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Abstract
Digital Twin is a technology that facilitates a real-time coupling of a cyber-physical system and its virtual representation.
The technology is applicable to a variety of domains and facilitates more intelligent and dependable system design and
operation, but it relies heavily on the existence of digital models that can be depended upon. In realistic systems, there
is no single monolithic digital model of the system. Instead, the system is broken into subsystems, with models exported
from different tools corresponding to each subsystem.
In this paper, we focus on techniques that can be used for a black box model, such as the ones implementing
the Functional Mock-up Interface (FMI) standard, formal analysis, and verification. We propose two techniques for
simulation-based reachability analysis of models. The first one is based on system dynamics, while the second one
utilises dynamic sensitivity analysis to improve the quality of the results.
Our techniques employ simulations to obtain the model’s sensitivity with respect to the initial state (or model’s Lipschitz
constant) which is then used to compute reachable states of the system. The approaches also provide probabilistic
guarantees on the accuracy of the computed reachable sets that are based on simulations. Each technique requires
different levels of information about the black box system, allowing the readers to select the best technique according to
the capabilities of the models.
The validation experiments have demonstrated that our proposed algorithms compute accurate reachable sets of stable
and unstable linear systems. The approach based on dynamic sensitivity provides an accurate and, with respect to
system dimensions, more scalable approach, while the sampling-based method allows a flexible trade-off between
accuracy and runtime cost. The validation results also show that our approaches are promising even when applied to
non-linear systems, especially, when applied to larger and more complex systems. The reproducibility package with
code and data can be found at https://github.com/twright/SIM-Black-Box-Reachability.
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Introduction

Digital Twins (DT) are an emerging technology that makes
it possible to monitor, optimise and control cyber-physical
assets using their virtual representation (kept as a mirror
of reality) in real-time1. They provide critical services such
as state estimation, visualisation, what-if analysis, anomaly
detection, and self-adaptation.

Because DT services rely heavily on the existence
of models of the cyber-physical systems2,3 (CPS), the
dependability of the DT is a direct consequence of how
much we can depend upon the models’ simulation. For
example, prior to adapting the controller of the CPS, the
DT needs to find the optimal and safe configuration by, e.g.,
running simulations with alternative configurations on future
predicted scenarios, while checking that safety properties are
satisfied. If there is uncertainty in the model parameters, as
there often is in continuous and hybrid system models whose
parameters are identified from sensor data, then we may be
interested in computing bounds that enclose all simulation
results, based on the possible parameter values, in a technique
called reachability analysis. An introduction and survey of

the topic of reachability analysis are provided in4 and an
example application for DTs is presented in5.

To compute reachable states of the system generally
requires knowing a model of the system, which for CPSs
can be hard to obtain or even unavailable because of the
myriad of modelling and simulation tools used in engineering
practice. Fortunately, the industry has formulated standards
that make it possible to represent and integrate black box,
IP-protected models. One such standard is the Functional
Mock-up Interface (FMI)6, which is currently supported
by more than 150 tools. Because of these reasons, in this
paper, we focus on a class of reachability analysis techniques
that are data-driven (i.e., they rely on data generated from
simulations), which can be applied to black box models. Even
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though several data-driven reachability analysis approaches
have been proposed in the literature, they either do not
provide probabilistic guarantees on the completeness of the
exploration, or discuss handle coupled models.

Contribution. In this paper, we build upon our previous
work7 and propose a new method for computing reachable
states of black-box coupled models. This reachability anal-
ysis method leverages advanced FMI standard functionality
for retrieving partial derivatives of Functional Mock-up Unit
(FMU) variables and numerical differential system solvers to
solve dynamic sensitivity equations, which describe system
sensitivity to changes in their initial conditions. The com-
puted maximum sensitivity provides a scaling factor which
together with a nominal initial state space trajectory is used
to compute approximate reachable sets.

In summary, the novel contributions of this paper are:
(1) a dynamic sensitivity-based reachability analysis method
of black-box models and (2) a method for composing
dynamic sensitivity equation systems from coupled models
implementing the FMI standard. The paper evaluates the
new approach against our previously introduced data-
driven method7 by comparing reachable sets computed for
linear and non-linear dynamical systems. We also validate
our approaches against a leading model-based reachability
analysis tool — Flow∗ 8.

The paper is structured as follows. The following
Related Work section, discusses related work and positions
our reachability analysis approach. After that, our paper
describes the preliminaries and the problem statement
of the paper. The main contributions of the paper are
presented in the Reachability Algorithms section in which
we formally describe our proposed reachability analysis and
dynamic sensitivity equation composition algorithms. The
Validation Experiments section describes results obtained
from comparing and validating algorithms, as well as
discusses limitations and recommendations of the proposed
methods. In the final section, we summarise our findings and
propose directions for future work.

Related Work
This paper extends our previous work7, where we proposed
a data-driven method for computing the reachable states of
black-box models with probabilistic accuracy guarantees,
given a sufficient number of samples is used. This
reachability method was based on estimating a maximum
Lipschitz constant by simulating a model from independent
and identically distributed initial conditions and their
perturbations. However, for higher-dimension and more
complex systems, the method requires a large number of
samples to over-approximate accurately the reachable sets.

Over the years, the problem of computing the set of
reachable sets of a given system has received considerable
attention. In this section, we attempt to summarise this
work and conclude with an argument for the novelty of
the current manuscript. There are two main methods for
reachability analysis: model-based and data-driven. Model-
based reachability analysis uses a mathematical model of
the system to compute reachable states from a given set of
possible initial states. Over the years, several reachability
tools have been developed, such as SpaceEx9, JuliaReach10,

XSpeed11, and Flow∗ 8, to name a few. The reachability
methods have been widely used in applications that range
from formal system verification to their synthesis4.

We will focus on data-driven reachability analysis
techniques, which have also been proposed for scenarios
when a model of the system is unavailable or too complex,
and we will use the following axes to compare and position
related papers, as summarised in Table 1.
System-under-study (SUS) Denotes the kind of system

supported by the technique. Systems can be: lin-
ear/affine (L, the two are equivalent since one can
transform an affine system into a linear one through
extension of the states); non-linear (NL, the type of
Equation (1)); hybrid linear (HL, systems with dif-
ferent modes but within each mode the dynamics are
linear); and hybrid (H, as in the most general hybrid
automata). Within the hybrid category, there are kinds
of systems, but we abstain from discerning those.

Modularity of SUS (MSUS) Represents the degree of sup-
port for decoupled SUS. The categories are: monolithic
(M) and decoupled (D). For example, systems that are
represented by communicating sub-models, like the
one presented in Figure 1, are decoupled.

Information-required-from-SUS (IRS) Denotes the
degree of information that the technique requires from
the SUS. Possible categories are: full knowledge (FK)
of the systems equations; partial knowledge (PK),
where for example, the Jacobian of the system can
be queried through an API, without the knowledge
of the equations; and no knowledge (NK), where the
model can be simulated through an API, without any
knowledge of the equations.

Information-required-from-User (IRU) Denotes the kind
of information the user needs to specify. At the very
least we have information on numerical tolerances
(NT), and on the opposite side, we have information
on dynamic invariants (DI).

Guarantees (G) Denotes the level of guarantees offered by
the technique. We can have: reachability up to numer-
ical tolerance (NTG), probabilistic guarantees (PG),
and guarantees including numerical approximations,
i.e., full guarantees (FG).

