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Abstract. Throughout their useful life, plastic injection moulds oper-
ate in rapidly varying cyclic environments, and are prone to continual
degradation. Quantifying the remaining useful life of moulds is a nec-
essary step for minimizing unplanned downtime and part scrap, as well
as scheduling preventive mould maintenance tasks such as cleaning and
refurbishment. This paper presents a data-driven approach for identify-
ing degradation progression and remaining useful life of moulds, using
real-world production data. An industrial data set containing metrology
measurements of a solidified plastic part, along with corresponding life-
cycle data of 13 high production volume injection moulds, was analyzed.
Multivariate Statistical Process Control techniques and XGBoost classi-
fication models were used for constructing data-driven models of mould
degradation progression, and classifying mould state (early run-in, pro-
duction, worn-out). Results show the XGBoost model developed using
element metrology & relevant mould lifecycle data classifies worn-out
moulds with an in-class accuracy of 88%. Lower in-class accuracy of 73%
and 61% were achieved for the compared to mould-worn out less critical
early run-in and production states respectively.

Keywords: Smart manufacturing · Injection moulding · Data-driven
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1 Introduction

High-volume manufacturing processes such as plastic injection moulding, require
considerable upfront investment in tooling to develop a reliable moulding oper-
ation [1]. Consequently, manufacturers are keen to maximize tool productiv-
ity by eliminating unplanned maintenance, minimizing part scrap, and extend-
ing the useful life of their injection moulds. Previous research has developed
physics-based models of wear mechanisms affecting functionality of the mould
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and the quality of the moulded element, and validated them using simulation
and controlled experimental studies. Engelmann et al. [2] describe the progres-
sion of failure modes associated with specific components within a mould by
optical inspection. Zabala et al. [3] develop a wear model quantifying the wear
of the mould using a tribometer, erosion test, gravelometer and electro-chemical
impedance spectroscopy with varying mould coatings and plastics raw material.
Zhong et al. [4] compare the wear rate of three insert materials and determine
the surface texture of the elements (using an electron microscope) as a function
of injection cycles. However, these studies do not evaluate the applicability of the
developed models to predict longevity of moulds in real-world production envi-
ronments. To overcome these constraints, a variety of data-driven approaches
and machine learning models have been proposed for estimating element quality
(such as element weight, dimensions, etc.) as function of process and machine
data. Schulze et al. [5] propose an automated workflow for developing predictive
quality models for a plate specimen based on a variety of machine and process
parameters. Ogorodnyk et al. [6] classify low and high quality elements on-line
as a function of machine and process parameters. Frumosu et al. [7] present an
industrial application to predict mould lifetime from a data set containing ini-
tial process settings and tool characteristics such as, layout, construction, and
number of cavities. In spite of these studies, there is limited understanding on
which models are applicable towards mould longevity prediction as the accuracy
of such models are limited by the nature and resolution of data that can be
effectively measured on the factory floor.

In this paper, we aim to address the above knowledge gap by systematically
analyzing long-term mould life-cycle data collected from a real-world industrial
case. Results from our study contribute to existing research on mould degra-
dation prediction by, (i) presenting existing data-related and modeling-related
challenges, and (ii) identifying opportunities for successful application of data-
driven prediction models for injection mould degradation and classifying moulds
based on remaining useful life.

2 Industrial Data Set

In this section, we introduce the typical life-cycle of an injection mould and
relevant data collected at our industrial partner. Below we use the term “part”
as reference to the physical components of a mould and “element” as reference
to the solidified product from the moulding process. Our main goal is to use
metrology samples that are commonly collected in industrial injection moulding
for classifying three wear states of a mould in operation (early run-in, production,
worn-out). Figure 1 displays the six life-cycle stages of a mould at our industrial
partner (left) and lists relevant data, including type and life-cycle stage from
which we collect it (right). The stages most relevant for our contribution are: (1)
Design, create and assemble the mould for a specific element design; (2) Run tests
to find the optimal operating point and hand-over the mould to production; (3)
Fulfill an incoming production order; (4) Continuously monitor element quality



Data-Driven Identification of RUL for Plastic Injection Moulds 433

Stage Data name Data type
1-6 Mould ID Categorical (13)
1-6 Moulding Date Year (2011-2020)
1-6 Number of Cycles Numeric (0-15e6)
1 Construction Categorical (5)
1 Layout Categorical (3)
3 Order Number Categorical (503)
3 Machine Categorical (17)
3 Screw Design Categorical (6)
3 Production Site Categorical (4)
3 Color Categorical (29)
4 Metrology point Categorical (12)
4 Measurement value Numeric (*)
3, 5-6 Maintenance data Free text

Fig. 1. Illustration of the six mould lifecycle stages at our industrial partner (left)
and description of the data set (right). Stage labels the origin of the data. Data type
describes attributes of the data: Categorical types include number of unique values;
Numeric types include the range. *The range of measurement values depends on the
specific metrology point.

by collecting samples; (5) Conduct planned and unplanned maintenance; and
(6) Remove the mould from production. We refer the reader to Kazmer [8] for
more details on mould design, element approval and mould maintenance.

