
1

When Every Transmission Counts: Event-Trigger
Threshold Regulation for STL Properties

Abstract—We propose a novel event-trigger threshold (ETT)
regulation mechanism ETT ρ based on Signal Temporal Logic
(STL) properties significantly extending recent work on ETT
regulation for Propositional Logic properties. We utilize the
quantitative semantics of STL to construct a method for com-
puting and merging suitable ETTs for different requirements
in complex STL specifications. Contrary to related work on
event-triggered control for STL properties, we apply the event-
triggering logic to the measured signals individually rather than
the control output and assume that an existing periodic controller
is defined. By exploiting the early satisfaction detection capabil-
ities of STL and analyzing the property structure, our method
aims to reduce the number of triggered events, while maintaining
satisfaction of system properties. To evaluate ETT ρ, we consider
a simulated adaptive cruise control case-study where STL is used
to encode complex safety and performance properties and the
ETTs of measured signals are regulated accordingly. We test
three different properties in two different scenarios to showcase
how STL and ETT ρ can identify intricate circumstances where it
is possible to significantly reduce the number of triggered events
relative to a constant ETT.

Index Terms—Event-triggering mechanisms, Signal Temporal
Logic, Cyber-physical systems

I. INTRODUCTION

Matching communication frequency to the requirements of
cyber-physical systems (CPS) has attracted increasing interest
with the advance of networked control systems (NCS) [1].
Matching communication frequency entails not only ensuring
that communication is sufficiently frequent to enable the CPS
to satisfy its requirements, but also to identify and act on
circumstances where a reduced communication frequency is
possible. In bandwidth-limited and shared medium commu-
nication systems such as wireless systems, the available re-
sources are shared among system components. Thus, reducing
communication for safe/well performing (sub)systems, can
allow other presently more unsafe/less performant systems to
communicate more frequently and thus improve the perfor-
mance and safety bottom line.

Event-triggering mechanisms: A popular approach to re-
duce communication is to introduce an event-triggering mech-
anism which can trigger either control, sampling, measurement
transmission [2] or a combination of these. Introducing the
event-triggering condition allows the system to act on new
information when necessary (i.e. a triggered event) as opposed
to periodical updates. The introduction of the event-triggering
condition can significantly reduce communication frequency
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[3] as opposed to periodic sampling, transmission and/or con-
trol. We further detail relevant event-triggering mechanisms in
Section II-B.

Specification-based monitoring: As an alternative to pro-
viding formal guarantees for performance and safety for a
well-defined system (e.g. stability or convergence), speci-
fication languages have been developed to specify correct
operation of systems based on system traces [4]. Such speci-
fication languages are typically not restricted to certain types
or classes of systems and instead only require that the system
behavior can be modelled as signals or discrete events. For
many specification languages it is then possible to produce
a monitor which determines whether the system satisfies the
specification, either at runtime or in an offline setting [4].
STL is one such well-established formalism for specifying
requirements in CPSs where it has seen a wide range of
applications from smart grids [5] to safety-critical medical
devices [6].

Contribution: We propose an algorithm that can generate
a run-time ETT regulation mechanism tailored to the quanti-
tative semantics or arbitrary STL properties. Our method ac-
counts for the accuracy requirements of a controlled CPS, how
well the requirements are satisfied at runtime, and introduces
parameters to allow for fine-tuning to different systems. Infor-
mally, the ETT regulation mechanism is designed to regulate
signal ETTs to ensure minimum performance requirements
(i.e. property satisfaction) while reducing communication. We
formalize this later in Problem 1. While our method uses
some elements of the STL quantitative semantics for ETT
computation, we stress that our method is auxiliary to STL,
and uses STL semantics and system requirements to infer
ETT regulation behavior based on the structure of the specific
property.

Previous work: Recently, in [7], an ETT regulation
mechanism for Propositional Logic (PL) was presented, where
PL is a subset of STL excluding temporal operators. Naturally,
the method proposed in this paper builds upon the work
in [7], but the addition of temporal operators significantly
increases the expressiveness compared to PL and requires
careful consideration to define a suitable ETT regulation
synthesis mechanism. Besides [7], the closest related works
are [8], [9] which both consider the problem of designing
an event-triggered prescribed performance controller to satisfy
STL properties. The STL properties are however limited to
fragment of STL, as opposed to our approach which defines
an ETT regulation mechanism for arbitrary STL properties.
Furthermore, our approach does not consider event-triggered
control, but rather event-triggered state estimation with an ex-
isting periodic control, and does not provide formal guarantees
for property satisfaction. Instead, we show how ETT regulation
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parameters can be determined empirically.

TABLE I: Overview of common notation.

Notation Description
φ,φp,Φ Arbitrary, inequality and set of STL prop-

erties respectively.
x, x̂, x̂k, x̂[k,k+a] Full true and estimated system state trace

and estimated system state trace at the k-
th sampling/update instant (time tk) and
in the interval [tk, tk + a], respectively
where a ≥ 0. We note that x̂ is a se-
quence of discrete time state estimates:
x̂ = (x̂0, x̂1, ..., x̂end).

yi,y Measurable system output i and set of all
measurable system outputs.

ζ∗ρ (φ, x̂k) Normalized robustness for arbitrary STL
property.

βk Parameter calculated based on ζ∗ρ (φ, x̂k).
δ+yi,k+1(φ

p, x̂k, ϵyi,φp )

δ∗yi,k+1(φ, x̂k, βk)
ETT for signal yi at the (k + 1)-th sam-
pling instant for an inequality and arbitrary
STL property.

ϵyi,φp Scaling parameter for ETT regulation
based on inequality property.

ETT ρ, ETTC , ETT 0 Proposed ETT regulation, constant ETT
and time-triggered schemes.

PT (φ) Propositional transformation of an arbi-
trary STL property.

II. BACKGROUND

A. Signal Temporal Logic

Signal Temporal Logic [10] (STL) is a formal specification
language used to express signal-based temporal logic proper-
ties. STL is defined by the following recursive syntax

φ ::= φp | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1U[a,b]φ2 (1)

where φp is of the form p(x̂k) ∼ c where ∼∈ {>,<},
x̂k is the estimated system state vector at time tk, c is a
constant, ¬ is the negation operator, ∧ and ∨ are the logical
and and or operators, and φ1U[a,b]φ2 is the temporal until
operator which verifies that φ1 is satisfied at all times in the
interval [tk + a, tk + b], until φ2 becomes satisfied in the
same interval. As defined in Definition 1, the STL operators in
Eq. (1) can be combined to form additional useful operators;
the eventually operator (⋄[a,b]φ ≡ True U[a,b]φ); the always
operator (□[a,b]φ ≡ ¬ ⋄[a,b] ¬φ) and the implication operator
(φ1 → φ2 ≡ ¬φ1 ∨ φ2).

STL properties can produce both qualitative and quantitative
metrics, where the latter is also known as the robustness
[11]. The robustness indicates the degree of satisfaction of
a property at a given time. The qualitative metric is equivalent
to determining whether the property is satisfied.