Dynamic Sensitivity based Reachability Analysis
We begin with the works that are based on solving or
estimating the solution to the dynamic sensitivity equations,
and then using their solution to build the reachable set, as
introduced in Background and Problem Statement. Among
these, we highlight the methods described in12, where a
notion of expansion function is introduced, which can be
seen as the application of the dynamic sensitivity to a
given disturbance in the initial condition (cf. Theorems 3&4
in12). The benefit of this method is that more simulations
can be run, and in fact, thanks to the dynamic sensitivity
information, the initial conditions can be iteratively tried in
a way that attempts to drive the system into an unsafe state
(to quickly falsify a safety property). In the same way, more
samples can be taken, if more accuracy is needed. In the
same paper, the technique was extended to hybrid systems
without reset actions (but reset actions could be included,
provided they are differentiable with respect to their inputs).
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The extension requires that the dynamic sensitivity of the
jump time be computed as part of the system, and uses
results developed earlier in, e.g.,13. Later,14 revisits the jump
conditions required to apply second-order sensitivity analysis
to hybrid systems (second-order sensitivity analysis permits
an approximation of the flow around a nominal trajectory that
will have an error in the order of ϵ3). The guarantees given
are subject to the numerical approximation errors made by
the underlying solver library, and on how fined-grained the
sampling is, which is controlled by a tolerance parameter
provided by the user. This method has been implemented into
the Breach tool15, and we classify it in Table 1 as requiring
full knowledge from the system because of its hybrid systems
extension. For non-linear systems, only partial knowledge is
required.

Another similar approach to sensitivity-based reachability
analysis is proposed in C2E216 which originally was
designed for continuous and switched systems, and, in the
later paper17 extended to handle hybrid systems as well.
Their work proposes a generic “discrepancy function” which
provides a time-varying maximum distance bound on any
two trajectories originating from the initial set. As far as
we could assess, the notions of a discrepancy function and
an expansion function are closely related, with both capable
of being generated from the dynamic sensitivity equations
of the system, or over-approximations of it. The reader can
see various methods for computing discrepancy functions
for different classes of models in18, and the DryVR tool19

expresses the problem of finding a discrepancy function
as a problem of learning a linear separator. The tool also
provides a probabilistic accuracy guarantee on the computed
discrepancy function, given a sampling complexity formula
is followed.
HS3V 20,21 is a similar tool, which uses sampling and a

Lipschitz-based discrepancy function to estimate reachable
sets. Their approach also introduces a method called
dynamic simulations-spawning (s-spawning) to bound error
growth and adds new simulations to deal with discrete
jumps. It is worth mentioning a few other simulation-
based approaches22,23 which provide methods to compute
a time-varying function that provides a distance bound on
trajectories between the system and a simpler counterpart.
The simulations of the simpler model can be combined with
the time-varying function to yield reachable sets.

Optimisation-based Reachability Analysis The paper by
Xue et al.24 uses samples obtained from simulating a black-
box model to learn an underlying model by solving a
robust optimisation problem, which provides probabilistic
model accuracy guarantees. Different template models can
be used for learning the black-box model (e.g., polynomial
functions). A similar approach is presented in work25 where
the author’s approach uses sampled noisy data to identify
a set of models, which are then over-approximated with
zonotopes.

The paper26 presented a sampling-based reachability
analysis approach which is based on random set theory
and adversarial sampling. The main novelty of the work
is utilising recent advances in deep learning to iteratively
discover trajectories which help to converge the actual
reachable set. In other learning-based reachability analysis

work, the NeuReach tool27, was introduced which efficiently
computes reachable sets and provides a probabilistic
accuracy guarantee.

Whilst learning-based methods can improve the perfor-
mance of the reachability analysis, the main drawback is that
the underlying deep learning model has to be retrained for
different systems.

Decoupled Reachability Analysis Finally, we highlight the
work in28, which acknowledges the need for reachability
analysis techniques that work in parallel for de-coupled
models, such as those commonly found in co-simulation
scenarios29. In the aforementioned paper, the authors
introduce an interval-based reachability method which
uses set-valued Runge-Kutta integration methods30. The
reachability computation is done step-by-step, advancing
time after the reachable set of each step has been computed.
At each step, each sub-model is a black box simulation that
computes the interval of outputs based on the interval of
inputs. All sub-models’ intervals are then exchanged and the
step is repeated until a fixed point is reached.

Table 1. Positioning of the state of the art. Notes: [1] –
Restricted to two continuous modes; [2] – Submodels have to
implement set-based reachability methods.

Paper SUS MSUS IRS IRU G
12 H M PK NT NTG
17 H M PK NT NTG
16 H M FK DI NTG
19 H M PK NT PG
21 H M FK NT NTG
22 H[1] M FK NT NTG
24 NL M NK NT PG
25 NL M NK NT NTG
26 NL M NK NT NTG
27 NL M NK NT PG
28 NL D PK[2] NT FG
Our work NL D PK NT PG

Novelty of Contribution
As summarised in Table 1, compared to the state of the art,
the novelty of our contribution is in providing probabilistic
guarantees for decoupled black-box models.

Background and Problem Statement

Continuous Time Systems
We consider continuous-time systems, characterised by a
tuple Σ = (X,x0, f), where X ⊂ Rn is the state space and
n the number of states in the system, x0 ∈ X represents
the initial state, and f : X → X represents the vector field
and is assumed to be locally Lipschitz continuous (any
small changes in x result in bounded changes in f(x)). The
evolution of the state of Σ satisfies the equation

ẋ(t) = f(t, x(t)), x(0) = x0, (1)

which, thanks to the local Lipschitz assumption, always has
a unique solution, regardless of the initial condition.
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In order to represent the solution of Equation (1) as a
function of time t ∈ R≥0, and the initial state x0 ∈ X , we use
the notation φ(t, x0) ∈ X . For any finite simulation time τ ∈
R≥0, and for all t ∈ [0, τ ], the continuous function φ(t, x0)
is a solution to Equation (1), and therefore satisfies

φ̇(t, x0) = f(t, φ(t, x0)), (2)

with φ(0, x0) = x0. Finally, note that φ(t, x0) is continuous
both in t and in x0.

Reachability Analysis
Reachability analysis is a technique for computing the set of
all reachable states of the solution to Equation (1) for each
possible initial condition from a set X0 ⊆ X . The reachable
setRt at time t can be defined formally as:

Rt(X0) = {φ(t, x0) | x0 ∈ X0} (3)

To capture all reachable states, starting from the initial time,
up to a given simulation time τ , then we construct a flowpipe,
which is just the union of all reachable states up to τ :

R[0,τ ](X0) =
⋃

t∈[0,τ ]

Rt(X0) (4)

Reachability methods provide a powerful approach to
verifying safety requirements of dynamical systems under
uncertainty4, and are supported in a range of tools such
as SpaceEx9, Checkmate31, and Flow∗ 8. Furthermore, to
efficiently and accurately over-approximate reachable sets,
different convex and nonconvex set representations have been
developed. We refer the reader to the aforementioned works
for more details on how to over-approximate the reachable
set in (4).

Co-simulation and the Functional Mock-up
Interface Standard
Co-simulation is a technique where multiple black box
simulators are coupled together (see29,32 for introductions
to the topic). The difference between a black box simulator
and a black box model is that the simulator contains the
sub-model and approximates its numerical solution, given
an input signal. Since simulators are coupled in feedback
loops, the coupled solution is computed iteratively, moving
forward in time and approximating the solution at each
new timepoint from the solution at previous timesteps. The
Functional Mock-up Interface (FMI) standard33 establishes
the interface of the black box simulators, also called
Functional Mock-up Units (FMU), in the nomenclature of the
standard. An individual FMU is comprised of a description
file (in XML), which declares visible state variables and
other model information, and binaries that implement the
application programming interface to interact with the
FMU. Over the years a number of well-known modelling
and simulation tools have been upgraded (e.g., Simulink,
OpenModelica34,35) or developed (INTO-CPS tool36) to
support FMI standard.