The data set contains historic measurements of the same moulded element
geometry produced using 13 different injection moulds. The Mould ID uniquely
identifies a mould throughout its lifetime. The data was collected in a period
of nine years from 2011–2020. Instead of associating events with a date, we use
the Number of Cycles to quantify the age of a mould as a function of usage
in production independent of time spent in storage, workshop etc. Five mould
constructions and three mould layouts were included in our analysis. The data set
contains additional information on single production orders i.e. Order Number as
unique label, machine type (hydraulic, electric, or hybrid), design of the injection
screw and production site. The raw material used in this study was ABS mixed
with one of 29 different color additives.

Metrology Data. The produced element is a small rectangular box, with a sup-
porting rip at the center on the long side (to reduce warpage). Figure 2 illustrates
the element geometry and metrology measuring points. In total 10 measuring
points including four specific measures are collected (length, width, height and
wall thickness). The element metrology is sampled every three weeks. A quality
sample consists of a batch of elements from each cavity of the mould from a single
injection cycle. In total, the data set contains 17,203 element metrology samples
per measurement point. To preserve data confidentiality, all metrology measures
are scaled according to the specification limits provided by the industrial part-
ner between +1 (upper specification limit) and –1 (lower specification limit)
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with 0 indicating the target value. Thus, positive values indicate elements larger
than target and negative values indicate elements smaller than target. Elements
above/below +1/–1 are outside of specifications and are thus rejected.

ID (Positions) Measurement
OH x (1,7,9) Outside Height
OL x (1) Outside Length
OW x (1,2) Outside Width
WS x (1,8) Side wall thickness
WL x (1,4) End wall thickness
WS tot
(WS 1+WS 8)

Sum of wall thickness

WL tot
(WL 1+WL 4)

Sum of wall thickness

Fig. 2. Illustration of the moulded element and description of location of metrology
measurements. WS tot and WE tot are calculated as the sum of the two wall thick-
nesses at the side positions and end positions respectively to reduce the impact of
variations in the alignment of the two mould halves.

3 Exploratory Analysis of Maintenance and Metrology
Data

A majority of the maintenance data is free text allowing detailed description
of the problem/cause but interfering with an automated analysis. All free text
entries are linked to one of 11 different root causes displayed in Fig. 3.

Fig. 3. Frequency percentage of 11 maintenance events by lifecycle stage. No mainte-
nance was recorded in the early run-in period.

For both production and worn-out moulds, majority of maintenance are asso-
ciated with deviation from dimensions of the elements (53.3% and 50.0% respec-
tively). Followed by edge damage (22.6%) and burn marks (13.3%) for production
moulds and cores worn-out (20.2%) and cleaning of air vents (16.7%) for worn
out moulds. In the following analysis we focus on the factor with greatest impact
i.e. deviation from dimensions.
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Due to mould wear and degradation, we expect the different metrology mea-
sures to change over time. When introduced into production, injection moulds
can have dissimilar dimensions due to the tolerances of upstream manufacturing
processes. Consequently, initial element dimensions vary from mould to mould.
Thus, to investigate mould degradation across moulds we align the metrology
measurements by subtracting the average values for individual mould/cavity/
metrology measure combination for the first 2.000.000 moulding cycles from the
same mould/cavity/metrology measure combination. Our analysis indicates that
for all moulds the height of the elements decreases with cycle count. Further,
our analysis shows that the element wall thickness and length increases as func-
tion of cycle count. We show the change of element height (OH 7), wall thickness
(WS tot), outside width (OW 2) and (OL 1) for three illustrative moulds (Fig. 4)
due to the large size of the entire data set. As shown, both element height and
wall thickness (Fig. 4B and Fig. 4D) exhibit a consistent downward and upward
trend respectively. The outside width (Fig. 4C) indicates a marginal positive
slope resulting in wider elements. This can be the result of progressive com-
pression of the mould parts in clamping direction reducing element height and
abrasive material loses from cavity walls, and core surfaces increasing the wall
thickness. While we expected a similar increasing trend for the element length
due to abrasion of the cavity walls, Fig. 4A displays a steep positive slope for one
mould, and a negative slope for the other two. Our analysis of metrology data
shows the height of the elements and the wall thickness give the most consistent
indicators of mould degradation.

Fig. 4. Change in metrology measures by mould age (number of injection cycles) for
three randomly selected moulds.

4 Monitoring of Mould Worn-Out Using MSPC

Section 3 shows specific element dimensions can be used as proxy for analyz-
ing mould degradation. One of the most common methods for monitoring pro-
cess quality (i.e. deviation in element dimensions) is using control charts [9].
Instead of monitoring the 12 metrology measures individually, we apply Multi-
variate Statistical Process Control (MSPC) with the quality measures reduced
to latent variables using Principal Component Analysis (PCA) (see MacGregor
et al. [10]) for systematically tracking element dimensions and thereby degrada-
tion of moulding parts in a single control chart. Based on the latent variables,
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we derive Hotelling T2 for monitoring the matrix of the latent variables and
Q-statistics for monitoring the residuals.