Definition 1 (Robustness from [11]). The robustness
ρ(φ, x̂, tk) of an STL property φ based on the system state

trace x̂, at time tk, is defined recursively by:

ρ(p(x̂) > c, tk) = p(x̂k)− c

ρ(¬φ, x̂, tk) = −ρ(φ, x̂, tk)

ρ(φ1 ∧ φ2, x̂, tk) = min(ρ(φ1, x̂, tk), ρ(φ2, x̂, tk))

ρ(φ1 ∨ φ2, x̂, tk) = max(ρ(φ1, x̂, tk), ρ(φ2, x̂, tk))

ρ(⋄[a,b]φ, x̂, tk) = max
ti∈[tk+a,tk+b]

ρ(φ, x̂, ti)

ρ(□[a,b]φ, x̂, tk) = min
ti∈[tk+a,tk+b]

ρ(φ, x̂, ti)

ρ(φ1U[a,b]φ2, x̂, tk) =

max
ti∈[tk+a,tk+b]

(min(ρ(φ2, x̂, ti), min
tj∈[tk+a,ti]

ρ(φ2, x̂, tj)))

1) Runtime STL monitoring: According to Definition 1, the
robustness of temporal operators at a time tk depends on
states at a future time, motivating runtime STL semantics.
A notable insight, which we exploit to reduce the number
of triggered events, is that a signal prefix may be sufficient
to determine the satisfaction of a property before the entire
interval has elapsed. The Robust Satisfaction Interval (RoSI)
[12], defined in Definition 2, provides an upper and lower
bound of the robustness for an STL property which evolves
as time progresses.

Definition 2 (Robust Satisfaction Interval (RoSI) [12]). A
robust satisfaction interval RoSI(φ, x̂[0,i], tk) of an STL prop-
erty φ evaluated at time tk on a set of signals x̂[0,i] available
in the temporal interval [t0, ti], is an interval I which satisfies:

inf(I) = inf
x̂∈C(x̂[0,i])

ρ(φ, x̂, tk) (2)

sup(I) = sup
x̂∈C(x̂[0,i])

ρ(φ, x̂, tk) (3)

where C(x̂[0,i]) is all the possible (future) sequences of x̂[0,end]

that have x̂[0,i] as a prefix where tend ≥ ti.

A positive lower bound before the interval has elapsed is
equivalent to detecting early property satisfaction. We note
that early satisfaction detection (ESD) is only possible for the
⋄[a,b] and U[a,b] operators. An efficient algorithm for runtime
computation of the RoSI and additional details can be found
in [12]. We utilize RoSI for ETT regulation in Section IV-A
and refer to Example 2 for an example on ESD.

For properties with nested temporal operators, the sat-
isfaction of the property may somewhat counter-intuitively
depend on signal values beyond the duration of the outer-
most temporal operator. For example, consider the property
φ1 → ⋄[0,10]□[0,1]φ2. One might expect the satisfaction of
the property to depend on the satisfaction of φ2 in the interval
[0, 10]. However, it actually depends on the interval [0, 10+1]
as the inner □[0,1] may be satisfied at time 10 of the outer
interval, meaning that if φ2 is satisfied in the interval [10, 11],
the overall property is satisfied. The extent of this dependence
can be formally defined as the temporal depth in Definition 3.

Definition 3 (Temporal depth ([13])). The temporal depth
is the maximum future duration relevant to compute the
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satisfaction (and/or robustness) of a property at the current
time step and is computed inductively as:

H(φp) = 0

H(¬φ) = H(φ)

H(φ1 ∧ φ2) = max(H(φ1), H(φ2))

H(φ1 ∨ φ2) = max(H(φ1), H(φ2))

H(□[a,b]φ) = b+H(φ)

H(⋄[a,b]φ) = b+H(φ)

H(φ1U[a,b]φ2) = b+max(H(φ1), H(φ2))

B. Event-triggering mechanisms

As detailed later in Section III-A, we consider a discrete
time sampled-data event-triggered transmission system [14]
with periodic control. For sensors, this entails that measured
signals are sampled periodically with an interval Ts but only
transmitted once an event-triggering condition is satisfied. We
provide an overview of the system architecture in Fig. 1.
An event triggering mechanism is characterized by the event-
triggering condition, which can be stated generally as

e(yi(tk), ...) > δyi,k (4)

where yi(tk) is related to the system state by yi(tk) =
qi(x(tk)) + wi(tk), wi(tk) is noise and δyi,k is the ETT
for signal yi at time tk. The function e(·) implements the
update error where two popular options are 1) the Send-On-
Delta (SOD) update error e(·) = |yi(tk)− yi,τ i

j−1
| [15] where

yi,τ i
j−1

refers to the value of signal yi at the most recent event-
triggering instant, and 2) the innovation [3] update error:

e(·) = |ŷi,k − yi(tk)| (5)

where ŷi,k is the predicted value of yi(tk). This prediction
can be obtained through extrapolation [14]. The value of δyi,k

is scaled to ensure that the events are triggered under the
required conditions. For example, the ETTs shall be small in
situations where high accuracy is needed and may be increased
in non-critical situations to communication resources. Thus,
the ETT typically depends on the system state and goal.
As a result, various ETT regulation mechanisms have been
proposed. Examples include time-dependent ETTs for Multi-
Agent-Systems (MASs) [16], ETTs which adapt to the state of
the network [17], and ETTs taking Denial-of-Service attacks
into account [18].

ETT regulation for Propositional Logic properties: We
devote the remainder of this Section to introduce the method
proposed in [7].

Definition 4 (ETT regulation for inequality properties [7, Eq.
29]). Let y∼φp denote the set of measured signals to which
ETT regulation is applied based on the robustness of φp. An
ETT regulation mechanism for an inequality property φp and
measurable signal yi ∈ y∼φp , is given by:

δ+yi,k+1(φ
p, x̂k, ϵyi,φp) = max(

ρ(φp, x̂, tk)

ϵyi,φp

, 0) (6)

where ϵyi,φp ∈ R>0 and ρ(φp, x̂, tk) is the robustness from
Definition 1. The set y∼φp is a design parameter.

We note that in Definition 4, the ETT at the next time step
tk+1, is based on the state at the current time step tk. As shown
in [7], along with certain ϵyi,φp parameters, this may result in
the system incorrectly believing that a property is satisfied
when it is not. To guarantee correct satisfaction detection, [7]
provides a modified version of the ETT regulation algorithm.
We refer to [7] for more information.

When we consider propositional properties, multiple in-
equality properties may define an ETT for the same signal(s).
This is handled by applying the minimum defined ETT for
each signal, which in [7, Definition 4] is assumed to still
guarantee the satisfaction of all affected properties. We also
make this assumption and refer to [7] for details.

To refine the ETTs based on the propositional operators, the
authors in [7] define a metric called the normalized robustness
ζρ(φ, x̂k). To avoid repetition, we note that the normalized
robustness for a PL property is identical to our extension
(Definition 7), without the temporal and otherwise cases.
Similarly, the ETT regulation mechanism for PL properties
from [7] can be obtained by our extension in Definition 9 by
omitting the temporal property cases. The key feature of the
PL ETT regulation mechanism, is that when ∨ operators are
present, the ETT regulation mechanism only has to provide
sufficient accuracy to enable the system to satisfy at least one
of the sub-properties at any time. This relaxation is then used
to enlarge the ETTs related to the sub-property with a lower
normalized robustness, thus saving communication resources.