The mandatory interface functions, implemented by an
FMU denoted as S, are: doStep(S, H) (asks S to advance
time to t+H and estimate internal state and outputs at the

new time); setIn(S, u, v) (set the input of S identified by u
to the value v for the current time t); and getOut(S, y) (get
the value for the output of S identified by y for the current
time t).

A co-simulation scenario is a set of FMUs and a
description of how they are connected. It is often depicted
in a diagrammatic form, as Example 1 shows.

Example 1. Consider the canonical example of a double
mass-spring-damper system, depicted in Figure 1. The system
is decoupled into two different FMUs, with inputs and outputs
as depicted in the same figure. Then, with an interface similar
to the FMI standard, their co-simulation is computed as
illustrated in Algorithm 1.

Figure 1. Example double mass-spring-damper system.

Algorithm 1: Example co-simulation orchestration
for Example 1.
Inputs: A final simulation time tf > 0, a
communication step size H > 0, and FMUS S1 and
S2

t← 0
Initialise S1 and S2

while t < t− f do
doStep(S1, H)
doStep(S2, H)
setIn(S1, Fc, getOut(S2, Fc))
setIn(S2, xc, getOut(S1, x1))
setIn(S2, vc, getOut(S1, v1))
t← t+H

end
Output: A value for each input/output computed at

each time t ∈ [0, tf ].

In addition to the mandatory functions each FMU
implements, the FMI also adds a number of optional
functions, that can be optionally implemented by FMU
exporting tools. From these, we highlight the functions
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that allow one to compute partial derivatives. Neglecting
efficiency issues, we denote this function as getDer(S, x,
y), which returns ∂x

∂y for the current time and state of s. These
will be used later in Section Building Sensitivity Equations
Co-Simulation Scenarios to build the dynamic sensitivity
equation system of a co-simulation scenario.

Problem Statement
In this paper, we address the problem of computing reachable
states of Digital Twin virtual models as formally defined in
Problem 1.

Problem 1. Given a black-box Digital Twin model of a
system Σ, initial set X0, and time-bound T , compute an
approximation of the reachable set R̄[0,T ](X0) using a finite
number of randomly simulated trajectories of Σ. Provide
the sample complexity of the computation, i.e., the required
number of trajectories for achieving a certain level of
approximation with probabilistic confidence.

In the above problem statement, we assume that a black-
box model of the system Σ is available, which can be
used to generate sample trajectories from any initial state.
These sample trajectories are sufficient for applying our first
technique to solve the above problem. Our second technique
requires also having access to trajectories of the dynamic
sensitivity in the FMUs of the system.

Dynamic Sensitivity Equations
We define the dynamic sensitivity equations, also called the
variational equations or just sensitivity equations, of the
system in Equation (1) as the different derivatives of the
n state variables with respect to the n initial conditions.
For example, for a system with 1 dimension, the dynamic
sensitivity equations represent how φ(t, x0) changes as a
function of changes in the initial condition x0. We represent
this rate of change by the derivative dφ(t,x0)

dx0
.

For a system with n dimensions, we will represent the state
variable in each dimension i by xi, such that each state x ∈ X
is represented by a vector x = [x1, . . . , xn]

T . Furthermore,
we will represent the restriction of the solution φ(t, x0)
to the state variable xi as φi(t, x0), so that φ(t, x0) =
[φ1(t, x0), . . . , φn(t, x0)]

T .
Given state variables xi and xj , we will use the shorthand

notation δi,j(t, x0) to denote the derivative of φi(t, x0)
with respect to xj,in (the initial value for xj): δi,j(t, x0) =
∂φi(t,x0)

∂xj,in
.

The dynamic sensitivity is a matrix represented as

S(t, x0) =

δ1,1(t, x0) . . . δ1,n(t, x0)
...

. . .
...

δn,1(t, x0) . . . δn,n(t, x0)

 (5)

The dynamic sensitivity equations shown next represent an
extension of Equation (1) with differential equations that
relate S(t, x0) to its time derivative Ṡ(t, x0) (derived below):

ẋ(t) = f(x(t)), x(0) = x0,

Ṡ(t) = J(x(t)) · S(t), S(0) = I,
(6)

where we have omitted the dependency to x0 of each solution
to improve readability, · is the matrix product, and

J(x(t)) =


∂f1(x(t))

∂x1
. . . ∂f1(x(t))

∂xn

...
. . .

...
∂fn(x(t))

∂x1
. . . ∂fn(x(t))

∂xn

 (7)

represents the Jacobian matrix of the continuous-time system
and ∂fi(x(t))

∂xj
denotes the partial derivative of the i-th state

derivative with respect to the j-th state (recall that f is a
vector function).

To derive Equation (6), we differentiate S(t) with respect
to time. Each entry δ̇i,j(t, x0) of Ṡ(t) is therefore expanded
as follows:

δ̇i,j(t, x0) =
d

dt

∂

∂xj,in
φi(t, x0) (expand notation)

=
∂

∂xj,in

d

dt
φi(t, x0) (swap derivative order)

=
∂

∂xj,in
fi(t, φ(t, x0)) (apply Equation (2))

=
dfi(t, φ(t, x0))

dx
· ∂φ(t, x0)

∂xj,in
(apply chain rule)

=
[
∂fi(t,φ(t,x0))

∂x1
. . . ∂fi(t,φ(t,x0))

∂xn

]
︸ ︷︷ ︸

i-th row of J(x(t))


∂φ1(t,x0)

∂xj,in

...
∂φn(t,x0)

∂xj,in


︸ ︷︷ ︸

j-th column of S(x(t))

Taking all entries of Ṡ(t) together yields the equation Ṡ =
J · S. Note that each entry depends on the full state solution
of the original system φ(t, x0) and therefore the differential
equation needs to be solved together with the original
equations of the system. A system with n dimensions will
therefore be extended to a system with n+ n2 dimensions.

Example 2. Taken from37. Consider the system given
by the differential equation ẋ = −x+ sin(t) x(0) = x0,
and its solution given by φ(t, x0) = x0e

−t + 0.5(sin(t)−
cos(t) + e−t). The solution is plotted for different initial
conditions in Figure 2. Since the initial conditions stop
making a difference in the system (because of the periodic
forcing function), we expect the sensitivity to vanish after
about 6 seconds.

Applying Equation (6), the expanded system gives

ẋ = −x+ sin(t) x(0) = x0

Ṡ = −S S(0) = 1,
(8)

with solution

φ(t, x0) = x0e
−t + 0.5(sin(t)− cos(t) + e−t)

S(t) = e−t
(9)

plotted in Figure 3.

Example 3. Consider a spring pendulum whose behaviour
is given by the following dynamical system:

ṙ

θ̇
v̇r
v̇θ

 =


vr
vθ

rv2θ + 9.8 cos θ − 2(r − 1)

− 2vrvθ+9.8 sin θ
r

 (10)
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Figure 2. Example solutions for the system in Example 2.
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Figure 3. Example solutions for the system in Example 2
including the sensitivity.

