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Abstract

Cyber-Physical Systems (CPSs) are getting increasingly complex and generate large amounts of data. Ana-
lyzing such data provides us an insight into a given system. The digital twin concept emerges as an attempt
to seamlessly integrate the data and insight in order to improve system performances. It enables applications
such as visualization, monitoring, state estimation, and self-adaptation. In this paper, we demonstrate the
construction of a digital twin exemplified by an incubator system, including the benefits and challenges of
each application. The result is a description of the building blocks of a digital twin.
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1 INTRODUCTION

Due to performance demand and various requirements, large amounts of data can be gathered from CPSs
for analysis such as smart control and monitoring. In order to seamlessly integrate the data and the insight
gained from the analysis, the concept of Digital Twin (DT) (Grieves and Vickers 2017) has emerged. Various
definitions of DTs (Liu et al. 2021, Rasheed et al. 2020, Tao et al. 2019) have been proposed since it was
first presented by Michael Grieves in 2003 (Tao et al. 2019). In this paper, we give our summary. We
view a DT as a system which incorporates different techniques to increase the values of the physical system.
As summarized in Figure 1, if the communication between the physical system and digital system is bi-
directional meaning that data can flow automatically from the physical system to the digital system and vice
versa, we call such the digital system a Digital Twin (DT) and the physical system a Physical Twin (PT).
On the other hand, we call the digital system a Digital Shadow (DS) when the data only flows automatically
from the PT to the digital system. Naturally, in a DS, data may flow back as well in the broad sense of the
word (as in, a human takes action), but this is not done directly.

The availability of such data and accompanying analysis potentially enable applications such as visualiza-
tions (Ward et al. 2010), monitoring (Gawand et al. 2015), state estimation (Dehghanpour et al. 2019),
anomaly detection (Chandola et al. 2009), what-if (co)-simulation (Rizzi 2009), and self-adaptation (Zhou
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Figure 1: Communications inside a DS and DT. The blue and red arrows represent automated data flows of
a DS and a DT respectively.

et al. 2019). These applications have the potential to improve the performance of a PT in many aspects.
For example, if an expert desires to determine the optimal parameters for a controller in a PT, he can run
what-if (co)-simulations using the DS, to obtain performance results based on candidate parameter sets. The
expert can then reconfigure the parameters according to the results. However, a DS has its own limitations.
One of the drawbacks of a DS is that the data only flows from the PT to the DS. This means a DS cannot
automatically affect the PT. The DT does not have such limitation.

By demonstrating the benefits and challenges inside a DS and DT, we hope to better understand a DS and a
DT, give an introduction to a DS and a DT, and provide a good validation case for the community. Thus we
discuss some of the building blocks of a DS and DT, using a simple but representative incubator system as
running example. Based on this system, we introduce the communication, analysis of data, and applications
inside a DS and DT.

The rest of the paper is organized as follows: Section 2 gives an introduction to the incubator PT. Based on
the PT, we discuss parts of features and challenges inside the DS. In order to overcome the drawbacks of
the DS, we transform the DS to a DT in section 3 and discuss benefits and challenges of a DT. Finally, we
conclude and discuss further directions in section 4.

2 INCUBATOR DIGITAL SHADOW

In order to construct a DS and a DT, we first developed an incubator system to serve as a PT. The systematic
diagram of the incubator is shown in fig. 2. The incubator is a system with the ability to hold a desired tem-
perature within an insulated container. The controller for the incubator is similar to a bang-bang controller,
with a small difference described below. The controller receives data from the sensors of the incubator,
turns on/off the heatbed (a heating unit) and a fan. Due to the delayed temperature propagation effect of
the heatbed, the controller needs to wait after each actuation, to make sure the temperature does not rise too
much. The details of the incubator system are in Feng et al. (2021).

Based on the PT, we implemented the DS by deploying a communication channel for data transmission from
the PT to the DS and creating a model of the PT. Such DSs increase the value of their PT counterparts but
not without challenges. In this section, we are going to discuss the features and challenges inside the DS.