III. ASSUMED SYSTEM ARCHITECTURE AND PROBLEM
FORMULATION

A. The assumed event-triggered system architecture

We study the generic system architecture in Fig. 1 with
multiple smart sensors (i.e. a sensor with built-in but limited
computing capacity) measuring various outputs of a process.

The system has a set of properties/requirements (Φ) from
which our proposed method synthesizes a runtime ETT regu-
lation mechanism.

Clarifying assumptions: We assume that the smart sensor
sampling, remote state estimator and control system update
frequency are periodic and synchronized with interval Ts.
The synchronization of control update frequency is enabled
by the remote state estimator, as it produces state estimates
at every time step regardless of whether measurements have
been transmitted [14]. Additionally, we assume that ETTs and
measurement predictions are instantly available at the smart
sensors without need for communication and that measure-
ments which trigger events are instantly available at the remote
state estimator.

In real-world applications, perfect synchronization and in-
stant packet reception are not possible, but accurate synchro-
nization protocols are available [19] and significant research
has been conducted to minimize communication delays for
wireless networks [20]. These assumptions therefore do not
generally harm the usefulness of our proposed method. Like
the event-triggering condition, random communication delays
introduce additional uncertainty into the system, which in turn
could be mitigated with smaller ETTs. Similarly, precise and
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Fig. 1: The sampled-data event-triggered transmission archi-
tecture considered in this paper. Dotted black lines indicate an
optional data flow, where the necessity of communicating this
information depends on the monitored requirements and the
event-triggering condition. Adapted from [7].

frequent ETT updates could be replaced with less precise or
frequent but generally smaller ETT updates. Both these uncer-
tainties are expected to result in an additional communication
overhead in real-world systems. Overcoming the impact of
real-word restrictions will be a core part of our future work.

B. Problem formulation

We start by formalizing the requirements of an ETT regu-
lation mechanism in Definition 5, state a key assumption in
Assumption 1 and present the formal problem formulation in
Problem 1.

Definition 5. An ETT regulation mechanism ETT (·), is a
function which returns a set {δyi,k ≥ 0}yi∈y for any time
tk ∈ [t0, tend].

The ETTs from ETT (·), are then applied in Eq. 4 at every
time step to obtain the event-triggered transmission strategy.
With an slight abuse of notation and for brevity, from now on
we refer to an ETT regulation mechanism ETT (·) as ETT
when parameters are not relevant to the context.

Assumption 1 (Satisfaction feasibility [7]). We assume that
the system under the time-triggered transmission approach,
ensures property satisfaction, i.e.

∀φ ∈ Φ,∀tk ∈ [t0, tend] ρ(φ, x̂, tk) > 0, (7)

for some adequate sampling interval Ts. The time-triggered
transmission approach is equivalent to the zero-ETT scheme,
i.e. ETT 0(·) = {0}yi∈y∀tk ∈ [t0, tend].

The sufficient Ts value in Assumption 1 is then used as the
sampling and controller update frequency for any subsequent
event-triggering scheme. We now present the main problem in
Problem 1.

Problem 1. Find an ETT regulation mechanism ETT ∗(·) s.t.
Eq. 7 and

E#[ETT ∗(·)] ≤ E#[ETT 0(·)] (8)

holds, where E#[ETT (·)] denotes the expected number of
triggered events across all signals for ETT (·).

Combining properties: Instead of considering multiple
disjoint properties, all properties may be combined using the
∧ operator. As shown in [7], ETT regulation is unaffected by
this operation and will remain so for the proposed method.
To simplify notation, we assume that all properties have been
combined into a single property.

C. Constant ETT policy

To provide a more comparable method for our proposed
ETT regulation mechanism, later in Section V we compare our
proposed mechanism with a constant ETT scheme (ETTC).
The ETTC scheme entails finding a set of constant ETTs
{δyi ≥ 0}yi∈y, which when applied to the signals in y, enables
the system to satisfy the constraint in Eq. (7).

Next, we present our parameterized ETT regulation mech-
anism ETT ρ based on the quantitative semantics of STL to
provide a candidate event-triggering mechanism for Problem
1.

D. STL vs other logic languages

In this Section, we briefly detail why STL is a suitable
choice for ETT regulation compared to other logics. Many
families of logics exist for property specification [21] and an
exhaustive description is out of scope for this paper. Instead,
we briefly account for the desirable characteristics of STL and
compare with other languages. STL is developed specifically
for time-series data and is widely used to specify properties
in CPSs. The strict adherence to real-valued signals ensure
well-defined quantitative semantics which we can base the
ETT regulation mechanism on. This is in contrast to other
temporal logics which only produce a binary verdict such
as Linear Temporal Logic (LTL) [22]. Furthermore, STL has
a quantitative view of time, i.e. data points are associated
with a timestamp and real-time constraints are an integrated
part of the language, whereas LTL has a qualitative view of
time concerned with the ordering of events and consequently
does not allow specifying real-time constraints. Some stream-
based languages like TeSSLa [23] allow quantitative semantics
and have a quantitative view of time, but the quantitative
semantics must be defined by the user. Additionally, STL has
a future-time perspective, i.e. the satisfaction metric related
to the current time depends on signals in the future. Stream-
based runtime verification languages instead map an input
stream to an output stream and natively have a past-time view.
Although the past-time view eases the process of producing
an executable monitor, it makes it harder to define ETT
regulation behavior, as ETT regulation must ensure satisfaction
of the property in the future and naturally cannot affect the
satisfaction once the verdict has already been determined.
With that being said, a myriad of extensions of LTL, STL
and other logics exist [21] extending existing languages with
additional features such as quantitative semantics and real-
time constraints, spatial operators etc. However, we settle on
STL as it possesses the above-mentioned characteristics out
of the box and is widely used in CPSs [4]. Additionally, we
emphasize that even though STL is a specification language,
an STL property in combination with ETT ρ could also be
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used in scenarios where there is no notion of correct behavior,
and instead to control the quantization level (and consequently
communication rate) using a logic-based approach. This makes
ETT ρ potentially applicable to a wider range of IoT use-cases.

IV. ETT REGULATION FOR STL PROPERTIES

Similarly to [7], we take a constructive approach to solve
Problem 1 where the ETT regulation mechanism is synthesized
from the structure of the STL property and the semantics of
the STL operators. Initially in Sections IV-A and IV-B, we
introduce two central considerations which determine our ETT
regulation synthesis mechanism; duration of ETT regulation
for temporal properties and propositional-temporal property
interaction respectively. We then present our proposed method
in Section IV-C.

A. ETT regulation duration for temporal properties

According to Definition 1, the robustness of temporal STL
properties (e.g. ⋄[a,b]φp) at a time tk depends on the values
of the signals in the interval [tk + a, tk + b] which are
unknown at time tk. Thus, using the robustness of the temporal
property to regulate the ETTs of the underlying properties is
infeasible. Instead, we choose to base the ETT regulation on
the robustness of the underlying inequality and propositional
properties which can be computed at every timestep.