The sensitivity matrix is therefore:

S(x) =


δr,r δr,θ δr,vr

δr,vθ

δθ,r δθ,θ δθ,vr δθ,vθ
δvr,r δvr,θ δvr,vr

δvr,vθ
δvθ,r δvθ,θ δvθ,vr δvθ,vθ

 (11)

As we show next, the Jacobian, J(x(t)) in Equation (6), of
this system is:

J(x) =


0 0 1 0
0 0 0 1

v2θ − 2 −9.8 sin θ 0 2rvθ
2vrvθ+9.8 sin θ

r2 − 9.8
r cos θ − 2

rvθ − 2
rvr


(12)

As we have seen before we can get the expression of Ṡ,
the time derivative of the dynamic sensitivity matrix, using
Ṡ = J · S. We get the following 16 equations, that depend on

the original system equations in Equation (10):

δ̇r,r = δvr,r, δ̇r,θ = δvr,θ, δ̇r,vr = δvr,vr , δ̇r,vθ
= δvr,vθ

δ̇θ,r = δvθ,r, δ̇θ,θ = δvθ,θ, δ̇θ,vr = δvθ,vr , δ̇θ,vθ = δvθ,vθ

δ̇vr,r = (v2θ − 2)δr,r − 9.8 sin θδθ,r + 2rvθδvθ,r

δ̇vr,θ = (v2θ − 2)δr,θ − 9.8 sin θδθ,θ + 2rvθδvθ,θ

δ̇vr,vr = (v2θ − 2)δr,vr
− 9.8 sin θδθ,vr + 2rvθδvθ,vr

δ̇vr,vθ = (v2θ − 2)δr,vθ
− 9.8 sin θδθ,vθ + 2rvθδvθ,vθ

δ̇vθ,r = C(r, θ)δr,r −K(r, θ)δθ,r −
2

r
vθδvr,r −

2

r
vrδvθ,r

δ̇vθ,θ = C(r, θ)δr,θ −K(r, θ)δθ,θ −
2

r
vθδvr,θ −

2

r
vrδvθ,θ

δ̇vθ,vr = C(r, θ)δr,vr −K(r, θ)δθ,vr −
2

r
vθδvr,vr

− 2

r
vrδvθ,vr

δ̇vθ,vθ = C(r, θ)δr,vθ
−K(r, θ)δθ,vθ −

2

r
vθδvr,vθ −

2

r
vrδvθ,vθ

where

C(r, θ) =
2vrvθ + 9.8 sin θ

r2
, K(r, θ) =

9.8

r
cos θ

Interpretation of Sensitivity Equations
We demonstrate here how dynamic sensitivity equations can
be used to approximate the reachable set R[0,τ ](X0) in
Equation (4). First note how the distance between the system
solutions in Figure 3 for Example 2 is correlated to the
sensitivity solution. Since φ(t, x0) is a continuous function
of x0, we can perform a Taylor expansion around the value
x0:

φ(t, x0 + ϵ) ≈ φ(t, x0) +
dφ(t, x0)

dx0︸ ︷︷ ︸
S(t,x0)

ϵ+O
(
ϵ2
)

(13)

where the O
(
ϵ2
)

denotes the order of the magnitude for
the higher order terms in the rest of the Taylor series.
Equation (13) gives us a direct method to estimate trajectories
around a nominal system solution φ(t, x0). Note that the
truncated terms are expected to be in the order of ϵ2, which
will be small in comparison with the first two terms of the
Taylor expansion for small values of ϵ.

Example 4. Following Example 2, we know S(t) = e−t,
so we can use it to estimate other trajectories around
φ(t, 1). The result is plotted in Figure 4 where the dotted
trajectories represent estimates, and the solid represent the
actual solutions. Note that there is no error in the estimates
because the system is linear, and therefore the higher order
terms in Equation (13) vanish.

To summarise, for an expanded dynamic sensitivity system
as in Equation (6), and a given initial set X0 of potential
initial conditions, the reachable set Rt(X0) in Equation (3)
can be approximated using the following procedure:

1. Discretise X0 into smaller hyper-rectangles
X1, . . . ,Xn such that the distance between any
point contained in each hypercube and its centre is
small enough (generally smaller than 1 because of the
truncated term in Equation (13));
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Figure 4. Example estimated solutions for the system in
Example 2 around nominal trajectory φ(t, 1), as detailed in
Example 4.

2. For each Xj , compute the nominal solution at its
centre, and apply Equation (13) to estimate all
trajectories of interest in its vicinity (for linear and
affine systems, it suffices to cover all the extremities
of Xj);

3. Because of continuity, any set of states between a
trajectory and the estimated trajectories in its vicinity
are reachable, so we can form flow pipes uniting the
nominal trajectory and all trajectories of interest in its
vicinity;

4. Rt(X0) is then computed by the union of all flow
pipes.

The above approach does not necessarily generate over-
approximations of the reach set for nonlinear systems since
the higher-order terms in the Taylor expansion are eliminated
without appropriate quantification of the induced error. In
the following sections, we provide two techniques that are
based on random trajectories of the system and provide
probabilistic correctness guarantees.

Robust Convex Programs
This section provides the mathematical details for robust
convex programs (RCPs) and data-driven approximations of
their solution. The content of this section is provided in its
full generality. We will utilise Theorem 1 and Theorem 2
presented in the sequel to establish the correctness of
our data-driven framework. The reader can refer to the
papers38,39 for the full exposition of the results presented in
this section.

Let T ⊂ Rq be a compact convex set for some q ∈ N and
c ∈ Rq be a constant vector. LetD be the space of uncertainty
with (D,B,P) denoting the uncertainty probability space (B
is the Borel sigma-algebra on D and P a probability measure
that assigns probabilities to sets in B). Let g : T ×D → R be
a measurable function, which is convex in the first argument
for each d ∈ D, and bounded in the second argument for each
θ ∈ T . The robust convex program (RCP ) is defined as

RCP:

{
minθ c

⊤θ

s.t. θ ∈ T and g(θ, d) ≤ 0 ∀d ∈ D
(14)

An example of the RCP used in our work is presented in
Equation (23). Computationally tractable approximations of
the optimal solution of the RCP (14) can be obtained using
scenario convex programs (SCP ) that only require gathering
finitely many samples from the uncertainty space39.

Let (di)Ni=1 be N independent and identically distributed
(i.i.d.) samples drawn according to the probability measure
P. The SCP corresponding to the RCP (14) strengthened
with γ ≥ 0 is defined as

SCPγ :


minθ c

⊤θ

s.t. θ ∈ T, and
g(θ, di) + γ ≤ 0 ∀i ∈ {1, 2, . . . , N}

(15)

An example of the SCP used in our work is presented in
Equation (24). We denote the optimal solution of RCP (14)
as θ∗RCP and the optimal solution of SCPγ (15) as
θ∗SCP . Note that θ∗RCP is a single deterministic quantity
but θ∗SCP is a random quantity that depends on the i.i.d.
samples (di)

N
i=1 drawn according to P. The RCP (14) is

a challenging optimisation problem since the cardinality of
D is infinite and therefore the optimisation has an infinite
number of constraints. In contrast, the SCP (15) is a
convex optimisation with a finite number of constraints for
which efficient optimisation techniques are available. The
following two theorems provide sample complexity results
for connecting the optimal solutions of the SCPγ to that of
the RCP .

Theorem 1.38. Let β ∈ (0, 1) be a confidence value and
ϵ ∈ (0, 1) a given tolerance. Select the number of samples N
according to

N ≥ 1

ϵ

(
e

e− 1

)
log

(
1

δ
+ q

)
(16)

where e is Euler number and q is the dimension of the
decision vector θ ∈ T . Then the solution of (15) with γ = 0
computed by taking N i.i.d. samples (di)

N
i=1 from P is a

feasible solution for the constraint

P(g(θ, d) ≤ 0) ≥ 1− ϵ (17)

with confidence (1− β).

The above theorem states that if we take the number of
samples appropriately, we can guarantee that the solution
satisfies the robust constraint in (14) on all the domain d ∈ D
except for a small subset that has measure at most ϵ.

Theorem 2.39. Assume that the function g : T ×D → R
d 7→ g(θ, d) in (14) is Lipschitz continuous with respect to
d ∈ D uniformly in θ ∈ T with Lipschitz constant Ld and let
h : [0, 1]→ R≥0 be a strictly increasing function such that

P(Ωε(d)) ≥ h(ε), (18)

for every d ∈ D and ε ∈ [0, 1]. Let θ∗RCP be the optimal
solution of the RCP (14) and θ∗SCP the optimal solution of
SCPγ (15) with

γ = Ldh
−1(ε) (19)

computed by taking N i.i.d. samples (di)
N
i=1 from P. Then

θ∗SCP is a feasible solution for the RCP with confidence
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(1− β) if the number of samples is at least N(ε, β), where

N(ε, β) := min

{
N ∈ N

∣∣∣ q−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β

}
,

(20)
with q being the dimension of the decision vector θ ∈ T .