Fig. 5. MSPC for the two moulds declared worn-out due to deviations in dimensions.
Samples from the initial 2.000.000 cycles were used to create the baseline model.

Even though element dimensions were the largest contributor to maintenance
actions, the actual cause of disposal was only recorded for a small fraction of
moulds in the data set. However, to verify the applicability of element quality
measures for monitoring mould degradation, our analysis required moulds that
were marked as worn-out due to element dimensions being out of specifications.
Only two such moulds (Mould ID 248 & 250) were present in the data set.
Therefore, we selected these moulds for demonstrating the applicability of MSPC
and creating the relevant control charts. The Hotelling T2 and Q statistic for
these molds and control limits (the solid red lines) are shown in Fig. 5.

The control charts enabled monitoring the degradation of the moulds linked
to elements being out of dimensions. Mould 248 was declared worn-out between
sample 450–550. As show in Fig. 5A, the Hotelling T2 indicates an out of control
behaviour in this sample range. For mould 250 the T2 chart in Fig. 5B implies
fairly constant element dimensions (and correlation between dimensions) for the
first 500 samples. From approximately sample 500, variation in T2 is increasing.
From sample 650 the first indication of worn-out is present as T2 surpasses
the control limit. The corresponding Q chart implies an out-of-control situation
after sample 400 indicating a change in the model residuals. This can be due
to changes in the part of the correlation structure not included in the selected
latent variables. Situations like this have to be investigate before a more widely
implementation of a MSPC solution. Further, for Mould ID 248 the control limit
is exceeded between sample 250 and 300 on the T2 chart shown in Fig. 5A. The
free text in the maintenance data describes that shortly after sample 300 cavity
inserts were change due to element dimension being outside of the specification
limits. Using the T2 chart an early indication of the insert worn-out could have
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been realized at sample 250. The Q chart in Fig. 5A shows that the model residual
change after assembling of new insert parts. Thus, the underlying PCA model
requires updating to account for variations introduced by changing the inserts.
The above results from the two moulds indicate that MSPC is applicable for
monitoring element dimension and that the variation seen in the T2 charts can
be linked to mould degradation.

5 Classification of Mould State

To extend the results in Sect. 4 and investigate mould degradation for all moulds
using metrology measures, we develop a classification model with the wear states
labelled early run-in, production and worn-out. Based on expert input from the
industrial partner, we define the early run-in state as the first 30% of the col-
lected samples, production as samples collected between 30–80%, and worn-out
as the samples collected above 80% of the maximum cycle count for a mould.
Partial Least Squares - Discriminant Analysis (PLS-DA) [11] and XGBoost [12]
were tested on two different data sets, one being the 12 metrology measures
(compare Fig. 2) and one being the 12 metrology measures combined with five
selected categorical features (Construction, Production site, Screw, Colour and
Machine). We choose PLS-DA since PCA captured the latent structure related
to worn-out and XGBoost as it is a tree-based method performing well for a
data-set with both numerical and categorical features. The categorical features
were introduced in the data set by converting them to dummy variables and
applying PCA for reducing them to ten latent variables (explaining 94% of the
total variation). The XGBoost model using the metrology data combined with
the latent representation of the five categorical variables shows the best perfor-
mance among the four models i.e. PLS-DA with and without latent variables,
XGBoost with and without latent variables. The results indicate that while the
discrimination between early run-in and production achieves only a within-class
accuracy of 73% and 61% respectively, the worn-out class achieves accuracy of
88%. In comparison, the XGBoost model excluding the latent variables leads
an accuracy of 74% for the worn-out class. Further, the two PLS-DA models
achieve an worn-out class accuracy of only 30% with and 35% without latent
variables. Distinguishing between early run-in and production class is not criti-
cal, as detection of the worn-out state.

6 Discussion and Conclusion

This paper used real-world production data to develop data-driven models capa-
ble of detecting long-term degradation of plastic injection moulds. Analysis of
metrology measurements from the industrial data set confirmed that dimensions
of moulded elements changed systematically over time. This can be explained
by degradation of moulding parts (compression of moulding parts resulting in
reduced height of the elements, abrasion of material from the walls in the cavi-
ties and on the cores, resulting in longer and wider elements with thicker walls).
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Based on these findings two different approaches were explored for monitor-
ing degradation progression and detecting worn-out moulds (utilizing metrology
data). Results show that an MSPC-based approach can be used for monitoring
mould degradation and for supporting decisions related to change of inserts/cores
and declaration of mould wear-out. Additionally, our results demonstrated that
fairly accurate identification of remaining useful life of the mould (based on
mould state classification) is possible using element metrology and a latent rep-
resentation of key categorical variables. Both PLS-DA and XGBoost were tested
as classifiers and XGBoost was found to be superior achieving a within-class
accuracy of 88% for the worn-out class.

The results in this paper can be used for supporting and scheduling of
mould maintenance. Further, they create a foundation for developing solutions
for mould monitoring and decision support on when to perform a mould worn-
out evaluation. We expect that collection of additional time series data such
as machine and process data form the moulding machines can help to distin-
guish variation in the metrology measures due to material/process variations
and degradation of mould parts.
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