant_emulator : Code test_controller_in_DT
: RunRTCosim

setup_ts_database_and
DT_architecure

: Code

db : InfluxDBConfig

create_kalman_filter
: Code

Fig. 8. Real-time Co-simulation Process.

(b). The frame shows that the temperature is, in fact, not evenly
distributed. For example, since the airflow over the heater bed
is uneven, the temperature is higher in some local areas, and as
the air is circulated inside the incubator, it is gradually cooled
down.

The higher fidelity of the CFD model comes at a cost.
While the reduced 2,4, and 7-Parameters Models involved
one to three state variables, the CFD model involved the
solution of approximately 100 000 unknowns. This comes
from the hexahedral mesh-discretisation (Fig. 11 (a)) that
must be applied in order to obtain a numerical solution to
the governing equations. Consequently, the computation time
needed to advance the simulation model in time is roughly
100 000 times longer (compared to, e.g., the 2-Parameter
Model), which makes a full-blown CFD approach unsuitable
for anything close to real-time analyses.

IV. DISCUSSION, CHALLENGES, AND FUTURE WORK

The development of the Incubator twin system has been
carried out in a straightforward fashion in order to gain
knowledge of the domain of DT engineering. This has led to
a stage where it might be possible to see common traits that
can be reused and assist in defining a methodology. One of the
challenges is the process of verifying the fidelity of a model of
a piece of hardware, i.e. the plant model of the incubator. Such

an experiment can be carried out by profiling the hardware and
subsequently issuing a calibration procedure in order to tune
model parameters. If the process converges in the sense that
the model has a sufficient fidelity, then it has finished and
parameters of the model have been uncovered. However, if
not, then the model potentially has to be transformed, as the
case was with the 2, 4, and 7-parameter plant model of the
incubator, repeating the whole process.

Regarding the first time right approach, due to the unreliable
suppliers and components we worked it, our initial models
were wildly inaccurate. However, after the first prototype and
calibration, we were able to quickly tune the controller and
reuse the calibrated models to implement a PT emulator, which
relies on co-simulation [10] and speeds up the development
of the DT. This emulator is important not just for training
operators, but also for the development environment of the DT
services: thanks to virtualization technology [29], it is possible
to automatically setup the development environment and run
integration tests. This leads to higher quality DT services and
increased safety.

In the future, we plan to integrate units with co-simulation
using the Functional Mockup Interface (FMI) standard [30],
[31] with some of the services in the DT, and apply the
lessons from the Incubator to other DT case studies, i.e. a
Desktop Sized Robot [32] and extend on the gained knowledge

plant_prototype : Plant

controller : Code

plant_emulator : Code
test_controller_in_DT

: RunRTCosim

: DeployController

test_prototype
: RunRTCosim

db : InfluxDBConfig

develop_what_if_component
: RunRTCosim

develop_anomaly_detector
: RunRTCosim

test_dt_components
: RunRTCosim

: IdentifyFailureModes

Fig. 9. DT Component Development Process.

for subsequent DT development. This will allow for quickly
prototyping new DT services, that can be integrated as FMUs
[33], using a contract-based approach to ensure correctness
[34]–[36].

Much of this work is expected to be concerned with a tool-
supported methodology for DT development. In this regard
Formalism Transformation Graph + Process Model process
modelling language plays a fundamental role.

V. CONCLUSION

In this paper, we first demonstrated the end product of the
incubator system and its DT development, for an overview.
Then we presented the development process model of the

30

40

50

21
21.1
21.2
21.3

12:00
Mar 4, 2021

12:30 13:00 13:30 14:00
false

true

0

1

avg_T

avg_temp(T(7))

avg_temp(T(4))

avg_temp(T(2))

room

heater_on

fan_on

in_lid_open(T(7))

Incubator Temperature (°C)

Room Temperature (°C)

Actuators

Timestamp

Lid Opened

Lid Closed

Lid Opened

Lid Closed

Lid Opened

Lid Closed

Lid Opened

Lid Closed

Fig. 10. The temperature response of the 2, 4, and 7-Parameter Models
compared to the experimental measurements.

Fig. 11. (a) Mesh-discretisation of the CFD model. (b) Temperature distribu-
tion inside the incubator at a selected time instance approximated using CFD
simulations.

incubator and its DT, including the development of models,
controller, co-simulation, and DT component development
from its beginning stage. We report on the development of
one DT. We, therefore, do not have yet the experience to
discuss the impact of the process model on/to modelling
steps or their complexity. During the development process,
we realized that it might be possible to see common traits that
can be reused and assist in defining a methodology. We hope
that we can apply the lessons from the incubator system to
other DTs development. Finally, we would like to mention
that at a high level, the development process is consistent
with the traditional iterative v-process: low fidelity modelling,

high fidelity modelling, simulation, component development,
physical experiments, etc.

REFERENCES

[1] H. Vangheluwe, “Foundations of Modelling and Simulation of Complex
Systems,” Electronic Communications of the EASST, vol. 10, 2008.

[2] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in 11th IEEE
International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), 2008, pp. 363–369.