Since temporal properties may refer to tight temporal inter-
vals in the future, the ETT regulation mechanism must provide
sufficient accuracy for the controller to satisfy the requirement
in the future. We demonstrate this necessity in Example 1.

Example 1. Consider the property φ = (y > 10) →
(⋄[10,12]□[0,1](|y| ≤ 1)) which can be thought of as a time-
bounded stabilization of the signal y. Only applying ETT
regulation in the interval [tk + 10, tk + 12] may not give the
controller sufficient time to stabilize y within the required time
and satisfy the property.

To avoid this issue, if we detect that the satisfaction of the
overall property depends on a temporal property at time tk, we
conservatively apply ETT regulation to the temporal property’s
sub-properties starting at time tk rather than at tk + a.

To determine the end of the ETT regulation interval, we
detect the time at which the temporal property is known to
be satisfied. As mentioned in Section II-A1, a positive lower
bound of the RoSI indicates (a potentially early) satisfaction
of the property. To explicitly indicate the temporal interval
on which the current ETT regulation decision depends, we
conveniently let RoSI(φ, x̂[k+a,k+i], tk) denote the lower
bound of the RoSI for time tk, based on the information
available in the interval [tk + a, tk + i] s.t. a ≤ i ≤ H(φ)
where H(φ) is the temporal depth of φ, defined in Definition
3. In Definition 6, we use RoSI(·) to define the time instant
at which a temporal property is satisfied and later use this
to define the end of the ETT regulation interval for temporal
properties.

Definition 6 (Satisfaction time). We define the satisfaction
time S(φ, tk) for a temporal STL property φ with the associ-

ated temporal interval [a, b] based on evaluating RoSI(·) for
the property φ at time tk:

S(φ, tk) =


min

ti∈[tk+a,tk+H(φ)]
{ti : RoSI(φ, x̂[k+a,k+i], tk) > 0}

if ∃ti ∈ [tk + a, tk +H(φ)] :

RoSI(φ, x̂[k+a,k+i], tk) > 0,

tk +H(φ) otherwise,

if φ = ⋄[a,b]φ1 or φ = φ1U[a,b]φ2,

tk +H(φ) if φ = □[a,b]φ1,

We note that the approach of applying ETT regulation to the
interval [tk, S(φ, tk)] is similar to the previously mentioned
event-triggered control methods which consider a subset of
STL [8], [9]. In Example 2, we show an example of early
satisfaction detection and the corresponding desired ETT reg-
ulation behavior.

Example 2 (Early satisfaction detection (ESD) and ETT
regulation). Consider a modified version of the property from
Example 1: φ = (y > 10) → ⋄[0,10]□[0,1](|y| ≤ 1). If at some
time tk, yk > 10, then within 10 seconds the system must
stabilize the signal y to reside in the interval [−1, 1] for a
consecutive period of 1 second. If the system stabilizes earlier
(i.e. |y| ≤ 1 for a consecutive time interval [tj , tj + 1] where
tj < 10 thus satisfying the inner □[0,1] property), the overall
property is satisfied before the last possible satisfaction time
(tk + 11) meaning that from then on, we can safely disregard
ETT regulation to satisfy the temporal requirement. A figure
illustrating this scenario is provided in Fig. 2. After we define
the ETT regulation mechanism in Section IV-C, we will revisit
this property in Example 3 to clarify the interaction between
temporal and ∨ operators and how ETT decisions for nested
temporal operators work.

B. Property interaction for temporal STL operators

To enable property interaction between temporal and propo-
sitional properties, we extend the concept of normalized
robustness from [7, Definition 7] to include temporal STL
properties in Definition 7. Thereafter, in Lemma 1, we prove
the soundness of the extension in Definition 7.

Definition 7. We extend the normalized robustness ζ̃ρ(φ, x̂k)
for a PL property to the normalized robustness ζ∗ρ (φ, x̂k) for
an arbitrary STL property φ as follows:

ζ∗ρ (φ, x̂k) =

min
φs∈{φ1,φ2}

(ζ∗ρ (φs, x̂k)) if φ = φ1U[a,b]φ2 and a = 0,

min
φs∈{φ1,φ2}

(ζ∗ρ (φs, x̂k)) if φ = φ1 ∧ φ2,

max
φs∈{φ1,φ2}

(ζ∗ρ (φs, x̂k)) if φ = φ1 ∨ φ2,

ζ∗ρ (φ1, x̂k) if φ = ⋄[a,b]φ1 and a = 0,

ζρ(φ, x̂k) if φ = φp

0 if φ = □[a,b]φ1,

0 otherwise,
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Fig. 2: An example of the desired ETT regulation behavior for
the property φ = (y > 10) → ⋄[0,10]□[0,1](|y| ≤ 1). While
the property is yet to be satisfied (duration indicated by red
area), the ETT of signal y will be regulated to ensure the
eventual satisfaction of the property. The green box indicates
the satisfaction of the □[0,1](|y| ≤ 1) sub-property which leads
to an ESD of the outer ⋄[0,10] operator. The yellow earlier
box indicates the scenario where |y| ≤ 1 is true, but for a
shorter consecutive interval than the required duration and thus
does not constitute and early satisfaction. After the property is
satisfied (non-red area), the ETT for y will be regulated based
on the overall property, as specified later in Definition 9.

where the otherwise catches temporal operators where a > 0.

Lemma 1. (ζ∗ρ (φ, x̂k) > 0) ⇒ (ρ(φ, x̂, tk) > 0).

Proof. As the propositional cases were considered in [7], we
only consider the temporal operator cases in Definition 7. We
will prove Lemma 1 using induction.

Case: φ = φ1U[a,b]φ2 and a = 0:
Assume min

φs∈{φ1,φ2}
(ζ∗ρ (φs, x̂k)) > 0, which implies

ζ∗ρ (φ1, x̂k) > 0 and ζ∗ρ (φ2, x̂k) > 0. By the inductive hypoth-
esis; ρ(φ1, x̂, tk) > 0 and ρ(φ2, x̂, tk) > 0. Thus, if a = 0,
then ρ(φ1U[a,b]φ2, x̂, tk) > 0 by Definition 1.

Case: φ = ⋄[a,b]φ1 and a = 0:
The proof for the ⋄[a,b]φ1 case can be obtained following a

similar approach to the φ1U[a,b]φ2 case.
Case: φ = □[a,b]φ1 and otherwise: These cases are

trivially true since ζ∗ρ (φ, x̂k) always equals 0.
Since each operation in Definition 7 preserves Lemma 1,

Lemma 1 is preserved for an arbitrary STL property.

As proven in Lemma 1, the satisfaction of a property
with temporal operators will not depend on future states if
ζ∗ρ (φ, x̂k) > 0. In this case, we propose to temporarily treat an
STL property as a propositional property for ETT regulation
purposes until the satisfaction of the overall property again
depends on one or more temporal operators. The reasoning
behind this choice will be explained in Example 4. To treat an

arbitrary STL property as a propositional property, we propose
the transformation in Definition 8.