The above theorem is stronger than Theorem 1 in
guaranteeing that the solution will be feasible for the
RCP (14) on the whole domain d ∈ D. This is at the cost of
requiring the knowledge of an upper bound on the Lipschitz
constant of the function g and also being more conservative
in the required number of samples. The confidence (1− β)
is a common feature of these two theorems and is due to the
nature of the solution that depends on the sampled dataset
(di)

N
i=1.

Reachability Algorithms
In this section, we describe two different algorithms for
computing reachable states of black-box FMI models. The
two algorithms compute a scaling factor S which is then used
to compute edges of the reachable set, as follows:

ς(t, xc)± S(t) ∥η/2∥∞
where ς(t, xc) denotes a central trajectory and η denotes the
size of the discretised initial state-space. This section also
describes a curve-fitting approach for estimating an upper
boundary of the scaling factor and a method for building up
the sensitivity matrix from the FMI’s dependency graph.

The first reachability algorithm uses simulated trajectories
of a black-box model and Scenario Convex Programs
(SCP ) to compute a maximum Lipschitz constant of the
black-box model. The computed Lipschitz constant together
with a central trajectory is then used for computing an
interval-based approximation of the reachable set. The
alternative algorithm replaces the estimation of the model’s
Lipschitz constant in the previous algorithm with a solution
of sensitivity equations, which describe the impact of
perturbations of the system’s initial conditions on the
trajectories of the system.

These algorithms are presented in detail in the following
sections.

Sampling-based Algorithm
For computing the reachable set from a set of initial states
X0, a common approach is to partition the set X0 into a
union of hyper-rectangles {Xj , j = 1, 2, . . . ,m} of size η =
[η1, η2, . . . , ηn] by gridding the state space. Then for eachXj ,
we find a vector Lj(t) ∈ Rn such that:

|ς(t, x0)− ς(t, x′
0)| ≤ Lj(t) ∥x0 − x′

0∥∞
∀x0, x

′
0 ∈ Xj , t ≥ 0

(21)

where ς(t, x0) and ς(t, x′
0) are the state trajectories of the

system at time t started from x0, x
′
0 ∈ Xj , and | · | denotes the

element-wise absolute value. In the next step, the reachable
set from each Xj is computed as the hyper-rectangle Yj with
edges

ς(t, xcj)± Lj(t) ∥η/2∥∞ (22)

which gives a hyper-rectangle with centre ς(t, xcj) and size
Lj(t) · η. The state xcj is the centre of the initial hyper-
rectangle Xj . The union of all Yj , j = 1, 2, . . . ,m gives
an over-approximation of the reachable set from X0. The
implementation of the above procedure requires computing
ς(t, xcj), which is possible using a black-box model of the
system.

Algorithm 2: Sampling-based reach set computation
Inputs: System as a black box, time instance t, initial

set X0 ⊂ Rn

Select discretisation η = [η1, η2, . . . , ηn] with ηi > 0
Partition X0 into hyper-rectangles Xj ,
j = 1, 2, . . . ,m, of size η with centre xcj

for j = 1, 2, . . . ,m do
Select N according to (16) or (20)
Take N samples x0i uniformly from Xj

Obtain trajectories ς(t, x0i) and ς(t, xcj) from the
black box model

Solve the SCPγ in (24) to find Lj(t)

Define Ỹj as a hyper-rectangle with centre
ς(t, xcj) and size Lj(t) ∥η/2∥∞

end
Output: Sampling-based reach set Ỹ := ∪jỸj

RCP Formulation and Sampling. The inequality (21) used
in the reachability analysis can written as the Robust Convex
Program:

RCP:


min c⊤Lj(t)

s.t. c = [1; 1; . . . ; 1], Lj(t) ≥ 0, and
|ς(t, x0)− ς(t, xcj)| − Lj(t) ∥x0 − xcj∥∞ ≤ 0,

∀x0 ∈ Xj .
(23)

We can define the associated SCPγ

SCPγ :


min c⊤Lj(t)

s.t. c = [1; . . . ; 1], Lj(t) ≥ 0, ∀i ∈ {1, . . . , N},
|ς(t, x0i)− ς(t, xcj)| − Lj(t) ∥x0i − xcj∥∞ + γ ≤ 0,

(24)
where x0i ∈ Xj are taken randomly from a probability
distribution P.

Once the SCPγ (24) is solved, the sampling-based
reachable set from Xj is computed as the hyper-rectangle
Ỹj with edges ς(t, xcj)± Lj(t) ∥η/2∥∞ where Lj(t) is
obtained by solving (24). The next theorem uses the results of
the Section Robust Convex Programs for picking the number
of samples N to connect Ỹj with the true reachable set.

Theorem 3. If Ỹj is computed using the solution of
(24) with γ = 0 and N selected according to (16), then
with confidence (1− β), the set Ỹj covers the whole true
reachable set except for a small set with probability measure
at most ϵ.
If Ỹj is computed using the solution of (24) with N selected
according to (20), then with confidence (1− β), the set Ỹj
covers the whole true reachable set.

The full algorithm for our sampling-based reachability
analysis is presented in Algorithm 2.
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Lipschitz Constant via Extreme Value Theorem
For estimating Ld in Theorem 2 and making use of it in
Theorem 3, we should estimate an upper bound for the
fraction

∆(x, x′) :=
∥ς(t, x)− ς(t, x′)∥

∥x− x′∥
(25)

that holds for all x, x′ ∈ Xj . We follow the line of reasoning
in40,41 and use the Extreme Value Theorem for the estimation.

Let us fix a δ > 0 and assign uniform distribution
to the pair (x, x′) over the domain {x, x′ ∈ Xj , ∥x−
x′∥ ≤ δ}. Then ∆(x, x′) is a random variable with an
unknown cumulative distribution function (CDF). Based on
the assumption of Lipschitz continuity of the system, the
support of the distribution of ∆(x, x′) is bounded from
above, and we want to estimate an upper bound for its
support. We take n samples from (x, x′) and compute
n samples ∆1,∆2, . . . ,∆n for ∆(x, x′). The CDF of
max{∆1,∆2, . . . ,∆n} is called the limit distribution of
∆(x, x′). The Fisher-Tippett-Gnedenko theorem says that if
the limit distribution exists, it can only belong to one of the
three families of extreme value distributions - the Gumbel
class, the Fréchet class and the Reverse Weibull class. These
CDFs have the following forms:

Gumbel (Type I): G(s) = exp

(
− exp

(
s− a

b

))
where s ∈ R

Fréchet (Type II): G(s) =

{
0 if s < a

exp
(
−( s−a

b )−c
)

if s ≤ a

Rvr. Weibull (Type III): G(s) =

{
exp

(
−(a−s

b )c
)

if s < a

1 if s ≤ a

where a ∈ R, b > 0, c > 0 are respectively the location, scale
and shape parameters.

Among the above three distributions, only the Reverse
Weibull class has support bounded from above. Therefore,
the limit distribution of ∆(x, x′) will be from this class
and the location parameter a is such an upper bound. As a
result, we can estimate the location parameter of the limit
distribution of ∆(x, x′) to get an estimation of the Lipschitz
constant.