[3] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska,
“Systems of Systems Engineering: Basic Concepts, Model-Based Tech-
niques, and Research Directions,” ACM Computing Surveys, vol. 48,
no. 2, pp. 18:1–18:41, 2015.

[4] T. Tomiyama, V. D’Amelio, J. Urbanic, and W. ElMaraghy, “Complexity
of Multi-Disciplinary Design,” CIRP Annals - Manufacturing Technol-
ogy, vol. 56, no. 1, pp. 185–188, 2007.

[5] K. B. Clark, “Project scope and project performance: The effect of parts
strategy and supplier involvement on product development,” Manage-
ment science, vol. 35, no. 10, pp. 1247–1263, 1989.

[6] H. Vangheluwe, J. De Lara, and P. J. Mosterman, “An introduction
to multi-paradigm modelling and simulation,” in Proceedings of the
AI, Simulation and Planning in High Autonomy Systems Conference.
Lisbon, Portugal: Society for Computer Simulation International, 2002,
pp. 9–20.

[7] S. Sendall and W. Kozaczynski, “Model transformation: The heart and
soul of model-driven software development,” IEEE Software, vol. 20,
no. 5, pp. 42–45, Sep. 2003.

[8] C. Gomes, B. Barroca, and V. Amaral, “Classification of Model
Transformation Tools: Pattern Matching Techniques,” in Model-Driven
Engineering Languages and Systems, ser. Lecture Notes in Computer
Science, J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and E. Insfran,
Eds., vol. 8767. Springer International Publishing, 2014.

[9] R. Kübler and W. Schiehlen, “Two Methods of Simulator Coupling,”
Mathematical and Computer Modelling of Dynamical Systems, vol. 6,
no. 2, pp. 93–113, 2000.

[10] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe,
“Co-simulation: A Survey,” ACM Computing Surveys, vol. 51, no. 3,
pp. 49:1–49:33, 2018.

[11] J. Buur et al., “Mechatronics design in Japan,” Ph.D. dissertation,
Institute for Engineering Design, Technical University of Denmark
(DTH), 1989.

[12] C. W. De Silva, Mechatronics: An Integrated Approach. CRC press,
2004.

[13] R. Plateaux, J. Choley, O. Penas, and A. Riviere, “Towards an integrated
mechatronic design process,” in Proceedings of the 2009 IEEE Interna-
tional Conference on Mechatronics, vol. 00. Malaga, Spain: IEEE,
2009, pp. 1–6.

[14] S. Mustafiz, J. Denil, L. Lúcio, and H. Vangheluwe, “The FTG+PM
framework for multi-paradigm modelling,” in Proceedings of the 6th
International Workshop on Multi-Paradigm Modeling - MPM ’12. New
York, New York, USA: ACM Press, 2012, pp. 13–18.

[15] M. Challenger, K. Vanherpen, J. Denil, and H. Vangheluwe, “FTG+ PM:
Describing Engineering Processes in Multi-Paradigm Modelling,” in
Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems.
Springer, Cham, 2020, pp. 259–271.

[16] I. Dávid, E. Syriani, C. Verbrugge, D. Buchs, D. Blouin, A. Cicchetti,
and K. Vanherpen, “Towards inconsistency tolerance by quantification
of semantic inconsistencies,” in 1st International Workshop on Collab-
orative Modelling in MDE, vol. 1717, 2016, pp. 35–44.

[17] M. Grieves and J. Vickers, “Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems,” in Transdisci-
plinary Perspectives on Complex Systems. Cham: Springer International
Publishing, 2017, pp. 85–113.

[18] M. Liu, S. Fang, H. Dong, and C. Xu, “Review of digital twin
about concepts, technologies, and industrial applications,” Journal of
Manufacturing Systems, vol. 58, pp. 346–361, Jan. 2021.

[19] A. Rasheed, O. San, and T. Kvamsdal, “Digital Twin: Values, Challenges
and Enablers From a Modeling Perspective,” IEEE Access, vol. 8, pp.
21 980–22 012, 2020.

[20] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital Twin in Industry:
State-of-the-Art,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 4, pp. 2405–2415, Apr. 2019.

[21] H. Feng, C. Gomes, C. Thule, K. Lausdahl, M. Sandberg, and P. G.
Larsen, “The Incubator Case Study for Digital Twin Engineering,”
arXiv:2102.10390 [cs, eess], Feb. 2021.

[22] H. Feng, C. Gomes, C. Thule, K. Lausdahl, A. Iosifidis, and P. G. Larsen,
“Introduction to Digital Twin Engineering,” in The Annual Modeling and
Simulation Conference, Virginia, USA, 2021, p. to appear.

[23] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, Jul. 2009.

[24] S. Rizzi, “What-if analysis.” 2009.
[25] P. Zhou, D. Zuo, K. Hou, Z. Zhang, J. Dong, J. Li, and

H. Zhou, “A Comprehensive Technological Survey on the Depend-
able Self-Management CPS: From Self-Adaptive Architecture to Self-
Management Strategies,” Sensors, vol. 19, no. 5, p. 1033, Feb. 2019.