Definition 8 (Propositional transformation). Let φ be an
arbitrary STL property. We define the transformation PT (φ)
from an arbitrary STL property φ, to an STL property only
containing propositional operators:

PT (φ) =



φ if φ = φp

PT (φ1) ∨ PT (φ2) if φ = φ1 ∨ φ2

PT (φ1) ∧ PT (φ2) if φ = φ1 ∧ φ2

PT (φ1) if φ = ⋄[a,b]φ1

PT (φ1) if φ = □[a,b]φ1

PT (φ1) ∧ PT (φ2) if φ = φ1U[a,b]φ2

C. STL property ETT regulation (ETT ρ - main contribution)

In Definition 9, we combine the previous considera-
tions, and introduce our proposed ETT regulation mechanism
ETT ρ, for arbitrary STL properties. In Example 3, we guide
the reader through ETT regulation decisions for an example
property involving temporal and propositional operators, and
in Example 4 we show the quantitative application of Defini-
tion 9. Later in IV-D we argue why Definition 9 is a suitable
event-triggering mechanism to solve Problem 1 and further
elaborate on some of the reasoning that led to Definition 9.

Definition 9 (ETT ρ). We define the ETT for a signal yi at
time tk+1, for the STL property φ, ∀tk ∈ [t0, tend] recursively
as:

δ∗yi,k+1(φ, x̂k, βk) =

δ∈yi,k+1(φ, x̂k, ϵyi,φ, βk)

if φ = φp,

min
φs∈{φ1,φ2}

δ∗yi,k+1(φs, x̂k, βk)

if φ = φ1 ∧ φ2,

min
(φs,φl)∈{(φ1,φ2),(φ2,φ1)}

δ∗yi,k+1(φs, x̂k,max(βk, ζ
∗
ρ (φl, x̂k)))

if φ = φ1 ∨ φ2,

min
{tj∈[max(t0,tk−H(φ)),tk]}

T (yi, φ, φ1, βk, tk, tj)

if φ = ⋄[a,b]φ1 or φ = □[a,b]φ1,

min
{tj∈[max(t0,tk−H(φ)),tk]}

min
φs∈{φ1,φ2}

T (yi, φ, φs, βk, tk, tj)

if φ = φ1U[a,b]φ2,
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where T (yi, φ, φs, βk, tk, tj) =
δ∗yi,k+1(φs, x̂k, 0)

if tk ∈ [tj , S(φ, tj)) and βj = 0

δ∗yi,k+1(PT (φs), x̂k, βk)

otherwise,

and δ∈yi,k+1(φ
p, x̂k, ϵyi,φp , βk) =

δ+yi,k+1(φ
p, x̂k, ϵyi,φp)

+ max(βk − ζρ(φ
p, x̂k), 0)

ρmax(φ
p)

ϵyi,φp

if yi ∈ y∼φp ,

∞ otherwise.

The value of βk is initialized to ζ∗ρ (φ, x̂k) of φ at the root of
the syntax tree at every time step, and ρmax(φ

p) denotes the
maximum possible robustness of the inequality property φp. We
apply this Definition to build the set in Definition 5 at every
time step to obtain our proposed ETT regulation mechanism
ETT ρ.

Example 3. In this example, we will walk through the ETT
decisions of Definition 9 for the property φ = (y > 10) →
⋄[0,10]□[0,1](|y| ≤ 1) from Ex. 2 and the trace in Fig. 2. Before
the first time that y > 10, the property is satisfied (recall
φ1 → φ2 ≡ ¬φ1 ∨ φ2), so when y > 10 is false, the overall
property is true. This implies that the βk values are positive
until y > 10 at time tj . Consequently, the propositional
transformation is invoked in the T (·) function, removing the
temporal operator conditions and enlarging the ETT based on
the current robustness of |y| < 1. At time tj , the βj value
becomes 0, and will remain so until y ≤ 10. The system
must now regulate the ETT to satisfy a temporal property
based on a past condition. Therefore, once βj = 0, the
propositional transformation is no longer applicable, and we
stop the propagation of βj values until the robustness becomes
positive for all times tj where βj = 0 was observed. For this
duration, the ETT will be regulated based on |y| < 1 as the
βk values is not propagated, and the outer min operation in
Definition 9 makes sure that the smallest ETT is chosen (i.e.
based on |y| < 1 rather than ¬(y > 10)). Once the property
becomes satisfied for all time steps where βj = 0 (indicated
by the green area in Fig. 2), the propagation of βk values is
again enabled. Alternatively, should the property end up not
being satisfied, the ETT regulation “obligation” expires at the
end of the temporal scope of the property as per Definition
6. Furthermore, for nested temporal operators we see that
the “outer” temporal operator, in this case ⋄[a,b], determines
whether an outer βk value is propagated to its sub-properties.
We note that while temporal operators stop propagation of
outer βk values, this does not limit the propagation of βk

values within the temporal property. For example, in the
property φ = φp

1 → ⋄[0,10]□[0,1](φ
p
2 ∨ φp

3) the inequality
properties φp

2, φ
p
3 can still benefit from the ETT relaxation

of the ∨ operator due to the max(βk, ζ
∗
ρ (φ, x̂k)) operation in

Definition 9. This is allowed because φp
2 and φp

3 are in the
same “scope” and thus related to the satisfaction at the same
time step.

Example 4. Consider the property φ = ¬φp
1 ∨ (□[2,5]φ

p
2)

where φp
1 = y1 > 5, φp

2 = y2 > 10, y1 ∈ [0, 20] and y2 ∈
[5, 50] with y∼φ1 = {y1} and y∼φ2 = {y2}. We provide an
example trace of the robustness of the inequality properties
φp
1 and φp

2 in Fig. 3 to visualize the ETT regulation behavior
of Definition 9 for ∨ and temporal property interaction.

Fig. 3: A visualization of ETTs produced by ETT ρ for the
property φ = ¬φp

1 ∨ (□[2,5]φ
p
2) described in Example 4. We

choose ϵy1,φ
p
1
= 2, ϵy2,φ

p
2
= 3 and for simplicity write ρ(φp

1)
instead of ρ(φp

1, x̂, tk) and omit irrelevant parameters for the
ETT signals. The shaded blue area indicates where the ETTs
related to φp

2 are enlarged using Definition 9 since βk > 0
and the property is transformed using the propositional trans-
formation in Definition 8. We see that as δ∗y2,k+1(φ, x̂k, βk)

gradually approaches δ+y2,k+1(φ
p
2, x̂k, ϵy2,φ

p
2
) as ρ(¬φp

1, x̂, tk)
approaches 0. Thereafter, for the duration of the interval
(i.e. between ≈ 1.7 − 8.5 seconds) δ∗y2,k+1(φ, x̂k, βk) =

δ+y2,k+1(φ
p
2, x̂k, ϵy2,φ

p
2
). Then, at the end of the interval (Time

≈ 8.5), the ETTs are again affected by the propositional
transformation.

D. Putting it all together – Solving Problem 1

Definition 9 comprises the first of two parts of how we solve
Problem 1, where the second part entails finding suitable ϵyi,φp

parameters which enable the system to satisfy its properties
while triggering as few events as possible. In Theorem 1,
we prove that Definition 9 is a suitable candidate for solving
Problem 1. Subsequently, we discuss how ETT ρ leverages
STL semantics to increase ETTs resulting in fewer triggered
events.