A procedure for estimating the Lipschitz constant is
presented in Algorithm 3. This uses obtained Lipschitz
constants to compute approximate reachable sets. For each
state of the system, a single Lipschitz constant value is
obtained from a previously sampled set. In this work, we
considered two operations for obtaining a final Ls(x, t): a
maximum value and a value produced via curve-fitting and
the Extreme Value Theorem42. The algorithm then computes
a central trajectory of the model by simulating it from the
set of initial values which are midway between the lower and
upper limits of the initial set.

Remark The estimated Lipschitz constant from Algorithm 3
can also be used directly for estimating the reachable sets.
Unfortunately, this quantity is just an estimation and will
converge to the true Lipschitz constant in the limit. When it is

Algorithm 3: Lipschitz constant estimation using
Reverse Weibull distribution

Inputs: System as a black box, time instance t, initial
set Xj ⊂ Rn

Parameters: δ > 0, number of samples n,m
for k = 1, 2, . . . ,m do

Take n samples (xi, x
′
i) uniformly from the set

{x, x′ ∈ Xj , ∥x− x′∥ ≤ δ}
Compute {∆(xi, x

′
i), i = 1, 2, . . . , n} using (25)

and trajectories from the black box model
Define Lk = maxi ∆(xi, x

′
i)

end
Fit a Reverse Weibull distribution to the dataset
{L1,L2, . . . ,Lm}

Get the location, scale and shape parameters of the
fitted distribution

Output: Estimated Lipschitz constant as the location
parameter of the fitted distribution

computed with a finite number of samples, it is not associated
with a quantitative closeness guarantee. In contrast, using
the vector Lj(t) for reachability computations is more likely
to give less conservative reach sets with formal probabilistic
closeness guarantees.

Sensitivity-based Algorithm
In this section, we describe an alternative algorithm, which
uses solutions of dynamic sensitivity equations to replace
scaling of the initial region with a Lipschitz constant
factor Lj(t), with rescaling based on the sensitivity matrix
S(xin, t).

The algorithm similarly partitions initial region X0 into
a union of hyper-rectangles {Xj , j = 1, 2, . . . ,m} of size
η = [η1, η2, . . . , ηn]. The algorithm then requires obtaining
a system of sensitivity equations ˙S(t) and solving them
numerically together with black-box system ẋ(t) from an N
number of randomly sampled initial conditions x0i within
each hyper-rectangle Xj .

The reachability algorithm then over-approximates the
image Yj of the hyper-rectangle Xj , by first computing
expansion vectors

ξi = [ξi1, . . . , ξ
i
n] where ξik = |S(t, x0i)| · (η/2)T

which use the sensitivity matrix S(t, x0i) (or rather, its
element-wise absolute value |S(t, x0i)|) to compute the
maximum expansion in each direction of the sample
point x0i. The method then takes the element-wise
maximum ξmax =

[
maxNi=1 ξ

i
1, . . . ,maxNi=1 ξ

i
n

]
which is

used to compute the edges of Yj by expanding around the
central trajectory ς(t, xcj).

The full algorithm is described in Algorithm 4.

Building Sensitivity Equations Co-Simulation
Scenarios
In this section, we describe how to extend Algorithm 4 to
handle networks of FMUs implementing the FMI interface.

Given the network structure of FMUs, in order to get
the Jacobian matrix required to compute the sensitivity
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Algorithm 4: Sensitivity-based reach set computa-
tion
Inputs: Time instance t, initial set X0 ⊂ Rn

Select discretisation η = [η1, η2, . . . , ηn] with ηi > 0
Partition X0 into hyper-rectangles Xj ,
j = 1, 2, . . . ,m, of size η with centre xcj

Acquire system of dynamic sensitivity equations Ṡ(t)
for j = 1, 2, . . . ,m do

Select N according to (16) or (20)
Take N samples x0i uniformly from Xj

Obtain central trajectory ς(t, xcj) and sensitivity
matrix S(t, x0i) from the black box model

Compute expansion vectors ξi = [ξi1, . . . , ξ
i
n]

where ξik = |S(t, x0i)| · (η/2)T
Compute maximum expansion vector
ξmax =

[
maxNi=1 ξ

i
1, . . . ,maxNi=1 ξ

i
n

]
Define Ỹj as a hyper-rectangle with centre
ς(t, xcj) and size ξmax

end
Output: Sampling-based reach set Ỹ := ∪jỸj
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ẋ1
1

F 1
c

v21

v22

v̇22

x2
1

x2
2

ẋ2
2

F 2
c

Figure 5. The dependency graph example of the mass spring
damper example.

matrix, we need a way to differentiate a variable in one
FMU with respect to a variable in another FMU (recall
(6)). For that reason, we build a dependency graph before
the sampling starts. The vertex of this graph are the state
variables of each FMU, their time derivatives, and the input
and output variables. The edges represent the dependency of
the target on the source. For example, given the system and
implementation in Figure 1, its dependency graph is depicted
in Figure 5.

Remark If a dependency graph has a cycle, a variable
depends on itself. This is not a typical behaviour of systems
in the form of (1) and is therefore outside the scope of this
paper.

We can use the dependency graph to know what
computations we need to do in order to calculate a derivative,
as follows. Given variables α and β, let D denote all cycle-
free paths from α to β. The derivative of α with respect to β

is:

dα

dβ
=
∑
p∈D

|p|−2∏
i=0

∂p[i+ 1]

∂p[i]
(26)

where, given path p, |p| denotes its length and p[n] denotes
the n-th element of p.

For example, in Figure 5, dv̇1
1

dx1
1

is given as follows. There
are two paths: x1

1 → v̇11 and x1
1 → x2

1 → F 2
c → F 1

c → v̇11 .
Hence

dv̇11
dx1

1

=
∂v̇11
∂x1

1

(1st path)

+
∂x2

1

∂x1
1

∂F 2
c

∂x2
1

∂F 1
c

∂F 2
c

∂v̇11
∂F 1

c

(2nd path)
(27)

In order to compute the sensitivity matrix, we initialise
it to an identity matrix of the correct dimension. After that,
each sample step is a co-simulation run, where we compute
the Jacobian at every co-simulation step, calling a function
that computes every partial derivative that makes an element
of the Jacobian matrix J(x(t)) using (26). Once we have
the Jacobian for time t we estimate the dynamic sensitivity
matrix using a numerical solver. For simplicity, we use
the Forward Euler method: S(t+H) = S(t) + Ṡ(t) ∗H =
S(t) + J(x(t)) · S(t) ∗H , where Ṡ(t) is computed as in (6)
and H is the co-simulation step-size parameter. We provide a
formalised summary of the algorithms in Algorithm 5.

Algorithm 5: Compute the sensitivity matrix of a
system in the FMI standard

Input: A set of FMUs FS and their
inter-connections, the communication step size H ,
the final simulation time tf > 0.

Initialise S and J to the identity matrix
t← 0
while t < tf do

Exchange data among all FMUs
Compute J using Equation (26)
forall F ∈ FS do

doStep(F , H)
end
S ← S + J · S ∗H
t← t+H

end
Output: The dynamic sensitivity matrix S after an
arbitrary number of steps.

Validation Experiments
This section presents validation exercises which evaluate
our reachability algorithms as presented in the previous
section. The validation exercises cover both affine dynamical
systems and non-linear systems and aim to evaluate the
conservativeness of the computed reachable sets and the
associated computation time. We also obtain reachable
sets (and computation time) produced by the model-based
reachability tool Flow∗ and compare them against ones
produced by our methods. To select non-linear system
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benchmarks and Flow∗ parameters, we followed a well-
known verification competition ARCH43.