2.1 Communication and Data Storage

Communication from a PT to the DS needs to tackle problems such as point to point communication, multi
clients to multi clients communication, messages routing, packet dropout, service failure, load balancing,
and so on. In addition, the communication delays should be minimized. Delays occur while exchanging
information from a PT to the DS, due to a limited communication channel capacity. For example, real-time
monitoring could fail with disastrous consequences if the delays violate the required tolerances.
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Figure 2: Schematic overview of the incubator. The left is the incubator system. The right is the statechart
of the controller.

Many different technologies already exist for tackling the communication issues, i.e. RabbitMQ (https:
//www.rabbitmq.com/), Ditto (https://www.eclipse.org/ditto/), Apache Kafka(https://kafka.apache.org/), and
https://www.rti.com/. In our case, we chose RabbitMQ to serve as a data broker because of its lightweight
and easy deployment on premise.

Regarding data storage, we used InfluxDB for its ease of use, its bindings to different programming lan-
guages, and its simple visualization facilities. For other technologies and tools for data storage, we refer the
reader to Padgavankar and Gupta (2014), Mazumdar et al. (2019).

2.2 Data Visualization

Humans use sight as one of a key senses for understanding information (Ward et al. 2010). Recent advances
in tools for creating visual interfaces such as Unity (https://unity.com/), Qt (https://www.qt.io/), Grafana,
Dash, Gazebo, and so on, have made it easier to create intuitive and visual interfaces for a DS. One of the
challenges in DT engineering is the rapid construction of these interfaces from a PT. Such interfaces should,
for example, allow the user to: 1) Selectively visualize the 3D PT and its state; 2) Create dashboards to
plot the most important data; 3) Replay past behavior of the PT; 4) Spawn new what-if simulations; 5) Run
optimizations; 6) Display predictive maintenance results;

When faced with big data either collected from simulations or a PT, data visualization needs to provide
perceptual scalability, real-time scalability, and interactive scalability (Agrawal et al. 2015). More details
about data visualization can be found in Chan (2006).

For the incubator case study, we used the simple visualization capability of InfluxDB to create a dashboard
showing the temperature data from the sensors, the state of the fan and the heatbed, and the parameters of
the controller and the control states. Figure 3 shows our visualization results.

2.3 Modelling and Calibration

Models are used to describe behaviors of interest, often involving equations combined with parameters.
Such models lay the foundation for other applications such as state estimation and monitoring. Modeling
might be a challenging work since it involves different knowledges in terms of the behaviors of interest.
Without a better comprehension of a system, it could be difficult to build a high fidelity model.

https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.eclipse.org/ditto/
https://kafka.apache.org/
https://www.rti.com/
https://unity.com/
https://www.qt.io/


Feng, Gomes, Thule, Lausdahl, Iosifidis, and Larsen

Figure 3: Visualization interface of incubator PT. The horizontal axis represents time. The plots below shows
the state the heatbed (purple line) and the fan (blue line). The plots above show the sensor temperatures and
the desired temperature. The right section shows the parameters and states of the controller.

An important part of employing models in a DS context is calibration. Calibration is the process of adjusting
certain model parameters to make the behaviors of the model fit the behaviors of the PT (Williams and
Esteves 2017). Without calibration, a model may not be able to predict the behaviors of interest correctly.

The success of calibration depends not only on the data but also on the fidelity of a model. Regarding data
from a PT, we highlight the problem of noisy measurements. Because of noise, inferred parameter values
have a stochastic component. Moreover, the structure of the model may be such that some parameters only
have an effect on the model behavior if particular inputs are given. So it may be the case that, under certain
inputs, some parameters may never properly be found by calibration. In the state of the art, techniques such
as noise filtering (Rhodes 1971) and design of experiments (Telford 2007) can be of assistance.

Based on different goals of a DS, we may choose models with various fidelity. High fidelity models generally
results a satisfied calibration while it may be time-consuming. Although relative low fidelity models are with
less accuracy, they have the advantages of simulation speed. In addition, the accuracy of simulations also
affects calibration results because some parts of the methods compare the trajectories of simulations with
measured trajectories. For more details on system identification, we refer the reader to the vast literature on
the topic (Isermann and Münchhof 2010, Keesman 2011, Nelles 2013).