Theorem 1. ETT ρ is a suitable candidate to solve Problem
1 under Assumption 1.

Proof. By setting all ϵyi,φp = ∞, the ETT regulation policy
converges to the time-triggered policy described in Assump-
tion 1 as

lim
ϵyi,φp→∞

δ∈yi,k+1(φ
p, x̂k, ϵyi,φp , βk) = 0
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and because in ETT ρ, the final ETT for a signal is a minimum
over all defined ETTs at the inequality property level.

Since the time-triggered approach is assumed to guarantee
property satisfaction, so will the ETT regulation mechanism in
Definition 9 for sufficiently large ϵyi,φp values, thus satisfying
Eq. (7). Furthermore, as both triggering mechanisms use the
same sampling interval, they also have the same upper bound
on the number of triggered events, thus ensuring satisfaction
of Eq. (8) which concludes the proof.

Definition 9 employs two techniques to reduce the number
of triggered events: early satisfaction detection (ESD) and
ETT relaxation through the ∨ operator. The ETT relaxation
through the ∨ operator, utilizes the fact that the system only
has to satisfy at least one of the immediate sub-properties of
a ∨ property. The propagation of the βk value then enlarges
the ETTs where applicable (i.e. for inequality properties (βk−
ζ∗ρ (φ, x̂k)) > 0 as per δ∈yi,k+1(φ

p, x̂k, ϵyi,φp , βk) in Definition
9). Additionally, ESD is employed to allow propagation of
βk values as soon as the property is known to be satisfied,
increasing the ETTs of its sub-properties resulting in fewer
triggered events.

E. Implementation and complexity

Since we are dealing with real-time systems and resource
constrained devices, computational and spatial complexity
are of significant importance. Below we outline the steps
necessary to apply Definition 4 and subsequently analyze
the computational and spatial complexity. Finally, we discuss
distribution of computation and the computational complexity
of other parts of the system in a real-world setting.

1) Algorithm summary: Applying Definition 9 involves 3
steps as outlined below.

S1 Calculate βk = ζ∗ρ (φ, x̂k)
S2 Update satisfaction of all temporal sub-properties
S3 Calculate {δ∗yi,k+1(φ, x̂k, βk)}yi∈y

Since we must only keep track of the satisfaction rather than
the robustness to apply Definition 9, it suffices to monitor
an equivalent Metric Interval Temporal Logic [24] (MITL)
formula. Fortunately, MITL monitors which keep track of
the satisfaction of the sub-properties have already been im-
plemented where we choose the algorithm described in [25]
as they consider a setup applicable to MITL formulas with
a bounded number of events per time unit. The number of
events per time unit is bounded by default in our case due to
the periodic state estimator update.

2) Computational complexity: Computing S1 involves sim-
ple min and max operations and computing ζρ(φ

p, x̂k) of
inequality properties. Assuming that the complexity of com-
puting ζρ(φ

p, x̂k) is constant, the complexity of computing
ζ∗ρ (φ, x̂k) is thus proportional to |φ|, where |φ| is the size of
the formula (i.e. the number of operators including inequali-
ties).

The authors in [25] report an amortized computational
complexity of O(|φ|). A small extension to the monitoring
algorithm in [25] is needed to mark the sub-property as non-
satisfaction-dependent at time tk if βk > 0 (i.e. the satisfaction

of the overall property does not depend on a specific temporal
sub-property at a given time). This can easily be implemented
in the ETT calculation downward pass when the βk value
is propagated, where the entry corresponding to the current
time is overwritten thus requiring no additional memory and
only a simple constant-time update. S3 involves checking
the satisfaction status of temporal properties, propagating
βk values accordingly and computing and propagating ETTs
upwards. Checking temporal property satisfaction is propor-
tional to H(φ)/Ts (i.e. the satisfaction status of all relevant
timesteps must be checked) but must only be done once at
each timestep. This is in contrast to the ETT calculation
and upward propagation where the number of computations
and comparisons scales with |y| · |φ| as the ETTs must be
computed/compared for all signals at each sub-property.

In summary, the amortized computational complexity for
determining the ETTs at every time-step is given by

O((|y|+H(φ)/Ts) · |φ|).
3) Spatial complexity: The spatial complexity of the algo-

rithm in [25] is reported as O(H(φ)/Ts · |φ|). In addition,
we will have to store the signal values as well as ϵyi,φp

and ρmax(φ
p) parameters to compute ETTs and ζρ(φ

p, x̂k)
respectively. Both parameters are needed for every inequality-
property, and given that an STL property syntax tree is
structurally equivalent to that of a binary tree (i.e. inequality
properties are equivalent to leaf nodes), the maximum number
of parameters that need to be stored is |φ| + 1. In summary,
the overall spatial complexity is given by

O(|y|+H(φ)/Ts|φ|).
4) Real-world considerations: Besides determining ETTs

using ETT ρ, several other parts of the system require compu-
tation. Most notably, this includes running the state estimator
and controller and the communication between smart sensors
and the control system. As shown in Fig. 1, the smart sensors
receive ETTs at every time step and measurement predictions
if the innovation update error is used, which will require
significant communication in a real-world scenario. Some
solutions to this were briefly discussed in Section III-A, and
here we elaborate more on solutions related to distribution
of computation. If the model and computational resources of
the smart sensors allow it, a local (perhaps reduced-order)
model of the system can be maintained, alleviating the need for
transmitting signal predictions. Additionally, if the necessary
information is available to monitor properties relevant for ETT
computation locally, the ETTs may be computed by the smart-
sensors removing the need for communication of ETTs. In
fact, this problem is similar to that of distributed or decen-
tralized monitoring [26]. In any case, if a centralized monitor
and/or control system is required in a real-time scenario, these
are best run on an edge node ensuring low-latency. For a
reasonably sized model and property to be monitored, this
should be possible. When low latency is not necessary or the
model is substantially complex, the model/control system and
the monitor may run in a cloud environment.
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Multilane scenarios

Fig. 4: An outline of simulated scenarios in the case-study
adapted from [7]. The turquoise ACC vehicle employs smart
sensors to measure the distance between zl11 and zACC

(x∆), and the lateral distance to zl21 , xlo
∆,p and zl22 , xlo

∆,f .
Additionally, zACC measures its own speed v. The sensors
communicate measurements to a centralized control system
(orange box in Fig. 1). We use zlin to refer to the n-th non-
ACC vehicle in the i-th lane based on their original positions.

V. CASE STUDY

We apply ETT ρ from Definition 9 in a simulated case-
study where we compare ETT ρ with the ETT 0 (Assumption
1) and ETTC (Section III-C) mechanisms. We extend the
adaptive-cruise control (ACC) scenario from [7] to incorporate
additional lane-switching behavior and more complex tempo-
ral properties primarily linked to performance. A sketch of the
simulated environment is provided in Fig. 4. For brevity, we
refer to [7] for details on simulation setup. Any differences in
the simulation setup will be explicitly stated where applicable.
Three different STL properties are tested; one property in a
single-lane scenario (Section V-A) and two properties in two
different multilane scenarios (Sections V-C and V-C1).

We extend the single-lane and multi-lane propositional
properties from [7] to include temporal operators which verify
performance properties.