Experiment setup. All timing results in this section were
measured on an HP EliteBook 840 G7 with an Intel Core
i5-10310U processor under Ubuntu 22.04 (Linux 5.14.0).
For the methods described in this paper, the results are
based on a prototype implementation in Python. In particular,
we relied on the SciPy44 solve ivp function and the
LSODA solver45 for solving dynamical systems (with an
absolute tolerance parameter of atol = 10−6 and a relative
tolerance parameter rtol = 10−3), whilst SCP optimisation
problems were solved via the CVXPY library46,47 with the
parameter γ = 0. Comparison results and timings for Flow*
were produced by Flow* toolbox*.

Affine Systems
We can start to evaluate the performance of our method on
Linear/Affine Initial Value Problems of form

d

dt
x(t) = Ax(t) + b; x(0) ∈ x0 (28)

with state matrix A ∈ Rn×n and offset vector b ∈ Rn, and
interval vector initial region x0 ∈ IRn. Whilst linear systems
pose a significantly easier reachability challenge than general
non-linear systems — in this case, sensitivity analysis is
exact, whilst Flow* and SpaceEx both provide very efficient
special-purpose reachability algorithms — they allow us to
effectively evaluate how well the methods of this paper
approximate a given linear system’s dynamics, since these
are well understood and admit explicit solutions.

Sample reachability results for different classes of linear
systems are shown in Figure 6. We can see that Flow*
and sensitivity-based reachability analysis both produce
indistinguishable flowpipes, whilst applying reachability
analysis based on the Lipschitz constant computed from
sampled trajectories alone gives a coarser reachable set
estimation shown.

Lipschitz constant estimation accuracy To assess the
overall accuracy of our methods, we will consider uniformly
randomly selected N -dimensional Affine Systems of the
form Equation (28), restricted such that A ∈ [−1, 1]N , b ∈
[−1, 1], and x0 ⊆ [−1, 1]N . We will consider separately the
classes of stable systems (those for which every eigenvalue
of A has a negative real part) and unstable systems (those for
at least one eigenvalue of A has a positive real part), and take
100 systems of each class.

We will assess how accurately each of the different
methods captures the dynamics of the underlying system
based on the vector of Lipschitz constants which they use to
compute reachable sets. Whilst the SCP optimisation directly
computes a vector LSCP(t) of Lipschitz constants for the
system, we are also able to compute a similar vector of
Lipschitz constants from the sensitivity matrix as Lsens(t) ≜
c |S(t)| where c = [1, . . . , 1] and |M | is the element-wise
absolute value of the matrix M . and considering the accuracy
of each method to estimate the Lipschitz constant of the
system over-approximate the system dynamics. We will
compare each of these approximations to the true vector of
Lipschitz constants (with respect to ∥·∥∞) for the system
which we can compute using the general solution of a linear

ODE as, L(t) = c |exp(At)| . Then we may measure the
relative absolute error of an approximated Lipschitz constant
vector L′(t) at a given time-point t as

RAE ≜
∥L′(t)− L(t)∥2
∥L(t)∥2

.

Then, we may estimate the overall performance by taking
the Geometric Mean Relative Absolute Error (GMRAE)†

of multiple sampled relative absolute errors RAEi via the
formula

GMRAE ≜

(
n∏

i=1

RAEi

) 1
n

.

In the special case of 2D systems, Figure 7 shows the
evolution of the GMRAE of the Lipschitz constant vector
estimate produced using dynamical sensitivity analysis, and
SCP optimisation for varying numbers of samples. We see
that the relative error from SCP optimisation decreases with
an increasing number of samples, and is roughly consistent
over the whole simulation time. Additionally, the relative
error of the method is similar between stable and unstable
systems; this result is somewhat surprising given that typical
Lipschitz constants for random unstable systems can be
orders of magnitude larger than those of stable systems
(and, indeed, the absolute error of the method will be
correspondingly larger for the same number of samples).
Figure 8 shows the trade-off between the total runtime of
each method and the relative error achieved. We observed a
relationship between the number of samples and the relative
error improvement in the relative error trailing off after 80
samples. Finally, we observed that, as expected, dynamical
sensitivity analysis (with a single sampled sensitivity matrix)
approximates the true Lipschitz constant vector almost
perfectly for linear systems, and provides by far the best
accuracy/runtime trade-off for 2D systems.

Additionally, Figure 9 shows how the runtime and relative
error of each method varies with the dimension of the system,
based on 100 randomly sampled stable and unstable system
for dimensions 1 through 6. We can see that the runtime
of each method increases exponentially with the system
dimension and that the rate of increase of sampling runtime
increases with the number of samples, whilst the runtime
of dynamic sensitivity analysis increases significantly more
rapidly than the SCP optimisation-based approximation
with any of these numbers of samples. However, dynamic
sensitivity consistently produced the best approximation
of the system Lipschitz constant vector, and indeed, its
relative error decreased with the dimension of the system.
This suggests that the dynamic sensitivity equations are
a reliable method of estimating the Lipschitz constant of
linear systems, with consistent accuracy regardless of system
dimension, whilst sampling offers a flexible cost/accuracy
trade-off for higher-dimensional systems.

∗https://github.com/chenxin415/flowstar/tree/
master/flowstar-toolbox
†The geometric mean is preferred over the mean when aggregating error
rates due to the latter’s sensitivity to outliers 48, such as those arising from
numerical errors when computing the RAE of small quantities.
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Figure 6. Comparison of reachability from sampled Lipschitz constants with Flow* and Sensitivity Analysis results for a randomly
generated 2D stable system (left), an unstable system (middle), and an oscillator (right) from the unit initial region [−1, 1]2.
Numerical simulations (grey) for 100 randomly sampled initial conditions are shown for comparison.
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Figure 7. Errors of different methods of Lipschitz estimation at
different time points between 1.0 and 5.0 for stable and unstable
random 2D linear systems

Nonlinear Systems
This section compares our proposed algorithms for comput-
ing reachable sets and validates them against a model-based
reachability analysis tool - Flow∗. Let us start by considering
2D nonlinear Van Der Pol system:{

ẋ(t) = y(t)

ẏ(t) = (1− x(t)2) · y − x
(29)

Figure 10 compares the reachable set for the initial set
[1.1, 2.4]× [2.35, 3.45] computed using by Algorithms (2) -
(4) and Flow∗. The top figures show reachable sets produced
by sensitivity-based Algorithm (4) (blue curve), Flow∗ (red
curve) and some randomly sampled trajectories (grey curves)
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Figure 8. Comparison of total runtime against GMRAE for
stable and unstable random 2D linear systems

for x, y states of the Van Der Pol system respectively. Flow∗

was not able to produce reachable sets over the whole time
horizon [0, 5] with the given initial region.

The rest of the section considers four additional non-linear
models with varying number of dimensions: coupled Van
Der Pol (4D), Rossler System (3D), Spring Pendulum (4D,
model from the Dynamic Sensitivity Equations section) and
Biological Model (7D). We evaluate the runtime and flowpipe
volume accuracy produced by Algorithms (2) and (4). The
latter is measured by using Equation (30):

A =

T∑
t=0

(
100−

(
Vol(RS(t))− Vol(RF (t))

Vol(RF (t))
× 100

))
(30)

where Vol(RS(t)) and Vol(RF (t)) are volumes of reachable
sets produced respectively by one of our algorithms and
Flow∗ at time t with δ size step. The metric measures an
accumulated proportional volumetric difference between two
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Figure 9. Errors and runtimes of different methods of Lipschitz
estimation at time point t = 5.0 for randomly sampled linear
systems of up to 6 dimensions.

flowpipes (e.g., negativeAwould indicate that in comparison
to Flow∗ one of our algorithms produces a less conservative
flowpipe). From Figure 10 we can observe that the sampling-
based algorithm computes a more conservative flowpipes,
however, this comes at a cost of requiring more samples,
hence computation time, to guarantee an over-approximation,
especially for larger initial regions.