We developed two models for the incubator PT. One contains two parameters without the assumption that
the heatbed retains heat energy. Another consists of four parameters with the assumption. The calibration
results showed that the model with four parameters performs better than the model with two parameters.
The four parameter model is given by

dTheater

dt
=

1
Cheater

(V I∆t −Gheater(Theater −Tbair)) (1a)

dTbair

dt
=

1
Cair

[Gheater(Theater −Tbair)−Gbox(Tbair −Troom)]. (1b)

The four unknown parameters are Cheater, Cair (unit:JK−1), Gheater, and Gbox (unit:JK−1), where C convert
the changing rate of temperature to energy and G determines the proportion of energy converted from the
difference of temperatures. Theater represents the temperature in the heatbed and Tbair the temperature of the
air inside the incubator.
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In order to calibrate the parameters we collected data from the incubator PT and utilized a non-linear least
square solver. The details about modeling and calibration can be accessed in Feng et al. (2021). The cali-
bration results are shown in fig. 4, which shows that our model aligns with the PT under current conditions.
The purpose of the need of the alignment is to describes behaviors of the PT using the model so that we
can use the model to replace the PT for some analysis. This involves the generalization of the model, which
means we need to figure out on what conditions the model can predict the behaviors of interest correctly,
when the model is invalid.

heatbed control signal

temperature data
from sensors

temperature data
from the model

Temperature (°C)

Incubator Temperatures

Figure 4: Calibration results of (1). The blue line is the average temperature representing the air temperature
inside the incubator, while the green line represents the results from our calibrated model. The read line
shows the two states of the heatbed, on and off.

2.4 State Estimation

State represents the internal condition or status of a system at a given instant of time (Simon 2006). Those
states can be static or changing with time. Take the model in (1) for example, the states are the temperature
of the air inside the incubator and the temperature of the heatbed. If electrical power flows into the heatbed,
then the heatbed heats the air. Such a power flow changes the states of the incubator system.

State estimation is the use of different methods to estimate the states of interest that cannot be obtained
directly through measured data. For example, in the incubator system, we need to estimate the temperature
of the heatbed. However this cannot be obtained directly through the sensors. In addition, the data from
sensors is contaminated by noise.

One of common state estimation algorithms is Kalman Filter (KF). It combines the predicted behaviors
produced by a dynamic model with the multiple sequential measurements from sensors, to form an estimate
of the system’s varying state, that is better than the estimate obtained by only using measurements. By
combining (1) after calibration and the measured temperature data of the air inside the incubator, we used a
KF to estimate the states of the heatbed and the air. As seen in fig. 5, the KF gives the estimated stated of the
heatbed and the air temperature inside the incubator, while attempting to minimize the expected variance of
the estimation error. For more details and alternative state estimators, we refer the reader to Simon (2006).
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(a) State estimation results of air temperature inside the box. The blue line is the average air
temperature inside the incubator from the sensory data. The green line represents the same
temperature but it is generated from (1). The purple line showing the same air temperature
results from the KF.
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(b) State estimation results of the heatbed. The pink line is the heatbed temperature from
(1) and the light green line from KF.

Figure 5: State estimation results.

2.5 Monitoring

Monitoring in context of a DS is the act of observing and evaluating the behaviors of a PT as it operates
(Bartocci et al. 2018). One of the benefits of monitoring in the DS context is 3D visualization of a PT since
3D visualization might be helpful for humans to understand compared with long textual listings of data,
depending on the nature of a PT.

We distinguish between online and offline monitoring. Offline monitoring stores an entire observation trace
of the PT, which is periodically examined, while online monitoring is performed as data is received (Gawand
et al. 2015). One important feature of offline monitoring is replaying. By replaying a situation where some
kind of error has been logged using monitoring techniques, it can be easier to understand why it appeared.