A. Single-lane scenario with temporal property

Let xss(d0, v, T ) = d0 + vT , where v[m/s] > 0 is the
speed, T [s] > 0 is known as the time headway and d0[m] ≥ 0
is a constant. The function xss(d0, v, T ) determines a speed-
dependent safe distance which the ACC vehicle controller
attempts to keep to the preceding vehicle in the same lane [27].
The behavior verified by φa = x∆ > xss(0, v, T ), is then suf-
ficient to verify that vehicles do not crash. However, typically
d0 > 0 and we could be interested in verifying that whenever
x∆ < xss(d0, v, T ) the controller can recover to or close to
xss(d0, v, T ) within some duration. Such an STL property
can be constructed as follows: ¬φp

c1 → ⋄[a,b]φp
c2 where

φp
c1 = x∆ > xss(d0, v, T ), φp

c2 = x∆ > xss(d0 − η, v, T )
and d0 > η > 0. Furthermore, we chose a = 1 s, b = 5.5 s,
η = 0.2 and d0 = 2.7. Combined with the property φa, we
have φc = φa ∧ (¬φp

c1 → ⋄[1,5.5]φp
c2).

Parameter selection: Initially, we assign y∼φp
c2

=
y∼φp

a
= {v, x∆},y∼φp

c1
= {}, whereafter we consider

selecting the ϵyi,φp parameters. As a starting point, we choose
the same ϵyi,φp parameters as in [7]. We could use identical
ϵyi,φp parameters for y∼φp

c2
as for y∼φa . However, realiz-

ing that ρ(φc2 , x̂, tk) = ρ(φa, x̂, tk) − d0 meaning that for

Strategy Parameters φc (Single lane)
ρmin(φc) m± σ(m) Tr ± σ(Tr)

ETT 0(φc) Ts = 0.01 0.359 7000 5.03± 0.03

ETTC(φc)
δv = 0.16
δx∆ = 0.49

0.012 1367± 27 5.17± 0.04

ETT ρ(φc)

ϵv,φa = 16.64
ϵx∆,φa = 4.95
ϵv,φp

c2
= 5e−5

ϵx∆,φ
p
c2

= 5e−5

0.074 1158± 14
1159± 14

5.18± 0.04

ETT ρ(φa)
ϵv,φa = 16.64
ϵx∆,φa = 4.95

0.007 777± 14 5.22± 0.04

TABLE II: Parameter configurations resulting in the lowest
average number of triggered events (m) while maintaining
ρmin(φc) > 0.

any time step, the final ETTs will then always be defined
based on φp

c2 and the ETTs based on φa are never applied.
Instead, we choose small values for the ϵx∆,φp

c2
and ϵv,φp

c2

parameters, such that φp
c2 only affects ETT regulation once

ρ(φp
c1 , x̂, tk) < 0. For the ETT 0 and ETTC approaches,

we use similar or identical parameters to [7] where small
adjustments are necessary to the ETTC parameters to ensure
satisfaction.

Numerical results: Let ETT 0(φ), ETTC(φ) and
ETT ρ(φ) denote the application of the ETT 0, ETTC and
ETT ρ triggering mechanisms based on the property φ. We
evaluate the single-lane scenario for ETT 0(φc), ETTC(φc)
and ETT ρ(φc). Additionally, we apply ETT ρ(φa) to the
single-lane scenario, but where the robustness is calculated
based on φc. For each event-triggering mechanism, we run 20
simulations with different measurement noise sequences for all
parameter configurations. In Table II, we note the parameter
configuration resulting in the fewest number of average trig-
gered events (m) with a corresponding minimum robustness
ρmin(φ) > 0 where ρmin(φ) = min

x̂∈χφ

ρ(□φ, x̂, t0) where χφ

is the set of all simulation traces for φ. Additionally, we note
ρmin(φc) and the average recovery time Tr (i.e. the time it
takes to recover to the desired distance) for the parameter
configuration. The results in Table II show that very low
values of ϵx∆,φp

c2
and ϵv,φp

c2
are sufficient and that ETT ρ(φc)

triggers fewer events than ETTC(φc). However, the results
in Table II also show that the recovery times for ETT ρ(φa)
and ETT ρ(φc) are nearly identical while ETT ρ(φc) triggers
≈ 49% more events compared to ETT ρ(φa).

B. Investigation of triggered events relative to robustness

The lack of increase in performance for ETT ρ(φc) in the
single-lane scenario motivates a deeper investigation. In Fig. 5,
we provide a plot of the rate of triggered events relative to the
ETT of x∆ based on φc and φa from the single lane scenario.
As Fig. 5 clearly shows, when the robustness decreases, the
rate of triggered events significantly increases. On average,
events triggered for ETTs in the range [0.00, 0.16] account
for ≈ 82% of the total number of triggered events and only
≈ 14% of the simulation time. Both numbers are significantly
lower for φa. When regulating the ETTs based on φa, ETTs
are generally larger, resulting in fewer triggered events. Thus,
there is a clear motivation to either avoid low robustness (e.g.
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Fig. 5: Number of average triggered events per second, fraction
of time spent, and fraction of triggered events for the x∆

signal in a given ETT interval in the single-lane scenario under
ETT ρ(φc) and ETT ρ(φa). The used parameters can be found
in Table II. Orange error-bars indicate one standard deviation.
The empty bins for φc are a result of the ETT regulation
switching from δ∗x∆,k+1(φa, x̂k, βk) to δ∗x∆,k+1(φ

p
c2 , x̂k, βk)

when φp
c1 is violated.

by adapting the controller if possible) or by slightly modifying
the ETT regulation mechanism in Definition 4, for example by
having some minimum ETT > 0. As per the ETTC results,
we know that ETTs > 0 can enable the system to satisfy its
properties, and thus enforcing an ETT lower bound > 0 for
ETT ρ could be viable. We leave this exploration for future
work.

C. Multi-lane scenario with temporal property

In addition to the single lane scenario, we study a multilane
scenario with a more complex temporal property and control
behavior.

Multilane scenario setup: The multilane scenario is iden-
tical to the single-lane scenario, except that there is now an
additional lane (l2) with vehicles traveling at a faster constant
speed of 35 m/s. The vehicles in l2 are spaced adequately
apart such that the ACC vehicle can safely switch to l2 when
zl11 brakes. As opposed to [7], to allow other potentially
faster vehicles to overtake in the multi-lane scenario, the ACC
vehicle shall eventually change back to l1. We choose that
this should be done as soon as possible within 5 seconds
of changing to l2 if possible. We start with the proposi-
tional multilane property φb = ((φb1) ∨ (φb2 ∧ φb3)) where
φb1 = x∆ > xss(0, v, T ), φb2 = xlo

∆,f > xss(0, v
lo
f , T ),

φb3 = xlo
∆,p > xss(0, v, T ). Additionally, we choose y∼φp

b1
=

{x∆, v},y∼φp
b2

= {xlo
∆,f},y∼φp

b3
= {xlo

∆,p, v}. In the case

where the ACC vehicle has overtaken zl11 , the ∨ operator
will assign a high ETT to the xlo