[26] D. Weyns, “Software Engineering of Self-adaptive Systems,” in Hand-
book of Software Engineering, S. Cha, R. N. Taylor, and K. Kang, Eds.
Cham: Springer International Publishing, 2019, pp. 399–443.

[27] L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models,
ser. Lecture Notes in Statistics. New York, NY: Springer New York,
2013, vol. 212.

[28] J. Turnbull, The Docker Book: Containerization Is the New Virtualiza-
tion. James Turnbull, 2014.

[29] D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[30] A. Junghanns, T. Blochwitz, C. Bertsch, T. Sommer, K. Wernersson,
A. Pillekeit, I. Zacharias, M. Blesken, P. Mai, K. Schuch, C. Schulze,
C. Gomes, and M. Najafi, “The Functional Mock-up Interface 3.0
- New Features Enabling New Applications,” in Proceedings of the
14th International Modelica Conference. online: Linköping University
Electronic Press, Linköpings Universitet, 2021, p. to be published.

[31] C. Gomes, M. Najafi, T. Sommer, M. Blesken, I. Zacharias, O. Kotte,
P. Mai, K. Schuch, K. Wernersson, C. Bertsch, T. Blochwitz, and
A. Junghanns, “The FMI 3.0 Standard Interface for Clocked and Sched-
uled Simulations,” in Proceedings of the 14th International Modelica
Conference. online: Linköping University Electronic Press, Linköpings
Universitet, 2021, p. to be published.

[32] G. Lumer-Klabbers, J. O. Hausted, J. L. Kvistgaard, H. D. Macedo,
M. Frasheri, and P. G. Larsen, “Towards a digital twin framework for
autonomous robots,” in SESS: The 5th IEEE International Workshop on
Software Engineering for Smart Systems, COMPSAC 2021. IEEE, July
2021.

[33] C. M. Legaard, C. Gomes, P. G. Larsen, and F. F. Foldager, “Rapid
Prototyping of Self-Adaptive-Systems using Python Functional Mockup
Units,” in Proceedings of the 2020 Summer Simulation Conference,
ser. SummerSim ’20. Virtual Event, Spain: Society for Computer
Simulation Internationa, San Diego, CA, United States, 2020, pp. 1–
12.

[34] S. T. Hansen, C. Gomes, P. Larsen, and J. van de Pol, “Synthesizing
Co-Simulation Algorithms with Step Negotiation and Algebraic Loop
Handling,” in The Annual Modeling and Simulation Conference, Vir-
ginia, USA, 2021, p. to appear.

[35] E. O. Inci, C. Gomes, J. Croes, C. Thule, K. Lausdahl, W. Desmet,
and P. G. Larsen, “The effect and selection of solution sequence in
co-simulation,” in The Annual Modeling and Simulation Conference,
Virginia, USA, 2021, p. to appear.

[36] C. Thule, C. Gomes, and K. Lausdahl, “Formally Verified FMI Enabled
Data Broker: RabbitMQ FMU,” in Proceedings of the 2020 Summer
Simulation Conference, ser. SummerSim ’20. Virtual event: Society
for Computer Simulation International, 2020, pp. Pages 1–12.

: Create0DModels

: DefineRequirements : Requirements

0d_model :
AlgebraicEquation

: GuessParameters

parameterized_0d_model :
AlgebraicEquation

: Assumptions

: CalculatePowerRequirements

power_requirements :
RealNumber

: CheckEnoughPower

: BuyComponents

bom_initial : BillOfMaterials

bom_final : BillOfMaterials

assemble_prototype_lab
: Assemble

create_2P_model
: CreateODE

: Components

2p_model : ODE

sketch_controller_sm
: CreateStateMachine

controller :
StateMachine

parameterized_controller_model :
StateMachine

: IdentifyFailureModes

failure_modes : Table

run_experiments_and_optimize
: Experiment

plant_prototype : Plant

calibrate_0d_model
: Calibrate

experiment_report : Text

measured_data : Table

calibrated_0d_model :
AlgebraicEquation

assess_guesses
: CompareResults

guess_assessment : Report

reproducibility_artifacts :
Code

calibrate_2p_model
: Calibrate

parameterized_2p_model : ODE

tune_controller
: Optimize

implement_controller
: Code

define_hardware_abstraction
: Code

api : RabbitMQSpec

controller : Code

create_plant_emulator
: Code

create_4p_model
: CreateODE

Section III C: Plant & Controller Modeling

4p_model : ODE

calibrate_4p_model
: Calibrate

parameterized_4p_model :
ODE

plant_emulator : Code test_controller_in_DT
: RunRTCosim

: DeployController

test_prototype
: RunRTCosim

setup_ts_database_and
DT_architecure

: Code
db : InfluxDBConfig

create_kalman_filter
: Code

develop_what_if_component
: RunRTCosim

develop_anomaly_detector
: RunRTCosim

test_dt_components
: RunRTCosim

Section III A: Early 0D Models

Section III B: Prototyping and Assumption Checking

Section III D: Real-time Co-simulation

Section III E: DT Component Development

Fig. 12. Sketch of the incubator development process.