In an online monitoring scenario, it can be advantageous to monitor desirable properties e.g., in relation to
the safety of a PT to its environment, it can be very valuable to be able to monitor when the discrepancy
between the monitored and predicted behaviors start and provide supporting decision makings from the DS
side if there is an expert taking the final decision. To address some of the these challenges, we refer the
reader to the state of the art in run-time monitoring (Yilin Mo et al. 2012, Paridari et al. 2018).

In order to realize online monitoring for the incubator PT, we need sensory data, models, calibration, and
state estimation. The sensory data provides the information for the air temperature inside the incubator. In
addition, the heatbed temperature cannot be measured directly, thus the state estimation implemented by KF
gives us the state of the heatbed. These results are then plotted in the visualization interface (recall fig. 3).
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In addition, monitoring techniques can be used for anomaly detection. Anomaly detection refers to the prob-
lem of finding patterns in data that do not conform to expected behavior (Chandola et al. 2009). Anomaly
detection is not trivial due to noise, availability of labelled data, evolution of normal behaviors, and so on.
Different technologies from diverse disciplines such as machine learning, data mining, and statistics can be
applied for anomaly detection. More information is available in Ariyaluran Habeeb et al. (2019), Braei and
Wagner (2020), Kwon et al. (2019).

In our work, we used KF for basic anomaly detection by combining the measured behaviors from the PT and
the predicted behaviors. In order to showcase an anomaly, we opened the lid of incubator system because
the model we used to do the state estimation only represents the behaviors of the system with a closed
lid. Opening it causes the system to violate the physical principles the model was originally built on, and
therefore the KF will fail to track what is happening. The results are illustrated in fig. 6. We repeated the
opening and closing of the lid twice. As seen, when we opened the lid, the purple line and the blue line
shows the discrepancy, showing the anomaly. After closing the lid, the physical principles of the model
comply with the situation, thus the two lines merge gradually.

Figure 6: Results of KF for anomaly detection.

2.6 What-If Simulation

What-if simulation is a data-intensive simulation whose goal is to inspect the behavior of the PT under some
given hypotheses called scenarios (Rizzi 2009). In cases where violations of desirable properties have been
detected during monitoring of the PT behavior, a what-if simulation would enable to a human operator to
try alternative interventions purely in a virtual setting to inspect what the consequences would be, before
taking a final decision about what intervention would be best. This naturally requires simulation of the
different alternatives to be faster than real-time. In cases where the simulations consist of multiple sub-
models, a co-simulation (Gomes et al. 2018) should be used. In the context of DS, compared to an offline
simulation, the what-if simulation is endowed with the ability to access the historical data directly from a
DS, synchronize the simulation with the PT, and/or automatically incorporate the simulation results into
other services running in the DS.

What-if simulation provides insights for optimizing the PT configurations to achieve the desired goal. How-
ever, this can in particular be vulnerable in cases where the consequences of wrong choices can be fatal, for
example in relation to safety constraints.

We used what-if simulation to determine the optimal configurations for the parameter H in the controller
described in fig. 2. The scenario is that we need to make an intervention in the incubator, thus it is necessary
to cut off the power for a period time. We need to determine the largest available time period (the time
between two extreme points) for the intervention, if we allow a slight overheat of the incubator. The result
is shown in fig. 7. The red line gives us the largest available time period but it overheats excessively, thereby
violating the slight overheat allowance. The green line has the largest available time period compared with
the yellow and blue line and the parameter is what we need.
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Figure 7: Results of what-if simulation for controller configuration. The horizontal and vertical axes repre-
sent time and temperature respectively.

3 DIGITAL TWIN

In section 2, we introduced features inside a DS some of which, such as anomaly detection and what-if (co)-
simulation, provide insights for decision making. However, the DS cannot automatically reconfigure the
system based on those results. This leads to the need of a DT. In this section, we discuss the communication
and self-adaptation in a DT, including the benefits and challenges.