∆,p and xlo
∆,f signals if the

robustness of the property monitoring the preceding vehicle
(i.e. zl21 in this case) is large resulting in an inaccurate estimate
of the state of zl11 . The inaccurate estimate of zl11 may result

Strategy Parameters φd (Temporal multilane)
ρmin(φd) m± σ(m) Tl2 ± σ(Tl2 )

ETT 0(φd) Ts = 0.01s 0.833 12644± 1 4.05± 0.01

ETTC(φd)

δv = 0.16
δx∆ = 0.5
δ
x
lo
∆,f

= 2.7

δ
x
lo
∆,p

= 0.5

2.898 1524 ± 23 4.17± 0.02

ETT ρ(φd)

ϵv,φp
b1

= 16.64

ϵx∆,φ
p
b1

= 4.95

ϵ
x
lo
∆,f

,φ
p
b2

= 4.6

ϵ
x
lo
∆,f

,φ
p
b2

= 5.32

ϵv,φp
b3

= 16.64

ϵ
x
lo
∆,p,φ

p
b3

= 4.95

1.741
1.453

885± 9
860± 7

4.05± 0.01
4.03± 0.01

φe (Temporal multilane modified)
ρmin(φe) m± σ(m) Tl2 ± σ(Tl2 )

ETT 0(φe) −||− 1.977 13646± 1 n/a
ETTC(φe) −||− 1.969 1984 ± 36 n/a

ETT ρ(φe) −||− 1.978
1.973

145± 8
150± 6

n/a

TABLE III: Parameter configurations resulting in the lowest
number of triggered events (m) while maintaining a positive
minimum robustness ρmin for the temporal properties φd and
φe in the respective multi-lane scenarios. We denote the time
the ACC vehicle spends in l2 as Tl2 , and −||− indicates that
parameters are reused from the φd scenario in the φe scenario.

in an unsafe lane change if the uncertainty associated with
the estimate is not considered by the controller in the lane-
switching decision. To provide an accurate estimate of the
vehicle(s) in l1 when the ACC vehicle is in l2, we construct
a temporal property to verify that a safe lane change back to
l1 occurs within 5 seconds. We formulate the STL property
φd = φb∧ (φp

d1
→ ⋄[0,5](φp

b2
∧φp

b3
∧φp

d1
∧⋄[0,Ts]φ

p
d2
)) where

φp
d1

= (lc > l1), φ
p
d2

= (lc < l2), lc is the current lane
of the ACC vehicle, and we assign numbers to l1 and l2:
l1 = 0, l2 = 100. The reason for choosing l2 = 100 is to
avoid the final robustness being equal to that of φp

d1
or φp

d2
.

Parameter selection and switching behavior: We choose
y∼φp

d1
= y∼φp

d2
= {} and use the same signal sets

for φp
b1
, φp

b2
and φp

b3
and original ϵv,φp

b1
, ϵx∆,φp

b1
, ϵv,φp

b3
and

ϵxlo
∆,p,φ

p
b3

parameters from [7], for φp
b1

and both instances of

the inequality property φp
b3

. As we are interested in an accurate
estimate of zl11 when switching back to l1, we test various
values of the ϵxlo

∆,f ,φ
p
b2

parameter for ETT ρ(φd) and δxlo
∆,f

for ETTC .
The lane-switching decision from l2 to l1 is implemented

such that a lane-switch occurs at the first time step with
sufficient distance to the relevant vehicles to safely switch back
into l1.

Numerical results: We provide the number of triggered
events, ρmin(φd) and time spent in l2 (Tl2 ) in Table III
for ETT ρ(φd), ETTC(φd) and ETT 0(φd). We note that
no events are triggered when no vehicles are present (i.e.
when the ACC vehicle has overtaken zl11 ). ETT ρ(φd) trig-
gers significantly more events compared to φb from [7], but
only slightly more than the single-lane scenario with φa.
ETT ρ(φd) triggers ≈ 42%43% fewer events compared to
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the ETTC approach while on average also spending less
time in l2 which we deem desirable. We note that spending
less time in l2 (i.e. switching back to l1 earlier) results in a
lower ρmin(φd). Thus, attempting to maximize both leads to
conflicting requirements.

1) Multi-lane scenario with potential lane-switching detec-
tion: The behavior monitored in φd prioritizes accuracy to
enable the ACC vehicle to change back into l1 regardless of
whether there is room to do so. There may be additional po-
tentially slower vehicles, that the ACC vehicle may also wish
to overtake or alternatively, there may not be enough room
to safely switch back into l1. We can capture this conditional
behavior, by replacing φp

d1
in φd with (φp

d1
∧φp

d3
∧φp

d4
) where

φp
d3

= vlop ≥ vdes, vdes is the desired speed (a parameter for
the IDM) and φp

d4
= xlo

∆,p > xss(d0, v, T ). Thus, the modified
version of φd becomes φe = φb ∧ ((φp

d1
∧ φp

d3
∧ φp

d4
) →

⋄[0,5](φp
b2
∧φp

b3
∧φp

d1
∧ ⋄[0,Ts]φ

p
d2
)). We update the multilane

scenario such that there are now 3 vehicles in l1. The new
vehicle in front of zl11 , which we refer to as zl10 , is placed
20 + xss(2.7, 30, 2) = 82.7 m in front of zl11 and maintains a
constant speed of 30 m/s. In this scenario, there will not be
enough room for the ACC vehicle to switch back into l1. We
note the results for the ETT 0, ETTC and ETT ρ approaches
in Table III under “φe (Temporal multilane modified)”. The
results in Table III show that the added constraints for the
implication correctly identify that there is not enough room
to switch back to l1 resulting in generally larger ETTs and
≈ 93%92% fewer triggered events compared to the ETTC

approach.
This concludes the presentation of the case-study. In the

following Section, we summarize our contribution.

VI. CONCLUDING REMARKS

We have proposed and evaluated a novel ETT regulation
synthesis mechanism ETT ρ that extends ETT regulation for
propositional properties [7] to arbitrary STL properties. Using
the property structure and quantitative semantics and early
satisfaction detection capabilities of STL, our method is able to
seamlessly synthesize ETT regulation from propositional and
temporal logic requirements. This enables ETT ρ to identify
situations where system properties are known to be satis-
fied and the communication frequency can be reduced. Our
algorithm focuses on event-triggered transmission of system
signals rather than event-triggered control, which means that
our algorithm does not constrain the system dynamics and
can potentially also be applied to systems without controllers.
The effectiveness of ETT ρ was demonstrated in a case-study
concerning an adaptive cruise control scenario, and resulted
in a significant reduction (between ≈ 4243% and 9392%) in
the number of triggered events compared to a constant ETT
approach. Based on these promising initial results, we believe
that ETT ρ and potential future extensions will be applicable
to a wide range of real-world cyber-physical systems due to its
ability to adaptively match communication frequency to com-
plex runtime requirements specified in STL. Applying ETT ρ

to real-world cyber-physical systems will be a core part of our
future work and will require developing an efficient runtime

algorithm for (distributed) computation of ETTs for ETT ρ on
resource constrained devices. Algorithms for runtime temporal
logic monitoring on resource-constrained devices have already
been proposed (e.g. [28]), further strengthening our confidence
in practical applications of ETT ρ.
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