Similar findings can be observed from Figure 12 in
which we summarise our accuracy results from three models
for different number of samples: Van Der Pol initial
state:x1 = [1.1, 1.4], y1 = [2.35, 2.45], coupled Van Der
Pol parameters x1,2 = [1.25, 1.55], y1,2 = [2.35, 2.45], T =
[0, 5], while Rossler system x = [0.7, 1] and y, z = 1; all
systems analysed for [0, 5] seconds. We decided to exclude
results from Spring Pendulum and Biological models as
Flow∗ was only able to produce reachable sets from small
initial sets and for short time horizons, resulting in minuscule
flowpipe volumes.

The runtime validation experiments are summarised in
Figure 12. In these experiments, we again increased the
number of samples for Algorithms 2 and 4 and observed
reachable set computation time. We also include the runtime
performance of the Flow∗ tool. Important to note that at
this stage, we did not attempt to improve the computational
performance of the proposed methods.

Figure 12 clearly shows that Algorithm 2 is considerably
slower in comparison to Algorithm 4 and does not scale
well with an increased number of samples. The main reason
for this is the computation overhead of solving SCPs . We
can see this in Figure 13 in which we demonstrate the
proportion of runtime it takes to sample and solve the SCP
in Algorithm 2 and solve sensitivity equations in Algorithm 4
for different models and numbers of samples. Except for the
case of the Biological model, solving sensitivity equations
in Algorithm 4 makes up a significantly smaller proportion
of computation time, while the opposite is true in the case
of obtaining maximum Lipschitz constant with SCPs in
Algorithm 2.

In short, the results presented in this section have
shown that our algorithms produce reasonably conservative
reachable sets for non-linear systems. Although, with the
current algorithm implementation their runtimes do not scale
well with the increased number of samples, we have shown
accurate results can be produced even with a fairly small
number of samples. The main limitation of the Algorithm
(2) is the need for a larger number of samples to provide
probabilistic accuracy guarantees, while solving SCP is a
major contributor to a large runtime. The sensitivity-based
algorithm provides much less conservative results but offers
a more scalable approach.

Sensitivity Matrix Cosimulation
In order to validate the results of the algorithms given in
Building Sensitivity Equations Co-Simulation Scenarios we
are going to use the mass spring damper system visualised in
Figure 1. The equations that describe this system’s behaviour
are provided in Equation (31).


ẋ1

v̇1
ẋ2

v̇2
Fc

 =


v1

−c1·x1−d1·v1+Fc

m1

v2
−c2·x2−F2

m2

cc · (x2 − x1) + dc · (v2 − v1)

 (31)

We are going to solve this system together with the coupled
sensitivity equations using the SciPy solve ivp solver. In
Figure 14 we validate the value of δx1,x1 (an element of the
sensitivity matrix computed with Algorithm 5) against the
analytical solution, with a time step of 0.01. We will then
compute the error between the sensitivity matrix computed
by Algorithm 5 and the solve ivp solver function as:

e(t) = ∥S(t)− S′(t)∥2 (32)

where S(t) denotes the sensitivity matrix computed by the
Algorithm 5, S′(t) denotes the sensitivity matrix computed
by the solve ivp function and ∥·∥2 denotes the 2-norm
for matrices. In Figure 15 we show different error functions
for different step sizes, which shows that the smaller the step
size, the smaller the error.

We can see in the results that our approximation is close
enough to the solve ivp function. Figure 14 shows that
both functions are almost indistinguishable. Furthermore,
Figure 15 shows that by decreasing the step size of the co-
simulation scenario we can reduce the error, which allows us
to get as close as we want to standard numerical algorithms.

Validation Discussion
In this section, we explored the ability of each of our methods
to accurately and efficiently approximate the dynamics of
black-box models and to conservatively compute reachable
sets.

Firstly, we saw that in the case of linear systems,
the sampling-based approach is able to approximate the
sensitivity of the system to its initial conditions (as captured
in the vector of Lipschitz constants), and the accuracy
of this approximation can be increased by increasing the
number of samples. This is consistent with, Theorem 3
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Figure 10. Reachable set comparison of the nonlinear Van Der Pol system for the initial set [1.1, 2.4]× [2.35, 3.45] for T = [0, 5].
Top: reachable set produced by a sensitivity-based algorithm for x state (left) and y state (right), Bottom: reachable sets produced
by a sampling-based algorithm for x state (left) and y state (right). Both algorithms were used with 100 samples.
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Figure 11. Volume error exercise that demonstrates the number
of samples effects on volume accuracy. We consider the
following number of samples [10, 20, 50, 75, 100, 150, 200, 400,
500, 750, 1000].

which specifies the number of samples required to achieve
a given probability of over-approximating the true Lipschitz
constants and, consequently, the true reachable set. We also
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Figure 12. Runtime validation exercise that demonstrates the
number of samples effects to computation time of reachable
sets for different non-linear models.

saw that for linear systems, dynamic sensitivity analysis
gives an almost exact approximation of the true Lipschitz
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solve sensitivity equations in Algorithm (4). Note: the rest of the
runtime is used for computing flowpipe.
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constants regardless of system dimension, although its
runtime increases rapidly with the dimension of the system.

For non-linear systems, both sampling and dynamic
sensitivity analysis give approximate results, whilst their
conservativeness can both be increased by increasing the
number of samples used. For most of our systems, we saw
that dynamic sensitivity analysis gives reasonable results
for a reasonably low runtime. However, the sampling-based
approach is able to give more conservative results for higher
numbers of samples and is also able to give probabilistic
guarantees on containment.

We also saw how we can sensitivity analysis to decoupled
FMUs, by dynamically tracking the sensitivity matrix
of the system. This is limited by the fact that our
current co-simulation technique relies on the Forward Euler
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Figure 15. Errors between the sensitivity matrix computed by
Algorithm (5) and solve ivp method with varying time steps
sizes.

method, which produces larger errors than more competitive
numerical integration methods. The use of better numerical
methods is important to reduce these errors, but this
would impose additional requirements on the FMUs being
simulated. In practice, we observed relatively small errors
between the sensitivity matrices computed via this method
and the conventional open-box method using the LSODA
solver.

Conclusions and Future Work
Ensuring the dependability of Digital Twins relies on proving
that the formal system models underpinning them are safe.
In some cases, accurate models of complex systems are
too difficult to obtain or unavailable due to IP protection
(as facilitated by the FMI standard). In this work, we
develop methods to provide formal analysis for models
featuring uncertainty or unavailability of their dynamics, by
introducing algorithms for performing reachability analysis
of black-box models. We were particularly focused on the
FMI standard-based black box dynamical system models.
The developed data-driven and dynamic-sensitivity–based
reachable set computation methods have been thoroughly
evaluated for linear and non-linear dynamical systems, and
results have shown that conservative reachable sets can
be computed. Although, as discussed, for large numbers
of samples and high-dimensional systems, the runtime
performance of the algorithms offers scope for improvement
(particularly the sampling-based algorithm), we saw that
algorithms do not require a large number of samples to
produce accurate reachable sets.

There are several interesting directions for future work:

1. We could investigate extending each of the methods
proposed in this paper from reachability analysis, to
monitoring Signal Temporal Logic properties of the
system’s behaviour following the methodology of49.
This would allow us to verify whether black box
models satisfy high-level temporal logic specifications,
whilst accounting for the impact of uncertainty on
the result of verification via three-valued logic and
probabilistic guarantees.
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2. We could investigate the application of each of the
methods to parametric black-box models, as a way
to soundly account for the impact of uncertain model
parameters on the behaviour of the system.

3. Our sampling-based approach can in general be
applied to hybrid models as long as trajectories are
continuous functions of the initial state. To apply
the dynamic sensitivity-based approach to hybrid
automata, we would like to investigate how dynamic
sensitivity equations could be obtained for a black-box
hybrid system.
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