3.1 Bidirectional Communication

In order to transform a DS to a DT, it is necessary to enable bidirectional communication, i.e. data flow
from a PT to a DT and vice versa. In addition, the PT should make some changes for receiving data e.g., we
updated the controller to receive messages from the DT and reconfigure the parameters. An example of a
DT is shown in fig. 8. A configurator feature is added to the PT to make it configurable, and a configuration
service is added to the digital shadow, in order to turn it into a DT.

Communication 
Server 

CPT

Data Recorder

Safety Monitoring

InfluxDB

Configurator

PPT

Real ENV

Physical Twin Digital Twin

Self-Adaptation

Configurator

O
rchestration

Figure 8: Schematic overview of a CPS-based Digital Twins. The data collected from the PT are sent to the
DT through the communication server for further utilization such as safety monitoring, self-adaptation. In
addition, the DT can send feedbacks to the PT via the communication server.

There are many technologies that can be used to realize bidirectional communication. For example, Ditto
and RabbitMQ as mentioned above. Enabling bi-directional communication raises the important challenge
of ensuring cyber-security (Humayed et al. 2017, Kumar et al. 2020, Zacchia Lun et al. 2019). Moreover,
legacy systems cannot simply be connected to the internet because such systems have not received the nec-
essary software patches to improve security, and doing so would mean significant down-time. Regarding the
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incubator, we mitigated this issue by limiting the range of the parameters for the controller of the incubator
PT.

3.2 Self-Adaptation

Self-adaptation is the ability of a computer system to change parts all of its working algorithm over time
(Sari and Sopuru 2021). With the rapid increasing complexity of CPSs, understanding the massive data from
a PT and deciding the proper response to the PT are non trivial for human (Zhou et al. 2019).

The DT can be used to implement self-adaptation and process large amounts of data in a timely manner.
However, self-adaptation procedures can be very intricate, rely heavily on domain knowledge, and are ap-
plication specific (e.g., a self-adaptation loop for the incubator is very different than the self-adaptation
loop for a robot manipulator). Incidentally, the people who know best how to reconfigure the system, are
not necessarily the ones that can code those self-adaptation loops. Therefore, languages and frameworks
(Keskisärkkä 2014) that enable domain experts to change the DT can play an important role.Moreover, it is
crucial that new configuration, and the act of moving the system from the current configuration to the new
one, are safe (Cámara et al. 2013, Weyns 2019).Techniques such as reachability analysis (Kurzhanski and
Varaiya 2000, Asarin et al. 2000) can play a role here.

We give, as example, the following self-adaptation loop applied to the incubator. Those steps are finished
automatically by the aid of the orchestration services in fig. 8.

1) Start when an anomaly is detected. This could be, e.g., due to an object (e.g., a bucket of ice) being
placed in the incubator. The KF and anomaly detector can be used to detect the changes of the system.

2) Schedule an experiment to gather relevant data. The nature of this experiment is application specific,
and design of experiments can be used for this (Pronzato and Pázman 2013).

3) Configure controller to schedule the new experiment.
4) Gather experiment data, using the data recorder.
5) Run parameter estimation for new experiments.
6) Re-configure KF with new parameters.
7) Run What-if simulations to optimize controller behaviors.
8) Re-configure controller.

4 CONCLUSION AND FUTURE WORK

In this paper, we introduced digital twin engineering in the context of an incubator PT. By bridging the
connection from the PT to the DS, we described features such as visualizations, state estimation, monitoring,
anomaly detection, and what-if (co)-simulation, and how they are implemented in the incubator. We showed
that going from a DS to a DT is a complex endeavour, that raises many challenges in security and safety.

It is easy to see that the DS features are mostly application independent, requiring the use of models. This
makes it possible to study DS engineering and to devise frameworks to quickly produce DSs. Engineering
a DT is, however, more challenging, because many self-adaptation loops are application dependent, as we
exemplified.

As limitation, we did not consider the important challenge in data transformation and correlation, from
multiple sources (including cross company data sources), since such a challenge is difficult to reproduce
with the incubator example. In the future, we will research the necessary abstractions in order to describe
the coordination of DS services required to implement self-adaptation loops.
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